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Abstract. We investigate the AC conductivity of binary random impedance networks, with
emphasis on its dependence on the ratioh = σ1/σ0, with σ0 and σ1 being the complex
conductances of both phases, occurring with respective probabilitiesp and 1− p. We propose
an algorithm to determine the rationalh-dependence of the conductance of a finite network, in
terms of its poles and of the associated residues. The poles, which lie on the negative realh-axis,
are called resonances, since they show up as narrow resonances in the AC conductance of the
RL− C model of a metal–dielectric composite with a high quality factorQ. This approach is
an extension of a previous work devoted to the dielectric resonances of isolated finite clusters.
A numerical implementation of the algorithm, on the example of the square lattice, allows a
detailed investigation of the resonant dielectric response of the binary model, including the
p-dependence of the density of resonances and the associated spectral function, the Lifshitz
behaviour of these quantities near the endpoints of the spectrum of resonances, the distribution
of spacings between neighbouring resonances, and theQ-dependence of the fraction of visible
resonances in theRL − C model. The distribution of the local electric fields at resonance is
found to be multifractal. This result is put into perspective with the giant surface-enhanced
Raman scattering observed, for example, in semicontinuous metal films.

1. Introduction

Random networks of complex impedances are currently used to model electrical and optical
properties of disordered inhomogeneous media. The most common situation is that of a
binary composite medium, modelled by attributing a random conductance to each bond
(x,y) of a lattice, according to the binary law

σx,y =
{
σ0 with probabilityp

σ1 with probability q = 1− p (1.1)

in correspondence with the bond percolation problem (see [1] for a review).
The conductances (inverse impedances, or admittances)σ0 andσ1 of both phases take

arbitrary frequency-dependent complex values. Hereafter we follow the notation of [2]. The
dimensionless complex ratio

h = σ1

σ0
(1.2)

and the concentrationp are the essential parameters of the model. As far as static (DC)
properties are concerned, the limiting caseh = 0 embraces the conductor–insulator mixture
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(σ1 = 0) and the superconductor–conductor mixture(σ0 = ∞). In both situations the
conductivity exhibits power-law behaviour forp close to the critical concentrationpc,
corresponding to the percolation threshold.

More generally, the conductivity of the binary model obeys a scaling law in the critical
regions defined by|h| � 1 and|p − pc| � 1, or equivalently|h| � 1 and|q − pc| � 1 [1].
Frequency-dependent (AC) properties of metal–dielectric composites, such as cermets or thin
films, are often investigated by means of either theR − C and theRL− C models [3]. In
both cases the low-frequency regime corresponds to|h| � 1, and thus to critical behaviour
when the metallic concentrationq is near the percolation threshold.

The purpose of this work is to shed new light on the resonant behaviour of the binary
model. The emphasis will be put on the analytic structure of the conductivity in the ratio
h, or in the equivalent complex variable

λ = 1

1− h =
σ0

σ0− σ1
. (1.3)

For any value of the concentrationp, the conductivity has singularities forh real and
negative, i.e. in the range 06 λ 6 1. A quantitative investigation of these singularities,
and of related quantities, is the main purpose of this paper. Our aim is twofold. First, the
analytic structure of the conductivity of the binary model is a classical subject, since the
developments of the Bergman–Milton theory [4, 5]. The key ingredient of this formalism
is the spectral functionH(p, x), which has only been the subject of a limited number
of investigations so far [6, 7]. The present approach provides a direct accurate numerical
evaluation of the spectral function of binary random networks. Second, the singularities of
the conductivity have a physical interpretation in terms of dielectric resonances in theRL−C
model, and of the relaxation times in the transient response in theR−C model. The regime
of dielectric resonances has been argued to provide a natural explanation for the anomalous
fluctuations of the local electric field [8], which are responsible for giant surface-enhanced
Raman scattering observed, for example, in semicontinuous metal films [9].

The dielectric resonances of isolated clusters have been investigated in [2]. The situation
considered there was a finite set of (metallic) bonds with conductanceσ1, embedded in an
infinite (dielectric) host lattice, whose bonds have a conductanceσ0. It was shown there that
the conductance of such a system is entirely characterized by a finite number of resonances.
The positionsλa of the resonances, and the associated cross sectionsγa, are expressed in
terms of the eigenvalues and eigenvectors of a finite matrixM, dictated by the geometry of
the clusters. This paper is an extension of the method of [2] to an arbitrary binary network.
We shall make use of an efficient algorithm, which allows for an exact determination of all
the resonances of a finite sample. The set-up of this paper is as follows. In section 2, we
gather definitions and results on various features of the conductivity of the binary model.
Section 3 is devoted to the presentation of the algorithm. Section 4 contains a variety of
numerical results, concerning especially the spectral function of the Bergman–Milton theory
and the spectral density of resonances, their Lifshitz behaviour near the endpoints of the
spectrum (λ = 0 andλ = 1), the number of visible resonances of a finite sample and its
dependence on the quality factorQ of theRL−C model, and the distribution of the local
electric fields at resonance, which turns out to be multifractal.
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Figure 1. Schema of the binary network under consideration, withM = N = 8. The
conductanceY is measured between the plane electrodes (bus bars).P-bonds with conductance
σ0 are shown as full lines,Q-bonds with conductanceσ1 are shown as dotted lines.

2. Theoretical background

2.1. Conductance and impedance of a finite network

Consider the binary model on a finite network of sizeM × N , as shown in figure 1. This
network containsnS = (M−1)N sites (nodes) andnB = MN+(M−1)(N−1) bonds (links),
among whichMN are horizontal (perpendicular to the electrodes), and(M − 1)(N − 1)
are vertical (parallel to the electrodes). The bonds with a conductanceσ0 are called the
P-bonds, which form theP-set. There arenP of them, among whichnHP are horizontal and
nVP are vertical. Similarly, the bonds with a conductanceσ1 are called theQ-bonds, which
form theQ-set. There arenQ of them, among whichnHQ are horizontal andnVQ are vertical.

Let Y be the conductance (admittance) of the network, measured between the plane
electrodes (bus bars) shown in figure 1, and letZ = 1/Y be its impedance. These quantities
are rational functions of the dimensionless complex variablesh or λ. Let us anticipate that
it is more convenient to use the variableλ. We have

Y = Nσ0

M

nR∏
a=1

λ− λ̃a
λ− λa =

Nσ0

M

(
1−

nR∑
a=1

αa

λ− λa

)
(2.1a)

Z = M

Nσ0

nR∏
a=1

λ− λa
λ− λ̃a

= M

Nσ0

(
1+

nR∑
a=1

βa

λ− λ̃a

)
. (2.1b)

The prefactors of these expressions are the conductance and the impedance of the uniform
network whose bonds have a conductanceσ0, sinceλ = ∞ corresponds toσ1 = σ0 (no
disorder). Theλa involved in the product expressions are the poles of the conductance and
the zeros of the impedance, while theλ̃a are the zeros of the conductance and the poles
of the impedance. The numbernR of poles and zeros depends on the configuration of the
random bonds. It is bounded by the number of sites of the network: 06 nR 6 nS . Finally,
the partial-fraction expansions involve residuesαa andβa.

It follows from considerations on the dissipated power thatY/σ0 is a Stieltjes function,
namely its imaginary part has the sign of Imh, or equivalently of Imλ [4, 5, 1]. This
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property implies that the poles and zeros ofY and ofZ alternate, according to

06 λ1 < λ̃1 < · · · < λnR < λ̃nR 6 1. (2.2)

We haveλ1 = 0 if, and only if, theQ-set is conducting, i.e. it contains at least one connected
path between both electrodes. The conductance of thisQ-set then reads

YQ = N

M
α1σ1. (2.3)

Similarly, we haveλ̃nR = 1 if, and only if, theP-set is not conducting.
The Stieltjes property also implies that the residuesαa andβa are positive. These two

sets of residues are different from each other in general. They obey, however, a remarkable
sum rule, which can be proved by expanding the conductanceY aroundλ = ∞, to first order
in 1/λ. Indeed, 1/λ = (σ0−σ1)/σ0 is the dimensionless contrast between the conductances
of both phases. As a consequence, for a given realization of the random network, up to
first order in 1/λ included, the conductance readsY = (N/M)σH , where

σH =
nHP σ0+ nHQσ1

MN
= σ0

(
1− nHQ

MNλ

)
(2.4)

is the average value of the conductances of the horizontal bonds of the network. By inserting
this estimate into the second expressions of equations (2.1a) (1b), we obtain the relation

nR∑
a=1

αa =
nR∑
a=1

βa =
nHQ
MN

. (2.5)

In the case of isolated finite clusters [2], the poles and zeros of the conductance form very
tight doublets. We have indeed

αa ≈ βa ≈ λ̃a − λa ≈ γaλa(1− λa)
MN

. (2.6)

The sum rule (2.5) then becomes
nR∑
a=1

γaλa(1− λa) = nH (2.7)

wherenH is the number of horizontal bonds in the clusters (perpendicular to the electrodes).
This identity was not noted in [2].

2.2. R − C model

TheR−C model, already mentioned in the introduction, is defined as follows. TheQ-set is
a metallic phase, whose bonds consist of a pure resistanceR, while theP-set is a dielectric
phase, whose bonds consist of a perfect capacitanceC. The complex conductances at
frequencyf = ω/(2π) thus read

σ0 = iCω σ1 = 1

R
. (2.8)

Along the lines of [1, 2], we introduce the microscopic relaxation time

τ = RC (2.9)

so that

h = 1

iωτ
λ = iωτ

iωτ − 1
. (2.10)



Dielectric resonances of binary random networks 3691

We thus haveh→∞ andλ→ 0 at low frequency.
The poles of the conductanceY show up as relaxation times in the transient response of

the model [1]. Consider indeed theR−C model on a finite network, submitted to a voltage
V (t) = V0θ(t) applied between the electrodes, withθ(t) being the Heaviside step-function.
The intensityI (t) across the network in the transient regime can be evaluated by means of
the Fourier transformation. We thus obtain

I (t) =
∫ +∞
−∞

dω

2π
Y(ω)eiωt V0

iω + 0
. (2.11)

The second expression of equation (2.1a) for the conductanceY , with λ given in
equation (2.10), yields the result

I (t) = NV0

MR

nR∑
a=1

αa

(1− λa)2 exp

(
− t
τa

)
(2.12)

where the relaxation times read

τa = 1− λa
λa

τ. (2.13)

If the metallicQ-phase is conducting, we haveλ1 = 0. The terma = 1 in equation (2.12)
yields the DC current through the network,I0 = NV0α1/(MR), in agreement with the
result (2.3).

2.3. RL− C model

In theRL− C model, already mentioned in the introduction, the metallic bonds of theQ-
set now consist of an inductanceL in series with a weak resistanceR, while the dielectric
bonds of theP-set still consist of a perfect capacitanceC. The conductances at frequency
f = ω/(2π) now read

σ0 = iCω σ1 = 1

R + iLω
. (2.14)

Along the lines of [1–3], we introduce the microscopic resonance frequency

ω0 = 1√
LC

(2.15)

the reduced frequency

y = ω

ω0
(2.16)

and the quality factor

Q = 1

R

√
L

C
= Lω0

R
= 1

RCω0
(2.17)

which is a dimensionless measure of the dissipation rate.
In the following, we shall mostly consider the case of a weak dissipation, corresponding

to a large quality factor(Q� 1). We then have

h = 1

−y2+ iy/Q
≈ − 1

y2
− i

y3Q
λ = y2− iy/Q

1+ y2− iy/Q
≈ y2

1+ y2
− iy

(1+ y2)2Q
.

(2.18)

Note that the low-frequency regime(y → 0) again corresponds toh→∞ andλ→ 0.
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Since the variablesh and λ have a small (negative) imaginary part, proportional to
1/Q, the poles of the conductanceY and of the impedanceZ of the network show up in
the frequency dependence of these quantities as narrow resonances, respectively located at
ωa = ω0ya and ω̃a = ω0ỹa, with

ya =
√

λa

1− λa ỹa =
√

λ̃a

1− λ̃a
. (2.19)

We have indeed

Y ≈ NCω0

2M

nR∑
a=1

αa

(1− λa)2
1/(2Q)− i(y − ya)
(y − ya)2+ 1/(4Q2)

(2.20a)

Z ≈ M

2NCω0

nR∑
a=1

βa

λ̃a(1− λ̃a)
1/(2Q)− i(y − ỹa)
(y − ỹa)2+ 1/(4Q2)

. (2.20b)

Equation (2.20a) shows that the real part ReY (ω) of the conductance exhibitsnR narrow
resonances, atωa = ω0ya. The resonance peaks have a Lorentzian shape, with a common
absolute width1ω = ω0/(2Q). The maxima at resonance read

(ReY )max≈ N

MR

αa

(1− λa)2 (2.21)

while the area under each resonance peak is

Aa =
∫
ω∼ωa

ReY (ω) dω ≈ πN

2ML

αa

(1− λa)2 . (2.22)

A similar pattern of resonances can be observed on the real part ReZ(ω) of the impedance
(2.20b), with maxima at resonance and areas under resonance peaks respectively given by

(ReZ)max≈ ML

NRC

βa

λ̃a(1− λ̃a)
Ãa ≈ πM

2NC

βa

λ̃a(1− λ̃a)
. (2.23)

2.4. Spectral function and density of resonances

The conductanceY of an infinitely large network drawn on any regular lattice becomes a
self-averaging quantity. In other words, the conductivity

6(p, λ) = lim
M,N→∞

MY

N
(2.24)

is an intrinsic characteristic of the binary model, which depends on the lattice under
consideration, on the concentrationp, and on the complex variableh or λ. The conductivity
of the binary model has been the subject of many investigations [1]. We gather below some
definitions and properties which will be useful in the following.

The second expression of equation (2.1a) yields the Bergman–Milton integral
representation [4, 5]

6(p, λ) = σ0

(
1−

∫ 1

0

H(p, x)dx

λ− x
)

(2.25)

where the positive function

H(p, x) = lim
M,N→∞

nR∑
a=1

αaδ(x − λa) (2.26)
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is called the spectral function of the binary model. In more precise terms, it is the density
of a positive measure, supported by the interval 06 x 6 1. Indeed, as a consequence of
equation (2.3), the spectral function has a singular component atx = 0, of the form

Hsg(p, x) = A(1− p)δ(x) (2.27)

with the notation to be introduced in equation (2.38), whenever theQ-set is conducting, i.e.
for 1− p = q > pc.

The spectral function entirely determines the conductivity6(p, λ), by means of the
integral representation (2.25). Conversely, it is given by the inverse formula

H(p, x) = 1

π
Im
6(p, x + i0)

σ0
. (2.28)

In other words, the conductivity is analytic in the complexλ-plane cut along the interval
06 λ 6 1, and its discontinuity along this cut reads

Disc6(p, λ) = 2iπσ0H(p, λ). (2.29)

The spectral function directly yields the transient intensityI (t) of theR −C model on
a very large network, namely

I (t) ≈ NV0

MR

∫ 1

0

H(p, x)dx

(1− x)2 exp

(
− x

1− x
t

τ

)
. (2.30)

To close up, we introduce the spectral density of resonances

ρ(p, x) = lim
M,N→∞

1

MN

nR∑
a=1

δ(x − λa) (2.31)

and the total density of resonances

ρR(p) = lim
M,N→∞

nR

MN
=
∫ 1

0
ρ(p, x)dx (2.32)

representing the mean number of resonances per site. This quantity has a non-trivial
dependence on the concentrationp. It will be expressed in equation (3.14) in terms of
geometrical quantities of the bond percolation problem.

2.5. Homogeneity and duality

First, the conductivity of the binary model is invariant under the simultaneous interchange
p ↔ q = 1− p, σ0 ↔ σ1. Indeed, letY = σ0F(h) = σ0f (λ) be the conductance of the
networkG, shown in figure 1. Then the networkG′, obtained fromG by interchanging
all the bond conductances according toσ0 ↔ σ1, has a conductanceY ′ = σ1F(1/h) =
σ1f (1− λ). For a large enough network, ifG is typical of the concentrationp, thenG′ is
typical of the concentration 1− p. The conductivity, the spectral function, and the density
of resonances therefore obey the following identities, on any regular lattice

6(p, h) = h6(1− p, 1/h) (2.33a)

λ6(p, λ) = (λ− 1)6(1− p, 1− λ) (2.33b)

xH(p, x) = (1− x)H(1− p, 1− x) (2.33c)

ρ(p, x) = ρ(1− p, 1− x). (2.33d)

More interestingly, the square lattice is self-dual, i.e. invariant under the geometric
transformation called duality. This concept has been introduced in physics by Kramers and
Wannier [10], while its consequences on random resistor networks have been explored in a
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systematic way by Straley [11]. The dualG̃ of a planar networkG has bonds which cross
those ofG, the conductances of any pair of crossing bonds being inverse to each other. The
duality property implies that the conductance of the whole networkG̃ readsỸ = 1/Y = Z.
With the same notation as above, we haveỸ = (1/σ0)F̃ (1/h) = (1/σ0)f̃ (λ), so that
F(h)F̃ (1/h) = f (λ)f̃ (1− λ) = 1. Therefore

6(p, λ)6(p,1− λ) = σ 2
0 (2.34)

and

ρ(p, x) = ρ(p, 1− x). (2.35)

Because of its nonlinearity, the duality identity (2.34) for the conductivity does not yield
any identity involving the spectral functionH(p, x) only.

The above identities can be combined with the homogeneity properties (2.33). We thus
obtain that the percolation threshold ispc = 1

2, and that the conductivity and the spectral
function right at this point read

6( 1
2, λ) =

√
σ0σ1 = σ0

√
λ− 1

λ
H( 1

2, x) =
1

π

√
1− x
x

. (2.36)

Furthermore, the spectral and total densities of resonances obey the relations

ρ(p, x) = ρ(p, 1− x) = ρ(1− p, x) = ρ(1− p, 1− x) ρR(p) = ρR(1− p). (2.37)

2.6. Critical behaviour and scaling

As mentioned in the introduction, the conductivity exhibits scaling behaviour around the
percolation thresholdp = pc. The conductivity of the conductor–insulator mixture vanishes
for p 6 pc, while it reads

6(σ1 = 0) = σ0A(p) (p > pc). (2.38)

Similarly, the conductivity of the superconductor–conductor mixture is infinite forp > pc,
while it reads

6(σ0 = ∞) = σ1B(p) (p < pc). (2.39)

Both amplitudesA(p) andB(p) have a power-law behaviour forp nearpc:

A(p) ≈ a(p − pc)t (p→ p+c )
B(p) ≈ b(pc − p)−s (p→ p−c ).

(2.40)

The conductivity of the binary mixture obeys a scaling law in the critical region defined
by |h| � 1 and|p − pc| � 1, of the form [1]

6(p, h) ≈ σ0|p − pc|t8±(h|p − pc|−s−t ) (2.41)

where the8± are scaling functions of one complex variable, with± referring to the sign
of p−pc. The homogeneity relation (2.33a) allows us to describe the vicinity of the other
critical point, |h| � 1 and|q − pc| � 1.

The scaling formula (2.41) reproduces the power laws (2.40) for small values of
the argument of the scaling functions, as we havea = 8+(0), while 8−(x) ≈ bx as
x → 0. On the other hand, both scaling functions have the common power-law behaviour
8±(x) ≈ Kxu, with u = t/(s + t), as|x| → ∞ and |Arg x| < π , hence

6(pc, h) ≈ Kσ0h
u ≈ K(σ s0σ t1)1/(s+t) (2.42)
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for |σ1| � |σ0|, right at the percolation threshold. More generally, the power-law
behaviour (2.42) holds forh? � |h| � 1, where the crossover scaleh? reads

h? ∼ |p − pc|s+t (2.43)

while the scaling laws (2.38)–(2.40) hold in the opposite regime(|h| � h?).
As a consequence of equation (2.28), the spectral function also obeys a scaling law of

the form (2.41), namely

H(p, x) ≈ |p − pc|t F±((1− x)|p − pc|−s−t ) (2.44)

for 1− x � 1 and|p − pc| � 1, and a similar law around the other critical point, i.e. for
x � 1 and|q − pc| � 1. We shall come back to the scaling law (2.44) in section 2.9.

Consider now the binary model on a large but finite sample, of sizeM × N . In the
critical region, its mean conductance obeys the finite-size scaling law

Y ≈ σ0N
−t/ν9((p − pc)N1/ν, (p − pc)h−1/(s+t),M/N) (2.45)

where9 is a three-variable scaling function. As a consequence, right at the percolation
threshold, the critical region extends over a range

δh ∼ N−(s+t)/ν . (2.46)

On the square lattice, the duality symmetry impliespc = 1
2, andA(p)B(1− p) = 1,

hences = t andu = 1
2, in agreement with equation (2.36). The common numerical value of

these exponents iss/ν = t/ν = 0.9745± 0.0015 [12], with the exponent of the correlation
length being exactlyν = 4

3, hences = t = 1.300. Hence, forp = pc = 1
2, the same

critical singularity simultaneously affects both endpoints of the spectrum,λ = 1 andλ = 0,
corresponding respectively toh = 0 andh = ∞, again in agreement with equation (2.36).

2.7. Sum rules

The representation (2.25) of the conductivity can be expanded as the following series in
inverse powers ofλ

6(p, λ) = σ0

(
1−

∞∑
k=0

Hk(p)

λk+1

)
(2.47)

where the coefficients

Hk(p) =
∫ 1

0
xkH(p, x)dx = lim

M,N→∞

nR∑
a=1

αaλ
k
a (2.48)

are the moments of the spectral functionH(p, x).
As we have already noted in section 2.1, the expansion variable 1/λ is the dimensionless

contrast between the conductances of both phases. As a consequence, the expansion (2.47)
can be viewed as a special case of the weak-disorder expansion of the conductivity of
a random network with an arbitrary narrow distribution of bond conductances [13]. The
general results to sixth order derived there can be transcribed in the present case of binary
disorder on the square lattice. We thus obtain the following expressions for the first six
moments,

H0(p) = q H1(p) = pq

2
H2(p) = pq

4

H3(p) = pq

8
(1+ pq) H4(p) = pq

16
(1+ 3pq + (J − 1)pq(p − q))

H5(p) = pq

32
(1+ (J + 5)pq + 4(J − 1)pq(p − q)− 2(2J − 3)p2q2)

(2.49)
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with q = 1− p. The numberJ = J1 = J2 = 1.092 958 179, with the notations of [13], is
the only non-trivial quantity occurring in the sixth-order expansion. We have thus derived
explicit sum rules for the spectral function, which agree with the expressions given in [7].
The numberJ , denoted there as 1− a4

5, was estimated there from numerical data to be
J = 0.9± 0.5.

2.8. Effective-medium approximation

The effective-medium approximation (EMA), introduced by Bruggeman in 1935 [14], is
a self-consistent approximate scheme to evaluate the conductivity of random impedance
networks [15, 16, 13], which is still being very widely used [17].

In the present case of the binary model on the square lattice, the EMA prediction for
the conductivity is given by

p
6EMA − σ0

6EMA + σ0
+ (1− p)6

EMA − σ1

6EMA + σ1
= 0 (2.50)

hence

6EMA = σ0

(
(p − 1

2)(1− h)+
√
(p − 1

2)
2(1− h)2+ h

)
= σ0

λ

(
p − 1

2 +
√
(p − 1

2)
2+ λ(λ− 1)

)
. (2.51)

This EMA formula for the conductivity is analytic in theλ-plane cut along the interval
λmin 6 λ 6 λmax, with

λmin = 1
2 −

√
p(1− p) λmax= 1− λmin = 1

2 +
√
p(1− p). (2.52)

The prediction for the associated spectral function (cf equation (2.28)) reads

HEMA(p, x) =
√
x(1− x)− (p − 1

2)
2

πx
=
√
(λmax− x)(x − λmin)

πx
. (2.53)

The EMA formula gives a very accurate approximation to the conductivity of the binary
model in generic circumstances. For instance, the 1/λ-expansion of the EMA formula (2.51)
gives expressionsHEMA

k (p) for the moments which only differ from the true results (2.49),
starting withH4(p), by replacingJ by JEMA = 1 [13]. The EMA scheme also respects
the duality symmetry (2.34). The predictions (2.51), (2.53) therefore agree with the exact
results (2.36) for the conductivity and the spectral function atp = pc = 1

2. The EMA
also correctly predicts the equalitys = t , but not the common value of these exponents
(s = t = 1 instead of 1.300).

For a generic value of the concentration(p 6= pc), the endpoints (2.52) are such that
0 < λmin < λmax < 1. The support of the EMA prediction (2.53) for the spectral function
thus does not extend over the whole interval 06 λ 6 1. In the vicinity of the percolation
threshold(p → pc = 1

2), we haveλmin = 1− λmax ≈ (p − pc)2, in agreement with the
estimate (2.43) of the crossover scaleh?, with s + t = 2.

2.9. Lifshitz tails

It has been argued [6] that the spectral functionH(p, x) of the true conductivity of the
binary model extends over the whole allowed spectrum 06 λ 6 1, for any value of the
concentrationp, at variance with the EMA formula (2.53).
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This argument has then been put in perspective [1] with Lifshitz singularities [18–20].
These singularities are caused by the presence of very large, and thus very improbable,
ordered regions in a randomly disordered system. The original example considered by
Lifshitz [18] is that of the phonon spectrum of a binary harmonic alloy, consisting of
light atoms, with massm and concentrationp, and heavy atoms, with massM > m and
concentrationq = 1− p. Lifshitz has argued that the vicinity of the upper edgeωmax of
the phonon spectrum of the alloy is dominated by large ordered regions, almost spherical in
shape, consisting only of light atoms. He thus showed thatωmax coincides with the upper
edge of the pure lattice consisting only of light atoms, and that the density of states of the
alloy vanishes exponentially fast nearωmax, as

ρ(ω) ∼ exp(−c|lnp|(ωmax− ω)−d/2) (2.54)

wherec is a lattice-dependent constant, which can be evaluated exactly. Along this line
of thought, it has been argued in [1] that the spectral function of the binary model has an
exponentially small Lifshitz tail, extending all the way to the endpointsλ = 0 andλ = 1
of the spectrum of resonances, of the form

H(p, x) ∼ exp(−C(p)x−d/2) (x → 0) (2.55)

and similarly forx → 1. This expression was rather conjectural, as the determination of
the relevant ordered regions was left as an open question, so that the prefactorC(p) was
not predicted.

Hesselbo [21] then argued that the relevant ordered regions are hairpin configurations,
as shown in figure 2(a). Let Yn be the transversal conductance of the hairpin consisting
of n cells, measured between the point electrodes shown in figure 2(a), considered as an
isolated network (not embedded in the square lattice). This quantity can be evaluated from
the recursion relation

Yn = σ1+
(

2

σ0
+ 1

Yn−1

)−1

(2.56)

Figure 2. (a) Hairpin configuration and (b) worm-like configuration, withn = 8 cells. Same
conventions for the bond conductances as in figure 1. The transversal conductanceYn is
measured between the point electrodes shown as large dots.
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with Y0 = σ0. Consider first a value ofh not on the negative real axis, and set

h = σ1

σ0
= 2 sinh2µ (2.57)

with Reµ > 0 and|Imµ| < π . The Möbius map involved in the recursion (2.56) has two
fixed points,

Y± = σ0

2
(e±2µ − 1) (2.58)

with the stable fixed pointY+ being the transversal conductance of the infinitely long hairpin
(ladder). The recursion (2.56) can be solved explicitly, along the lines of [1], by means of
the variabletn = (Yn − Y−)/(Yn − Y+). We thus obtain

Yn = σ0 sinhµ
3 cosh((2n+ 1)µ)− cosh((2n− 1)µ)

3 sinh(2nµ)− sinh(2(n− 1)µ)
. (2.59)

For a strong dielectric contrast (h → 0), the correlation length of currents along the
hairpin diverges according toξ = 1/(2µ) ≈ (2h)−1/2. In this regime, the conductance of
long hairpins scales as

Yn ≈ σ0

2n
z cotanhz with z = n

ξ
= 2nµ. (2.60)

This scaling form of the conductance exhibits an infinite array of alternating zeros, lying at

z̃a = (2a + 1)iπ

2
i.e. 1− λ̃a ≈ (2a + 1)2π2

8n2
(2.61)

and poles, lying at

za = aiπ i.e. 1− λa ≈ a2π2

2n2
(2.62)

with a > 1. The first zeroλ̃1, corresponding to a pole in the dual configuration, yields,
according to Hesselbo, the Lifshitz behaviour of the spectral function, at least for a small
enough concentrationp.

It turns out that the formula (2.59) also gives the conductance of worm-like networks,
such as the configuration shown in figure 2(b), where the square cells are put together in
any random fashion, respecting the linear structure and the constraint of self-avoidance. The
number of such worm-like configurations withn cells is of order exp(nS), with S being
the associated configurational entropy. On the other hand, a hairpin withn cells occurs
with a probability of orderp2n, at least forp small enough. Altogether, the first zero of
equation (2.61) is expected to show up with a probability weight of order(p2eS)n. By
eliminating the numbern between the above estimates, we obtain the following analytical
form for the Lifshitz tail of the density of resonances and of the spectral function

ρ(p, x) ∼ H(p, x) ∼ exp

(
−C(p)√

x

)
(x → 0) (2.63)

and a similar formula forx → 1. This result, with an inverse-square-root behaviour in
the spectral variablex, is characteristic of Lifshitz tails in one-dimensional systems [19].
This is due to the fact that the relevant structures are linear objects. Furthermore, the
identities (2.33), (2.37) implyC(p) = C(1 − p). The above argument also leads to a
prediction for the small-p behaviour of the amplitudeC(p), namely

C(p) ≈ π√
2

(
|lnp| − S

2

)
(p � 1). (2.64)
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These predictions will be compared with numerical data in section 4.
The Lifshitz tail of the spectral function manifests itself in the long-time tail of the

transient intensity response of theR − C model. Indeed, in the regime of long times
(t � τ), equation (2.30) is dominated by the vicinity ofx = 0, hence

I (t) ∼
∫ ∞

0
dx exp

(
−x t

τ
− C(p)√

x

)
∼ exp

{
−3

(
C(p)2

4

t

τ

)1/3
}
. (2.65)

In the critical region, the prediction (2.63) for the Lifshitz tail is compatible with the
scaling law (2.44) for the spectral function, provided the amplitudeC(p) vanishes near the
percolation threshold, according to

C(p) ∼ |p − pc|(s+t)/2. (2.66)

The Lifshitz behaviour (2.63) is expected to hold only deep in the tails, forx (or 1− x)
much smaller than the crossover scaleh?, defined in equation (2.43).

3. Algorithm

We now turn to the presentation of our algorithm for evaluating the rationalh-dependence
of the conductance of a finite binary network, such as that shown in figure 1. This approach
is an extension of the method of [2]. It turns out that a very similar formalism was proposed
by Straley [6] some 20 years ago, but this work has apparently not been noted since then.
The conductance will be determined in the second form of equation (2.1a), namely we shall
calculate first the polesλa of the conductance, giving the positions of the resonances, and
then the associated residuesαa, giving the strengths of the resonances.

3.1. Generalities

Along the lines of [2], our starting point is the Kirchhoff equations forVx, the electric
potential at sitex:∑

y(x)

σx,y(Vx − Vy) = 0. (3.1)

There is one such equation per sitex inside the network. The notationy(x) means thaty
is a neighbour ofx, i.e. there exists a bond(x,y), and the sum possibly includes sitesy
belonging to either electrode. Equations (3.1) have to be complemented by the boundary
conditionsVy = 0 for the sitesy on the left electrode, andVy = V0 for the sitesy on the
right electrode.

We define the topological Laplace operator1 on the network as

(1V )x =
∑
y(x)

(Vy − Vx) (3.2)

again with the convention that the sum possibly includes sitesy belonging to either electrode,
in which case the Dirichlet boundary conditionVy = 0 is assumed. The operator1 can
be written as the sum1 = 1P + 1Q of its components1P on theP-set and1Q on the
Q-set, respectively defined as

(1PV )x =
∑
y∈P(x)

(Vy − Vx) (1QV )x =
∑
y∈Q(x)

(Vy − Vx) (3.3)
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wherey ∈ P(x) (respectively,y ∈ Q(x)) means that(x,y) is aP-bond (respectively, a
Q-bond). We also introduce the quantities

A(L)x = 1 iff x is a neighbour of the left electrode

A(R)x = 1 iff x is a neighbour of the right electrode

B(L)x = 1 iff x is connected to the left electrode by aQ-bond

B(R)x = 1 iff x is connected to the right electrode by aQ-bond.

(3.4)

With this notation, the Kirchhoff equations (3.1) read

σ0(1PV )x + σ1(1QV )x + V0(σ0(A
(R)
x − B(R)x )+ σ1B

(R)
x ) = 0 (3.5)

or equivalently, in vector and matrix notation,

(1Q − λ1)V = V0(λA
(R) −B(R)). (3.6)

This reduced form only involves the complex variableλ defined in equation (1.3). The
conductance of the network is given by

Y = I

V0
(3.7)

where the total currentI flowing into the network from the left electrode reads

I =
∑
x

(σ0(A
(L)
x − B(L)x )+ σ1B

(L)
x )Vx (3.8)

or equivalently, in vector notation,

I = σ0

λ
(λA(L) −B(L)) · V . (3.9)

3.2. Poles of the conductance

In analogy with [2], the poles of the conductance are the non-trivial valuesλa of λ for
which the homogeneous Kirchhoff equations (3.1) withV0 = 0 have a non-zero solution,
namely

(1Q − λa1)V = 0. (3.10)

This is a well-posed generalized eigenvalue problem, since1 and1Q are two real symmetric
matrices, of sizenS × nS , and(−1) is a positive definite matrix.

It turns out that the endpointsλ = 0 or λ = 1 are in general extensively degenerate
eigenvalues of equation (3.10). These eigenvalues do not correspond to resonances. Indeed,
we know from section 2.1 that the conductance has no pole atλ = 1, while it has a simple
pole atλ = 0 if, and only if, theQ-phase is conducting. Let us setεQ = 1 in this situation,
εQ = 0 else. The number of resonances then reads

nR = nS − n0− n1+ εQ (3.11)

wheren0 and n1 denote the respective multiplicities of the endpoint eigenvaluesλ = 0
andλ = 1. More precisely,n0 is the number of zero-modes of the operator1Q, i.e. the
dimension of its kernel. Since1Q has one zero-mode per clusterC of theQ-phase which
is disconnected from the electrodes, we have

n0 = nS −
∑
C⊂Q

(s(C)− 1+ χ(C)). (3.12)

In this formula, the sum runs over the clustersC of theQ-phase,s(C) denotes the number of
sites of the clusterC, and the characteristic functionχ(C) is unity if the clusterC overlaps
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with either of the electrodes, and zero otherwise. The multiplicityn1 of the eigenvalue
λ = 1 can be expressed similarly, in terms of the clusters of theP-phase.

In the thermodynamic limit, one can derive from equation (3.12) expressions for the
fractions of eigenvalues which are condensed atλ = 0 and λ = 1. Indeed, the terms
χ(C) are negligible, while the other terms can be expressed as functions of geometrical
characteristics of the bond percolation problem [22], namely

ρ0(p) = lim
M,N→∞

n0

MN
= 1− 2q + P(q)+ nc(q)

ρ1(p) = lim
M,N→∞

n1

MN
= 1− 2p + P(p)+ nc(p)

(3.13)

wherenc(p) is the mean number of finite clusters per site, whileP(p), the percolation
probability, is the probability for any given bond to belong to the infinite cluster. The latter
quantity is non-vanishing only forp > pc.

The density of resonancesρR(p), defined in equation (2.32), then reads

ρR(p) = 1− ρ0(p)− ρ1(p) = 1− P(p)− P(q)− nc(p)− nc(q). (3.14)

This quantity is symmetric in the exchangep ↔ q, in agreement with equation (2.37).
For a small concentrationp, the contributions to equation (3.12) of all theP-clusters and
Q-clusters consisting of up to four bonds can be enumerated by hand. We thus obtain

ρ0(p) = p4+ · · · ρ1(p) = 1− 2p + p4+ · · · ρR(p) = 2p − 2p4+ · · · . (3.15)

At the percolation threshold,ρR(p) takes its maximal value, which can be determined as
follows. The percolation probabilityP(pc) vanishes, whilenc(pc) is known exactly [23],
hence

ρ0(pc) = ρ1(pc) = nc(pc) = 3
√

3− 5

2
= 0.098 076

ρR(pc) = 3(2−
√

3) = 0.803 848.

(3.16)

3.3. Residues of the conductance

At any resonance corresponding to a non-trivial eigenvalue(λa 6= 0 and 1) of
equation (3.10), the map of the electric potentials on the network is given by the components
(Xa)x of the associated right eigenvectorXa. Since equation (3.10) is symmetric, theXa

are simultaneously its left and right eigenvectors:

X t
a(1Q − λa1) = 0 (1Q − λa1)Xa = 0 (3.17)

with the row vectorX t being the transpose of the column vectorX. ThenS eigenvectors
{Xa} form a basis. They are orthogonal to each other with respect to the metric(−1),
namelyX t

a(−1)Xb = 0 for a 6= b. We normalize them as

X t
a(−1)Xb = δa,b. (3.18)

The squared norm of the eigenvectorXa reads

X t
a(−1)Xa =

∑
(x,y)

E2
x,y = 1 (3.19)

where

Ex,y = (Xa)x − (Xa)y (3.20)

is the local electric field on the bond(x,y).
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The solutionV to the inhomogeneous Kirchhoff equations (3.1), (3.6) can be obtained
in terms of the eigenvectorsXa. Indeed, let us expandV on the basis of theXa:

V =
nS∑
a=1

ca(λ)Xa. (3.21)

By inserting this expansion into equation (3.6), and taking the scalar product of that equation
with the row vectorX t

b, we readily obtain the amplitudecb(λ) in the form

cb(λ) = V0
(λA(R) −B(R)) ·Xb

λ− λb . (3.22)

Finally, by inserting this result into equations (3.9), (3.7), we obtain the following formula
for the residuesαa > 0 of the conductance at its non-trivial poles(λa 6= 0 and 1)

αa = − M

Nλa
((λaA

(L) −B(L)) ·Xa)((λaA
(R) −B(R)) ·Xa). (3.23)

As recalled in the beginning of section 3.1, the conductance also exhibits a simple pole
at λ = 0, if the Q-phase is conducting. The corresponding residueα1, which yields
the conductance of theQ-phase by means of equation (2.3), is not directly given by
equation (3.23). It can, however, be determined from the other ones(α2, . . . , αnR ), by
using the sum rule (2.5).

4. Numerical results

We have shown in section 3 that the full rationalλ-dependence of the conductance of a finite
binary network can be expressed in terms of the generalized eigenvalues and eigenvectors
of equation (3.10). We have implemented this algorithm numerically, using the IMSL
routine EIGZS, in order to obtain numerical data concerning several quantities of interest,
which will be discussed successively throughout this section. The CPU time for solving the
spectral problem for each sample grows rapidly with the system size, proportionally ton3

S ,
i.e. toN6 for a square sample of sizeN ×N .

The optimal use of our algorithm therefore consists in obtaining good statistics on
samples of moderate sizes. We have commonly used sample sizes such asN = 16
or N = 20, and a statistical ensemble of several times 104 samples, having some 107

random bond conductances in total, a good enough statistics to obtain very accurate data.
No observable systematic finite-size effects have been found, even in the critical regions
(p → pc and λ → 0 or λ → 1). This observation is in agreement with the argument,
given at the end of section 4.1, showing that the critical regions are indeed very small in
the variableλ.

4.1. Density of resonances and spectral function

We have evaluated the spectral density of resonancesρ(p, x) and the spectral function
H(p, x), by means of their respective definitions (2.31) and (2.26). The spectral function,
which plays a central role in the Bergman–Milton formalism [4, 5], had only been the subject
of a limited amount of work. In [7] it has been extracted from the imaginary part of the
conductance, measured at a small but finite distanceε from the negative realh-axis. The
present method yields a direct measurement of the spectral function, avoiding especially
any contamination from the delta-function atx = 0 (see equation (2.27)), which can be
discarded in an exact way.



Dielectric resonances of binary random networks 3703

Figures 3 and 4 respectively show histogram plots ofρ(p, x) andxH(p, x), for values
of the concentrationp ranging from 0.05 to 0.5. Indeed, the symmetry relations (2.33),
(2.37) allow us to restrict our attention top 6 pc = 1

2. Each plot contain the accumulated
data of an ensemble of over 20 000 configurations of a network of sizeN = 16× 16,
corresponding to 107 random bonds in total. The density of resonancesρ(p, x) exhibits the
expected symmetry (2.37) under the transformationx ↔ 1− x within a good accuracy, for
all values ofp. This demonstrates that we have used a large enough statistical ensemble
of random networks. The productxH(p, x) does not possess such a symmetry (except
for p = pc = 1

2), while the EMA prediction (2.53), shown as a semicircle in figure 4, is
symmetric underx ↔ 1− x. Both ρ(p, x) andxH(p, x) exhibit a rich structure, down to
the scale of the resolution (each plot contains 100 bins). It will be demonstrated more clearly
in section 4.2 that they are non-vanishing over the whole allowed spectrum(06 x 6 1).

For a small enough concentration, the most salient structures inρ(p, x) andH(p, x) can
be predicted from the analysis of the resonances of isolated finite clusters. For consistency
with [2], we shall consider the regimeq = 1 − p → 0. To leading order inq, the
relevant configuration consists of one isolatedQ-bond embedded in a host lattice consisting
of P-bonds. This one-bond cluster, shown as configuration A in figure 5, has one single
resonance, atλ = λA1 = 1

2, yielding the observed leading peak inρ(p, x) andxH(p, x).
This one-bond cluster has two possible orientations, but only the horizontal case yields a
non-vanishing residue [2], to leading order asq → 0. The spectral function, the density of
resonances, and the mean number of resonances therefore behave as

H(p, x) ≈ pδ(x − 1
2) ρ(p, x) ≈ 2pδ(x − 1

2) (p→ 0) (4.1)

in agreement with the sum rules (2.49) and with equation (3.15), to leading order inp.
To second order inp, ρ(p, x) and H(p, x) consist of a countable infinity of discrete
components (delta-functions), corresponding to the resonances of configurations consisting
of two bonds, in arbitrary relative position and orientation [2], and so on. The most salient
subleading peaks have been marked in figures 3 and 4 (broken verticals) by some of the
resonances of the two- and three-bond configurations shown in figure 5. The configurations
A, B, and E are self-dual, while (C,D) and (F,G) form dual pairs. The resonances of these
clusters, determined exactly along the lines of [2], are given in table 1.

Right at the percolation threshold(p = pc = 1
2), the data for the spectral function

(figure 4(e)) agree with the exact analytical result (2.36), which coincides with the EMA
prediction. The accuracy of this agreement provides another check of the quality of the
numerical simulations. The density of resonances remains a non-trivial functionρ(pc, x)

at the percolation threshold (figure 3(e)). Integrating the data of this figure leads to the
estimateρR(pc) ≈ 0.80, again in good agreement with the exact result (3.16). It is worth
noting that the data shown in figures 3(e) and 4(e) are practically not affected by the critical
singularities at the endpoints of the spectrum. Indeed, the size of the critical region, given
by equation (2.46), can be estimated to be a few times 10−3, i.e. smaller than the width of
the first or last bin.

As the concentration varies fromp = 0 to p = pc = 1
2, the profiles of the density of

resonances and of the spectral function deform in a progressive way. They become smoother
and smoother, with their maxima moving in a continuous way. The broken verticals are
shown as guides for the eye on all plots of figures 3 and 4, although they only label the
most salient structures for a small enough concentration. The spectral function also becomes
progressively better in agreement with the EMA prediction.
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Figure 3. Histogram plot of the spectral density of resonancesρ(p, x), for (a) p = 0.05,
(b) p = 0.1, (c) p = 0.2, (d) p = 0.3, (e) p = 0.5. The broken verticals show some of the
resonances, listed in table 1, of the configurations made of one to three bonds, shown in figure 5.
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Figure 3. (Continued)

4.2. Lifshitz tails

We have also investigated the behaviour of the density of resonances near the endpoints
x = 0 andx = 1, in order to check the prediction (2.63) of the Lifshitz tail. We have chosen
to investigate the density of resonancesρ(p, x), rather than the spectral function, because
ρ(p, x) can be expected on general grounds to exhibit a clearer signal, in analogy with
the one-dimensional situation [19]. Furthermore, the statistics can be doubled by using the
symmetry relations (2.37), and each sample requires less CPU time, since the calculation
of the eigenvectorsXa is not required forρ(p, x).

Figure 6 shows a logarithmic plot of the integrated spectral density of resonances

ρint(p, x) =
∫ x

0
ρ(p, y)dy (4.2)

againstx−1/2, for a concentrationp = 0.1. The data correspond to over 103 000 samples of
sizeN = 16× 16, i.e. to 5× 107 random bonds. The range of the plotted data corresponds
to x 6 λmin andλmax6 x 6 1, with λmin andλmax being the endpoints (2.52) of the EMA
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Figure 4. Histogram plot ofxH(p, x), with H(p, x) being the spectral function of the
conductivity, for (a) p = 0.05, (b) p = 0.1, (c) p = 0.2, (d) p = 0.3, (e) p = 0.5. Semicircles
show the EMA prediction (2.53). Broken verticals as in figure 3.
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Figure 4. (Continued)

Figure 5. Configurations made of one to three bonds, whose resonances are listed in table 1,
and used to label the most salient peaks in figures 3 and 4, forp small enough.

prediction for the spectral function. Indeed, the Lifshitz behaviour is expected to manifest
itself mostly out of the ‘bulk’ of the spectrum, the latter being conveniently defined as the
support of the EMA formula [20]. A linear behaviour is clearly observed, confirming the
analytical form (2.63) of the Lifshitz tail. A further qualitative confirmation of Hesselbo’s
argument on the Lifshitz behaviour is as follows. The data of figure 6 exhibit oscillations
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Table 1. Location of the resonances of some configurations consisting of one to three bonds,
shown in figure 5, and used to label the most salient peaks in figures 3 and 4, forp small
enough.

Configuration Resonances

A λA1 = 1
2 = 0.500 000

B λB1 = 1/π = 0.318 310
λB2 = 1− 1/π = 0.681 690

C λC1 = 1− 2/π = 0.363 380
λC2 = 2/π = 0.636 620

D λD1 = λC1

λD2 = λC2

E λE1 = 1
2 −
√

2( 1
2 − 1/π) = 0.243 051

λE2 = λA1

λE3 = 1
2 +
√

2( 1
2 − 1/π) = 0.756 949

F λF1 = 1
4 + 1/π − w/4= 0.302 436

λF2 = λC1

λF3 = 1
4 + 1/π + w/4= 0.834 184

G λG1 = 3
4 − 1/π − w/4= 0.165 816

λG2 = λC2

λG3 = 3
4 − 1/π + w/4= 0.697 564

w =
√

9− 40/π + 48/π2

Figure 6. Logarithmic plot of the integrated density of resonancesρint(p, x), againstx−1/2, for
a concentrationp = 0.1. The slope of the least-squares fit yields the amplitudeC(p = 0.1) ≈
3.19. Numbers label the lowest resonances of hairpin structures, as explained in the text.

around the fitted straight line, and the top of each of the most prominent of these oscillations
corresponds, with a good accuracy, to the lowest resonance of the hairpin structures shown
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Figure 7. Plot of the measured amplitudeC(p) of the Lifshitz tail, against|lnp|. The fitted
straight line is discussed in the text.

in figure 2(a), embedded in the square lattice, withn = 1 to 4 cells. The casen = 1
corresponds to configuration G of figure 5, with its lowest resonanceλG1.

From a quantitative viewpoint, the slope of the fitted straight line in figure 6 yields
C(p = 0.1) ≈ 3.19. The amplitudeC(p) has been similarly measured forp = 0.05, 0.15,
and 0.2. The results are plotted in figure 7 against|lnp|. The data fit nicely to the straight
line C(p) ≈ 1.98|lnp| − 1.39, to be compared with the analytical prediction (2.64). The
slope 1.98 is some 10% smaller than the analytical valueπ/

√
2 = 2.2214. The intercept

yields the estimateS ≈ 1.40 for the configurational entropy per cell, a significantly larger
value than the entropy of self-avoiding walks on the square lattice,SSAW = lnµSAW =
0.970 [24]. These observations suggest that other types of linear extended structures, besides
the worm-like ones identified in the framework of Hesselbo’s argument, may contribute to
the Lifshitz behaviour of the conductivity.

4.3. Distribution of spacings between resonances

The distribution of spacings between successive energy levels has been extensively
investigated in a variety of quantum systems, ranging from nuclei to billiards [25]. Generic
spectra belong to three universality classes of level spacing distributions, according to their
symmetry properties, in correspondence with the classical ensembles of real symmetric,
Hermitian, and symplectic random matrices [26], respectively called the Gaussian orthogonal
ensemble (GOE), the Gaussian unitary ensemble (GUE), and the Gaussian symplectic
ensemble (GSE).

We have investigated the distribution of spacings between successive resonances in the
range

p = pc = 1
2

1
4 6 x 6

3
4 (4.3)

where the spectral density of resonances is very flat, i.e. very close to being a constant,
ρ = 0.658 (see figure 3(e)). The range (4.3) can be considered as fully generic, although
the concentration assumes its critical valuepc, since the critical singularities only influence
very small regions around the endpointsx = 0 or x = 1, as explained in section 4.1.
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Figure 8. Histogram plot of the distributionP(s) of normalized spacings between neighbouring
resonances, measured in the range (4.3). The full curve shows the GOE prediction.

For a finite network of sizeN×N , the mean spacing between two successive resonances
is approximatelyλa+1− λa ≈ 1/(ρN2). We thus define the reduced spacings

sa = ρN2(λa+1− λa). (4.4)

Figure 8 shows a histogram plot of the distributionP(s) of the spacingssa, obtained from
an ensemble of networks of size 20× 20 having 107 random bonds in the range (4.3) in
total. This distribution obeys by construction

∫∞
0 P(s)ds = ∫∞0 sP (s)ds = 1.

Since the generalized eigenvalue problem (3.10) involves two real symmetric matrices,
1 and1Q, the natural universality class with which the data forP(s) should be compared
is the GOE. The lawPGOE(s) [26] is shown as a full curve in figure 8. The data
share characteristic qualitative features of the GOE spacing distribution, including a linear
repulsion at short spacings, i.e.P(s) ∼ s for s � 1, and a fast fall-off at large spacings.
There is, however, a small but significant quantitative difference between the data in the
range (4.3) and the GOE prediction.

4.4. Number of visible resonances

We now turn to the number of visible resonances of theRL−C model on a finite network.
A resonance is said to be visible if it corresponds to a true maximum in the frequency
dependence of the real part of the admittance, as given by equation (2.20a).

For a finite network of sizeN × N , the typical spacing between resonances scales as
1/N2, as already mentioned in section 4.3. Since two resonances of comparable strengths
are resolved, i.e. separately visible, if their spacing is larger than the width 1/Q of each of
them, we are led to propose the following finite-size scaling law for the fraction of visible
resonances

(nR)visib

nR
≈ F

(
Q

N2

)
. (4.5)

The scaling functionF(X) is expected to grow monotonically fromF(0) = 0, since a
vanishing fraction of the resonances is visible ifQ does not scale asN2, to F(∞) = 1,
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Figure 9. Plot of the finite-size scaling functionF(X) of the fraction of visible resonances,
against the scaling variableX = Q/N2. Data correspond to samples of sizeN × N , with
N = 12 andN = 20, atp = 1

2 . The full curve, showing the fit described in the text, is meant
as a guide for the eye.

since all the resonances of a finite sample are eventually visible for a large enough quality
factor.

Figure 9 shows a plot of the fraction of visible resonances over the whole spectrum
(0 6 λ 6 1), for p = pc = 1

2. The observed collapse of the data for the sizes
12× 12 and 20× 20 clearly demonstrates the validity of the scaling law (4.5). The
full curve shows a numerical fit of both series of data to the common analytical form
1/(1− F(X))2 = 1+ XP2(X), with P2(X) being a quadratic polynomial. The quality of
the fitted curve, meant as a guide to the eye, suggests a linear behaviour of the scaling
function at smallX, as well as a power-law convergence of the form

1− F(X) ∼ X−3/2 (X � 1). (4.6)

The fraction of visible resonances dependsa priori on how uniformly the resonances
are distributed, and on the dispersion in the corresponding residuesαa. Both features
can depend quantitatively on the concentrationp. The scaling functionF(X) is therefore
expected not to be universal, but rather to weakly depend on the concentrationp and on
the range of values ofλ under consideration. Its main qualitative features, such as the
power law (4.6) are, however, expected to be universal. The same remarks apply to the
distribution of spacings between resonances, investigated in section 4.3.

4.5. Distribution of local electric fields

The algorithm presented in section 3 also gives access to the spatial structure of the
resonances. Indeed, the eigenvectorXa directly provides a map of the electric potentials at
the resonance corresponding to the eigenvalueλa. For each resonance, we define the local
electric field on the bond(x,y) as

Ex,y = Vx − Vy = c((Xa)x − (Xa)y). (4.7)
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Figure 10. Log–log plot of the momentsSk(N) of the local electric field at resonance, measured
in the range (4.3), against the linear sample sizeN (66 N 6 24).

The electric fields are defined up to an overall multiplicative constantc. We choose this
constant to bec = √nB , so that the normalization (3.19) of the eigenvectors implies∑

(x,y)

E2
x,y = nB. (4.8)

One could think of many ways of analysing the spatial structure of the electric field at
resonance. We have chosen to investigate the distribution of the local field living on any
given bond. More precisely, we have evaluated the successive moments of this distribution
on square samples of sizeN ×N , namely

Sk(N) = 〈|E|k〉 =
〈

1

nB

∑
(x,y)

|Ex,y|k
〉
. (4.9)

The normalization (4.8) ensures the identitiesS0(N) = S2(N) = 1.
Figure 10 shows a log–log plot of the first non-trivial moments, of indexk = 1, 3, 4,

5, and 6, against the linear sizeN of the sample, fromN = 6–24. Data are obtained in the
range (4.3), with around 107 random bonds for each sample size. Power laws of the form

Sk(N) ∼ Nxk (4.10)

are clearly apparent. This scaling behaviour, with a non-trivial dependence of the exponent
xk on the indexk, is a signature of multifractality [27, 28]. Along the lines of the multifractal
formalism, we introduce the generalized (Rényi) dimensionsdk, such that

xk = (k − 2)(2− dk)
2

. (4.11)

The dk are expected to decrease fromd0 = 2, the dimension of the network, tod∞ = 0.
In physical terms, multifractality implies that the patterns of resonant electric fields

exhibit strong local fluctuations, rather similar to those observed in wavefunctions of the
Anderson model, in the marginal two-dimensional situation [29]. In particular the resonances
are neither localized nor extended, in the conventional sense of these expressions. Indeed,
extended patterns of electric fields would correspond todk = 2 for all k > 0, while localized
ones would havedk = 0 for k > 1. We recall that a similar phenomenon of multifractality
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Table 2. Exponentsxk and associated generalized dimensionsdk characterizing the multifractal
distribution of local electric fields at resonance, measured in the range (4.3).

k Exponentxk Dimensiondk

0 0 2
1 −0.097± 0.016 1.806± 0.032
2 0 —
3 0.295± 0.018 1.410± 0.036
4 0.769± 0.026 1.231± 0.026
5 1.390± 0.026 1.074± 0.018
6 2.130± 0.024 0.935± 0.012

Figure 11. Plot of the generalized dimensionsdk of the distribution of electric fields at resonance,
measured in the range (4.3), against indexk. The straight line shows the linear behaviour (4.12),
with β = 0.194.

has been reported for the DC problem of the conductor–insulator mixture, right at the
percolation threshold [30, 31].

From a quantitative viewpoint, a more refined fit of the data to the power laws (4.10),
including a relative correction in 1/N , yields more accurate estimates for the exponentsxk
and the associated dimensionsdk, listed in table 2. Figure 11 shows a plot of thedk against
the indexk. An approximate linear decay of the form

dk ≈ 2− βk (4.12)

with β ≈ 0.194, is observed over a fairly broad range(0 6 k 6 4). A similar linear
behaviour has been predicted analytically for the two-dimensional Anderson model in
the weak-disorder regime [29]. The linear law (4.12) corresponds to a log-normal (LN)
distribution of the local fields. Indeed, let us set

` = ln |E|. (4.13)

The scaling law (4.10) then reads〈exp(k`)〉 ∼ exp(Bk(k − 2)/2), with B = β lnN .
Neglecting thek-dependence of the prefactor, this last expression corresponds to a LN
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Figure 12. Logarithmic histogram plot of the probability density5(`) of ` = ln |E|, the
logarithm of the electric field at resonance, for samples of size 16× 16, measured in the
range (4.3). The broken vertical marks the upper bound`max= (ln nB)/2, with nB = 481.

distribution for |E|, i.e. to a Gaussian law for the logarithmic variable`, namely

5LN(`) = (2πB)−1/2 exp

(
− (`+ B)

2

2B

)
. (4.14)

The actual probability density5(`) is shown in figure 12, for networks of size 16× 16
in the range (4.3). This very asymmetric distribution looks quite different from a LN law.
In particular, it falls off as5(`) ∼ exp(−`) as`→−∞, yielding a finite value at|E| = 0
of the probability densityP(|E|) = e`5(`). Most of the dependence of the distribution on
the sample sizeN takes place to the right of the plot, for large values of`, close to the
upper bound̀ max= (ln nB)/2, where a very fast decay is observed.

5. Discussion

We have investigated the AC conductivity of binary random networks of complex
impedances, with emphasis on its analytic structure in the complex variableh or λ, and on
the corresponding resonant behaviour. The present analysis is an extension to the general
binary case of a previous work [2], devoted to the resonant response of a finite cluster, or
set of clusters, embedded in an infinite homogeneous host lattice. Along the lines of [1, 2],
the poles of the conductance are interpreted in terms of the resonances which show up in
the AC conductivity of theRL − C model, and of the relaxation times in the transient
response of theR − C model. We have proposed an efficient algorithm, which allows
the determination of the rationalλ-dependence of the conductanceY of a finite sample, in
terms of its polesλa and of the associated residuesαa. A very similar formalism had been
proposed long ago by Straley [6].

We wish to underline again that the main advantage of this approach is to give at once
the analytic structure of the conductance inh or λ, for any finite sample. As far as a
numerical investigation of the resonant response is concerned, this approach is therefore
more suitable than the usual numerical methods, which can only yield the conductivity of
the binary model for a fixed value of the ratioh, such as the transfer-matrix method [12], or
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the iterative algorithm based on theY −1 transformation [32], used for example in [7]. It
is also worth noting that our approach yields the full analytic structure of the conductance,
including the static conductance of theQ-phase of any finite sample. Indeed the latter
quantity is given by equation (2.3), with the corresponding residueα1 being given by the
sum rule (2.5) in terms of all the other residues, corresponding to genuine resonances.

An extensive use of this algorithm, in the case of the square lattice, has allowed us to
investigate in detail many aspects of the resonant dielectric response of the binary model. In
general we have used 107 random bonds or more per measurement, a good enough statistics
to obtain very accurate data. We have investigated the density of resonancesρ(p, x) and the
spectral functionH(p, x). This approach yields a better evaluation of the spectral function
than the more direct method, consisting of measuring the imaginary part of the conductivity.
The most salient structures have been labelled, at least for a small enough concentration
p, by resonances of configurations made of one to three bonds, which can be determined
exactly, along the lines of [2]. The data for the spectral function have also been compared
with the EMA prediction.

The Lifshitz behaviour of the density of resonances near the endpoints has been
successfully characterized. A good qualitative agreement is found with the argument of
Hesselbo [21], according to whom the analogues of the Lifshitz sphere are linear extended
objects, such as hairpins. From a quantitative viewpoint, our data suggest that other classes
of extended structures may also contribute to the Lifshitz tails, even for a small concentration
p. The present situation is a lucky one, since numerical investigation of Lifshitz tails in
more than one dimension is known to be a very difficult task in general, especially in
the case of binary disorder [20]. The distribution of the spacings between neighbouring
resonances has been found to be in qualitative agreement with the universal distribution of
the GOE universality class of random matrices, although small but definite differences show
up at a quantitative level. The number of visible resonances of theRL − C model on a
finite sample of sizeN×N , as a function of the quality factorQ, has been shown to obey a
finite-size scaling law (4.5), involving a scaling functionF(X) of the variableX = Q/N2.
Quantities such as the scaling functionF(X), or the spacing distributionP(s), are expected
not to be universal: quantitative features of these functions should rather weakly depend on
the concentrationp and on the range of resonances considered, the range (4.3) being meant
as a generic example.

More generally, for the binary model on ad-dimensional lattice, the appropriate finite-
size scaling variable describing dielectric resonances readsX = Q/Nd . Indeed, the number
of resonances on a sample of linear sizeN scales as its volumeNd . This observation
yields in particular a prediction for the divergence of the current correlation lengthξ in the
weak-dissipation regime(Q� 1). By settingX ∼ 1 for N ∼ ξ , we obtain

ξ ∼ Qν with ν = 1

d
. (5.1)

We thus recover a simple result due to Hesselbo [21], which has been corroborated by
numerical simulations, yieldingν = 0.4± 0.1 in two dimensions [8].

Finally, we have investigated the distribution of the resonant electric field living on any
given bond. The moments of this distribution obey power laws with non-trivial exponents
xk, a characteristic feature of multifractality. The associated generalized dimensionsdk
are found to behave similarly to those observed in the Anderson model of localization, in
the marginal two-dimensional case [29]. Multifractality thus appears to be a quite generic
feature of the resonant response of binary networks. In particular, this phenomenon is
unrelated to the percolation transition. In analogy with the fraction of visible resonances or
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the spacing distributionP(s), the exponentsxk and the dimensionsdk are expected not to
be fully universal, but to exhibit a weak dependence on the concentrationp, and possibly
on the range of resonances considered.

This multifractal picture provides a quantitative characterization of local features of the
fluctuations in electric fields at resonance observed previously [8]. These giant fluctuations
have been argued to be responsible for surface-enhanced Raman scattering, this phenomenon
being especially pronounced in strongly disordered semicontinuous films. There is a regime
where the enhancement factor is predicted to be proportional to〈E4〉 [9], whence the
relevance of the dimensiond4, in our notation. In a realistic system, with a small but finite
dissipation rate 1/Q, these fluctuations are expected to be critical, i.e. to exhibit strong
spatial correlations, on scales smaller than the current correlation lengthξ , estimated in
equation (5.1). Since the algorithm used in this work gives direct access to the full map
of electric fields at resonance, it could be used to investigate other aspects of dielectric
resonances, including their spatial correlations, on which some information is already
available [8].
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