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in normal-metal/BCS-superconductor junctions

Bruno Bertin-Johannet ,* Jérôme Rech , Thibaut Jonckheere, Benoît Grémaud, Laurent Raymond , and Thierry Martin
Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

(Received 13 December 2021; revised 22 February 2022; accepted 24 February 2022; published 9 March 2022)

We investigate photoassisted electronic transport in a normal-metal/BCS-superconductor junction with a
microscopic Hamiltonian approach, for several types of periodic voltage drives applied on the normal-metal side.
The time-dependent current and the photoassisted noise are computed to all orders of the tunneling Hamiltonian
using a Keldysh-Nambu-Floquet approach. An excess noise analysis allows one to determine to what extent pure
electronic excitations with a small number of electrons per period can be generated by the different drives. When
the superconducting gap is small compared to the drive frequency, the junction behaves like a normal-metal
junction and minimal excess noise is reached for Lorentzian voltage drives carrying an integer charge (levitons).
In the opposite regime of a large gap, the excess noise vanishes for half-quantized levitons, giving rise to the
perfect transmission of a Cooper pair on the superconducting side. This microscopic approach also allows us to
address the intermediate regime, when the drive frequency is comparable to the gap, allowing us to study the
nontrivial interplay between Andreev reflection and quasiparticle transfer processes. Our analysis also shows the
appearance of Tien-Gordon–type relations connecting the current and noise in the AC-driven junction to their
DC counterpart, which we investigate in details. Finally, the possibility to build a reliable on-demand source of
Cooper pairs with this setup is examined using realistic experimental parameters.
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I. INTRODUCTION

Electron quantum optics (EQO) aims at describing and ma-
nipulating single electronic excitations in condensed matter
systems. This is achieved by adapting scenarios of quan-
tum optics where, for instance, single photons are sent on a
beam splitter. This includes the Hanbury-Brown and Twiss
experiment [1] where the intensity correlations from coher-
ent photons at the output are observed. Alternatively, in the
Hong-Ou-Mandel setup [2] photons collide at the location of
the beam splitter and correlations are measured at the output.
In condensed matter settings, electron wave guides can be
achieved with a two-dimensional electron gas (2DEG), while
a quantum point contact (QPC) mimics the beam splitter.
However, electrons differ from photons as they are charged
particles and bear fermionic statistics. This means, in par-
ticular, that they interact strongly with their neighboring
electromagnetic environment and are always accompanied by
a Fermi sea.

In recent decades, the combination of theoretical [3] and
experimental [4] efforts, boosted by advances in fabrication
techniques, has provided EQO with a strong foothold. In
particular, a range of results can be interpreted in terms of a
Fermi-liquid picture. Concerning single-electron sources, spe-
cial interest has been devoted to trains of quantized Lorentzian
pulses [3] dubbed levitons. Levitons consist of “pure” single-
electron excitation [5], i.e., devoid of unwanted electron-hole
pairs. When a combination of AC and DC bias is applied at the
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entry ports of a QPC, the measurement of the output excess
noise (with respect to the proper reference situation with only
an applied DC bias) allows the detection of these spurious
electron-hole excitations. Yet, the Fermi-liquid picture has to
be revisited when decoherence effects [6] or embedded corre-
lations (as in the fractional quantum Hall effect [7]) operate,
requiring an adapted formalism and yielding new effects such
as charge fractionalization [8] or leviton crystallization [9].

While so far mostly Coulomb repulsion has been effec-
tively included in such scenarios, other types of correlations
also deserve consideration. Indeed, electron waveguides can
be connected to superconducting leads, opening the way to
hitherto unexplored EQO effects, such as electron (respec-
tively hole) conversion into Bogoliubov quasiparticles [10]
above (respectively below) the gap or Andreev reflection [11]
(AR) of electrons or holes inside the gap [12]. This is precisely
the goal of this study: we address, using a microscopic model,
how electron pulses generated by a voltage drive on a normal
metal behave at a tunnel junction with a superconductor; note
that it differs from the setup studied in Ref. [12] involving two
superconductors, where only quasiparticle transfer is consid-
ered within a perturbative scheme.

This system was discussed earlier by Belzig et al. [13]
through full counting statistics of the electric current in the
context of circuit theory [14]. In this study, they considered
the zero-temperature limit and focused on the two limiting
regimes where the drive frequency is either much larger or
much smaller than the gap of the superconductor. In the
former situation, they found that the excess noise (XN) is
suppressed for integer charge-carrying levitons, in accor-
dance with a normal-metal junction. In the latter one, where
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transport is dominated by Andreev reflection, they found
excess noise suppression also for levitons carrying half-
integer charge. The effect of a finite temperature or the fate
of the junction in the intermediate regime between these two
limiting cases remained largely unexplored, and this is the gap
we intend to bridge here.

In this work, we develop a microscopic Hamiltonian model
of the junction, allowing us to compute the average current
as well as the period-averaged noise at all orders in the
tunneling constant using Green’s functions in the Keldysh
formalism. This enables access to all regimes for the relevant
parameters, providing analytical derivations when possible.
Not only can we describe the junction over the whole range
of driving frequency (smaller than, comparable to, or above
the superconducting gap) but our approach also allows us to
exactly account for finite temperature. The formalism we use
is quite versatile, and allows us to tackle any type of periodic
drive (we typically restrict ourselves to sinusoidal, square, and
Lorentzian drives). It heavily relies on Floquet theory [15],
where as a consequence of the applied AC drive, electrons can
absorb or emit photons leading to the formation of side bands
in energy, or Floquet channels. These are populated with
probabilities directly connected to the Fourier decomposition
of the exponentiated drive, or so-called Floquet weights.

We start by considering the regime of vanishingly small
gap, where results naturally coincide with those of a N-N
junction, with excess noise suppression obtained when the
applied voltage is a train of levitons with integer charge [16].
We then focus on the opposite regime of an infinite gap, where
the results can now be cast in a form similar to the N-N case,
but with Andreev reflection replacing electron transmission,
and the excess noise gets suppressed when the applied voltage
is a train of levitons with half-integer charge [13]. Within our
framework, we are able to provide a microscopic argument
explaining why the XN vanishes for these specifically tailored
pulses. We also describe the crossover regime in which the
driving frequency is comparable to the superconducting gap.
There, we derive an exact expression for the average current,
and also provide a detailed analysis of the excess noise, re-
lying first on an analytic perturbative expansion at low order
in the tunneling constant, before solving numerically the full
problem at all orders. Our results can be interpreted in terms
of Floquet transport channels, uncovering the importance of
“effective gaps” corresponding to the superconducting gap as
seen from a given Floquet channel.

Our analytic derivation also allows us to establish that
current and noise satisfy Tien-Gordon–type relations [17],
i.e., that there is a profound connection between AC- and
DC-driven behaviors. While this is always satisfied for the
average current, which can be viewed as a weighted sum of
independent contributions from each Floquet channel, it is
only valid for the noise in the limiting regimes. We propose an
interpretation for these results in terms of the relevant physical
processes at play and the interference effects expected to
occur between different Floquet channels.

Finally, we consider the possibility to use the driven N-S
junction as a source of Cooper pairs. Building on our under-
standing of the various regimes, we analyze the effects of a
finite temperature along with the departure from perfect trans-
mission, and show that there exists a set of experimentally

accessible parameters for which the N-S junction driven by
an appropriately tuned periodic Lorentzian drive operates as
a reliable source of Cooper pairs with a properly quantized
average transmitted charge as well as minimal excess noise.

The paper is organized as follows. In Sec. II we introduce
the theoretical framework for tunneling through the junction
in the presence of a periodic drive. In Sec. III, we analyt-
ically recover known results for the two limiting regimes
[13] providing an interpretation for the relevant signatures
within our formalism. Section IV then focuses on the inter-
mediate regime where the drive frequency is comparable to
the gap. In Sec. V, we investigate in more details the Tien-
Gordon–type relations we uncover for the current and noise.
A scheme to design an on-demand source of Cooper pairs
realizable experimentally is discussed in Sec. VI. We conclude
in Sec. VII. Some additional technical aspects are presented in
the Appendixes. We adopt units in which h̄ = kB = 1 and the
electronic charge is e < 0. The temperature of the system is
denoted θ and β corresponds to the inverse temperature, i.e.,
β−1 = kBθ .

II. MODEL

A. Hamiltonian approach

We adopt a similar approach to the one developed by
Cuevas et al. [18] for junctions involving superconductors in
which the BdG equations are discretized. The left and right
leads are described at equilibrium by the following Hamilto-
nians:

HL = H0,L,
(1)

HR = H0,R + �
∑

i

(c†
i,R,↓c†

i,R,↑ + ci,R,↓ci,R,↑),

where H0 is the kinetic part of the Hamiltonian, i labels the
various sites of these leads, � is the superconducting gap,
and the chemical potential is set to zero in both electrodes.
Here ci,L,σ (respectively ci,R,σ ) is the electron annihilation
operator at site i on the left (respectively right), with spin σ .
By convention, we consider that the coupling between the two
leads occurs at sites 0 (see Fig. 1). One then defines the Nambu
spinors

ψ
†
L = (c†

0,L,↑ c0,L,↓), ψ
†
R = (c†

0,R,↑ c0,R,↓) (2)

allowing us to write the tunneling Hamiltonian between the
leads as

Htun = ψ
†
LWLRψR + H.c. (3)

The total Hamiltonian therefore reads as

H = HL + HR + Htun. (4)

The tunnel matrix between the coupled sites of the left and
right leads of the junction is defined as

WLR = λσze
iσzφ(t ), (5)

with σz the Pauli matrix in Nambu space, and λ the tun-
neling amplitude. The phase φ(t ) = e

∫ t
−∞ dt ′ V (t ′) is the

time-dependent phase difference between the leads which ac-
counts for the drive V (t ) applied on the left lead. Note that
W †

LR = WRL.
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c0,Lc1,L

. . .

c0,R c1,R

. . .

HT = λ σ eiφ(t)c†0,L,σc0,R,σ + h.c.

λeiφ(t)

FIG. 1. Simplified drawing of the junction considered. Top draw-
ing represents both metals separated by a junction by tunnel coupling
λ, the normal metal is driven by a time-dependent voltage drive V (t )
of period T . The bottom drawing represents the tight-binding model
describing the junction in the gauge where the time dependence is in
the tunnel coupling.

The current flowing from the left (normal) lead is obtained
from the current operator defined as

IL(t ) = ie[ψL(t )σzWLR(t )ψ†
R(t ) − H.c.]. (6)

B. Average current and noise

The first two moments of the current operator are com-
puted in the framework of Keldysh theory [19]. We perform
the time ordering on Keldysh contour and our convention is
to use

G+−
j j′ (t, t ′) = i〈ψ†

j′ (t
′) ⊗ ψ j (t )〉, (7)

where G+−
j j′ is the Green function dressed by the tunneling

Hamiltonian and j, j′ are lead indices.
It follows that the average current is expressed as a Nambu

trace,

〈IL(t )〉 = e TrNRe[σzWLR(t )G+−
RL (t, t )], (8)

where Re denotes the real part.
We are also interested in the mean deviation from the aver-

age current so we use the real-time zero-frequency irreducible
noise correlator, defined as

SLL(t ) =
∫ +∞

−∞
dt ′[IL(t + t ′)IL(t ) − 〈IL(t + t ′)〉〈IL(t )〉]. (9)

Using Wick theorem, its average value becomes

〈SLL(t )〉 = −e2
∫ +∞

−∞
dt ′TrN{2 Re[σzWLR(t )G−+

RL (t, t ′)σzWLR(t ′)G+−
RL (t ′, t )]

− σzWRL(t )G−+
RR (t, t ′)σzWLR(t ′)G+−

LL (t ′, t ) − σzWLR(t )G−+
LL (t, t ′)σzWRL(t ′)G+−

RR (t ′, t )}, (10)

where we introduced −+ time-ordered Green function

G−+
j j′ (t, t ′) = −i〈ψ j (t )ψ†

j′ (t
′)〉. (11)

Note that the matrices entering this expression for the noise
are all written in Nambu space.

C. Voltage drive and Floquet theory

We consider that a periodic drive of frequency 	 is applied
on the normal side of the junction, with the goal of injecting
up to a few electrons per period. We are particularly interested
in the so-called levitons, which consist of a periodic train of
Lorentzian pulses, as they are able to excite an integer number
of electrons without any other perturbation to the Fermi sea
[4,20]. For the sake of comparison, we also consider the case
of a periodic cosine voltage, and of a periodic square voltage.

The periodic voltage can always be written as the combi-
nation of a DC and an AC part:

V (t ) = VDC + VAC(t ), (12)

where VDC is time independent, and VAC(t ) averages to zero
on one period T = 2π/	 of the periodic drive. The DC part
of the voltage determines the injected charge per period. We
define this important quantity as

q = e

2π

∫ T

0
dt V (t ) = eVDC

	
. (13)

Note that the drive affects both spin species in the same way,
so an injected charge of q = 1 for example corresponds to a
spin-up electron and a spin-down electron injected per period.

In practice, the DC component of the drive is actually fully
taken into account by shifting the Fermi energy of the normal
metal by eVDC, such that one is left dealing only with the AC
part of the drive. As the voltage appears in the Hamiltonian
as exp[ie

∫ t
−∞ dt ′V (t ′)], the AC part of the voltage is best

described by introducing the Fourier coefficients pl defined
as

exp

[
−ie

∫ t

−∞
dt ′ Vac(t ′)

]
=

∑
l

pl e−il	t . (14)

By doing so, we use Floquet theory [7,15,17,21,22] in which
the total Hamiltonian is separated into an infinite number of
independent harmonics in Fourier space. The Floquet theory
goes beyond this simple Fourier decomposition. Indeed, it
states that as a consequence of the AC drive, the electrons
can gain or lose energy quanta leading to the formation of side
bands. The Floquet weight Pl = |pl |2 therefore corresponds to
the probability for an incoming electron to absorb l photons
of energy 	. The voltage-biased lead is then better described
as a Floquet state, a superposition of Fermi seas, which we
now refer to as “Floquet channels,” with shifted chemical
potential μ → μ + eVDC + l	 and an intensity given by the
corresponding Floquet weight Pl .
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FIG. 2. The logarithm of the Floquet weights of the first few channels, as a function of the injected charge per period q, for the three
different drives, cosine, square, and Lorentzian train of pulses (with η = 0.15). The index of the coefficient corresponding to each curve is
written on the graph. Note that P−l = Pl for the cosine and square drives.

For a time-dependent system defined by Eq. (3), one
can show that the advanced/retarded self-energy entering the
Dyson equation simply reads as �(t, t ′) = δ(t − t ′)WLR(t )
(see Appendix D). Following the formalism presented in Ap-
pendix A, this self-energy becomes an infinite matrix �̂(ω)
expressed in the enlarged Nambu-harmonics space. More pre-
cisely, the matrix elements of this self-energy in harmonics
space can be described by the following 2 × 2 block structure
in Nambu

�mn(ω) = λ

(
pn−m 0

0 −p∗
m−n

)
(15)

which turns out to be independent of ω. To emphasize the
scaling of the self-energy in the tunneling amplitude λ, we
define the matrix P̂ as

�̂ = λ P̂, (16)

which we will use in the equations below for the current and
the noise.

The expressions of the pl coefficients are given in Ap-
pendix B for the three different voltage drives that we consider
[7]: the cosine drive, the square drive, and a train of Lorentzian
pulses. This latter choice involves an additional parameter η,
which corresponds to the ratio of the width of the Lorentzian
shape divided by the period of the drive (in what follows,
we consider values of η in the range 0.1–0.15, correspond-
ing to experimentally accessible narrow Lorentzian pulses).
As we consider voltages for which the amplitude of the AC
component is directly related to the DC component, the pl

coefficients only depend on the charge injected per period q.

The logarithms of the Pl are represented in Fig. 2 for the
first few values of the index l and the various drives consid-
ered. We point out that, for small values of q, only the Floquet
weights with the lowest |l| contribute. When q increases, the
higher values of |l| start to have a non-negligible contribution.
One sees that, for Lorentzian pulses (right panel of Fig. 2),
Pl �= P−l which is not the case for other drives. For all the
drives, we remark that there are some parameters for which
Pl vanish. In the case of a cosine drive (left panel of Fig. 2),
this corresponds to the zeros of the Bessel functions of the first
kind. For the square drive (middle panel of Fig. 2), the Floquet
weights vanish for l − q = 2n with n integer, and those of the
Lorentzian pulses (right panel of Fig. 2) vanish for integer
values of q which obey q < −l . We also notice that for the
cosine drive, high-index Floquet weights are well separated in
magnitude which is not the case for the square drive.

In all generality, the current and the noise are complex
time-dependent objects and we are instead primarily inter-
ested in their average value over one period of the drive.
The time-averaged current can then be written as the energy
integral of a Nambu-harmonics trace, namely,

〈IL〉 = e
∫ T/2

−T/2

dt

T
TrNRe[σzWLR(t )G+−

RL (t, t )]

= eλ
∫ 	/2

−	/2

dω

2π
TrNHRe[σ̂zP̂†Ĝ+−

LR (ω)], (17)

where σ̂ j is a tensor product of the usual Nambu matrix σ j

with the identity matrix in harmonics space.
A similar computation can be performed for the noise

yielding the following expression for the zero-frequency
period-averaged noise (PAN)

〈SLL〉 ≡
∫ T/2

−T/2

dt

T
〈SLL(t )〉 = −e2λ2

∫ 	/2

−	/2

dω

2π
TrNH{2 Re[σ̂zP̂†Ĝ−+

RL (ω)σ̂zP̂†Ĝ+−
RL (ω)]

− σ̂zP̂Ĝ−+
RR (ω)σ̂zP̂†Ĝ+−

LL (ω) − σ̂zP̂†Ĝ−+
LL (ω)σ̂zP̂Ĝ+−

RR (ω)}. (18)

These expressions for the current and the noise can readily
be evaluated once the dressed Green functions Ĝ+−

i j and Ĝ−+
i j

(with i, j = L, R) are known. These are obtained by solving

the Dyson equation in Nambu-harmonics space, which relates
the dressed Green functions to the bare ones and the self-
energy �̂. Details and solution of the Dyson equation are
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given in Appendix D. Note that the bare Green function of
a superconductor in Nambu-harmonics space can readily be
expressed in frequency representation [23] as

gr/a
nm (ω) = − lim

δ→0

ωn1 + �σx√
�2 − (ωn ± iδ)2

δnm, (19)

where ωn = ω + n	 and the large-bandwidth limit is assumed
without loss of generality.

Finally, it may turn out useful to compare the zero-
frequency period averaged noise to a reference value. This is
achieved by introducing a so-called excess noise (XN) which
corresponds to the difference of the total noise, obtained when
the junction is biased by a voltage with both DC and AC
components, to its purely DC counterpart

Sexc = 〈SLL〉|DC+AC − 〈SLL〉|DC. (20)

III. RESULTS IN THE LIMITING REGIMES

We now consider the results obtained by evaluating the
current and the noise using Eqs. (17), (18), and (20), in the
two limiting regimes of a very small and a very large gap
compared to the driving frequency. Focusing on these limit-
ing regimes allows us to apprehend more easily the physical
processes at play in the junction, and even obtain analytic
formulas in the extreme situations of a vanishing or an infinite
superconducting gap. In the end, understanding these two
limiting regimes helps us interpret the results obtained in the
general case, described in the next section.

A. Small-gap regime � � �

This regime corresponds to the case of a driving frequency
much larger than the gap. One thus expects that transport
processes through the junction are largely dominated by QP
transfer. Indeed, the Andreev reflection of an incoming elec-
tron of energy ω (with respect to the chemical potential of the
superconductor) occurs with a probability [10,18] �2/ω2 and
is thus strongly suppressed in this limit.

Let us first consider the extreme situation of a vanishingly
small superconducting gap, which has the benefit of being
tractable analytically. In this limit, the normal metal and the
BCS lead Green functions are identical and read as

ĝr/a
BCS −−−→

�→0
ĝr/a

N = ∓i1̂. (21)

This, in turn, allows us to analytically solve the Dyson equa-
tion and thus derive the expression for both the current and the
noise, yielding

〈IN 〉q = e

π
τeVDC = eτ

π
q	 (22)

and

〈SN 〉q = e2

π

[
4τ 2θ + 2τ (1 − τ )

×
∑

n

(eVDC + n	)Pn(q) coth

(
eVDC + n	

2θ

)]
.

(23)

Naturally, this limit corresponds to a simple junction between
two normal metals, hence, the N superscript in the above

0

0.3

0.6

0 1 2

π
e2

τ
(1
−τ

)Ω
S

ex
c

q

FIG. 3. Excess noise for the N-S junction driven by a cosine, a
square, and a periodic Lorentzian drive (with relative width η = 0.1)
as a function of the injected charge q in the low-gap regime 	 =
103�, at low temperature β	 = 103. These plots are independent of
the tunnel coupling but for the figure, we specified λ = 0.5.

expressions. As expected, our microscopic model recovers the
known results from scattering theory [20], with the transmis-
sion coefficient τ naturally emerging from the microscopic
tunneling constant λ as τ = 4λ2

(1+λ2 )2 .
The excess noise, expressed as a function of the charge q

injected per period by the voltage drive, then reads as

SN
exc(q) = e2

π
2τ (1 − τ )	

∑
n

Pn(q)

×
{

n + q

tanh
[ (n+q)	

2θ

] − q

tanh
( q	

2θ

)
}

. (24)

A spectacular result is that for quantized Lorentzian pulses,
most of the negative channels do not contribute at all to either
the current or the noise, as Pn(q) = 0 for any n < −q (see
Fig. 2 for an illustration and Ref. [5] for a proof). It follows
that, at low enough temperature, the PAN reduces to its DC
value and the excess noise is fully suppressed for such quan-
tized Lorentzian pulses.

Going beyond this strict zero-gap limit, while still consid-
ering � � 	, we could compute the excess noise numeri-
cally. Our results for the Lorentzian, cosine, and square drives
at low temperature are summarized in Fig. 3. For any drive,
there is a local minimum of XN at integer q = n. This is most
pronounced for a train of levitons for which the excess noise
is still almost fully suppressed at integer q. Conversely, the
sinusoidal bias features a residual finite XN for a quantized
drive and the square drive bears local minima with even higher
XN. These results are very much in agreement with previous
works focusing on a normal junction [16], signaling that the
physics at play is well captured by considering only quasipar-
ticle transfer processes in this small-gap regime.

B. Andreev regime � � �

We now turn to the opposite regime corresponding to either
a large gap or a low driving frequency, i.e., �/	 � 1. There,
we expect quasiparticle transfer processes to become negli-
gible as they demand a stiff price to pay in energy. Instead,
Andreev reflection now becomes the leading mechanism in-
volved in the transfer of charge through the junction, thus
contributing to current and noise.
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As a first step, let us consider the extreme situation of an
infinite gap. This situation allows for a tractable analytical so-
lution. Indeed, this amounts to replacing the BCS lead Green
function by

ĝr/a
BCS −−−→

�→0
ĝr/a

A = −σ̂x, (25)

where the subscript A stands for Andreev, as we are
considering a limit where Andreev reflection is the only

process available for scattering electron between the two
leads.

After some algebra, we are able to solve analytically
the Dyson equation and extract a full-fledged expres-
sion for the various dressed Green functions required
to derive the current and the noise. Omitting the fre-
quency dependence for convenience, these Green functions
reduce to

Ĝ±∓
LR = −λ

{
[P̂†σ̂xP̂, T̂ ]P̂†σ̂x

τA

4
λ−2 − i

τA

4
λ−4T̂ P̂†σ̂x ∓ i

√
τA

2
λ−2P̂†σ̂x − i

τA

4
P̂†σ̂xP̂T̂ P̂†

}
, (26)

Ĝ±∓
LL = [P̂†σ̂xP̂, T̂ ]

√
τA

2

(
1 −

√
τA

2
λ2

)
− i

(
1 − λ2

√
τA

2

)2

T̂ ∓ i

(√
τA

2
λ2 − 1

)
1̂ − i

τA

4
P̂†σ̂xP̂T̂ P̂†σ̂xP̂, (27)

Ĝ±∓
RR = −iλ−2 τA

4
{σ̂xP̂T̂ P̂†σ̂x − iλ2[σ̂x, P̂ T̂ P̂†] + λ4P̂T̂ P̂† ∓ (1 + λ4)1̂}, (28)

where P̂ is given by Eq. (16) and T̂ has matrix elements of
the form Tnm = δnm tanh( ω+n	+σzeVDC

2θ
). An interesting quan-

tity which naturally arises in this calculation is the so-called
Andreev transmission τA, which is related to the microscopic
tunneling constant λ as τA = 4λ4

(1+λ4 )2 . This quantity mirrors the
normal transmission introduced in the previous section upon
replacing λ with λ2, as the basic scattering process is now An-
dreev reflection which involves the conversion of an incident
electron into a backscattered hole, and therefore two tunneling
events through the junction.

It is important to stress out that obtaining such self-
contained expressions for the fully dressed Green functions
implies that we can obtain analytical results for the current and
noise to all orders in the tunneling Hamiltonian, at arbitrary
temperatures, in this infinite-gap limit.

Indeed, plugging Eq. (26) back into Eq. (17), the average
current can be readily computed leading to

〈IA〉q = eτA

π
2q	, (29)

which displays an Ohmic behavior. Interestingly, as evidenced
by Eq. (22), the above expression for the current in the An-
dreev limit corresponds exactly to the one of a N-N junction
with bias 2V (t ) and a coupling constant λ2, further illustrating
the contribution from pure AR processes.

Similarly, substituting Eqs. (26)–(28) into Eq. (18) leads,
after some cumbersome but straightforward manipulations, to
the analytic expression for the PAN

〈SA〉q = e2

π

[
4τ 2

Aθ + 2τA(1 − τA)

×
∑

n

(2eVDC + n	)PA
n (q) coth

(
2eVDC + n	

2θ

)]
,

(30)

where an effective Floquet weight of the form

PA
n (q) =

∣∣∣∣∣
∑

s

pn−s(q)ps(q)

∣∣∣∣∣
2

(31)

naturally appears in the calculation. As it turns out, this set
of Floquet weights actually correspond to a doubling of the
applied voltage bias, as one can easily show that PA

n (q) =
Pn(2q), reflecting once more the importance of Andreev re-
flection processes in this limit.

It follows that, just like the average current above, the PAN
of the N-S junction in the Andreev regime is related to that of
a normal junction, yielding

〈IA〉q = 〈IN 〉q∗ and 〈SA〉q = 〈SN 〉q∗ , (32)

where q∗ = 2q and all transmission coefficients τ in normal
N expressions are now given by their Andreev counterpart τA.
This emphasizes that, in the Andreev regime, both averaged
current and PAN can be interpreted as a joint tunneling of
two electrons (with opposite spin), amounting to BCS pair
creation in the superconducting junction through perfect AR.
It follows that one expects nontrivial signatures to appear in
the excess noise for half-integer values.

Building on this understanding, we now consider a large
(but not infinite) gap, compared to the driving frequency.
Results in this regime have to be obtained numerically, and are
displayed in Fig. 4 where we perform numerical computations
of the excess noise for same three drives as before, the cosine,
square, and periodic Lorentzian drives.

As anticipated from the infinite-gap limit, our results for
the XN now display new local minima compared to the
small-gap regime, located at half-integer values of the injected
charge independently of the drive. For the square drive, the
XN globally increases with q, with sharply marked local
minima at half-integer values of q. The cosine drive typically
yields lower values of XN compared to the square drive, with
softer local minima As before, the most interesting signature
comes from the periodic Lorentzian drive, as for integer values
of 2q the excess noise is almost fully suppressed, i.e., the PAN
exactly reduces to its DC level counterpart for Lorentzian
pulses with half-integer injected charge.

Compared with the low-gap regime, we analyze the present
results as an effective doubling of the charge of the carriers
exchanged at the junction, a direct consequence of the promi-
nent role of Andreev reflection in this regime. This effective
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FIG. 4. Excess noise for the N-S junction driven by a cosine, a
square, and a periodic Lorentzian drive (with relative width η = 0.1)
as a function of the injected charge q in the Andreev regime 	 =
10−3�, at low temperature β	 = 103. These plots are independent
of the tunnel coupling but for the figure, we specified λ = 0.5.

doubling appears at various stages throughout the calculation,
and is most visible in the Floquet weights (31), as well as in
the substitution q∗ = 2q illustrated in Eq. (32) when it comes
to comparing the normal and the Andreev regimes.

The main feature of this large-gap regime is that a train
of half-quantized Lorentzian pulses leads to the injection of
an integer number of Cooper pairs in the superconductor.
These so-called “Andreev levitons” correspond to the minimal
excitation states of the N-S junction.

IV. RESULTS IN THE GENERAL CASE

We now consider the results in the regime where the drive
frequency is comparable to the superconducting gap � ∼
	. Our aim is to describe precisely the crossover behavior
between the quasiparticle-transfer-dominated regime (small-
gap case � � 	) and the Andreev regime (large-gap case
� � 	). In this situation, analytical calculations are for the
most part untractable as it becomes impossible to solve the
Dyson equation exactly, forcing us to resort either to expand-
ing analytic expressions perturbatively in λ or to performing
exact numerical calculations, i.e., including contributions at
all orders in the tunneling constant. For clarity, some interme-
diate steps of the calculations are presented in Appendix E.

A. Effective gaps

The analysis we carried out in the previous section showed
that in the small-gap regime, the transport properties are dom-
inated by quasiparticle transfer outside the gap, while in the
large-gap regime, Andreev reflection processes, which occur
inside the gap, are the main driving mechanism. In the in-
termediate regime, where 	 ∼ �, we thus expect transport
to be impacted by both quasiparticle transfers outside the
gap and Andreev reflection processes inside the gap, as well
as interference between the two. However, because of the
Floquet decomposition, every channel is confronted with a
different gap in energy when compared with its own effective
chemical potential. Indeed, as each Floquet channel (with
label n) corresponds to a Fermi sea shifted by eVDC + n	,
the gap for the channel n is spanned by a DC voltage in the
range [−� − n	,+� − n	]. Quite importantly, this means

that for a given applied DC voltage, some channels are mainly
in the Andreev regime, while others are in the quasiparticle-
dominated regime. The average current and noise then result
from the scattering between these channels.

To better understand the features we observe, it is conve-
nient to introduce an effective gap associated with a given
Floquet channel n as

[γ −
n , γ +

n ], with γ ±
n = −n ± �

	
. (33)

Since we are mostly interested in the evolution of the transport
properties as a function of q, which represents the DC bias
in units of the driving frequency, the above effective gap is
also expressed as a range in energy, given in units of 	.
Within this frame, it corresponds to the range of the injected
charge per period q for which the Floquet channel n sees the
superconducting gap �.

Note that the width of the effective gap is 2�/	, which
naturally implies that the effective gaps of the different chan-
nels are large and overlapping when 	 < �, while they are
small and well separated for 	 > �.

B. Average current

A closed-form analytical expression for the average current
is not available in the general case. However, one can still
work out an intermediate form which turns out to be quite use-
ful. Indeed, after some lengthy derivation (additional details
are provided in Appendix E), one has for the average current

〈I〉q = 2eλ2
∑

n

Pn(q)
∫ ∞

−∞

dω

2π
I (ω)

×
[

tanh

(
ω − (n + q)	

2θ

)
− tanh

(
ω + (n + q)	

2θ

)]
,

(34)

where we introduced

I (ω) =
⎧⎨
⎩

2λ2

(1+λ4 )2(1− ω2

�2 )+4λ4 ω2

�2

if |ω| < �,

1

(1+λ4 )
√

1− �2

ω2 +2λ2
if |ω| > �.

(35)

In the presence of an AC drive, the average current (34) is
therefore the sum of independent contributions coming from
all Floquet channels.

Interestingly, the behavior of the resulting integral is
strongly impacted by the behavior of |ω ± (n + q)	| with re-
spect to the superconducting gap �, signaling the importance
of the effective gap [γ −

n ; γ +
n ] associated with each Floquet

channel n. In particular, the integrand of Eq. (34) changes
sharply for values of the DC voltage near γ ±

n , so that one
would expect the average current to undergo a sudden change
of behavior close to these values. As a consequence, the
transition from a purely AR-dominated behavior to a QP-
transfer-dominated current should then be visible for each
channel in the total average current.

This is illustrated in Fig. 5 where we plot both the average
current and the differential conductance as a function of the
injected charge q, for 	 = 3� and different drives. To insist
some more on this transition, we chose here to focus on a
low-transparency tunnel barrier, where Andreev processes are
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	 = 3�, β	 = 103 and for a tunnel barrier λ = 10−2, as a func-
tion of q. The edges of the effective gap for conducting channels
n = 0, 1, and 2 are shown by vertical dashed lines.

strongly suppressed as they involve two tunneling events (thus
higher order in λ).

The average current looks smooth exhibiting only small
kinks near the effective gap edges and an overall behavior
which looks rather independent of the details of the drive. At
low voltage, the current is vanishingly small then suddenly
increases near q � γ +

0 , as one goes from an almost no current
regime (AR-dominated) to one that is dominated by QP trans-
fer. These signatures are much more striking in the differential
conductance as they manifest as sharp peaks located at the
effective gap edges of the different Floquet channels, which
are only softened by the finite temperature. Within a given
effective gap or in-between gaps, the differential conductance
remains continuous and featureless.

C. Noise

The general analytical calculation of PAN turns out to be
quite cumbersome and is not shown here. Instead, we rely on
two rather complementary approaches. First, we focus on a
perturbative expansion in the tunneling constant. Indeed, an
expansion in powers of λ (with only even powers contribut-
ing) can be performed and the first few terms are accessible
analytically. The general expression reads as

〈S〉q =
∞∑

n=1

〈S〉(2n)
q , (36)

where 〈S〉(2n)
q is the term of order O(λ2n). Here we com-

pute only the n = 1 term exactly and the contribution due to
in-gap AR of the n = 2 term. This helps better understand
the full picture, as in the low-transparency regime, this al-
lows one to isolate the leading contribution from QP transfer
[of order O(λ2)] and the main modifications arising from An-
dreev reflection [only present from order O(λ4) onward]. The
second approach consists in solving numerically the Dyson
equation in order to obtain the evolution of the excess noise
as a function of the applied drive. This provides a complete
panorama of the different competing physical processes at
play in the junction.
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FIG. 6. The XN as a function of the injected charge q for
three different drives (Lorentzian with η = 0.15, cosine voltage,
and square voltage), at frequency 	 = 0.8�, β	 = 103, and at low
transparency (λ = 10−2).

1. Order λ2 and negative excess noise

Since the expression for the noise already contains a pref-

actor of order λ2, the computation of 〈S〉(2)
q is carried out by

replacing all the dressed Green functions in Eq. (18) by their
bare equivalent. The second-order component of the noise can
then be immediately written as

〈S〉(2)
q = 2e2λ2

∑
n

Pn

∫
|ω|>�

dω

2π

|ω|√
ω2 − �2

×
[

1 − tanh

(
ω + eVDC + n	

2θ

)
tanh

(
ω

2θ

)]
.

(37)

It naturally arises from the calculation that this contribution
only describes QP transfer above the gap as all the nondiago-
nal terms in Nambu space from the bare superconducting lead
Green function do not contribute in the end. As it turns out, the
resulting expression bears some striking resemblance with the
corresponding λ2 contribution from the DC noise S(2)

DC(eV ),
allowing us to write

〈S〉(2)
q =

∑
n

PnS(2)
DC(eVDC + n	). (38)

This intriguing feature is deeply connected with the works of
Tien and Gordon [17]. We investigate it in more details in the
next section.

This connection with DC noise allows us to better un-
derstand one of the surprising results obtained at low
transparency for intermediate frequency. This is illustrated in
Fig. 6, where one readily sees that in such a regime the excess
noise can become negative, thus signaling that adding an AC
component to a DC drive can lead to a reduction of the noise
for an appropriately chosen set of parameters. Indeed, while
the cusps near q = γ +

n (visible in Fig. 6 for all types of drives)
are reminiscent of what was observed for the current, and
can be understood in terms of a transition between AR- and
QP-dominated regimes, the presence of negative excess noise
for the Lorentzian and the cosine drives is more intriguing (we
could not find a regime where this was also true for the square
drive).
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This can be understood with the help of Eqs. (37) and
(38) where one notices that if the contribution of the different
Floquet channels is nonlinear in voltage, the PAN is not nec-
essarily equal to or larger than its DC counterpart. In practice,
this nonlinearity occurs primarily near the edges of the gaps
[γ −

n ; γ +
n ], which precisely corresponds to the regions of neg-

ative XN. Focusing on just a subset of channels, considering
only n = −1, 0, and 1, and noticing that the DC noise is a
monotonically increasing concave function of the voltage (for
eVDC > �) it becomes quite easy to find a set of Pn satisfying
both

∑
n Pn = 1 and

P−1SDC(eVDC − 	) + P1SDC(eVDC + 	)

< (1 − P0)SDC(eVDC), (39)

which, in turn, leads to a negative value of the excess noise at
this particular voltage. From this, it follows that the negative
excess noise arises from the convexity properties of the DC
noise, which is itself a consequence of the gap-edge singular-
ity in the spectrum of quasiparticles from the superconducting
lead.

Finally, we feel important to stress out that this reduction
of the PAN below the DC level should be experimentally
detectable for cosine and Lorentzian drives.

2. Excess Andreev noise to order λ4

For voltages within the gap of a given Floquet channel,
the PAN is only due to correlations between Andreev and
normal reflections. The lowest order for such correlations
is λ4 and can be obtained analytically after some lengthy
but straightforward algebra (additional details are presented
in Appendixes D and E). Indeed, for energies lying inside
the effective gap of a particular channel, the retarded and
advanced bare Green functions of the superconducting elec-
trode are equal so that the corresponding greater (g+−) and
lesser (g−+) Green functions vanish. However, since normal
reflection also plays an important role in this regime, the
calculation no longer simplifies into an expression involving
effective Floquet weights, as it did in the Andreev limit of
infinite gap [see Eq. (31)]. Instead, in this situation, the λ4

PAN contribution involving AR is a sum over three harmonics
indices and reads as

〈S〉(4)
Andreev = 32

∫ ∞

−∞

dω

2π

+∞∑
nsr=−∞

λ2�nλ
2�r p∗

n pr p∗
s−n ps−r�(� − |ω + n	|)�(� − |ω + r	|)

×
{

f

(
ω − (eVDC + s	)

2

)[
1 − f

(
ω − eVDC

2

)]
+ f

(
ω − eVDC

2

)[
1 − f

(
ω − (eVDC + s	)

2

)]}
, (40)

where λ2�n = λ2 �√
�2−(ω+n	)2

is the AR amplitude of the

Floquet channel n, and �(x) is the Heaviside distribution.
This term cannot be further reduced into a simpler form

only involving Floquet weights, as obtained in Eq. (38) for
the O(λ2) contribution to the noise. This means that, in this
intermediate regime, the noise can no longer be interpreted as
a sum of independent contributions coming from all Floquet
channels. Instead, the PAN now involves products of two
types of terms, for example, λ2�r pr ps−r , which describes
the interference between two transport events: Andreev and
normal reflections.

3. Excess noise for all transparencies

We now turn to a detailed quantitative investigation of the
PAN, whose behavior can be probed through an XN analysis.
Using Eqs. (18) and (20), we numerically obtain the excess
noise in a wide range of parameters, from low to high trans-
parency, from frequencies smaller to larger than the gap and
for three different drives (cosine, square, and Lorentzian). The
corresponding plots are displayed in Fig. 7.

As explained in the caption of Fig. 7, in order to display
the curves on the same graph, we had to adjust normalizations
for the XN as follows. For 	 = 0.1� [Figs. 7(a)–7(c)] the
normalization is τA(1 − τA)	/π because this constitutes the
Andreev-dominated regime. For 	 �= 0.1� [Figs. 7(d)–7(r)]
the XN is normalized by τ (1 − τ )	/π for low (λ = 0.1) and
intermediate (λ = 0.5) transparencies because we aim at char-
acterizing the transition to the normal-metal regime. Finally,

for 	 �= 0.1� and high transparency (λ = 0.9), i.e., the red
curves in Figs. 7(d)–7(r), the XN is normalized by 	τAτ/π as
it now involves both AR and QP transfer.

Let us start with some general observations. For drive
frequencies much smaller than the superconducting gap �

[Figs. 7(a)–7(c)], all signals, at all transparencies, exhibit a
minimum at q = 1

2 , depicted by “arches” with a positive XN.
For the Lorentzian drive, this first arch is characterized by a
fully suppressed excess noise at q = 1

2 , which constitutes the
half-leviton regime. These minima typically persist for larger
q = n/2 (n integer), although they get less and less visible as
the amplitude of the arches quickly decreases. In the opposite
limit of frequencies much larger than the gap [Figs. 7(p)–7(r)],
the minima still occur for all signals at all transparencies, only
they are now located at integer q, mimicking the XN of a
normal-metal junction. These integer minima yield a zero XN
only for the Lorentzian drive.

a. Tunneling regime. Let us first focus on the tunneling
regime, corresponding to all red curves in Fig. 7 (associated
with λ = 0.1). In the low-frequency regime [Figs. 7(a)–7(c)],
the XN is characterized by arches with local minima for
half-integer values of q, on top of a monotonously increasing
background contribution. For the Lorentzian drive, and unlike
the other two, the amplitude of these arches quickly vanishes
making them barely visible beyond q = 1, while they look
much more robust for cosine and square drives. As argued in
the previous section on the Andreev regime (see Sec. III B),
these signatures are typically associated with the preeminent
role of AR processes.
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FIG. 7. The excess noise at an N-S junction for three different drives and different transparencies as a function of the injected charge q for
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Increasing the driving frequency to values comparable
with the superconducting gap [	 = 0.8� in Figs. 7(d)–7(f),
	 = 1.5� in Figs. 7(g)–7(i)], these half-integer arches get
completely washed out and the only remaining features in
the XN are cusps located at the edges of the Floquet channel
effective gaps. This change of behavior is attributed to the
onset of the contribution of QP transfer. Indeed, for such
intermediate frequencies, QP transfer becomes important, ul-
timately drowning out the contribution from AR processes
which involve higher-order terms in the tunneling constant.
Negative XN might be visible for the Lorentzian and cosine
drives, as already explained in Sec. IV C 1.

Increasing further the driving frequency [	 = 5� in
Figs. 7(j)–7(l), 	 = 0� in Figs. 7(m)–7(o)] leads to the
resurgence of arches, only now extending beyond half-integer
values of q and all the way to the edge of the effective gaps.
For very large frequencies [Figs. 7(p)–7(r)], these gap edges
tend to merge at integer values of the injected charge. The re-
sulting XN then fully corresponds to that of a normal junction,
recovering the results of Sec. III A and identically matching
the predictions of Ref. [4].

It is important to stress out that these integer arches
observed at 	 � � are not a deformed version of the half-
integer ones obtained for 	 � �, as the two sets rely on
very different physical mechanisms, namely, QP transfer and
Andreev reflection, respectively. Tuning the driving frequency
favors one process over the other, leading to the corresponding
set of local minima.

b. Intermediate transparency regime. This regime corre-
sponds to the green curves in Fig. 7 (associated with λ = 0.5).

As in the low-transparency regime, we observe arches with
local minima for half-integer q at low frequency [	 = 0.1�,
Figs. 7(a)–7(c)]. These disappear at higher frequency, giving
way to marked structures at the edges of the effective gaps of
the Floquet channels, which then evolve into another set of
arches extending between γ +

n−1 and γ −
n . At very high driving

frequency [Figs. 7(p)–7(r)], these gap edges satisfy γ −
n ≈ γ +

n
and γ ±

n+1 − γ ±
n ≈ 1 and we recover for all drives, the arches

with minima at integer q as expected from our results in
Sec. III A.

However, this regime also differs from the low-
transparency case in two important ways. First of all, one
needs to go to much higher frequency in order to see the
half-integer minima completely disappear, as remnants of
these arches can still be observed at frequencies as high as
1.5� [Figs. 7(g)–7(i)]. We interpret this as being related to
the higher value of the tunneling constant, which thus allows
Andreev reflection processes to remain quite important even
at relatively high frequency. Second, it appears that negative
excess noise can be observed over much larger regions of the
bias voltage, and for all considered drives [Figs. 7(d)–7(n)].
Again, we believe this has to do with the larger tunneling
constant, as we argued previously that this reduction of the
period-averaged noise compared to its DC level counterpart
was to be attributed to interference effects between AR and
NR across different Floquet channels, which become much
stronger at intermediate transparency.

c. Quasitransparent junction. This corresponds to the set
of orange curves in Fig. 7 (associated with λ = 0.9). As in the
previous two regimes analyzed, and in accordance with our
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FIG. 8. The excess noise at the highly transparent junction (λ =
0.9) driven by a square drive of different frequencies (specified on
the right of the curves), as a function of the injected charge and at
low temperature: β	 = 103.

results from Secs. III A and III B, the excess noise exhibits
two different types of arch structures: one present at very
low frequency [Figs. 7(a)–7(c)] with local minima located at
half-integer q, and one at high frequency [Figs. 7(p)–7(r)] with
minima located at integer values of the injected charge.

In-between these limiting regimes, however, the excess
noise is rather featureless, only showing slight kinks near the
edges of the effective gaps γ ±

n . As it turns out, all the physics
studied thus far, with the interplay between Andreev reflection
and QP transfer, is strongly renormalized by NR up to very
high order, which tends to smooth all previously observed
signatures.

The only notable feature of this regime lies in the very
high-frequency regime where, while arches clearly appear
with local minima located at integer values of the injected
charge q, they typically seem to be much more asymmetric
than at lower transparency. This is made clearer in Fig. 8
where the XN is displayed for increasingly higher frequency,
from 	 = 102� to 	 = 104�. Here we focused solely on
the square drive for illustrative purposes. From this, it seems
that this asymmetry is somewhat related to Andreev reflection
processes as the steepest parts of the plots correspond to the
effective gaps [γ −

n ; γ +
n ], which ultimately shrink down to zero

as the frequency increases further.
In the end, this may seem like the least interesting regime

when looking at the characteristic signatures of the excess
noise. However, as we argue in Sec. VI, it may also be the
most relevant one when it comes to practical applications.

V. TIEN-GORDON–TYPE RELATIONS

As we already hinted in the previous two sections, there
exists a strong connection between the transport properties
of the N-S junction biased simultaneously by DC and AC
voltages, and that of the same device in the absence of AC
modulation. Such a connection was first unveiled [17] by Tien
and Gordon when studying the tunneling current in supercon-
ducting diodes biased by a sinusoidal drive of frequency 	. In
this context, they could show that

IAC+DC(VDC) =
∑

l

J2
l

(eV1

	

)
IDC

(
VDC + l

	

e

)
(41)
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so that the average current in the presence of a drive V (t ) =
VDC + V1 sin(	t ) is a weighted sum of voltage-shifted DC
currents (with a shift quantized in the driving frequency),
with coefficients which are directly related to the AC power.
This has since generated a substantial amount of related work
where it was realized that such Tien-Gordon–type relations
are valid for different transport properties in a variety of two-
terminal nanostructures. Here we analyze to what extent such
relations hold in the biased N-S junction under investigation.

A. Average current

Let us start back from our derivation of the average current
in the general case. Looking back at Eqs. (34) and (35) and
considering the strict DC regime (which amounts to replacing
Pn with δn0), one readily sees that the average current obeys a
Tien-Gordon law of the form

〈I〉q =
∑

n

Pn(q)IDC(eVDC + n	), (42)

where the DC current agrees with the known results from the
literature [18],

IDC(eVDC) = 2eλ2
∫

dω

2π
I (ω)

×
[
tanh

(ω − eVDC

2θ

)
− tanh

(ω + eVDC

2θ

)]
,

(43)

and I (ω) is given in Eq. (35).
This result can actually be readily understood within Flo-

quet theory. Indeed, as argued in Sec. II C, the voltage-biased
normal lead can be described as a set of Floquet channels, i.e.,
a superposition of Fermi seas shifted in energy with a weight
given by the probability of absorbing or emitting a certain
number of photons. From this, it ensues that the fraction of
occupied states at a given energy in the metal is no longer
given by the standard Fermi distribution but instead by the
following weighted sum:

f̃ (E ) =
∞∑

l=−∞
Pl f (E − eVDC − l	), (44)

corresponding to the situation depicted in Fig. 9. Invoking
scattering theory, one can then argue that the current only in-
volves a linear combination of the leads distribution function,
so that in the presence of an AC drive, the average current
reduces to the sum of the DC contributions arising from all
Floquet channels n, with the corresponding probability Pn.

It is important to stress that this Tien-Gordon relation for
the average current, Eq. (42), is a very general result, valid
here for all regimes and any choice of the parameters of the
N-S junction (transmission, gap, temperature, frequency, volt-
age drive, etc.). It is trivially satisfied in the limiting regimes
(� → 0 and � → ∞) where the current in the DC limit is
linear in the applied voltage, as can be readily seen from
Eqs. (22) and (29).

Energy

f̃(E)

P1

P0

P−1

P−2

eVdc + Ω

eVdc

eVdc − Ω

eVdc − 2Ω

eVdc − 3Ω

N BCS

FIG. 9. Schematic representation of tunneling events at the junc-
tion. Each channel, involving a Fermi sea at level eVDC + n	,
contributes with a weight Pn in the current, and is represented by
a step in the figure. The arrows represent the direction of the electron
current. The horizontal axis represents f̃ (E ) which is defined in
Eq. (44).

B. Period-averaged noise

More interestingly, some of our results suggest the pos-
sibility to also establish a Tien-Gordon–type relation for the
period-averaged noise.

1. Limiting regimes

In the limit of a vanishingly small gap � → 0, we are left
with a junction between two normal metals. Our expression
for the noise, Eq. (23), can be shown to satisfy

〈SN 〉q =
∑

n

PnSN
DC(eVDC + n	), (45)

where SN
DC(V ) is the standard expression for the noise of a

DC-biased normal junction at finite temperature, and can be
readily obtained from Eq. (23) by replacing Pn with δn0. In this
normal regime, the PAN can thus be viewed as the sum of the
contributions from independent Floquet channels separated in
energy, in a similar way to the average current.

In the opposite limit of an infinite gap, it is also possible to
relate the period-averaged noise to its DC-driven counterpart,
only it now involves a slightly modified form of the Tien-
Gordon formula, namely,

〈SA〉q =
∑

n

PA
n SA

DC

(
eVDC + n

	

2

)
, (46)

where SA
DC(eV ) is the noise of the DC-biased junction in the

Andreev regime, which can be readily obtained from Eq. (30)
by replacing PA

n with δn0. Note that this expression generalizes
previously established zero-temperature results [13] to finite
temperature.

This expression can be interpreted in terms of effective
channels with weight PA

n . These obviously do not correspond
to the Floquet channels involved in the normal junction: the
shift in energy corresponds to half the driving frequency and
the Floquet weight PA

n consists of a superposition of the usual
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f̃(E)

Δ
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2(eVdc − Ω
2 )

2(eVdc − 2Ω
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2(eVdc − 3Ω
2 )

N BCS

FIG. 10. Symbolic representation of the junction as seen through
tunneling current. The left metal is in a superposition of states which
are superpositions of Fermi seas as described in the text and each step
corresponds to an effective channel. The arrows indicate the direction
of the electronic AR current.

Floquet amplitudes pl (q). These effective channels are illus-
trated in Fig. 10.

Note that this representation, while very different from the
Floquet theory, also correctly applies to the current in this
Andreev limit, as one has

〈IA〉q =
∑

n

PA
n IA

DC

(
eVDC + n

	

2

)
. (47)

This may, however, have more to do with the linear in voltage
behavior of the current in the DC-biased case, than in the
actual choice of weights to consider. Nevertheless, it is inter-
esting to point out that both current and noise fit this modified
Tien-Gordon picture in the Andreev regime.

It is interesting at this stage to compare the Tien-
Gordon–type relations obtained in these two limiting regimes,
Eqs. (45) and (46). Indeed, keeping in mind that PA

n (q) =
Pn(2q), one readily sees that despite their stark difference
in physical origin, one being associated with QP transfer,
while the other is solely due to Andreev reflection, the two
expressions show the same functional dependence, the main
difference being the replacement e → 2e. This effective dou-
bling of the charge of the carriers when comparing the two
limiting regimes was already apparent in Eq. (32). However,
this goes one step further here, as it does not just contrast
the results in the normal and the Andreev limit, but instead it
compares how separately QP and Cooper pairs interact with
the microwave radiation when the AC bias is applied, an
interaction which thus bears striking similarities.

2. General case

Unfortunately, away from the previously considered lim-
iting regimes, it is no longer possible to express the
period-averaged noise as a simple weighted sum involving
the noise of the DC-biased junction, and there is therefore no
Tien-Gordon–type relation for the noise in the general case.

As we already noticed in our perturbative expansion (38),
at the lowest order in the tunneling constant λ, the O(λ2)
contribution to the noise does satisfy a Tien-Gordon–type

relation, but this is mostly because it only involves one type
of process, namely, QP transfer across the junction. Indeed, as
soon as one includes next-order contribution, the Tien-Gordon
form breaks down irremediably, a feature which we attribute
to the interference effects between the two main processes at
play: QP transfer and AR. While similar type of interference
terms is also present in the pure DC case [24,25], as evidenced
by the binomial factor τA(1 − τA), we believe they affect the
noise in a sufficiently different way to prevent any kind of
Tien-Gordon–type relation to hold anymore. Indeed, a major
consequence of the periodic drive is to modify the description
of the normal metal into that of a superposition of energy-
shifted Fermi seas. This, in turn, modifies the behavior of the
AR and NR correlations in a nontrivial way, as it now involves
mixing between different Floquet channels, thus leading, as
in Eq. (40), to interference terms between two AR events
(channels n and r) and two NR events (channels s − n and
s − r).

One may wonder whether the noise in the general case can
be viewed as a combination of the Andreev and the quasi-
particle contributions. Indeed, in the different but somewhat
connected context of S-I-S junctions, it has been shown that
the differential conductance can be written as a weighted
sum of the supercurrent and quasiparticle current, which both
satisfy a Tien-Gordon–type relation on their own, and sepa-
rately describe the behavior of the system in limiting regimes
[26,27]. As it turns out, this simple fitting fails in our case,
and one can never write the noise as a weighted sum of the
Andreev and the quasiparticle contributions of Eqs. (45) and
(46). This further strengthens our interpretation that the noise
is not a simple superposition of the contributions from both
carriers (QP and Cooper pairs) but rather a deep interconnec-
tion between the two which arises from the presence of the AC
voltage and cannot be disentangled in the general situation.

VI. ON-DEMAND SOURCE OF COOPER PAIRS

Building on our investigation of the driven N-S junction
and our understanding of the various regimes, an interesting
problem is to inquire whether this superconductor hybrid de-
vice can be employed to achieve an on-demand source of
Cooper pairs, a superconducting analog of the levitons in
normal-metal devices [3,4].

Naturally, such a source heavily relies on Andreev reflec-
tion, which thus requires us to operate as much as possible in
the Andreev regime, ensuring that the drive frequency as well
as the temperature are much smaller than the superconduct-
ing gap. Before analyzing the potential for the N-S junction
to be used as an on-demand source of Cooper pairs, let us
first assess to what extent this Andreev regime is accessi-
ble experimentally. Borrowing from previous experiments on
levitons in metals [4], one may estimate the typical orders of
magnitude of the relevant parameters, with an electron tem-
perature θ ≈ 10mK and a drive frequency f ≈ 5GHz (note
that this means applying voltages of the order VDC ≈ 10 μV to
reach q = 0.5). Choosing a junction involving niobium for the
superconducting lead (with a typical gap �Nb ≈ 1.55meV)
puts us well into the Andreev regime, as we have β�Nb ≈
2000 and �Nb

	
≈ 100. For a junction made out of aluminum
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(�Al ≈ 0.17meV), however, the situation is not as optimal,
with β�Al ≈ 200 and �Al

	
≈ 10.

To achieve a reliable, controlled source of Cooper pairs,
one needs to ensure two important properties: the average
charge transmitted through the junction per period should be
quantized, corresponding to an even number of electrons, and
the excess noise should be vanishingly small so as to generate
minimal excitation states of the N-S junction.

Focusing on this regime, the average charge transmitted per
period is defined as

〈Q〉 = 2π
〈IA〉q

	
= 4qeτA, (48)

where we used the results of Eq. (29). An ideal source of
Cooper pairs would thus require to operate at perfect trans-
mission and tune the bias voltage such that the injected charge
q is half-integer, leading to the emission of exactly 2q ∈ N
Cooper pairs per period into the superconductor. Quite re-
markably, this result turns out to be independent of the type
of drive considered.

Following our numerical results displayed in Fig. 4, we can
argue that only the half-quantized periodic Lorentzian drive
is susceptible to show noise suppression. This can be further
demonstrated by considering the expression for the excess
noise in the Andreev regime, obtained from Eq. (30), focusing
on the zero-temperature limit, where one has

SA
exc(q) ∝

∑
n

PA
n |2q + n|[1 − sgn(2q + n)]. (49)

Since this is a sum of positive terms, the suppression of the
excess noise requires every single term to vanish. While this
is obviously the case for all terms n > −2q, for the other
contributions to vanish, one must ensure that PA

n = 0 for all
n � −2q which is only satisfied by a periodic Lorentzian
drive with half-integer injected charge [4,7].

From this, it follows that the ideal source of Cooper
pairs corresponds to the N-S junction in the Andreev regime
driven by a periodic Lorentzian drive with half-integer in-
jected charge q, and operating at zero temperature with perfect
transmission. In practice, of course, none of these two latter
conditions can be realistically met in an actual experiment.
We now investigate what happens when we relax these con-
straints.

As it turns out, the average charge transferred is quite
robust under variations of the electron temperature, so that
the zero-temperature result of Eq. (48) provides a very good
estimate, even in the suboptimal Andreev scenario of alu-
minum. This linear in τA behavior suggests, however, that
while working at finite temperature should hardly affect 〈Q〉,
departing from perfect transmission has severe consequences,
as the transmitted charge is no longer quantized. One way to
circumvent this issue is to adjust the injected charge to a new
value q∗ in order to reach the ideal value 〈Q〉 = 2e for the
source of Cooper pairs.

The excess noise mostly depends on the transmission
through the overall prefactor τA(1 − τA), typical of shot noise.
Obviously, while this prefactor vanishes for perfect trans-
mission, it is an unrealistic situation from the experimental
standpoint. The dependence on temperature is a lot less trivial,
and the excess noise is very much sensitive to a nonzero
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FIG. 11. The excess noise in units of the minimal noise Smin (full
line, left axis) and the adjusted value of the injected charge per period
(dotted line, right axis) as a function of the tunnel parameter λ in
the Andreev regime 	 = 10−2� at temperature θ = 5 × 10−4�. We
restrict ourselves to values of λ covering the interval τA ∈ [0.5; 1].
The dotted red line corresponds to a transparency τA � 0.79 for
which the excess noise is minimal.

temperature θ . Indeed, as one increases θ , the results of Fig. 4
get modified, leading to a first arch which instead of vanishing
exactly at q = 0.5, now reaches a nonzero local minimum
for a slightly higher value of q. The value Smin of this local
minimum, which, in the Andreev regime only depends on the
drive frequency and temperature, is a good reference point to
analyze the quality of the source.

Let us thus consider the N-S junction and study how the
excess noise varies for various values of the tunneling constant
λ when the voltage source is operated so as to maintain a
quantized value 〈Q〉 = 2e for the average transmitted charge.

In Fig. 11, we show the ratio s = SA
exc

Smin
as a function of λ

for an injected charge q∗ = 1
2τA

and the values of parameters
mentioned earlier, θ = 5 × 10−4� and 	 = 10−2� (which
correspond to the situation of the niobium junction). Quite
remarkably, there is an interval of values of the tunneling con-
stant (around λ � 0.78, i.e., τA � 0.79) for which the excess
noise is very close to the minimum allowed for this choice of
temperature and drive frequency. It follows that there exists
a set of experimentally reachable parameters (temperature,
drive frequency, transparency) for which an actual reliable re-
alization of this source of Andreev levitons can be envisioned,
with an average transmitted charge 2e and minimal excess
noise. While it would be interesting to study in more details
the properties of this source of Cooper pairs, this goes beyond
the scope of this work.

VII. CONCLUSION

In this paper, we studied the behavior of the current and
noise in an N-S junction subject to a periodic bias using a
microscopic approach to all orders in the tunnel coupling. Our
goal was to understand the detailed behavior of the junction
and to state whether an equivalent of levitons could be envi-
sioned in normal metal-superconductor junctions, by studying
the noise in excess compared to the DC-biased junction.

We found exact analytical results for both the average
current and the zero-frequency period-averaged noise in the
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limit of large and small superconductor gap. An excess noise
analysis was performed and we showed that, in the small-gap
regime, for a Lorentzian train of pulses which bear a charge
e the junction displays minimal excitation states. On the other
hand, in the infinite-gap regime, the excess noise is suppressed
for Lorentzian pulses injecting half-integer charge per period
(dubbed Andreev levitons), which create an integer number
of Cooper pairs in the superconductor. This analysis reveals
an intriguing connection between these two limiting regimes
where current and noise can be readily obtained by doubling
the effective charge of the carriers and exchanging the trans-
mission coefficients.

When the gap is comparable to the frequency, the average
current can be expressed analytically, and for low transparen-
cies it displays strong kinks at the boundaries of the gap
of each channel, surrounding integer values of the integer
charge. These sharp discontinuities mark the switch from an
AR-driven current to a QP-transfer-driven one. In this regime,
the AC noise can be lesser than the DC one, showing that
the usual correspondence between the excess noise and the
number spurious electron-hole pairs created by the drive does
not hold anymore. Furthermore, the noise can no longer be
expressed in a self-contained form, and we had to resort to a
perturbative expansion in the tunneling constant, or to a nu-
merical evaluation to all orders in λ, proving that the Floquet
channel gap edges are responsible for the structures (cusps
and minima) of the XN.

Inspecting more closely our analytic derivations, we
showed that the average current follows a Tien-Gordon behav-
ior [17] for the whole range of parameters. The same goes for
the noise, which also satisfies Tien-Gordon–type relations, but
only in the limiting regimes, dominated by QP transfer or An-
dreev reflection. We could provide an interpretation of these
results in terms of the leading physical processes also account-
ing for the interference effects expected between different
Floquet channels. This Tien-Gordon formulation allowed us
to uncover that not only the normal and Andreev regimes are
related by an effective doubling of the charge, but also that
the way QP and Cooper pairs interact with the microwave
background is subject to the same kind of connection.

Finally, we studied the behavior of the noise and the
charge transferred to the superconductor per period in order
to characterize the controlled creation of Cooper pairs in the
superconductor in the Andreev regime. As it turns out that,
it is possible to find a regime of operation of the junction for
which the average charge transferred is an even integer and the
noise closely approaches its minimal value. Our simulations
were performed at temperature, frequency, voltage, and trans-
parency already realized in previous experiments. Note that
the present protocol differs from the usual way of designing
such Cooper pair sources, typically with quantum pumps in-
volving networks of superconducting islands creating Cooper
pairs through Josephson physics [28] or AC-driven Coulomb
blockade [29]. Our proposal is closer in spirit to the driven
metallic junction [4] or the mesoscopic capacitor [30]. This
opens the way to using such a N-S junction as a reliable,
on-demand source of Cooper pairs, a fascinating perspective
which requires more detailed investigation in the future.

To summarize, in the limits of low and high frequencies
compared to the superconducting gap, we extended the results

of previous works [13] to finite temperature. We provided a
simple interpretation of the physics at play in terms of Floquet
channels and Tien-Gordon–type relations when applicable.
Most importantly, we were able to quantify the full crossover
regime of intermediate frequencies (comparable to the gap)
and showed that the negative excess noise can be attributed
to the fact that the density of states in the superconductor
is not constant near the gap edges. Furthermore, we showed
that the Tien-Gordon relations for the noise (established in the
limit where the gap is larger than the drive frequency) break
down in the intermediate regime because of interferences
between different Floquet channels. The present theoretical
results could in principle be probed experimentally in normal-
metal/superconducting junctions where a microwave photon
source irradiates the normal-metal side, in the same spirit as
in the pioneering work of Ref. [31] which dealt with diffusive
metals and (only) a sinusoidal drive. Finally, we proposed a
scheme to build an on-demand source of Cooper pairs avail-
able with currently accessible technology and we stressed that
such a source could be experimentally probed by a measure of
the excess noise. In this respect, one may resort to modern hy-
brid nanowire/superconductor junctions with a QPC located
at the interface in order to effectively control the transmission,
and thus to implement the on-demand Cooper pair source.

ACKNOWLEDGMENTS

The project leading to this publication has received fund-
ing from Excellence Initiative of Aix-Marseille University-
A*MIDEX, a French Investissements d’Avenir program
through the IPhU (AMX-19-IET-008) and AMUtech (AMX-
19-IET-01X) institutes.

APPENDIX A: DOUBLE FOURIER TRANSFORM

In this Appendix we introduce the formalism for functions
with a double time dependence. A two-time periodic function
F can be written

F (t, t ′) =
∑
nm

∫ 	/2

−	/2

dω

2π
e−i(ω+n	)t ei(ω+m	)t ′

Fnm(ω), (A1)

with

Fmn(ω) =
∫ T/2

−T/2

dt

T

∫ ∞

−∞
dτ ei(ω+n	)(t+ τ

2 )

× e−i(ω+m	)(t− τ
2 )F (t + τ/2, t − τ/2). (A2)

The convolution product of two such functions is

(F ◦ G)(t, t ′) =
∑
mn

∫ 	/2

−	/2

dω

2π
e−i(ω+n	)t

× ei(ω+m	)t ′
(F ◦ G)nm(ω), (A3)

where the harmonic components of the convolution product
are (F ◦ G)nm(ω) = ∑

q Fnq(ω)Gqm(ω).

APPENDIX B: FLOQUET COEFFICIENTS

A great variety of drives were explored by Vanevic et al.
[32] while here only three of them are exposed: the sinusoidal,
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square, and Lorentzian ones as they display the three most
different behaviors.

1. Sinusoidal

The voltage is

V (t ) = VDC(1 − cos 	t ). (B1)

This yields

pl = Jl (−q), (B2)

Jl being the lth Bessel functions of the first kind.

2. Square

The bias is

V (t ) = VDC[1 + sgn(cos 	t )]. (B3)

And the associated coefficient is

pl = 2

π

q

l2 − q2
sin

[
π

2
(l − q)

]
. (B4)

3. Lorentzian pulses

The train of Lorentzian pulses is defined by

V (t ) = VDC

(
1

π

∑
k

η

η2 + (t/T − k)2

)
(B5)

with η = W/T = W 	/2π the ratio between the width of the
pulses and the period of the drive. This leads to a Fourier
coefficient [7]

pl =
∫ 1/2

−1/2
du e2iπ (l+q)u

(
sin[π (iη + u)]

sin[π (iη − u)]

)q

. (B6)

APPENDIX C: BARE GREEN FUNCTIONS

In full generality, the bare Green functions in Nambu space
are defined as

gηη′
(t, t ′) = −i

〈
TK (c(tη )c†(t ′

η′ ))
〉
. (C1)

1. Advanced and retarded Green functions

In the case of the BCS superconductor, the Fourier trans-
form of the Green functions is given by [23]

gr/a
BCS(ω) = lim

δ→0

ω1 + �σx√
1 − (ω ± iδ)2

. (C2)

The normal metal corresponds to the zero-gap limit of the
BCS superconductor, i.e.,

gr/a
N (ω) = ∓i1. (C3)

2. Greater and lesser Green functions

The time-dependent voltage is defined as V (t ) = VDC +
VAC(t ) where the AC component averages to zero over one

period, therefore, the energy entering the Fermi function can
be written

ε±(ω) = ω ± eVDC, (C4)
the sign depending on the Nambu component, describing a
hole or an electron.

We want to compute the greater and lesser bare Green
functions, defined [33] as 2g±∓ = ∓gr ± ga + gk and gk =
gr[1 − 2F (ω)] − [1 − 2F (ω)]ga with

F (ω) =
(

1
1+exp βε+(ω) 0

0 1
1+exp βε−(ω)

)
. (C5)

The commutator [gr/a, F (ω)] vanishes in each lead, indeed,
only the normal metal is biased and its r/a Green functions
are diagonal in Nambu space, thus,

g±∓(ω) = i Im(gr )

[
tanh

(
ω + σzV0

2θ

)
∓ 1

]
. (C6)

3. Floquet components

The bare Green functions only depend on the time dif-
ference t − t ′. Thus, in the presence of a periodic drive, the
harmonic components of the Fourier transform of any bare
Green function in Nambu space can be written

gηη′
nm (ω) = gηη′

(ω + n	)δnm. (C7)

APPENDIX D: DYSON EQUATION

We use Dyson equation with Keldysh formalism in order
to write the dressed Green functions (including tunneling
between the leads) in terms of the bare ones (which corre-
spond to the isolated leads). The Retarded-Advanced-Keldysh
(RAK) basis is defined as follows [18]:

Gr = G−+ − G−−,

Ga = G+− − G−−,

GK = G++ + G−−. (D1)

The Dyson equation for the 2 × 2 Green function reads as
(omitting convolution products)

G = g + g�G. (D2)

It is recursive and induces the following relations in Keldysh
space:

G±∓ = g±∓ + g±∓�aGa + gr�±∓Ga + gr�rG+−, (D3)

G±∓ = (1 + �rGr )g±∓(1 + �aGa) − Gr�±∓Ga. (D4)

The RAK components obey simpler Dyson equations

Gr/a = gr/a + gr/a�r/aGr/a, (D5)

where a summation over lead index is implicit in the notation.
After some algebra, one can show that

Ĝ±∓
RL = (

1̂ − λ2ĝr
RP̂ ĝr

LP̂†
)−1[

ĝ±∓
R + ĝr

RP̂ ĝ±∓
L

(
P̂ ĝa

L

)−1](
1̂ − λ2P̂ ĝa

LλP̂†ĝa
R

)−1
λP̂ ĝa

L and (D6)

Ĝ±∓
RR = (

1̂ − λ2ĝr
RP̂ ĝr

LP̂†
)−1(

ĝ±∓
R + λ2ĝr

RP̂ ĝ±∓
L P̂†ĝa

R

)(
1̂ − λ2P̂ ĝa

LP̂†ĝa
R

)−1
. (D7)
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APPENDIX E: INTERMEDIATE-REGIME CALCULATIONS

Dyson equations can be solved analytically as long as one of the leads is a normal metal because ĝr/a
N = ∓i1̂ so λ2P̂†ĝr/a

N P̂ =
∓λ2i1̂ and the matrix to inverse is a tensor product between the identity in harmonics space and a 2 × 2 Nambu matrix.

1. Average current

With this in mind, one can compute the full Green function G±∓
RL,nm. Defining

ω̃±
n = lim

δ→0

ω + n	√
�2 − (ω + n	 ± iδ)2

, �±
n = lim

δ→0

�√
�2 − (ω + n	 ± iδ)2

, ξ±
n = 1

1 + λ4 ∓ 2iλ2ω±
n

,

ζ±
n = [tanh(ω + n	) ∓ 1], �r,a

LR,mn = λ

(
pn−m 0

0 −p∗
m−n

)
, Tnm =

(
tanh

(
ω+n	+eVdc

2θ

)
0

0 tanh
(

ω+n	−eVdc
2θ

))δnm, (E1)

the Green function entering the average current reads as

G±∓
RL,nm = iλξ+

n ξ−
r {σxPnqTqP†

qrPrm[�+
n + iλ2�+

n ω−
r ] + σxPnqTqP†

qrσxPrm[−iλ2�+
n �−

r ]

+ PnqTqP†
qrPrm[ω+

n + iλ2 + iλ2ω+
n ω−

r − λ4ω−
r ] + PnqTqP†

qrσxPrm[−iλ2�−
r ω+

n + λ4�−
r ]

+ Pnm[±ω+
n − iζ±

n ω̄n ± iλ2 ∓ λ4ω−
n + ζ±

n /2 + λ2(ζ±
n /2 ± i)(ω−

n ω+
n − �−

n �+
n )]

+ σxPnm[−iζ±
n �̄n + λ2(�+

n ω−
n − �−

n ω+
n )(ζ±

n /2 ± i) ± (�+
n + λ4�−

n )]}, (E2)

where we introduced Tn such that Tnm = Tnδnm. In order to compute the average current, one has to trace over Nambu and
harmonics spaces, removing all the nondiagonal terms, yielding

〈I〉q = 2eλ2
∑

k

Pk (q)
∫ 	/2

−	/2

dω

2π

∑
n

ξ+
n ξ−

n Re
[
λ2(�−

n �+
n + ω+

n ω−
n ) − iω+

n + λ2 + iλ4ω−
n

]

×
[

tanh

(
ω − (k + n)	 + eVDC

2θ

)
− tanh

(
ω + (k + n)	 − eVDC

2θ

)]

= 2eλ2
∑

k

Pk (q)
∫ ∞

−∞

dω

2π
I (ω)

[
tanh

(
ω − k	 + eVDC

2θ

)
− tanh

(
ω + k	 − eVDC

2θ

)]
, (E3)

with

I (ω) =
⎧⎨
⎩

2λ2

(1+λ4 )2(1− ω2

�2 )+4λ4 ω2

�2

if |ω| < �,

1

(1+λ4 )
√

1− �2

ω2 +2λ2
if |ω| > �.

(E4)

2. λ4 noise

Here we compute the λ4 contribution associated with PAN, solely due to AR.

a. The first term of the noise

We want to compute the first term of Eq. (18). It can be written, after performing the trace over harmonics degrees of freedom,
as

σz�LR,nqG+−
RL,qrσz�LR,rmG−+

RL,mn = −λ4σzP†
nq{σxPqrTr�

+
q + PqrTqω

+
q + Pqr[ω+

q − iζ+
q ω̄q] + σxPqr[−iζ+

q �̄q + �+
q ]}

× σzPrm{σxPmnTn�
+
m + PmnTnω

+
m + Pmn[−ω+

m − iζ−
m ω̄m] + σxPmn[−iζ−

m �̄m − �+
m]}.

(E5)

When looking at Andreev process in the gap only, both ω± and �± are real so ω̄ = �̄ = 0, ω+ = ω−, and �− = �+. The trace
of this term therefore reduces to

TrN[σz�LR,nqG+−
RL,qrσz�LR,rmG−+

RL,mn] = TrN[−λ4(−σxPqrTrP†
rm�q + PqrTrP†

rmωq + δqmωq − δqmσx�q)

× (σxPmnTnP†
nq�m + PmnTnP†

nqωm − δmqωm − δmqσx�m)]. (E6)

The noise is obtained by performing a Nambu trace so only the diagonal terms are kept, yielding

TrN[σz�LR,nqG+−
RL,qrσz�LR,rmG−+

RL,mn]

= TrN
[ − 2λ4[−σxPqrTrP†

rmσxPmnTnP†
nq�m�q + PqrTrP†

rmPmnTnP†
nqωmωq + 1

(
�2

m − ω2
m

)]]
. (E7)
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b. The second term

We want to compute the second term of Eq. (18). We start by computing (note that some permutations have been performed
as one is only interested in the trace)

λ2σ̂zP̂Ĝ±∓
LL σ̂zP̂†Ĝ∓±

RR = λ2σ̂z(1̂ − λ2ĝr
RP̂ ĝr

LP̂†)−1P̂
(
ĝ±∓

L + λ2ĝr
LP̂†ĝ±∓

R P̂ ĝa
L

)
P̂†(1̂ − λ2P̂ ĝa

LP̂†ĝa
R)−1P̂ σ̂zP̂†

× (1̂ − λ2ĝr
RP̂ ĝr

LP̂†)−1
(
ĝ∓±

R + λ2ĝr
RP̂ ĝ∓±

L P̂†ĝa
R

)
(1̂ − λ2P̂ ĝa

LP̂†ĝa
R)−1. (E8)

Some simplifications can be performed, first ĝL commutes in Nambu and harmonics space with P̂† so the second parentheses
can be simplified. Furthermore, the inverse of (1̂ − λ2P̂ ĝa

LP̂†ĝa
R)−1 is diagonal in harmonic space, the same goes for gL. As a

result, the frequencies at which this term is evaluated will be that of g±∓
R and therefore it vanishes when looking at in-gap AR.

The next step is to keep only λ4 terms. As

(1̂ − λP̂ ĝa
LλP̂†ĝa

R)−1
nmσz(1̂ − ĝr

RλP̂ ĝr
LλP̂†)−1

mq = σz(ξ+
n ξ−

n )2δnq = σzδnq + o(λ4), (E9)

the total term to evaluate becomes

[λP̂ ĝ±∓
L λP̂†σ̂zĝ

r
RλP̂ r ĝ∓±

L λP̂†ĝa
Rσ̂z]nn = −λ4Pnq(Tq ∓ 1)P†

qrσz(ωr1 + �rσx )Prs(Ts ± 1)P†
sn(ωn1 + �nσx )σz. (E10)

As the ∓ and the ± results are summed in the noise so only half of the terms will count and the sum yields

[−σ̂zλP̂Ĝ+−
LL σ̂zλP̂†Ĝ−+

RR − σ̂zλP̂†Ĝ−+
RR σ̂zλP̂Ĝ+−

LL ]nn

= 2λ4Pnq[TqP†
qrσz(ωr1 + �rσx )PrsTsP†

sn(ωn1 + �nσx ) − P†
qrσz(ωr1 + �rσx )PrsP†

sn(ωn1 + �nσx )]σz. (E11)

The term contributing to the trace therefore reduces to

TrNH[λ2σ̂zP̂Ĝ±∓
LL σ̂zP̂†Ĝ∓±

RR ] = 2λ4
∑

n

TrN
[
PnqTqP†

qrPrsTsP†
snωnωr + σxPnqTqP†

qrσxPrsTsP†
sn�n�r − 1

(
ω2

n + �2
n

)]
. (E12)

c. Sum of the terms

Summing both terms yields

〈S〉q = −8e2λ4
∫ 	/2

−	/2

dω

2π

+∞∑
nsr=−∞

TrN
[
σxPnqTqP†

qrσxPrsTsP†
sn�n�r − �2

n1
]
. (E13)

After performing the Nambu trace, redefining the indices, and performing one harmonics sum, one is left with Eq. (40).
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