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Dielectric resonances of binary random networks
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Abstract. We investigate the AC conductivity of binary random impedance networks, with
emphasis on its dependence on the ratio= o1/00, with op and o1 being the complex
conductances of both phases, occurring with respective probabjitesl 1— p. We propose

an algorithm to determine the rationaldependence of the conductance of a finite network, in
terms of its poles and of the associated residues. The poles, which lie on the negativaxisal

are called resonances, since they show up as narrow resonances in the AC conductance of the
RL — C model of a metal-dielectric composite with a high quality fagfor This approach is

an extension of a previous work devoted to the dielectric resonances of isolated finite clusters.
A numerical implementation of the algorithm, on the example of the square lattice, allows a
detailed investigation of the resonant dielectric response of the binary model, including the
p-dependence of the density of resonances and the associated spectral function, the Lifshitz
behaviour of these quantities near the endpoints of the spectrum of resonances, the distribution
of spacings between neighbouring resonances, an@ttependence of the fraction of visible
resonances in th& L — C model. The distribution of the local electric fields at resonance is
found to be multifractal. This result is put into perspective with the giant surface-enhanced
Raman scattering observed, for example, in semicontinuous metal films.

1. Introduction

Random networks of complex impedances are currently used to model electrical and optical
properties of disordered inhomogeneous media. The most common situation is that of a
binary composite medium, modelled by attributing a random conductance to each bond
(x, y) of a lattice, according to the binary law

o with probabilit

Oy = 0 . P - yr (11)

o1 with probabilityg =1— p
in correspondence with the bond percolation problem (see [1] for a review).

The conductances (inverse impedances, or admittamges)d o1 of both phases take
arbitrary frequency-dependent complex values. Hereafter we follow the notation of [2]. The
dimensionless complex ratio

=2t (1.2)
00
and the concentratiop are the essential parameters of the model. As far as static (DC)
properties are concerned, the limiting céase 0 embraces the conductor—insulator mixture
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(o1 = 0) and the superconductor—conductor mixtysg = oo). In both situations the
conductivity exhibits power-law behaviour fgs close to the critical concentratiop,,
corresponding to the percolation threshold.

More generally, the conductivity of the binary model obeys a scaling law in the critical
regions defined byz| <« 1 and|p — p.| <« 1, or equivalentlyz| > 1 and|q — p.| < 1 [1].
Frequency-dependent (AC) properties of metal—dielectric composites, such as cermets or thin
films, are often investigated by means of either the C and theRL — C models [3]. In
both cases the low-frequency regime corresponds|to> 1, and thus to critical behaviour
when the metallic concentratianis near the percolation threshold.

The purpose of this work is to shed new light on the resonant behaviour of the binary
model. The emphasis will be put on the analytic structure of the conductivity in the ratio
h, or in the equivalent complex variable

(1.3)

For any value of the concentratiop, the conductivity has singularities fagr real and
negative, i.e. in the range € » < 1. A quantitative investigation of these singularities,
and of related quantities, is the main purpose of this paper. Our aim is twofold. First, the
analytic structure of the conductivity of the binary model is a classical subject, since the
developments of the Bergman—Milton theory [4,5]. The key ingredient of this formalism
is the spectral functior (p, x), which has only been the subject of a limited number

of investigations so far [6,7]. The present approach provides a direct accurate numerical
evaluation of the spectral function of binary random networks. Second, the singularities of
the conductivity have a physical interpretation in terms of dielectric resonancesRLth€

model, and of the relaxation times in the transient response iR th€ model. The regime

of dielectric resonances has been argued to provide a natural explanation for the anomalous
fluctuations of the local electric field [8], which are responsible for giant surface-enhanced
Raman scattering observed, for example, in semicontinuous metal films [9].

The dielectric resonances of isolated clusters have been investigated in [2]. The situation
considered there was a finite set of (metallic) bonds with conductancembedded in an
infinite (dielectric) host lattice, whose bonds have a conductasnctt was shown there that
the conductance of such a system is entirely characterized by a finite number of resonances.
The positionsk,, of the resonances, and the associated cross segtjorse expressed in
terms of the eigenvalues and eigenvectors of a finite mstridictated by the geometry of
the clusters. This paper is an extension of the method of [2] to an arbitrary binary network.
We shall make use of an efficient algorithm, which allows for an exact determination of all
the resonances of a finite sample. The set-up of this paper is as follows. In section 2, we
gather definitions and results on various features of the conductivity of the binary model.
Section 3 is devoted to the presentation of the algorithm. Section 4 contains a variety of
numerical results, concerning especially the spectral function of the Bergman—Milton theory
and the spectral density of resonances, their Lifshitz behaviour near the endpoints of the
spectrum ¥ = 0 andA = 1), the number of visible resonances of a finite sample and its
dependence on the quality factor of the RL — C model, and the distribution of the local
electric fields at resonance, which turns out to be multifractal.
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Figure 1. Schema of the binary network under consideration, with= N = 8. The
conductanceg’ is measured between the plane electrodes (bus barbpnds with conductance
op are shown as full linesQ-bonds with conductance; are shown as dotted lines.

2. Theoretical background

2.1. Conductance and impedance of a finite network

Consider the binary model on a finite network of siex N, as shown in figure 1. This
network contaings = (M —1)N sites (nodes) angly = M N+ (M —1)(N —1) bonds (links),
among whichM N are horizontal (perpendicular to the electrodes), &d— 1)(N — 1)
are vertical (parallel to the electrodes). The bonds with a conductaneee called the
P-bonds, which form thé>-set. There are» of them, among which’ are horizontal and
n7‘§ are vertical. Similarly, the bonds with a conductamgeare called the2-bonds, which
form the Q-set. There areo of them, among whiclJ are horizontal andg are vertical.

Let Y be the conductance (admittance) of the network, measured between the plane
electrodes (bus bars) shown in figure 1, anddet 1/Y be its impedance. These quantities
are rational functions of the dimensionless complex variables A. Let us anticipate that
it is more convenient to use the variable We have

Noo % A — X, Noo JLIS

Y = = 1-— 2.1a
M DM‘M M ;,\—xa (2.13)
M = — 2, M 2B,

7= b _ M (1 ) 210
Noo}:[lx—)w NUo( ;A—Aa (2-10)

The prefactors of these expressions are the conductance and the impedance of the uniform
network whose bonds have a conductanggesincel = oo corresponds t@; = g (O
disorder). The,, involved in the product expressions are the poles of the conductance and
the zeros of the impedance, while thg are the zeros of the conductance and the poles
of the impedance. The numbeg of poles and zeros depends on the configuration of the
random bonds. It is bounded by the number of sites of the networkn@ < ng. Finally,
the partial-fraction expansions involve residugsand §,,.

It follows from considerations on the dissipated power that, is a Stieltjes function,
namely its imaginary part has the sign of kimor equivalently of Imk [4,5,1]. This
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property implies that the poles and zerosYofind of Z alternate, according to
O<A1<il<~-~<knR<5\nR§1. (2.2)

We haver; = 0 if, and only if, theQ-set is conducting, i.e. it contains at least one connected
path between both electrodes. The conductance of@kégt then reads

YQ = %alol. (23)

Similarly, we havei,,k =1 if, and only if, theP-set is not conducting.
The Stieltjes property also implies that the residugsand 8, are positive. These two

sets of residues are different from each other in general. They obey, however, a remarkable
sum rule, which can be proved by expanding the conductirar®und:. = oo, to first order
in 1/A. Indeed, ¥A = (00— 01) /00 is the dimensionless contrast between the conductances
of both phases. As a consequence, for a given realization of the random network, up to
first order in XA included, the conductance reads= (N/M)cg, where

nHo +nH0 nH
oH = Zpf0T 2%t =ap[1- Q (2.4)
MN MNM

is the average value of the conductances of the horizontal bonds of the network. By inserting
this estimate into the second expressions of equationa)(21b), we obtain the relation

ng

ng ng
;“a=;ﬂa=m- (2.5)

In the case of isolated finite clusters [2], the poles and zeros of the conductance form very
tight doublets. We have indeed

Iy Va)\a(l - )Va)
SR By Ny — by A AT Tal 2.6
o ~ P v (2.6)
The sum rule (2.5) then becomes
ngr
Z Va)‘u(l —Ag) =hp (27)

a=1

whereny is the number of horizontal bonds in the clusters (perpendicular to the electrodes).
This identity was not noted in [2].

2.2. R — C model

The R — C model, already mentioned in the introduction, is defined as follows. J4set is

a metallic phase, whose bonds consist of a pure resistRnadile theP-set is a dielectric
phase, whose bonds consist of a perfect capacitéhceThe complex conductances at
frequencyf = w/(2r) thus read

. 1
op=I1Cw o1 = i (2.8)
Along the lines of [1, 2], we introduce the microscopic relaxation time
T =RC (2.9)
so that
he L o et (2.10)
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We thus haveh — oo andi — 0 at low frequency.

The poles of the conductandeshow up as relaxation times in the transient response of
the model [1]. Consider indeed thie— C model on a finite network, submitted to a voltage
V(t) = Vo (¢) applied between the electrodes, witr) being the Heaviside step-function.
The intensityl () across the network in the transient regime can be evaluated by means of
the Fourier transformation. We thus obtain

_ T dw iwr VO
I(t)—/_OO ZY(w)e' 510 (2.11)

The second expression of equation €).Ifor the conductanceY, with A given in
equation (2.10), yields the result

NVy R o, t
1) = exp| —— 2.12
=31k 2 Ty p( m) @12
where the relaxation times read
1— A,
T, = o T. (2.13)

If the metallic @-phase is conducting, we hawxge = 0. The terma = 1 in equation (2.12)
yields the DC current through the networky = NVoa1/(MR), in agreement with the
result (2.3).

2.3. RL — C model

In the RL — C model, already mentioned in the introduction, the metallic bonds ofhe
set now consist of an inductanéein series with a weak resistan@ while the dielectric
bonds of theP-set still consist of a perfect capacitan€e The conductances at frequency
f = w/(2r) now read

. 1
=iC =— 2.14
og=IiCw o1 RTilo ( )
Along the lines of [1-3], we introduce the microscopic resonance frequency
1
Wy = — 2.15
"= Vic 219
the reduced frequency
y=2 (2.16)
wo
and the quality factor
1 L L(,()o 1
_ - /= _ — 2.17
Q RV C R RCuwy (2.17)

which is a dimensionless measure of the dissipation rate.
In the following, we shall mostly consider the case of a weak dissipation, corresponding
to a large quality factofQ > 1). We then have

1 1 _ Y —iy/o Y iy
-2 +iy/0 0 ¥ R0 o l4y2-iy/Q 142 1+yH)20°
(2.18)
Note that the low-frequency regimg — 0) again corresponds th — oo andix — 0.
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Since the variable& and 2 have a small (negative) imaginary part, proportional to
1/0, the poles of the conductandeand of the impedanc& of the network show up in
the frequency dependence of these quantities as narrow resonances, respectively located at
w, = woy, anda, = woy,, with

ya = . (219)

We have indeed

NCwo & a  1/(20) —i(y — ya)
Y ~ 2.2
2M ; (1 - )\u)z ()’ - ya)z + 1/(4Q2) ( )
M & Ba 1/(20) —i(y — Ya)
YA - - . 2.2M
2NCayg ; Fu(l— 3y O = J0)2 +1/(40?) (2.20)

Equation (2.28) shows that the real part R&w) of the conductance exhibitsz narrow
resonances, ab, = wgy,. The resonance peaks have a Lorentzian shape, with a common
absolute widthAw = wp/(2Q). The maxima at resonance read

N o,
Rey N — 2.21
(ReV max ~ 4 o 155 (2.21)
while the area under each resonance peak is
aN o,
e ReY (w)dw % ——— ————. 2.22
A fwﬂ SN ML A= 302 (2.22)

A similar pattern of resonances can be observed on the real pattdeof the impedance
(2.2M), with maxima at resonance and areas under resonance peaks respectively given by

ML B, L TM B

(ReZ)max NRC },(1— %) T 2NCR,1-1,)

(2.23)

2.4. Spectral function and density of resonances

The conductanc& of an infinitely large network drawn on any regular lattice becomes a
self-averaging quantity. In other words, the conductivity

. MY
Z(p,A) = M’IkrEwT (2.24)
is an intrinsic characteristic of the binary model, which depends on the lattice under
consideration, on the concentratipnand on the complex variableor A. The conductivity
of the binary model has been the subject of many investigations [1]. We gather below some
definitions and properties which will be useful in the following.

The second expression of equation &).lyields the Bergman—Milton integral
representation [4, 5]

1
M) (2.25)

X(p, M) = Uo(l -
0 A—Xx

where the positive function

nR
H(p,x) = Ml}ivrnooZaaS(x — Aa) (2.26)
’ a=1
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is called the spectral function of the binary model. In more precise terms, it is the density
of a positive measure, supported by the interval @ < 1. Indeed, as a consequence of
equation (2.3), the spectral function has a singular componenta0, of the form

Hsg(p, x) = A(1— p)é(x) (2.27)
with the notation to be introduced in equation (2.38), wheneveQ¥set is conducting, i.e.
forl—p=gq > p..
The spectral function entirely determines the conductivityp, A), by means of the
integral representation (2.25). Conversely, it is given by the inverse formula

1 X(p, i0
m (p,x +1 ).

H(p,x) = ;I (2.28)

00
In other words, the conductivity is analytic in the complexplane cut along the interval
0 < A <1, and its discontinuity along this cut reads

DiscX(p, A) = 2imogH (p, ). (2.29)

The spectral function directly yields the transient intengity) of the R — C model on
a very large network, namely

NVy (Y H(p,x)dx x ot
I(t) ~ exp| — - . 2.30

@) MR J, (1—x)2 P e ( )
To close up, we introduce the spectral density of resonances

: 1 &
plp.x) = M ;m — ha) (2.31)
and the total density of resonances
W= tim 2 o (2.32)
PriP T MAN—oo MN O,OP,X '

representing the mean number of resonances per site. This quantity has a non-trivial
dependence on the concentratipn It will be expressed in equation (3.14) in terms of
geometrical quantities of the bond percolation problem.

2.5. Homogeneity and duality

First, the conductivity of the binary model is invariant under the simultaneous interchange
p < q=1—p, op < o1. Indeed, letY = ooF (h) = opf (1) be the conductance of the
network G, shown in figure 1. Then the netwoi’, obtained fromG by interchanging

all the bond conductances accordingd® <> o1, has a conductancE’ = o1F(1/h) =
o1f(1—1). For a large enough network, @ is typical of the concentratiop, thenG’ is
typical of the concentration & p. The conductivity, the spectral function, and the density
of resonances therefore obey the following identities, on any regular lattice

S(p,h) = hS1— p,1/h) (2.3%)
AS(p ) =G —DEA—p,1—n) (2.3%)
xH(p,x)=1—-x)H1—p,1—x) (2.3%)
p(p,x) =p(l—p,1—x). (2.33)

More interestingly, the square lattice is self-dual, i.e. invariant under the geometric
transformation called duality. This concept has been introduced in physics by Kramers and
Wannier [10], while its consequences on random resistor networks have been explored in a
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systematic way by Straley [11]. The du@l of a planar networlG has bonds which cross
those ofG, the conductances of any pair of crossing bonds being inverse to each other. The
duality property implies that the conductance of the whole netwbreadsY = 1/Y = Z.

With the same notation as above, we hae= (1/00)F(1/h) = (1/00) f(X), so that
F(W)F@1/h) = f(0) f(1— i) = 1. Therefore

2(p,NE(p,1—1) =0} (2.34)
and
p(p,x) =p(p,1—x). (2.35)

Because of its nonlinearity, the duality identity (2.34) for the conductivity does not yield
any identity involving the spectral functioH (p, x) only.

The above identities can be combined with the homogeneity properties (2.33). We thus
obtain that the percolation threshold pis = % and that the conductivity and the spectral
function right at this point read

Ar—1 1 /1—x
(3. 1) = /0001 = 00y Hi,x) == : (2.36)

T X

Furthermore, the spectral and total densities of resonances obey the relations

p(p,x)=p(p,1=x)=pA—-p,x)=p(1l—-p,1-x) pr(p) = pr(L—p). (2.37)

2.6. Critical behaviour and scaling

As mentioned in the introduction, the conductivity exhibits scaling behaviour around the
percolation thresholgp = p.. The conductivity of the conductor—insulator mixture vanishes
for p < p., while it reads

X (01 = 0) = 00A(p) (p > po) (2.38)
Similarly, the conductivity of the superconductor—conductor mixture is infinitepfar p,,
while it reads

Y (0p = ) = o1B(p) (p < po). (2.39)
Both amplitudesA(p) and B(p) have a power-law behaviour for nearp,:

A(p) ~a(p— p.)' (p = p)
B(p) = b(p. — p)~* (p—> po)-

The conductivity of the binary mixture obeys a scaling law in the critical region defined
by |h| « 1 and|p — p.| <« 1, of the form [1]

X(p, h) = oolp — pel' @i(hlp — pe ") (2.41)

where thed. are scaling functions of one complex variable, withreferring to the sign
of p — p.. The homogeneity relation (2.8Ballows us to describe the vicinity of the other
critical point, |z| > 1 and|q — p.| < 1.

The scaling formula (2.41) reproduces the power laws (2.40) for small values of
the argument of the scaling functions, as we have- ®,(0), while ®_(x) ~ bx as
x — 0. On the other hand, both scaling functions have the common power-law behaviour
do(x) ~ Kx*, withu =1¢/(s +t), as|x| — oo and|Arg x| < =, hence

2 (pe, h) ~ Kooh" ~ K (a§al)¥ 6+ (2.42)

(2.40)
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for |o1] < |op|, right at the percolation threshold. More generally, the power-law
behaviour (2.42) holds fot, <« |k| < 1, where the crossover scdlg reads

he ~|p — pel*™ (2.43)

while the scaling laws (2.38)—(2.40) hold in the opposite regithé < h,).
As a consequence of equation (2.28), the spectral function also obeys a scaling law of
the form (2.41), namely

H(p,x) ~|p = pl Fe(L=x)|p — pe|™™") (2.44)
for1—x «1and|p — p.| < 1, and a similar law around the other critical point, i.e. for
x < 1andlg — p.| < 1. We shall come back to the scaling law (2.44) in section 2.9.

Consider now the binary model on a large but finite sample, of &lze N. In the
critical region, its mean conductance obeys the finite-size scaling law

Y ~ 0oN "W ((p — p )N, (p — p)h /O, M/N) (2.45)
where V¥ is a three-variable scaling function. As a consequence, right at the percolation
threshold, the critical region extends over a range

Sh ~ N~6+0/v, (2.46)

On the square lattice, the duality symmetry impligs= % andA(p)B(1— p) = 1,
hences = ¢t andu = % in agreement with equation (2.36). The common numerical value of
these exponents i5'v = r/v = 0.9745+ 0.0015 [12], with the exponent of the correlation
length being exactly = ‘é‘, hences = r = 1.300. Hence, forp = p. = % the same
critical singularity simultaneously affects both endpoints of the spectkum,l andi = 0,
corresponding respectively #o= 0 andh = oo, again in agreement with equation (2.36).

2.7. Sum rules

The representation (2.25) of the conductivity can be expanded as the following series in
inverse powers of

>~ Hi(p)
E(p, )\.) = O’o(l - kg; Ak+1 ) (247)
where the coefficients
1 ngr
H(p) =/ x*H(p,x)dx = lim Zaakﬁ (2.48)
0 M,N—o0 p}

are the moments of the spectral functiéii(p, x).

As we have already noted in section 2.1, the expansion varighlesthe dimensionless
contrast between the conductances of both phases. As a consequence, the expansion (2.47)
can be viewed as a special case of the weak-disorder expansion of the conductivity of
a random network with an arbitrary narrow distribution of bond conductances [13]. The
general results to sixth order derived there can be transcribed in the present case of binary
disorder on the square lattice. We thus obtain the following expressions for the first six
moments,

Ho(p)=q  Hi(p) = % Hay(p) = %
Ha(p) = %(H pa)  Ha(p) = %(1 +3pg + (J — Dpg(p — q)) (2.49)

Hs(p) = %(1 +(J +5)pg + 4 — Dpq(p — q) — 227 — 3 p%g?)
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with ¢ = 1 — p. The numberJ = J; = J, = 1.092958 179, with the notations of [13], is
the only non-trivial quantity occurring in the sixth-order expansion. We have thus derived
explicit sum rules for the spectral function, which agree with the expressions given in [7].
The number/, denoted there as % a2, was estimated there from numerical data to be
J =0.9+£05.

2.8. Effective-medium approximation

The effective-medium approximation (EMA), introduced by Bruggeman in 1935 [14], is
a self-consistent approximate scheme to evaluate the conductivity of random impedance
networks [15, 16, 13], which is still being very widely used [17].

In the present case of the binary model on the square lattice, the EMA prediction for
the conductivity is given by

TEMA _ 50 YEVA _ 5
cea - tA-Pgim— = 2.50
DA o, o p)EEMA+01 (2:50)
hence
VA = o9 ((p A=+ \/(p — 32— h)?+ h)
O
=7°<p—%+\/(p—%)2+k(k—l)>. (2.51)

This EMA formula for the conductivity is analytic in the-plane cut along the interval
Amin < A < Amax With

Amin = % - \/m Amax =1 — Amin = % +vpd—Dp). (2.52)

The prediction for the associated spectral function (cf equation (2.28)) reads

\/x(l—x) —(p— %)2 _  (kmax — ) (x — Amin)

X X

HEMA

(p,x) = (2.53)

The EMA formula gives a very accurate approximation to the conductivity of the binary
model in generic circumstances. For instance, thedxpansion of the EMA formula (2.51)
gives expressionslFMA (p) for the moments which only differ from the true results (2.49),
starting with Hy(p), by replacing/ by JEMA = 1 [13]. The EMA scheme also respects
the duality symmetry (2.34). The predictions (2.51), (2.53) therefore agree with the exact
results (2.36) for the conductivity and the spectral functiorpat p. = % The EMA
also correctly predicts the equality= ¢, but not the common value of these exponents
(s =t =1 instead of 1300).

For a generic value of the concentration # p.), the endpoints (2.52) are such that
0 < Amin < Amax < 1. The support of the EMA prediction (2.53) for the spectral function
thus does not extend over the whole intervat Q. < 1. In the vicinity of the percolation
threshold(p — p. = 3), we haveimin = 1 — Amax & (p — pc)?, in agreement with the
estimate (2.43) of the crossover scale with s + ¢ = 2.

2.9. Lifshitz tails

It has been argued [6] that the spectral functi8iip, x) of the true conductivity of the
binary model extends over the whole allowed spectrurd @ < 1, for any value of the
concentratiorp, at variance with the EMA formula (2.53).
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This argument has then been put in perspective [1] with Lifshitz singularities [18—20].
These singularities are caused by the presence of very large, and thus very improbable,
ordered regions in a randomly disordered system. The original example considered by
Lifshitz [18] is that of the phonon spectrum of a binary harmonic alloy, consisting of
light atoms, with mass: and concentratiorp, and heavy atoms, with mag¢ > m and
concentrationy = 1 — p. Lifshitz has argued that the vicinity of the upper edgg.x of
the phonon spectrum of the alloy is dominated by large ordered regions, almost spherical in
shape, consisting only of light atoms. He thus showed dha} coincides with the upper
edge of the pure lattice consisting only of light atoms, and that the density of states of the
alloy vanishes exponentially fast neafax, as

p(@) ~ exp(—c|In p|(@max— @)~/ (2.54)
wherec is a lattice-dependent constant, which can be evaluated exactly. Along this line
of thought, it has been argued in [1] that the spectral function of the binary model has an

exponentially small Lifshitz tail, extending all the way to the endpoints 0 andx = 1
of the spectrum of resonances, of the form
H(p, x) ~ exp(—C(p)x~9/?) (x — 0) (2.55)
and similarly forx — 1. This expression was rather conjectural, as the determination of
the relevant ordered regions was left as an open question, so that the préfgetovas
not predicted.

Hesselbo [21] then argued that the relevant ordered regions are hairpin configurations,
as shown in figure 2). Let Y, be the transversal conductance of the hairpin consisting
of n cells, measured between the point electrodes shown in figade @jnsidered as an
isolated network (not embedded in the square lattice). This quantity can be evaluated from
the recursion relation

Y, =01+ (;20 + Ynll)l (2.56)
®
(a) -
®
.__.4 .
(b)
[

Figure 2. (a) Hairpin configuration andh) worm-like configuration, with = 8 cells. Same
conventions for the bond conductances as in figure 1. The transversal condukfaigce
measured between the point electrodes shown as large dots.
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with Yy = 0g. Consider first a value of not on the negative real axis, and set

h=22—2sinfu (2.57)
0o
with Repn > 0 and|lm x| < 7. The Modbius map involved in the recursion (2.56) has two
fixed points,
a0

Yy = E(eﬂﬂ -1 (2.58)

with the stable fixed point, being the transversal conductance of the infinitely long hairpin
(ladder). The recursion (2.56) can be solved explicitly, along the lines of [1], by means of
the variabler, = (Y, — Y_)/(Y, — Y.). We thus obtain
. 3 2n+ Hu) — n -1
Y, = opSinhu cosh_( + D) - COSH( )“). (2.59)
3sinh(2nu) — sinh(2(n — )
For a strong dielectric contrask (— 0), the correlation length of currents along the
hairpin diverges according to = 1/(2u) &~ (2h)~Y2. In this regime, the conductance of
long hairpins scales as

oo . n
Y, ~ —zcotan with z = — = 2npu. 2.60
o he 1= % (2.60)
This scaling form of the conductance exhibits an infinite array of alternating zeros, lying at
. (2a + V)ix ) : _(2a+ 1)27?
g = T l.e. 1— )\,a ~ T (261)
and poles, lying at
2.2
te=ain Qe 1o~ “2:2 (2.62)

with @ > 1. The first zero,, corresponding to a pole in the dual configuration, yields,
according to Hesselbo, the Lifshitz behaviour of the spectral function, at least for a small
enough concentratiop.

It turns out that the formula (2.59) also gives the conductance of worm-like networks,
such as the configuration shown in figurd@(where the square cells are put together in
any random fashion, respecting the linear structure and the constraint of self-avoidance. The
number of such worm-like configurations withcells is of order exp:S), with S being
the associated configurational entropy. On the other hand, a hairpinnwatils occurs
with a probability of orderp?’, at least forp small enough. Altogether, the first zero of
equation (2.61) is expected to show up with a probability weight of orgéeS)”. By
eliminating the numben between the above estimates, we obtain the following analytical
form for the Lifshitz tail of the density of resonances and of the spectral function

p(p.x) ~ H(p.x) ~ exp(—@) (x> 0) (2.63)
Jx
and a similar formula fooe — 1. This result, with an inverse-square-root behaviour in
the spectral variable, is characteristic of Lifshitz tails in one-dimensional systems [19].
This is due to the fact that the relevant structures are linear objects. Furthermore, the
identities (2.33), (2.37) implyC(p) = C(1 — p). The above argument also leads to a
prediction for the smalp behaviour of the amplitud€'(p), namely
b3

S
C(p)~ 72 <|In pl— E) (rkl. (2.64)
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These predictions will be compared with numerical data in section 4.

The Lifshitz tail of the spectral function manifests itself in the long-time tail of the
transient intensity response of tie — C model. Indeed, in the regime of long times
(t > 1), equation (2.30) is dominated by the vicinity of= 0, hence

< t C(p) cp? 1\
I(t) /(; dxexp(—x;—f) exp{—S( I ?> . (2.65)

In the critical region, the prediction (2.63) for the Lifshitz tail is compatible with the
scaling law (2.44) for the spectral function, provided the amplitddg) vanishes near the
percolation threshold, according to

C(p) ~ |p = pl“T72, (2.66)

The Lifshitz behaviour (2.63) is expected to hold only deep in the tailsxf¢or 1 — x)
much smaller than the crossover schle defined in equation (2.43).

3. Algorithm

We now turn to the presentation of our algorithm for evaluating the ratibrddpendence

of the conductance of a finite binary network, such as that shown in figure 1. This approach
is an extension of the method of [2]. It turns out that a very similar formalism was proposed
by Straley [6] some 20 years ago, but this work has apparently not been noted since then.
The conductance will be determined in the second form of equation)(amely we shall
calculate first the poles, of the conductance, giving the positions of the resonances, and
then the associated residugs giving the strengths of the resonances.

3.1. Generalities

Along the lines of [2], our starting point is the Kirchhoff equations fdy, the electric
potential at sitex:

Y 0wy(Ve— V) =0. (3.1)

y(x)

There is one such equation per siténside the network. The notatiog(xz) means thay
is a neighbour ofe, i.e. there exists a bon@e, y), and the sum possibly includes sitgs
belonging to either electrode. Equations (3.1) have to be complemented by the boundary
conditionsV, = 0 for the sitesy on the left electrode, anif, = V; for the sitesy on the
right electrode.

We define the topological Laplace operatoron the network as

(AV)e =) (Vy— Vi) (3.2)
y(x)
again with the convention that the sum possibly includes giteslonging to either electrode,
in which case the Dirichlet boundary conditidfy = O is assumed. The operatar can
be written as the sumh = Ap + Ag of its componentsAp on theP-set andA, on the
Q-set, respectively defined as

(ApV)e= Y (Vy— Vi) (AgV)a= D (Vy—Va) (3.3)

yeP(x) yeQ(x)
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wherey € P(x) (respectively,y € Q(x)) means thatzx, y) is a’P-bond (respectively, a
Q-bond). We also introduce the quantities

AY = 1iff  is a neighbour of the left electrode

AP = 1 iff = is a neighbour of the right electrode

. . (3.4)
B{" = 1iff = is connected to the left electrode byQxbond
B® = 1iff = is connected to the right electrode bydabond.
With this notation, the Kirchhoff equations (3.1) read
00(ApV)z + 01(AgV)z + Vo(oo(AY" — BIY) + 01B) =0 (3.5)
or equivalently, in vector and matrix notation,
(Ag — AA)V = V(LA — B, (3.6)

This reduced form only involves the complex variabledefined in equation (1.3). The
conductance of the network is given by

1
Y = — (3.7)
Vo
where the total current flowing into the network from the left electrode reads
=7 (oA} = BY) + 01B{)V, (3.8)
xr

or equivalently, in vector notation,

I= %(AA“) —-BW).vV. (3.9)

3.2. Poles of the conductance

In analogy with [2], the poles of the conductance are the non-trivial valyesf A for
which the homogeneous Kirchhoff equations (3.1) with= 0 have a non-zero solution,
namely

(Ag — gAYV = 0. (3.10)

This is a well-posed generalized eigenvalue problem, scnaedA 4 are two real symmetric
matrices, of sizers x ng, and(—A) is a positive definite matrix.

It turns out that the endpoints = 0 or A = 1 are in general extensively degenerate
eigenvalues of equation (3.10). These eigenvalues do not correspond to resonances. Indeed,
we know from section 2.1 that the conductance has no paole=atl, while it has a simple
pole atA = 0 if, and only if, theQ-phase is conducting. Let us sgi = 1 in this situation,
gg = 0 else. The number of resonances then reads

ng =ns—ng—ni+ &g (3.12)

whereng and n; denote the respective multiplicities of the endpoint eigenvalues 0

andAx = 1. More preciselyyng is the number of zero-modes of the operatos, i.e. the
dimension of its kernel. SincAy has one zero-mode per clusi€rof the Q-phase which
is disconnected from the electrodes, we have

no = ng — Z(S(C) — 1+ x(0)). (3.12)
ccQ

In this formula, the sum runs over the clustérsf the 9-phases(C) denotes the number of
sites of the cluste€, and the characteristic function(C) is unity if the clusterC overlaps
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with either of the electrodes, and zero otherwise. The multiplieityof the eigenvalue
A = 1 can be expressed similarly, in terms of the clusters ofRkghase.

In the thermodynamic limit, one can derive from equation (3.12) expressions for the
fractions of eigenvalues which are condensediat 0 andi = 1. Indeed, the terms
x (C) are negligible, while the other terms can be expressed as functions of geometrical
characteristics of the bond percolation problem [22], namely

po(p)= lim % =124+ P(g) +ne(g)
M,N—oco MN (313)

. ni
p1(p) = M,lllvrgoo UN = 1-2p+ P(p) +n.p)

wheren.(p) is the mean number of finite clusters per site, whilép), the percolation
probability, is the probability for any given bond to belong to the infinite cluster. The latter
guantity is non-vanishing only fop > p..

The density of resonances (p), defined in equation (2.32), then reads

pr(p) =1—=po(p) — p1(p) =1— P(p) — P(q) —n.(p) —nc(q). (3.14)

This quantity is symmetric in the exchange<> ¢, in agreement with equation (2.37).
For a small concentratiop, the contributions to equation (3.12) of all tifieclusters and
Q-clusters consisting of up to four bonds can be enumerated by hand. We thus obtain

po(p) = p*+--- p1(p) =1—2p+p*+.- pr(p) =2p — 2p* +---. (3.15)

At the percolation thresholdyz(p) takes its maximal value, which can be determined as
follows. The percolation probability?(p.) vanishes, while:.(p.) is known exactly [23],
hence

3/3-5
> = 0.098076 (3.16)

pr(pe) = 3(2 — +/3) = 0.803848

IOO(pc) = Pl(Pc) = n((Pc) =

3.3. Residues of the conductance

At any resonance corresponding to a non-trivial eigenvalg # 0 and 1) of
equation (3.10), the map of the electric potentials on the network is given by the components
(X.). of the associated right eigenvectr,. Since equation (3.10) is symmetric, tB&,

are simultaneously its left and right eigenvectors:

X' (Ao — AsA) =0 (Ao — gAY X, =0 3.17
a\BRQ Q

with the row vectorX’ being the transpose of the column vecfr Theng eigenvectors
{X,} form a basis. They are orthogonal to each other with respect to the njetng,
namely X! (—A) X, = 0 for a # b. We normalize them as

X! (=A) X} = 84 (3.18)
The squared norm of the eigenvect¥y, reads
X\ (-M)X, =) E2, = (3.19)
(x,y)
where
Ery = Xa)o — (Xa)y (3.20)

is the local electric field on the bong:, y).
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The solutionV to the inhomogeneous Kirchhoff equations (3.1), (3.6) can be obtained
in terms of the eigenvectotX,. Indeed, let us expan¥ on the basis of theX,:

ng

V= Z;ca(x)xa. (3.21)

By inserting this expansion into equation (3.6), and taking the scalar product of that equation
with the row vectorX, we readily obtain the amplitude, (1) in the form
(AA® — By X,
A —Ap ’
Finally, by inserting this result into equations (3.9), (3.7), we obtain the following formula
for the residuesr, > 0 of the conductance at its non-trivial polés, # 0 and 1)
M
NX,
As recalled in the beginning of section 3.1, the conductance also exhibits a simple pole
at . = 0, if the Q-phase is conducting. The corresponding residyge which yields
the conductance of th&@-phase by means of equation (2.3), is not directly given by

equation (3.23). It can, however, be determined from the other ames..,«,,), by
using the sum rule (2.5).

(M) = Vo (3.22)

(A" — BBy . X)) (1, AR — BP) . X ). (3.23)

Ay = —

4. Numerical results

We have shown in section 3 that the full rationadlependence of the conductance of a finite
binary network can be expressed in terms of the generalized eigenvalues and eigenvectors
of equation (3.10). We have implemented this algorithm numerically, using the IMSL
routine EIGZS, in order to obtain numerical data concerning several quantities of interest,
which will be discussed successively throughout this section. The CPU time for solving the
spectral problem for each sample grows rapidly with the system size, proportiona@y to
i.e. to N® for a square sample of sizé x N.

The optimal use of our algorithm therefore consists in obtaining good statistics on
samples of moderate sizes. We have commonly used sample sizes swh=ad6
or N = 20, and a statistical ensemble of several time$ d@mples, having some 10
random bond conductances in total, a good enough statistics to obtain very accurate data.
No observable systematic finite-size effects have been found, even in the critical regions
(p = p.andi — 0 or A — 1). This observation is in agreement with the argument,
given at the end of section 4.1, showing that the critical regions are indeed very small in
the variablex.

4.1. Density of resonances and spectral function

We have evaluated the spectral density of resonap¢psx) and the spectral function
H(p, x), by means of their respective definitions (2.31) and (2.26). The spectral function,
which plays a central role in the Bergman—Milton formalism [4, 5], had only been the subject
of a limited amount of work. In [7] it has been extracted from the imaginary part of the
conductance, measured at a small but finite distanfrem the negative reat-axis. The
present method yields a direct measurement of the spectral function, avoiding especially
any contamination from the delta-function at= 0 (see equation (2.27)), which can be
discarded in an exact way.
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Figures 3 and 4 respectively show histogram plots Qf, x) andx H (p, x), for values
of the concentratiorp ranging from 0.05 to 0.5. Indeed, the symmetry relations (2.33),
(2.37) allow us to restrict our attention o< p. = % Each plot contain the accumulated
data of an ensemble of over 20000 configurations of a network of Bize 16 x 16,
corresponding to TOrandom bonds in total. The density of resonanegs, x) exhibits the
expected symmetry (2.37) under the transformation 1 — x within a good accuracy, for
all values ofp. This demonstrates that we have used a large enough statistical ensemble
of random networks. The produstH (p, x) does not possess such a symmetry (except
for p = p. = %), while the EMA prediction (2.53), shown as a semicircle in figure 4, is
symmetric under < 1 — x. Both p(p, x) andx H(p, x) exhibit a rich structure, down to
the scale of the resolution (each plot contains 100 bins). It will be demonstrated more clearly
in section 4.2 that they are non-vanishing over the whole allowed spe¢fugnr < 1).

For a small enough concentration, the most salient structure&inx) and H (p, x) can
be predicted from the analysis of the resonances of isolated finite clusters. For consistency
with [2], we shall consider the regimg = 1 — p — 0. To leading order ing, the
relevant configuration consists of one isolat@cdond embedded in a host lattice consisting
of P-bonds. This one-bond cluster, shown as configuration A in figure 5, has one single
resonance, at = ia1 = % yielding the observed leading peak iip, x) andxH (p, x).
This one-bond cluster has two possible orientations, but only the horizontal case yields a
non-vanishing residue [2], to leading ordergas> 0. The spectral function, the density of
resonances, and the mean number of resonances therefore behave as

Hp,x)~pdx—3)  plp.0)=2psx—3  (p—0 (41

in agreement with the sum rules (2.49) and with equation (3.15), to leading orger in

To second order inp, p(p,x) and H(p, x) consist of a countable infinity of discrete
components (delta-functions), corresponding to the resonances of configurations consisting
of two bonds, in arbitrary relative position and orientation [2], and so on. The most salient
subleading peaks have been marked in figures 3 and 4 (broken verticals) by some of the
resonances of the two- and three-bond configurations shown in figure 5. The configurations
A, B, and E are self-dual, while (C,D) and (F,G) form dual pairs. The resonances of these
clusters, determined exactly along the lines of [2], are given in table 1.

Right at the percolation thresholgh = p. = %), the data for the spectral function
(figure 4€)) agree with the exact analytical result (2.36), which coincides with the EMA
prediction. The accuracy of this agreement provides another check of the quality of the
numerical simulations. The density of resonances remains a non-trivial funetjgnx)
at the percolation threshold (figure€}). Integrating the data of this figure leads to the
estimatepg (p.) =~ 0.80, again in good agreement with the exact result (3.16). It is worth
noting that the data shown in figureeBand 4€) are practically not affected by the critical
singularities at the endpoints of the spectrum. Indeed, the size of the critical region, given
by equation (2.46), can be estimated to be a few times,liG. smaller than the width of
the first or last bin.

As the concentration varies from=0to p = p. = % the profiles of the density of
resonances and of the spectral function deform in a progressive way. They become smoother
and smoother, with their maxima moving in a continuous way. The broken verticals are
shown as guides for the eye on all plots of figures 3 and 4, although they only label the
most salient structures for a small enough concentration. The spectral function also becomes
progressively better in agreement with the EMA prediction.
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(b) p=101,() p=02, d) p=03, () p =0.5. The broken verticals show some of the
resonances, listed in table 1, of the configurations made of one to three bonds, shown in figure 5.

Figure 3. Histogram plot of the spectral density of resonangép, x), for (a) p = 0.05,
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Figure 3. (Continued)

4.2. Lifshitz tails

We have also investigated the behaviour of the density of resonances near the endpoints
x = 0 andx = 1, in order to check the prediction (2.63) of the Lifshitz tail. We have chosen
to investigate the density of resonangg®, x), rather than the spectral function, because
o(p, x) can be expected on general grounds to exhibit a clearer signal, in analogy with
the one-dimensional situation [19]. Furthermore, the statistics can be doubled by using the
symmetry relations (2.37), and each sample requires less CPU time, since the calculation
of the eigenvectorsX, is not required foro(p, x).

Figure 6 shows a logarithmic plot of the integrated spectral density of resonances

pint(p, x) = /O p(p,y)dy (4.2)

againstx—/2, for a concentratiopp = 0.1. The data correspond to over 103 000 samples of
size N = 16 x 16, i.e. to 5x 10’ random bonds. The range of the plotted data corresponds
to x < Amin @Nd Amax < x < 1, with Amin @and Amax being the endpoints (2.52) of the EMA
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Figure 4. Histogram plot ofxH (p, x), with H(p, x) being the spectral function of the

show the EMA prediction (2.53). Broken verticals as in figure 3.

conductivity, for @) p = 0.05, () p
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A B C D
E F G
h__I_H* »——T——ﬂ R d [ I
Figure 5. Configurations made of one to three bonds, whose resonances are listed in table 1,
and used to label the most salient peaks in figures 3 and 4; fwnall enough.

prediction for the spectral function. Indeed, the Lifshitz behaviour is expected to manifest
itself mostly out of the ‘bulk’ of the spectrum, the latter being conveniently defined as the
support of the EMA formula [20]. A linear behaviour is clearly observed, confirming the
analytical form (2.63) of the Lifshitz tail. A further qualitative confirmation of Hesselbo’s
argument on the Lifshitz behaviour is as follows. The data of figure 6 exhibit oscillations
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Table 1. Location of the resonances of some configurations consisting of one to three bonds,
shown in figure 5, and used to label the most salient peaks in figures 3 and 4, Sorall
enough.

Configuration  Resonances

A Aa1 = 3 = 0.500000

B rp1 =1/ =0.318310
rg2=1-1/m =0.681690

C Ac1=1-2/m =0.363380
Ac2 =2/m = 0.636620

D AD1 = AcC1
AD2 = Ac2

£ re1= 3 — V24 — 1/7) = 0243051
AE2 = AAL

ez =1 +v2( — 1/7) = 0.756 949

F ML= 3 +1/m — w/4 = 0.302436
AF2 = Ac1
Az = 3 +1/m +w/4=0834184

G he1= 3 —1/7 —w/4= 0165816

AG2 = Ac2
Ae3= 3 — 1/ + w/4 = 0.697564

w = /9—40/7 + 48/x?

e
X

Figure 6. Logarithmic plot of the integrated density of resonanogs p, x), againsty—%/2, for
a concentratiorp = 0.1. The slope of the least-squares fit yields the amplitGde = 0.1) ~
3.19. Numbers label the lowest resonances of hairpin structures, as explained in the text.

around the fitted straight line, and the top of each of the most prominent of these oscillations
corresponds, with a good accuracy, to the lowest resonance of the hairpin structures shown
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11.5 2.0 2?5 3.0 35
in p

Figure 7. Plot of the measured amplitud@(p) of the Lifshitz tail, againstln p|. The fitted
straight line is discussed in the text.

in figure 2@), embedded in the square lattice, with= 1 to 4 cells. The case = 1
corresponds to configuration G of figure 5, with its lowest resonaage

From a quantitative viewpoint, the slope of the fitted straight line in figure 6 yields
C(p =0.1) ~ 3.19. The amplitudeC(p) has been similarly measured fpr= 0.05, 0.15,
and 0.2. The results are plotted in figure 7 agajlmsp|. The data fit nicely to the straight
line C(p) ~ 1.98|In p| — 1.39, to be compared with the analytical prediction (2.64). The
slope 1.98 is some 10% smaller than the analytical value2 = 2.2214. The intercept
yields the estimate ~ 1.40 for the configurational entropy per cell, a significantly larger
value than the entropy of self-avoiding walks on the square latSggy = In usaw =
0.970 [24]. These observations suggest that other types of linear extended structures, besides
the worm-like ones identified in the framework of Hesselbo’s argument, may contribute to
the Lifshitz behaviour of the conductivity.

4.3. Distribution of spacings between resonances

The distribution of spacings between successive energy levels has been extensively
investigated in a variety of quantum systems, ranging from nuclei to billiards [25]. Generic
spectra belong to three universality classes of level spacing distributions, according to their
symmetry properties, in correspondence with the classical ensembles of real symmetric,
Hermitian, and symplectic random matrices [26], respectively called the Gaussian orthogonal
ensemble (GOE), the Gaussian unitary ensemble (GUE), and the Gaussian symplectic
ensemble (GSE).

We have investigated the distribution of spacings between successive resonances in the
range

p=po=1 l<x<? (4.3)

where the spectral density of resonances is very flat, i.e. very close to being a constant,
© = 0.658 (see figure &)). The range (4.3) can be considered as fully generic, although
the concentration assumes its critical vajye since the critical singularities only influence
very small regions around the endpoints= 0 or x = 1, as explained in section 4.1.
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Figure 8. Histogram plot of the distributio® (s) of normalized spacings between neighbouring
resonances, measured in the range (4.3). The full curve shows the GOE prediction.

For a finite network of siz&V x N, the mean spacing between two successive resonances
is approximatelyA,.1 — A, ~ 1/(pN?). We thus define the reduced spacings

Sa = PN?(Mat1 — ha)- (4.4)

Figure 8 shows a histogram plot of the distributiBigs) of the spacings,, obtained from
an ensemble of networks of size 2020 having 10 random bonds in the range (4.3) in
total. This distribution obeys by constructigi” P(s)ds = [;° s P(s)ds = 1.

Since the generalized eigenvalue problem (3.10) involves two real symmetric matrices,
A and Ag, the natural universality class with which the data fas) should be compared
is the GOE. The lawPgoe(s) [26] is shown as a full curve in figure 8. The data
share characteristic qualitative features of the GOE spacing distribution, including a linear
repulsion at short spacings, i.B(s) ~ s for s <« 1, and a fast fall-off at large spacings.
There is, however, a small but significant quantitative difference between the data in the
range (4.3) and the GOE prediction.

4.4. Number of visible resonances

We now turn to the number of visible resonances of Rie— C model on a finite network.
A resonance is said to be visible if it corresponds to a true maximum in the frequency
dependence of the real part of the admittance, as given by equatiom)2.20

For a finite network of sizeéV x N, the typical spacing between resonances scales as
1/N?, as already mentioned in section 4.3. Since two resonances of comparable strengths
are resolved, i.e. separately visible, if their spacing is larger than the wjddhot each of
them, we are led to propose the following finite-size scaling law for the fraction of visible

resonances
(1 R )visib 0
TR =), 4.5
" ( Nz) (4.5)

The scaling functionF (X) is expected to grow monotonically fror@(0) = 0, since a
vanishing fraction of the resonances is visiblegifdoes not scale a&?, to F(co) = 1,
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Figure 9. Plot of the finite-size scaling functiof’(X) of the fraction of visible resonances,
against the scaling variabl& = Q/N2. Data correspond to samples of sidex N, with

N =12 andN = 20, atp = % The full curve, showing the fit described in the text, is meant
as a guide for the eye.

since all the resonances of a finite sample are eventually visible for a large enough quality
factor.

Figure 9 shows a plot of the fraction of visible resonances over the whole spectrum
O <A<, forp = p. = % The observed collapse of the data for the sizes
12 x 12 and 20x 20 clearly demonstrates the validity of the scaling law (4.5). The
full curve shows a numerical fit of both series of data to the common analytical form
1/(1 — F(X))? = 1+ X P»(X), with P,(X) being a quadratic polynomial. The quality of
the fitted curve, meant as a guide to the eye, suggests a linear behaviour of the scaling
function at smallX, as well as a power-law convergence of the form

1-F(X)~X3%2 (X >1). (4.6)

The fraction of visible resonances deperdpriori on how uniformly the resonances
are distributed, and on the dispersion in the corresponding resiguesBoth features
can depend quantitatively on the concentrationThe scaling functionF (X) is therefore
expected not to be universal, but rather to weakly depend on the concentpasiod on
the range of values of under consideration. Its main qualitative features, such as the
power law (4.6) are, however, expected to be universal. The same remarks apply to the
distribution of spacings between resonances, investigated in section 4.3.

4.5. Distribution of local electric fields

The algorithm presented in section 3 also gives access to the spatial structure of the
resonances. Indeed, the eigenvecXgr directly provides a map of the electric potentials at

the resonance corresponding to the eigenvalueFor each resonance, we define the local
electric field on the bondx, y) as

Eay = Ve — Vy = c(X)o — (Xaly)- @.7)
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Figure 10. Log—log plot of the moments; (V) of the local electric field at resonance, measured
in the range (4.3), against the linear sample #z¢6 < N < 24).

The electric fields are defined up to an overall multiplicative constaritVe choose this
constant to be = ,/ng, so that the normalization (3.19) of the eigenvectors implies

Y EX, =ns. (4.8)
(z,y)

One could think of many ways of analysing the spatial structure of the electric field at
resonance. We have chosen to investigate the distribution of the local field living on any
given bond. More precisely, we have evaluated the successive moments of this distribution
on square samples of si2é x N, namely

1
Se(N) = (IE[) = <— > |Ez,y|">. (4.9)
npg
(z.y)
The normalization (4.8) ensures the identitiggN) = Sy(N) = 1.
Figure 10 shows a log—log plot of the first non-trivial moments, of inklex 1, 3, 4,
5, and 6, against the linear si2é of the sample, fromV = 6-24. Data are obtained in the
range (4.3), with around I@andom bonds for each sample size. Power laws of the form

S(N) ~ N* (4.10)

are clearly apparent. This scaling behaviour, with a non-trivial dependence of the exponent
x; on the index, is a signature of multifractality [27, 28]. Along the lines of the multifractal
formalism, we introduce the generalizedéfiyi) dimensionsi;, such that
_(k-2Q2—dy)

-

The d, are expected to decrease fraljp= 2, the dimension of the network, th, = 0.

In physical terms, multifractality implies that the patterns of resonant electric fields
exhibit strong local fluctuations, rather similar to those observed in wavefunctions of the
Anderson model, in the marginal two-dimensional situation [29]. In particular the resonances
are neither localized nor extended, in the conventional sense of these expressions. Indeed,
extended patterns of electric fields would correspondgj te: 2 for all k > 0, while localized
ones would havel, = 0 for k > 1. We recall that a similar phenomenon of multifractality

X (4.11)
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Table 2. Exponentsy; and associated generalized dimensignsharacterizing the multifractal
distribution of local electric fields at resonance, measured in the range (4.3).

k  Exponentx; Dimensiond
0 0 2
1 -0.097+0.016 1806+ 0.032
2 0 —
3 0295+0.018 1410+ 0.036
4 076940026 12314+0.026
5 1390+0.026 10744+0.018
6 2130+0.024 (Q9354+0.012
2.0 T T 1 H H T
15F b
]
S N
\\‘\5
1.0+ AN N
~. 1 3
0‘5 i 1 k. 1 1 1
0 1 2 3 4 5 6

Figure 11. Plot of the generalized dimensiodgsof the distribution of electric fields at resonance,
measured in the range (4.3), against indeX he straight line shows the linear behaviour (4.12),
with g = 0.194.

has been reported for the DC problem of the conductor—insulator mixture, right at the
percolation threshold [30, 31].

From a quantitative viewpoint, a more refined fit of the data to the power laws (4.10),
including a relative correction in/1v, yields more accurate estimates for the exponepts
and the associated dimensiafs listed in table 2. Figure 11 shows a plot of #eagainst
the indexk. An approximate linear decay of the form

d ~ 2 — Bk (4.12)

with 8 =~ 0.194, is observed over a fairly broad rang® < k& < 4). A similar linear
behaviour has been predicted analytically for the two-dimensional Anderson model in
the weak-disorder regime [29]. The linear law (4.12) corresponds to a log-normal (LN)
distribution of the local fields. Indeed, let us set

¢=In|E|. (4.13)

The scaling law (4.10) then readsxpk?)) ~ exp(Bk(k — 2)/2), with B = BInN.
Neglecting thek-dependence of the prefactor, this last expression corresponds to a LN
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O T T T T T T

Figure 12. Logarithmic histogram plot of the probability densify(¢) of ¢ = In|E|, the
logarithm of the electric field at resonance, for samples of sizex 1B, measured in the
range (4.3). The broken vertical marks the upper botipgk = (Innpg)/2, with np = 481.

distribution for|E|, i.e. to a Gaussian law for the logarithmic varialdlenamely

2
N = (2nB)~Y? exp(—%) ) (4.14)
The actual probability densityi(¢) is shown in figure 12, for networks of size X616
in the range (4.3). This very asymmetric distribution looks quite different from a LN law.

In particular, it falls off as[1(¢) ~ exp(—¢) as¢ — —oo, yielding a finite value afE| = 0

of the probability density? (|E|) = ¢‘TI(£). Most of the dependence of the distribution on
the sample sizeV takes place to the right of the plot, for large valuestptclose to the
upper bounmax = (Inng)/2, where a very fast decay is observed.

5. Discussion

We have investigated the AC conductivity of binary random networks of complex
impedances, with emphasis on its analytic structure in the complex vatiaiie., and on

the corresponding resonant behaviour. The present analysis is an extension to the general
binary case of a previous work [2], devoted to the resonant response of a finite cluster, or
set of clusters, embedded in an infinite homogeneous host lattice. Along the lines of [1, 2],
the poles of the conductance are interpreted in terms of the resonances which show up in
the AC conductivity of theRL — C model, and of the relaxation times in the transient
response of theR — C model. We have proposed an efficient algorithm, which allows
the determination of the rationatdependence of the conductanéeof a finite sample, in

terms of its poles., and of the associated residugs A very similar formalism had been
proposed long ago by Straley [6].

We wish to underline again that the main advantage of this approach is to give at once
the analytic structure of the conductanceriror A, for any finite sample. As far as a
numerical investigation of the resonant response is concerned, this approach is therefore
more suitable than the usual numerical methods, which can only yield the conductivity of
the binary model for a fixed value of the rafio such as the transfer-matrix method [12], or
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the iterative algorithm based on the— A transformation [32], used for example in [7]. It

is also worth noting that our approach yields the full analytic structure of the conductance,
including the static conductance of thg-phase of any finite sample. Indeed the latter
guantity is given by equation (2.3), with the corresponding residubeing given by the

sum rule (2.5) in terms of all the other residues, corresponding to genuine resonances.

An extensive use of this algorithm, in the case of the square lattice, has allowed us to
investigate in detail many aspects of the resonant dielectric response of the binary model. In
general we have used Afandom bonds or more per measurement, a good enough statistics
to obtain very accurate data. We have investigated the density of resondipcas and the
spectral functionH (p, x). This approach yields a better evaluation of the spectral function
than the more direct method, consisting of measuring the imaginary part of the conductivity.
The most salient structures have been labelled, at least for a small enough concentration
p, by resonances of configurations made of one to three bonds, which can be determined
exactly, along the lines of [2]. The data for the spectral function have also been compared
with the EMA prediction.

The Lifshitz behaviour of the density of resonances near the endpoints has been
successfully characterized. A good qualitative agreement is found with the argument of
Hesselbo [21], according to whom the analogues of the Lifshitz sphere are linear extended
objects, such as hairpins. From a quantitative viewpoint, our data suggest that other classes
of extended structures may also contribute to the Lifshitz tails, even for a small concentration
p. The present situation is a lucky one, since numerical investigation of Lifshitz tails in
more than one dimension is known to be a very difficult task in general, especially in
the case of binary disorder [20]. The distribution of the spacings between neighbouring
resonances has been found to be in qualitative agreement with the universal distribution of
the GOE universality class of random matrices, although small but definite differences show
up at a quantitative level. The number of visible resonances ofRthe- C model on a
finite sample of size&V x N, as a function of the quality fact@?, has been shown to obey a
finite-size scaling law (4.5), involving a scaling functi@i(X) of the variableX = Q/N?.
Quantities such as the scaling functifiiX), or the spacing distributio® (s), are expected
not to be universal: quantitative features of these functions should rather weakly depend on
the concentratiop and on the range of resonances considered, the range (4.3) being meant
as a generic example.

More generally, for the binary model ondadimensional lattice, the appropriate finite-
size scaling variable describing dielectric resonances r&agsQ/N?. Indeed, the number
of resonances on a sample of linear si¥escales as its volum&/¢. This observation
yields in particular a prediction for the divergence of the current correlation lengttthe
weak-dissipation regiméQ > 1). By settingX ~ 1 for N ~ &, we obtain

E~Q"  withv= C—t. (5.1)

We thus recover a simple result due to Hesselbo [21], which has been corroborated by
numerical simulations, yielding = 0.4 + 0.1 in two dimensions [8].

Finally, we have investigated the distribution of the resonant electric field living on any
given bond. The moments of this distribution obey power laws with non-trivial exponents
x;, & characteristic feature of multifractality. The associated generalized dimengions
are found to behave similarly to those observed in the Anderson model of localization, in
the marginal two-dimensional case [29]. Multifractality thus appears to be a quite generic
feature of the resonant response of binary networks. In particular, this phenomenon is
unrelated to the percolation transition. In analogy with the fraction of visible resonances or
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the spacing distributiorP (s), the exponents; and the dimensiong, are expected not to
be fully universal, but to exhibit a weak dependence on the concentratiand possibly
on the range of resonances considered.

This multifractal picture provides a quantitative characterization of local features of the
fluctuations in electric fields at resonance observed previously [8]. These giant fluctuations
have been argued to be responsible for surface-enhanced Raman scattering, this phenomenon
being especially pronounced in strongly disordered semicontinuous films. There is a regime
where the enhancement factor is predicted to be proportionaEty [9], whence the
relevance of the dimensiafy, in our notation. In a realistic system, with a small but finite
dissipation rate AQ, these fluctuations are expected to be critical, i.e. to exhibit strong
spatial correlations, on scales smaller than the current correlation léngthtimated in
equation (5.1). Since the algorithm used in this work gives direct access to the full map
of electric fields at resonance, it could be used to investigate other aspects of dielectric
resonances, including their spatial correlations, on which some information is already
available [8].
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