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The edge channels of the quantum Hall effect provide one
dimensional chiral and ballistic wires along which electrons
can be guided in optics like setup. Electronic propagation
can then be analyzed using concepts and tools derived from
optics. After a brief review of electron optics experiments
performed using stationary current sources which contin-
uously emit electrons in the conductor, this paper focuses
on triggered sources, which can generate on-demand a sin-
gle particle state. It first outlines the electron optics formal-
ism and its analogies and differences with photon optics
and then turns to the presentation of single electron emit-
ters and their characterization through the measurements
of the average electrical current and its correlations. This is
followed by a discussion of electron quantum optics exper-
iments in the Hanbury-Brown and Twiss geometry where
two-particle interferences occur. Finally, Coulomb interac-
tions effects and their influence on single electron states are
considered.

1 Introduction

Mesoscopic electronic transport aims at revealing and
studying the quantum mechanical effects that take place
in micronic samples, whose size becomes shorter than
the coherence length on which the phase of the elec-
tronic wavefunction is preserved at very low tempera-
tures. In particular, such effects can be emphasized when
the electronic propagation in the sample is not only
coherent but also ballistic and one-dimensional. The
wave nature of electronic propagation then bears strong
analogies with the propagation of photons in vacuum.
Using analogs of beam-splitters and optical fibers, the
electronic equivalents of optical setups can be imple-
mented in a solid state system and used to characterize
electronic sources. These optical experiments provide a
powerful tool to improve the understanding of electron

propagation in quantum conductors. Inspired by the
controlled manipulations of the quantum state of light,
the recent development of single electron emitters has
opened the way to the controlled preparation, manip-
ulation and characterization of single to few electronic
excitations that propagate in optics-like setups. These
electron quantum optics experiments enable to bring
quantum coherent electronics down to the single par-
ticle scale. However, these experiments go beyond the
simple transposition of optics concepts in electronics as
several major differences occur between electron and
photons. Firstly statistics differ, electrons being fermions
while photons are bosons. The other major differences
come from the presence of the Fermi sea and the
Coulomb interaction. While photon propagation is in-
teraction free in vacuum, electrons propagate in the sea
of the surrounding electrons interacting with each oth-
ers through the long range Coulomb interaction turn-
ing electron quantum optics into a complex many body
problem.

This article will be restricted to the implementation of
such experiments in Gallium Arsenide two-dimensional
electron gases. These samples provide the high mobil-
ity necessary to reach the ballistic regime and by apply-
ing a high magnetic field perpendicular to the sample
enable to reach the quantum Hall effect in which elec-
tronic propagation occurs along one dimensional chiral
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8551), Université Pierre et Marie Curie, Université Paris Diderot,
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edge channels. The latter situation is the most suitable to
implement electron optics experiments. Firstly because
electrons can be guided along one dimensional quan-
tum rails, secondly because chirality prevents interfer-
ences between the electron sources and the optics-like
setup used to characterize it. After briefly recalling the
main analogies between electron propagation along the
one dimensional chiral edge channels and photon prop-
agation in optics setups, we will review the pioneer ex-
periments that have been realized in these systems and
that demonstrate the relevance of these analogies. Most
of these experiments have been realized with DC sources
that generate a continuous flow of electrons in the sys-
tem and thus do not reach the single particle scale. The
core of this review will then deal with the generation
and characterization of single particle states using single
electron emitters.

1.1 Optics-like setups for electrons propagating along
one dimensional chiral edge channels

The first ingredient to implement quantum optics ex-
periment with electrons is a medium in which ballistic
and coherent propagation is ensured on a large scale. In
condensed matter, this is provided by two-dimensional
electron gases: these semiconductor hetero-structures
(in our case and most frequently GaAs-AlGaAs) are grown
by molecular beam epitaxy, which supplies crystalline
structures with an extreme degree of purity. Thus mo-
bilities up to about 10 − 30 × 106 cm2.V−1.s−1 have been
reported [1–3], and mean-free path le as well as phase
coherence lengths lφ can be on the order of 10 − 20 μm.
These properties enable to pattern samples with e-beam
lithography in such a way that the phase coherence of
the wavefunction is preserved over the whole structure,
thus fulfilling a first requirement to build an electron
optics experiment in a condensed matter system. The
simplest interference pattern can be produced for ex-
ample in Young’s double-slit experiment [4] where the
phase difference between paths is tuned via the enclosed
Aharonov-Bohm flux, leading to the observation of an in-
terference pattern in the current.

Besides, electrons have to be guided from their emis-
sion to their detection through all the optical elements.
A powerful implementation of phase coherent quantum
rails is provided by (integer) quantum Hall effect. Under
a strong perpendicular magnetic field, electronic trans-
port in the 2DEG is governed by chiral one-dimensional
conduction channels appearing on the edges while the
bulk remains insulating (see Fig. 1a). The appearance of
such edge channels results from the bending of Zeeman-

Figure 1 a) Schematics of a 2DEG in the integer quantum
Hall regime: when a strong perpendicular magnetic field is ap-
plied, electronic transport is governed by chiral edge channels.
b) Schematics of a quantum point contact (QPC): when a negative
voltage Vqpc is applied on split gates deposited above the 2DEG, a
tunnel barrier is created and enables to realize the electronic ana-
log of a beamsplitter.

split Landau levels near the edges of the samples [5]. Im-
portantly, these edge channels are chiral: electrons flow
with opposite velocities on opposite edges. The num-
ber of filled landau levels called the filling factor ν is
the number of one dimensional channels flowing on one
edge. It depends on the magnetic field: as B increases,
the Landau levels are shifted upward with respect to the
Fermi energy, so that the number of Zeeman-split Lan-
dau levels crossing the Fermi level (that is, the num-
ber of filled Landau levels) decreases. The conductance
G of the 2DEG is quantized in units of the inverse of
the Klitzing resistance e2/h = R−1

K (where RK = 25.8 k�)
and given by the number of edge channels: G = ν R−1

K .
Many experiments are performed at filling factor ν = 2,
where electronic transport occurs on two edge channels,
which are spin-polarized, corresponding to two Zeeman-
split levels. In the quantum Hall regime, the mean free
path of electrons is considerably increased, up to le ∼
100 μm: the chirality imposed by the magnetic field re-
duces backscattering drastically, as an electron has to
scatter from one edge to the counter-propagating one
to backscatter, which can only be done when Landau
levels are partially filled in the bulk. Beside the absence
of backscattering in the edge channels [6], large phase
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coherence lengths have also been measured (lφ ∼ 20 μm
at 20 mK [7]). However, backscattering can be induced
locally on a controlled way using a quantum point con-
tact (QPC) which consists of a pair of electrostatic gates
deposited on the surface of the sample with a typical dis-
tance between the gates of a few hundreds of nanome-
ters. The typical geometry of QPC gates is shown in
Fig. 1b): when a negative gate voltage Vqpc is applied on
the gates, a constriction is created in the 2DEG between
the gates because of electrostatic repulsion. This con-
striction gives rise to a potential barrier, the shape of
which can be determined from the geometry of the gates
[8]. At high magnetic field, the transmission through
the QPC is described in terms of edge channels follow-
ing equipotential lines, which are reflected one by one
as the QPC gate voltage is swept towards large nega-
tive values [9]. The conductance at low magnetic fields
presents steps in units of 2e2/h as Landau levels are spin-
degenerate. At higher magnetic field, the height of the
conductance steps is equal to e2/h, reflecting Zeeman-
split Landau levels and spin-polarized edge channels.
Between two conductance plateaus, one of the edge
channels is partially transmitted and accounts for a con-
tribution T e2

h to the conductance, proportional to the
transmission probability T . In particular, when set at the
exact half of the opening of the first conductance chan-
nel, the outer edge channel is partially transmitted with
a probability T = 0.5, while all other edge channels are
fully reflected. The quantum point contact therefore acts
as a tunable, channel-selective electronic beamsplitter
in full analogy with the beamsplitters used in optical
setups.

In the quantum Hall effect regime, electrons thus
propagate along one-dimensional ballistic and phase co-
herent chiral edge channels which can be partitioned by
electronic beamsplitters. These are the key ingredients
to implement optics-like setups in electronics. The last
missing elements are the electronic source that emits
electrons and the detection apparatus. The measure-
ment of light intensity and its correlations in usual quan-
tum optics experiments is replaced by the measurement
of the electrical current and its fluctuations (noise) for
electrons. Concerning the electron emitter, this review
will focus on triggered emitters that can emit particles
on demand in the conductor. However, most of electron
optics experiments and in particular the first ones have
been performed using stationary dc sources that gener-
ate a continuous flow of charges in the system. Such a
source can be implemented by applying a voltage bias V
to the edge channel, hence shifting the chemical poten-
tial of the edge by −eV . As a result, electrons generated
in the edge channel are naturally regularly ordered, with

an average time h/eV between charges [10]. The origin of
this behavior is Pauli’s exclusion principle, that prevents
the presence of two electrons at the same position in the
electron beam. As a consequence of Fermi statistics, a
voltage biased ballistic conductor naturally produces a
noiseless current [11, 12]. Starting from the late nineties,
many electron optics experiments have been performed
to investigate the coherence and statistical properties of
such sources.

1.2 Electron optics experiments

The coherence properties of stationary electron sources
have been studied in electronic Mach-Zehnder interfer-
ometers [7, 13–15]. Using two QPC’s as electronic beam-
splitters and benefiting from the ballistic propagation of
electrons along the edges, single electron interferences
can be observed in the current flowing at the output of
the interferometer. The phase difference between both
arms can be varied by electrostatic influence of an ad-
ditional gate or by changing the magnetic field, thus
changing the magnetic flux in the closed loop of the in-
terferometer. This constitutes a very striking demonstra-
tion of the phase coherence of the electronic waves as
the modulation of the current can be close to 100%. It
is important to stress the role of chirality in these ex-
periments, as a way to decouple source and interfer-
ometer. Indeed, backscattering of electrons towards the
source in non-chiral systems can lead to the modifica-
tion of the source properties by the presence of the inter-
ferometer itself. An important difference between elec-
trons and photons is also revealed in these experiments.
Indeed, electrons interact with each others and this in-
teraction tends to reduce the coherence of the electronic
wavepacket which induces a reduction of the contrast
[16–18] when varying the length difference between the
interferometer arms.

The statistical properties of stationary sources have
also been studied in the electronic analog of the
Hanbury-Brown & Twiss geometry [19–21]. In this setup,
a beam of electrons is partitioned on an electronic
beamsplitter and the correlations 〈It(t)Ir (t′)〉 between
both transmitted It(t) and reflected Ir (t′) intensities are
recorded. The random partitioning on the beamsplitter
is a discrete process at the scale of individual particles:
an electron (or a photon in optics) is either transmit-
ted or reflected, so that the intensity correlations en-
code detailed information on the emission statistics of
the source by comparing it with the reference of a poisso-
nian process. In current experiments, the t, t′ time infor-
mation is lost and the current fluctuations on long times
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are measured. For a dc biased ohmic contact, the regular
and noiseless flow of electrons at the input of the splitter
is reflected in the perfect anticorrelations of the output
currents, 〈It Ir 〉 = 0.

The nature of the physical effects probed in these two
types of experiments is quite different. Indeed, Mach-
Zehnder interferometers probe the wave properties of
the source, and interference patterns arise from a col-
lection of many single-particle events. For light, clas-
sical analysis in terms of wave physics started during
the 17th century (e.g. by Hooke, Huyghens) to be fur-
ther developed during the 18th and 19th centuries (e.g.
by Young and Maxwell) and is associated with first or-
der coherence function G (1)(r, t; r′, t′) = 〈E∗(r, t)E(r′, t′)〉,
that encodes the coherence properties of the electric
field E(r, t) at position r and time t. The information
obtained through Hanbury-Brown & Twiss interferom-
etry differ from a wave picture, as random partitioning
on the beamsplitter is a discrete process, thus encoding
information on the discrete nature of the involved par-
ticles. A classical model in terms of corpuscles can ex-
plain the features observed, and are described in optics
using second order coherence function G (2)(r, t; r′, t′) =
〈E∗(r′, t′)E∗(r, t)E(r, t)E(r′, t′)〉. The classical definitions
of first and second order coherence of the electromag-
netic field were extended by Glauber [22] to describe
non-classical states of light by introducing the quantized
electromagnetic field Ê(r, t). This description is currently
the basic tool to characterize light sources in quantum
optics experiments. It can be adapted to electrons in
quantum conductors, and as in photon optics, both as-
pects of wave and particle nature of the carriers can
be reconciled into a unified theory of coherence “à la
Glauber”.

Still, a few experiments cannot be understood within
the wave nor the corpuscular description: this is the case
when two-particle interferences effects related to the
exchange between two indistinguishable particles take
place. The collision of two particles emitted at two dif-
ferent inputs of a beamsplitter can be used to measure
their degree of indistinguishability. In the case of bosons,
indistinguishable partners always exit in the same out-
put. This results in a dip in the coincidence counts be-
tween two detectors placed at the output of the splitter
when both photons arrive simultaneously on the split-
ter as observed by Hong-Ou-Mandel (HOM) [23] in the
late eighties. Fermionic statistics leads to the opposite
behavior: particles exit in different outputs. This two par-
ticle interference effect has been observed using two sta-
tionary sources (dc biased contacts) and recording the
reduction in the current fluctuations at the output of
the splitter [24]. The interference term could also be

fully controlled [25, 26] by varying the Aharonov-Bohm
flux through a two-particle interferometer of geome-
try close to the Mach-Zehnder interferometer described
above. In the latter case two-particle interferences can be
used to post-select entangled electron pairs at the out-
put of the interferometer. The production of a continu-
ous flow of entangled electron-hole pairs has also been
proposed using a beam splitter partitioning two edge
channels [27].

All these experiments emphasize the analogies be-
tween electron and photon propagation and provide im-
portant quantitative information on the electron source.
They also show the differences between electron and
photon optics, regarding the effect of Coulomb interac-
tion or Fermi statistics. However, as particles are emit-
ted continuously in the conductor, they miss the sin-
gle particle resolution necessary to manipulate single
particle states. In optics, the development of triggered
single photon sources has enabled the manipulation
and characterization of quantum states of light, opening
the way towards the all-optical quantum computation
[28]. In electronics as well, several types of sources have
been recently developed in quantum Hall edge chan-
nels, so that the field of electron quantum optics is now
accessible.

In the first section, we introduce the formalism of
electronic coherence functions as inspired by Glauber
theory of light. It appears particularly suitable to describe
the single electrons generated by triggered sources that
we briefly review in the second section, focusing on the
mesoscopic capacitor used as a single electron source.
The use and study of short time current correlations to
unveil the statistical properties of a triggered emitter are
presented in the third section. We then discuss the two
particle exchange interferences that take place in the
Hanbury-Brown & Twiss interferometer and analyze how
these effects can be revealed in the partitioning of a sin-
gle source as well as in a controlled two-electron col-
lision. Finally the crucial issue of interactions between
electrons and their impact on electron quantum optics
experiments is discussed in the last section.

2 Electron optics formalism

A single edge channel is modeled as a one dimensional
wire along which the electronic propagation is chiral,
ballistic and spin polarized. The electronic degrees of
freedom are described by the fermion field operator
�̂(x, t) that annihilates one electron at time t and posi-
tion x of the edge channel, or equivalently, in the Fourier
representation, by the operator â(ε) that annihilates one
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electron of energy ε in the channel. Neglecting here
Coulomb interactions which effects will be discussed in
Sec. 6, the free propagation of the fermionic field sim-
ply corresponds to the forward propagation of electronic
waves at constant velocity v:

�̂(x, t) = 1√
hv

∫
dε â(ε)ei ε

�
(x/v−t) (1)

This time evolution is particularly simple as the fermion
field operator �̂(x, t) only depends on x and t through
the difference x − vt.

2.1 Electron-photon analogies

The ballistic propagation of electrons along quantum
Hall edge channels bears strong similarities with the
propagation of photons in vacuum. These profound
analogies can be noticed in the formalism describing the
dynamics of the fermion field operator �̂(x, t) on the one
hand and the electric field operator, Ê(x, t) = Ê+(x, t) +
Ê−(x, t) in quantum optics on the other hand [29]:

Ê+(x, t) = i
∫

dε

√
ε

2hcε0 S
â(ε) ei ε

�
(x/c−t) (2)

Ê−(x, t) = (
Ê+(x, t)

)†
(3)

Where S is the transverse section perpendicular to the
one dimensional propagation along the x direction and c
the celerity of light propagation. For simplicity the polar-
ization of the electric field has been omitted. From Eq. (2)
one can see that the fermion field operator �̂(x, t) is very
similar to Ê+(x, t), the part of the electric field that an-
nihilates photons, where the complex conjugate �̂†(x, t)
is similar to Ê−(x, t) that creates photons. The electrical
current Î (x, t) in electron optics will then be the analog
to the light intensity Îph(x, t) in usual photon optics:

Î (x, t) = −ev�̂†(x, t)�̂(x, t) Îph(x, t) = Ê−(x, t)Ê+(x, t)

(4)

More generally, the coherence properties of electron
sources can be studied by characterizing the first order
coherence G (1,e)(x, t; x′, t′) [30, 31] defined in full anal-
ogy with Glauber’s theory of optical coherences [22] with
�̂(x, t) replacing Ê+(x, t). However, as �̂(x, t) only de-
pends on x and t through the difference x − vt, we will
only retain the time dependence of G (1,e) and set x = x′ =
0 in the rest of the manuscript:

G (1,e)(t, t′) = 〈�̂†(t′)�̂(t)〉 (5)

The first order coherence can also be defined for holes,
G (1,h)(t, t′) = 〈�̂(t′)�̂†(t)〉 and is directly related to the
electron coherence, G (1,h)(t, t′) = δ(t−t′)

v − G (1,e)(t, t′)∗. We
will thus use mainly the electron coherence, the expres-
sion for holes will be used when it simplifies the nota-
tions. The diagonal part, t = t′, of the first order coher-
ence represent the ’populations’ of the electronic source
per unit of length, that is the electronic density which is
proportional (with a factor −ev) to the electrical current
at time t. The off-diagonal parts represent the coherences
that are probed in an electronic interference experiment.
In an equivalent way, coherence properties can also be
defined in Fourier space:

G̃ (1,e)(ε, ε′) = h
v

〈â†(ε′)â(ε)〉 (6)

The diagonal elements, or populations, are then pro-
portional to the number of electrons per unit energy
while the off diagonal terms represent the coherences
in energy space. It is worth noticing that in the case of
a stationary emitter (G (1,e)(t, t′) = G (1,e)(t − t′)), these off
diagonal terms in energy space vanish and the first or-
der coherence can be characterized by the populations
in energy only: G̃ (1,e)(ε, ε′) ∝ δ(ε − ε′).

2.2 Electron-photon differences

Despite the deep analogies between electron and pho-
ton optics, some major differences remain. The first and
most obvious one comes from the Coulomb interaction
that affects electron and hole interactions. Contrary to
photons, the propagation of a single elementary exci-
tation is a complex many-body problem as one should
consider its interaction with the large number of sur-
rounding electrons that build the Fermi sea. This inter-
action leads in general to the relaxation and decoher-
ence of single electronic excitations propagating in the
conductor and will be discussed in Sec. 6. However, the
free dynamics described by Eq. (1) that neglects inter-
action effects already capture many interesting features
of electronic propagation in ballistic conductors that will
be discussed first. Another major difference is related
to the statistics, fermions versus bosons, with important
consequences on the nature of the vacuum. At equilib-
rium in a conductor, many electrons are present and oc-
cupy with unit probability states up to the Fermi en-
ergy εF . The equilibrium state of the edge channel at
temperature T will be labeled as |F 〉. As a first conse-
quence, and contrary to optics, even at equilibrium, the
first order coherence function does not vanish due to
the non-zero contribution from the Fermi sea which we
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label G (1,e)
F (t, t′) = 〈F |�̂†(t′)�̂(t)|F 〉. It can be more easily

computed in Fourier space, G̃ (1,e)
F (ε, ε′) = h

v f (ε)δ(ε − ε′)
where it is diagonal and thus characterized by the pop-
ulation in each energy state given by the Fermi distri-
bution f (ε) at temperature T . We will therefore con-
sider the deviations of the first order coherence function
compared to the equilibrium situation: 	G (1,e)(t, t′) =
G (1,e)(t, t′) − G (1,e)

F (t, t′). The electrical current carried by
the edge channel does not vanish as well at equilibrium,
IF = 〈F | Î (t)|F 〉 = − e

h

∫
dε f (ε). This equilibrium current

is canceled by the opposite equilibrium current carried
by the counterpropagating edge channel located on the
opposite edge of the sample. In an experiment, the cur-
rent is measured on an ohmic contact which collects
the total current, difference between the incoming cur-
rent carried by one edge and the outgoing current car-
ried by the counterpropagating edge. The ohmic contact
plays the role of a reservoir at thermal equilibrium such
that the outgoing edge is at thermal equilibrium and car-
ries the current IF . The total current measured is then,
: I (t) := I (t) − IF . In the following, in order to lighten the
notations, I (t) will refer to the total current, the Fermi
sea contribution will always be subtracted, I (t) =: I (t) :.
The measurement of the electrical current on an ohmic
contact thus characterizes the deviation of the state of
a quantum Hall edge channel compared to its equilib-
rium state. It is proportional to the diagonal terms of
the excess first order coherence of the source in time
domain.

I (t) = −ev	G (1,e)(t, t) (7)

In term of elementary excitations, deviations from the
Fermi sea consist in the creation of electrons above the
Fermi sea and the destruction of electrons below it, or
equivalently, the creation of holes of positive energy.
Contrary to optics, where all the photons contribute with
a positive sign to the light intensity, two kinds of particles
with opposite charge and thus opposite contributions to
the electrical current are present in electron optics. As we
will see in the following of this manuscript, the propaga-
tion of carriers of opposite charge related to the presence
of the Fermi sea leads to important differences with op-
tics. Excess electron δne(ε) and hole δnh(ε) populations
are related to the diagonal terms, the populations, of the
excess first order coherence in Fourier space:

δne(ε) = v
h

	G̃ (1,e)(ε, ε) (8)

〈δNe〉 =
∫ +∞

0
dε δne(ε) (9)

δnh(ε) = v
h

	G̃ (1,h)(−ε,−ε) = −δne(−ε) (10)

〈δNh〉 =
∫ +∞

0
dε δnh(ε) (11)

2.3 Stationary source versus single particle emission

Stationary sources are the most commonly used in elec-
tron optics experiments and are implemented by ap-
plying a stationary bias V to an ohmic contact which
shifts the chemical potential of the edge channel by
−eV . For such a stationary source, the first order co-
herence function does not depend separately on both
times t and t′ but only on the time difference t − t′. As al-
ready mentioned, such a source is fully characterized by
its diagonal components in Fourier space G (1,e)(ε, ε′) ∝
δ(ε − ε′). In the case of the voltage biased ohmic con-
tact, the electron population is simply given by the dif-
ference of the equilibrium Fermi distributions with and
without the applied bias: 	G̃ (1,e)(ε, ε′) = h

v

[
f (ε + eV ) −

f (ε)
]
δ(ε − ε′). The corresponding total number of elec-

trons emitted per unit of energy in a long but finite
measurement time Tmeas is then given by δne(ε) = [

f (ε +
eV ) − f (ε)

] Tmeas
h . As mentioned in Sec. 1.2, many elec-

tron optics experiments have been performed with this
source to investigate the coherence properties of these
sources using electronic interferometers.

A different route of electron optics is the study of
the propagation and the manipulation of single particle
(electron or hole) states. Such a single electron state cor-
responding to the creation of one additional electron in
wave function φe(x) above the Fermi sea can be formally
written as:

�̂†[φe]|F 〉 =
∫

dx φe(x)�̂†(x)|F 〉 (12)

where φe(x) is the electronic wave function which Fourier
components φ̃e(ε) are only non-zero for ε > 0, corre-
sponding to the filling of electronic states above the
Fermi energy (at finite temperature, the single particle
state has to be separated from the thermal excitations of
the Fermi sea). This state is fully characterized by the first
order coherence function:

	G (1,e)(t, t′) = φe(−vt)φe,∗(−vt′) (13)

	G̃ (1,e)(ε, ε′) = φ̃e(ε)φ̃e,∗(ε′) (14)

In a two dimensional (ε, ε′) representation of the first or-
der coherence in Fourier space, such a single electron
state can be represented as a spot in the ε > 0, ε′ > 0
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Figure 2 Left panel: Quadrants of the electronic coherence func-
tion in Fourier space: electron (e), hole (h), and mixed elec-
tron/hole (e/h). Right panel: schematic representation of a single-
electron state created on top of the Fermi sea: the Fermi sea is
represented by the half-diagonal ε = ε′ < 0 with no transverse
extension. The single-electron state is pictured by a dot in the
(e)-quadrant.

quadrant (see Fig. 2, right panel). This quadrant thus cor-
responds to the electron states. The coherence of the
wave function appears in the off diagonal components
(ε �= ε′) which clearly enunciates the fact that such sin-
gle particle states cannot be generated by a stationary
emitter but requires the use of a triggered ac source.
These single electron emitters open a new route for elec-
tronic transport, where the object of study is an elec-
tronic wavefunction that evolves in time instead of the
set of occupation probabilities for the electronic states.
The study of such a source and its ability to produce sin-
gle electron states will be the purpose of the next section.

Note that the symmetric situation of a single hole cre-
ation can be described by the following state: �̂[φh]|F 〉 =∫

dx φh,∗(x)�̂(x)|F 〉 where φ̃h(ε) has only non vanishing
components for ε < 0 corresponding to electronic states
below the Fermi energy. Its first order coherence func-
tion, 	G̃ (1,e)(ε, ε′) = −φ̃h(ε)φ̃h,∗(ε′) corresponds to a spot
in the (ε < 0, ε′ < 0)-quadrant of hole states (see Fig. 2).
Note that the minus sign reflects the fact that a hole is an
absence of electron in the Fermi sea.

The two remaining quadrants (ε > 0, ε′ < 0 and ε <

0, ε′ > 0) in the (ε, ε′)-plane are called the electron/hole
coherences. They can be understood as the manifesta-
tion of a non fixed number of excitations (electrons and
holes) which characterizes states that are neither purely
electron nor purely hole states. An example of such a
state can be written as:

|�〉 = α|F 〉 + β

∫
dxdx′ φh,∗(x)φe(x′)�̂(x)�̂†(x′)|F 〉 (15)

This state is the coherent superposition of the equi-
librium state and a non-equilibrium state that corre-
sponds to the creation of one electron and one hole (one

electron/hole pair). The total number of particles stays
fixed but the number of excitations is not, such that this
state cannot be seen as a pure ‘electron-hole’ pair. By
computing the first order coherence function in Fourier
space, one gets (zero temperature has been assumed for
simplicity):

	G (1,e)(ε, ε′) = |β|2[φ̃e(ε)φ̃e,∗(ε′) − φ̃h(ε)φ̃h,∗(ε′)
]

−α∗βφ̃e(ε)φ̃h,∗(ε′) − αβ∗φ̃h(ε)φ̃e,∗(ε′) (16)

The first two terms correspond to the electron and hole
states discussed previously. The last two terms corre-
spond to spots in the electron/hole quadrants of the
(ε, ε′)-plane. This kind of terms will appear when the
source fails to create a well defined number of elec-
tron/hole excitations but rather a coherent superposi-
tion of states with different number of excitations.

3 Single electron emitters

3.1 Generation of quantized currents

The first manipulations of electrical currents at the sin-
gle charge scale have been implemented in metallic elec-
tron boxes. In these systems, taking advantage of the
quantization of the charge, quantized currents could be
generated in single electron pumps with a repetition
frequency of a few tens of MHz [32,33]. These single elec-
tron pumps have been realized almost simultaneously in
semiconducting nanostructures [34] where the operat-
ing frequency was recently extended to GHz frequencies
[35,36]. These technologies have also been implemented
under a strong magnetic field [37–39], to inject electrons
in high-energy quantum Hall edge channels. Another
route for quantized current generation is to trap a sin-
gle electron in the electrostatic potential generated by a
surface acoustic wave propagating [40, 41] through the
sample. This technique has recently enabled the trans-
fer of single charges between two distant quantum dots
[42, 43]. However, even if these devices are good candi-
dates to generate and manipulate single electron quan-
tum states in one dimensional conductors, their main
applications concern metrology and a possible quan-
tum representation of the ampere (for a review on sin-
gle electron pumps and their metrological applications,
see [44]).

Another proposal to generate single particle states in
ballistic conductors, and which relies on a much sim-
pler device, has been proposed [45–48]: the DC bias
applied to an ohmic contact, and that generates a sta-
tionary current, is replaced by a pulsed time dependent
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excitation Vexc(t). For an arbitrary time dependence and
amplitude of the excitation, such a time dependent bias
generates an arbitrary state that, in general, is not an
eigenstate of the particle number but is the superposi-
tion of various numbers of electron and hole excitations.
The differences of such a many body state compared to
the creation of a single electronic state above the Fermi
sea can be outlined using the first order coherence func-
tion of the source, 	G (1,e)(ε, ε′) in Fourier space. Contrary
to the single electronic excitation which has only non-
zero values in the electron domain ε, ε′ > 0, such a state
has also non zero values in the hole sector (ε, ε′ < 0) rep-
resenting the spurious hole excitations generated by the
source. Finally, in this case, 	G (1,e)(ε, ε′) also exhibits non
zero electron-hole coherences as such a state is not an
eigenstate of the excitation number. It can be shown that
by applying a specific Lorentzian shaped pulse contain-
ing a quantized number of charges: e2/h

∫
dtV (t) = ne,

exactly n electronic excitations could be generated in
the electron sector without creating any hole excitation.
In particular, the voltage V (t) = hτ0/π

t2+τ 2
0

generates a single

electron above the Fermi sea as recently experimentally
demonstrated [49].

We followed a different route to generate single parti-
cle states which bears more resemblance with the single
electron pumps mentioned before. The emitter, called a
mesoscopic capacitor consists in a quantum dot capaci-
tively coupled to a metallic top gate and tunnel coupled
to the conductor. Compared to the pumps presented
above, only one tunnel barrier is necessary such that
the device is easier to tune. This difference implies that
the source is ac driven and thus generates a quantized
ac current whereas pumps generate a quantized dc cur-
rent (note that in a recent proposal, Battista et al. [50, 51]
suggested a new geometry where the electron and hole
streams are separated, such that a dc current is gener-
ated). Compared to Lorentzian pulses, the single parti-
cle emission process does not depend much on the ex-
act shape of the excitation drive. The quantization of the
emitted current is ensured by the charge quantization in
the dot. Another difference comes from the possibility
to tune the energy of the emitted particle, as emission
comes from a single energy level of the dot which energy
can be tuned to some extent.

3.2 The mesoscopic capacitor

The mesoscopic capacitor [52–54] is depicted in Fig. 3.
It consists of a submicron-sized cavity (or quantum
dot) tunnel coupled to a two-dimensional electron gas
through a quantum point contact (QPC) whose trans-

Figure 3 The mesoscopic capacitor. Upper panel, sketch of the
mesoscopic capacitor. Lower panel, sketch of single electron/hole
emission process.

parency D is controlled by the gate voltage Vg. The po-
tential of the dot is controlled by a metallic top gate de-
posited on top of the dot and capacitively coupled to it.
This conductor realizes the quantum version of a RC cir-
cuit, where the dot and electrode define the two plates
of a capacitor while the quantum point contact plays the
role of the resistor. As mentioned in the first section, a
large perpendicular magnetic field is applied to the sam-
ple in order to reach the integer quantum Hall regime,
and we consider the situation where a single edge chan-
nel is coupled to the dot. Electronic transport can thus
be described by the propagation of spinless electronic
waves in a one dimensional conductor. Electrons in the
incoming edge channel can tunnel onto the quantum
dot with the amplitude

√
D = √

1 − r2, perform several
round-trips inside the cavity, each taking the finite time
τ0 = l/v (l is the dot circumference), before finally tun-
neling back out into the outgoing edge state. In these ex-
pressions, the reflection amplitude r has for convenience
been assumed to be real and energy-independent. For
a micron size cavity, τ0 typically equals a few tens of
picoseconds. As a result of these coherent oscillations
inside the electronic cavity, the propagation in the quan-
tum dot can be described by a discrete energy spec-
trum with energy levels that are separated by a constant
level spacing 	 related to the time of one round-trip
	 = h/τ0, see Fig. 3. The levels are broadened by the finite
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coupling between the quantum dot and the electron gas,
determined by the QPC transmission D. This discrete
spectrum can be shifted compared to the Fermi energy
first in a static manner, when a static potential V0 is ap-
plied to the top gate, but also dynamically, when a time
dependent excitation Vexc(t) is applied. When a square
shape excitation is applied, it causes a sudden shift of
the quantum dot energy spectrum. We consider the opti-
mal situation where the highest occupied energy level is
initially located at energy εF at resonance with the Fermi
energy in the absence of drive (labelled by i on Fig. 3,
lower panel). When a square drive is applied with a peak
to peak amplitude 2eVexc comparable to 	, an electron
is emitted above the Fermi energy from the highest oc-
cupied energy level in the first half period (labeled as 1
in Fig. 3), an electron is then absorbed from the elec-
tron gas (corresponding to the emission of a hole as in-
dicated in Fig. 3) in the second half period (labeled as 2
in Fig. 3). Repeating this sequence at a drive frequency of
f ∼ 1 GHz thus gives rise to periodic emission of a sin-
gle electron followed by a single hole [55]. Previous dis-
cussion neglects the effects of Coulomb interaction in-
side the dot. It is characterized by the charging energy
Ec = e2

Cg
, where Cg is the geometrical capacitance of the

dot. It adds to the orbital level spacing 	 in the addition
energy of the dot 	∗ = 	 + e2

Cg
that defines the energetic

cost associated with the addition or removal of one elec-
tron in the dot. It is thus the relevant energy scale for
charge transfers between the dot and the edge channel.
However, the magnitude of Coulomb interaction effects
has been estimated to be of the same order as the orbital
level spacing [56]. This rather low contribution of inter-
actions explains the success of the non-interacting mod-
els used throughout this manuscript to describe the dot.
In these non-interacting models, we take the level spac-
ing 	 to be equal to 	∗ which captures both orbital and
interaction effects.

This emission of a quantized number of particles by
the dot can be first characterized through the current
generated by the emitter averaged on a large number of
emission sequences.

3.3 Average current quantization

An important characteristic of the mesoscopic capacitor
lies in its capacitive coupling, such that it cannot gen-
erate any dc current. This emitter is intrinsically an ac
emitter and, as such, can be characterized through ac
measurements of the current averaged on a large num-
ber of electron/hole emission cycles. This current 〈I (t)〉
can first be measured in time domain [57], using a fast

Figure 4 Measurements of the average current in the time do-
main. The black traces represent the experimental points while
the blue trace is an exponential fit. The escape times and aver-
age transmitted charges are τe = 0.9 ns, 〈Qt〉 = e, left panel,
τe = 10 ns, 〈Qt〉 = 0.7e, right panel. The red dotted line repre-
sents the square excitation voltage.

averaging card with a sampling time of 500 ps and av-
eraging on approximately 108 single electron/hole emis-
sion sequences. To get a good resolution on the time
dependence of the current, this card limits the drive fre-
quency to a few tens of MHz. The resulting current gener-
ated by the source for a drive frequency of 32 MHz is rep-
resented on Fig. 4. We observe an exponential decay of
the current with a positive contribution that corresponds
to the emission of the electron followed by its opposite
counterpart that corresponds to the emission of the hole.
This exponential decay corresponds to what one would
naively expect for a RC circuit. At t = 0 the square exci-
tation triggers the charge emission by promoting an oc-
cupied discrete level above the Fermi energy which is
then coupled to the continuum of empty states in the
edge channel. The probability of charge emission, and
hence the current, follows an exponential decay on an
average time governed by the transmission D and the
level spacing, τe = h/D	 [58]. On Fig. 4 (left panel), the
escape time is τe = 0.9 ns, much smaller than the half pe-
riod, such that the electron is allowed enough time to es-
cape the dot. This is reflected by the measured quanti-
zation of the average transmitted charge [55, 57], 〈Qt〉 =∫ T0/2

0 〈I (t)〉dt = e (where T0 = 1/ f = 2π/� is the period of
the excitation drive), which shows that one electron and
hole are emitted on average by the source. By tuning the
transmission, the escape time can be controlled and var-
ied. On Fig. 4 (right panel) τ = 10 ns which is compa-
rable with the half-period. In this situation, some single
electron events are lost and the average emitted charge
is not quantized anymore, which defines a probability
of charge emission P, 〈Qt〉 = Pe < e (P = 0.7 for τe = 10
ns). For an exponential decay of the current, the emission
probability can be easily computed, P = tanh( T0

4τe
).

At higher frequencies (GHz frequencies), the dot can-
not be characterized by current measurements in the

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 9www.ann-phys.org



Re
vi

ew
Ar

tic
le

E. Bocquillon et al.: Electron quantum optics in ballistic chiral conductors

Figure 5 Two dimensional color plot of the modulus of the average
current. The top figure represents the experimental points while
the bottom figure is a simulation using Floquet scattering theory.

time domain anymore as the limited 500 ps resolution
becomes larger than the half-period. In that case, we
measure the first harmonic of the current I� in modulus
and phase using a homodyne detection. The quantiza-
tion of the emitted charge is then reflected in a quan-
tization of the current modulus |I�| = 2ef while the es-
cape time can be deduced from the measurement of the
phase φ, tan φ = �τe. Figure 5 (upper panel) presents the
measurement of the modulus of the current as a func-
tion of the dot transmission (horizontal axis) and the ex-
citation drive amplitude (vertical axis). The value of the
current modulus is encoded in a color scale. White dia-
monds correspond to areas of quantized modulus of the
ac current |I�| = 2ef [55]. These diamonds are blurred
at high transmissions, where the charge quantization on
the dot is lost due to charge fluctuations, they also vanish
at small transmission when the average emission time
becomes comparable or longer than the half period. This
quantization of the average ac current is the counterpart,
in the frequency domain, of the charge quantization for
time domain measurements.

The single electron emitter can be very conveniently
described by the scattering theory of electronic waves
submitted to a time-dependent scatterer. As the scatterer
is periodically driven, one can apply the Floquet scatter-
ing theory [54, 59–61]. Any physical quantity can be nu-
merically computed from the calculation of the Floquet
scattering matrix. In particular, Floquet calculations can
be compared with the current modulus measurements
plotted on Fig. 5 (simulations are on the lower panel),

Vexc(t)

t

Figure 6 Sketch of electron/hole emission sequences. Electrons/
holes are represented by blue/white dots. Spurious events are em-
phasized by red circles.

for any excitation drive Vexc(t). The excitation is a square
drive the electronic temperature is Tel ≈ 60 mK and the
level spacing of the dot is 	 = 4.2 K. The QPC gate volt-
age Vg controls both the transmission D(Vg ) and the dot
potential V0(Vg ). For the transmission D(Vg ), we use a
saddle-point transmission law [8] with two parameters,
for the potential V0(Vg ), we use a capacitive coupling of
the dot potential to the QPC gate characterized by a lin-
ear variation. Using these parameters, the agreement be-
tween the experimental data and numerical calculations
is very good, up to small energy-dependent variations
in the QPC transmission which were not included in the
model.

4 Second order correlations of a single
electron emitter

4.1 Second order coherence function

Although the measurement of the quantization of the
charge emitted on one period is a strong indication that
the source acts as an on-demand single particle emitter,
it cannot be used as a demonstration that single parti-
cle emission is achieved at each of the source’s cycles.
The emitted charge is averaged on a huge number of
emission periods, and hence does not provide any in-
formation on the statistics of electron emission. As can
be seen on Fig. 6, the absence of electron emission on
one cycle could be compensated by the emission of two
electrons on the second one. An additional electron/hole
pair could also be emitted in one cycle [62, 63]. These
various processes would not affect the average emitted
charge and the quantization of the average current. In
optics, single particle emission by photonic sources is
demonstrated by the use of light intensity correlations
[29,64–66]. In electronics as well, to demonstrate that ex-
actly a single particle is emitted, one needs to go beyond
the measurement of average quantities and study the
correlations of the emitted current. Single particle emis-
sion can be demonstrated through the measurement
of second order correlations functions of the electrical
current.
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The second order correlation is usually defined by the
joint probability to detect one particle at time t and one
particle at time t′. It reveals the correlations between par-
ticles, that is, their tendency to arrive close to each oth-
ers (called bunching), or on the opposite to be well sep-
arated (antibunching). Here, as we rely on current, or
density measurements, we focus on the density-density
correlation function. Using the fermion field operator at
times t and t′, it goes like:

C (2)
0 (t, t′) = 〈�̂†(t)�̂(t)�̂†(t′)�̂(t′)〉 (17)

= δ(t − t′)
v

〈�̂†(t)�̂(t)〉 + 〈�̂†(t′)�̂†(t)�̂(t)�̂(t′)〉
(18)

The first term merely represents the autocorrelation of
the charge at equal times and is proportional to the num-
ber of particles, that is to the average density. It is usu-
ally referred to as the shot noise term and reflects charge
granularity. The second term is the joint probability to
detect one particle at time t and one particle at time
t′ and encodes the correlations between particles. It is
called the second order coherence function G (2)(t, t′) in a
description “à la Glauber” of the electromagnetic field. In
particular, if a single particle is present in the system (and
only in this situation), this term vanishes for all times t,
t′. It is therefore through the measurement of this term
that single particle emission is asserted (in optics for ex-
ample). Note that in many cases, and in particular, in the
cases considered in this manuscript, the second order
correlations can be expressed as a function of the first or-
der ones through the use of Wick’s theorem1

C (2)
0 (t, t′) = δ(t − t′)

v
G (1,e)(t, t) + G (1,e)(t, t)G (1,e)(t′, t′)

×
[

1 − |G (1,e)(t, t′)|2

G (1,e)(t, t)G (1,e)(t′, t′)

]
(19)

Focusing the discussion on the second term which en-
codes the correlations between particles, we observe
that perfect antibunching is always observed for t = t′

as two fermions cannot be detected at the same time
due to Pauli exclusion principle. However, in general, two
fermions can be detected at arbitrary times t �= t′ except
for a single particle state where the second term vanishes

1 In particular, Wick theorem can be applied to single particle states
resulting from the addition of one electron or one hole or to the
case of a periodically driven scatterer which we treat through Flo-
quet scattering formalism. However, Wick theorem would not ap-
ply in the case where electron-electron interactions are present.

Source

τe

T0

τe

0 τT0 2T0−2T0 −T0

C(2)
0 (t, t + τ)

t

Figure 7 Sketch of the second order correlation. Single particle
wavepackets of width τe are emitted with period T0. The blue trace
represents the first term in Eq. (19) while the red trace represents
the second term. The latter goes to zero on short time, reflecting
that the source emits particles one by one.

for arbitrary times t, t′. Indeed, ignoring first the pres-
ence of the Fermi sea, the single electron coherence of
a single particle state reads, G (1)(t, t′) = φe(−vt)φe,∗(−vt′)
such that |G (1)(t, t′)|2 = G (1)(t, t)G (1)(t′, t′) for all times t, t′.
In an experimental situation, the emission of a single
particle state is periodically triggered with a period T0.
Considering an emitter with an average emission time
τe, the expected typical resulting trace for C (2)

0 (t, t′) (aver-
aged on the absolute time t) can be plotted on Fig. 7. The
first term in Eq. (19) is a Dirac peak and is plotted in blue.
The second term is represented in red, lateral peaks cen-
tered on t′ − t = n × T0 and of width τe correspond to the
detection of two subsequent emission events separated
by time nT0. These peaks disappear on short times (n =
0) as two different particles cannot be detected within
the same emission period. This suppression is the hall-
mark of a single particle state: whenever two or more par-
ticles are emitted on the same emission period, this cen-
tral peak would reappear.

However, one must be careful in the use of these ar-
guments, as true single particle states are not available
in quantum conductors due to the presence of the Fermi
sea. We can only produce single particle states defined
by the addition of one electron (or one hole) above (or
below) the Fermi sea which consists in a large number
of electrons. It is thus not clear whether we can apply
the above reasoning and use the second order correla-
tion functions to detect states that result from the addi-
tion of a single electron above the Fermi sea (or equiva-
lently the addition of a single hole below). We would also
like to slightly change the definition of the second order
correlation function in such a way that it can be directly
expressed as a function of the natural observable of this
system, that is, the electrical current. We thus adopt this
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new definition of the second order correlation function
which is defined through the measurement of the excess
current correlations at times t and t′:

C (2)(t, t′) = 〈 Î (t′) Î (t)〉 − 〈 Î (t′) Î (t)〉F (20)

As seen in Sec. 2.2, the second term is necessary to
suppress the current correlations that already exist at
equilibrium when the source is off. To enlighten the
analogies between this expression and the previous def-
inition that was valid in the absence of the Fermi sea,
let us consider as previously a case where Wick theorem
applies:

C (2)(t, t′) = δ(t − t′)〈 Î (t)〉

+ 〈 Î (t′)〉〈 Î (t)〉
[

1 − |	G (1,e)(t, t′)|2

	G (1,e)(t, t)	G (1,e)(t′, t′)

]

− e2v2G (1,e)
F (t, t′) 	G (1,e)(t′, t)

− e2v2G (1,e)
F (t′, t) 	G (1,e)(t, t′) (21)

This expression presents many analogies with
Eq. (19), in particular, the first two terms are identical
except for the replacement of G (1,e) by the contribution
of the source only, 	G (1,e). These two terms thus provide
a way to identify the single particle states generated by
the source. However, the last two terms are not present
in Eq. (19) as they represent correlations between the
Fermi sea and the single particle source. Contrary to the
first order correlation where the source and Fermi sea
contributions could be separated, this is not the case in
the second order correlations.

4.2 High frequency noise of a single particle emitter

In electronics, current correlations are measured
through the current noise spectrum S(ω). It is usually
defined for a stationary process. For a non stationary
process, it can be defined in analogy by performing
an average on the current fluctuations on the absolute
time t:

S(ω) = 2
∫

dτ 〈δ I (t + τ )δ I (t)〉t
e−iωτ (22)

In the following, equilibrium noise contribution that
can be measured when the source is off will always be
subtracted from the noise spectrum in order to analyze
the source contribution to the noise only. S(ω) is then di-
rectly given by the Fourier transform of the second order
correlation defined above by Eqs. (20) and (21) up to an

additional contribution related to the average current:

S(ω) = 2
∫

dτ
[
C (2)(t, t + τ )〉t + 〈 Î (t + τ )〉〈 Î (t)〉t]

e−iωτ (23)

The current noise spectrum provides a direct access to
the second order correlation function and is thus an ap-
propriate tool to demonstrate single particle emission.
However, it is important to characterize the contribution
to the noise spectrum of the last terms of Eq. (21), which
we label SF (ω) as these terms did not provide informa-
tion on the source only but on correlations between the
source and the Fermi sea.

SF (ω) = − 2e2

Tmeas

∫
dε f (ε)

[
δne(ε − �ω) + δne(ε + �ω)

]

(24)

To evaluate this contribution, let us consider a source
that emits one electron at energy εe ≈ 	/2 above the
Fermi sea. As δne(ε ± �ω) represents the population of
excitations emitted by the source at energy ε ± �ω, it is
non zero when the energy is of the order of εe. How-
ever, from the Fermi sea contribution f (ε), we have ε ≤ 0
which means that SF (ω) becomes only non negligible
at high frequency �ω ≈ εe. Generally, this contribution
can be safely neglected if the frequency is much lower
than the energy of the excitations emitted by the source.
Practically, this approximation holds for a measurement
frequency f � 	

2h , with 	
2h � 20 GHz. In the following,

measurements were performed at f � 1 GHz such that
correlations between the source and the Fermi sea can
safely be neglected in the noise measurements and the
current correlations can be used to analyze the statistics
of the source exactly as if the source was emitting in vac-
uum. From Eq. (21) we then directly obtain for a single
particle emitter:

C (2)(t, t′) = δ(t − t′)〈 Î (t)〉 (25)

〈δ Î (t′)δ Î (t)〉 = δ(t − t′)〈 Î (t)〉 − 〈 Î (t′)〉〈 Î (t)〉 (26)

Considering an exponential dependence of the average
current, Î = e

τe
e−t/τe , the noise spectrum can be explicitly

computed [67]:

S(ω) = 2e2 f
[

1 − 1
1 + ω2τ 2

e

]
= 2e2 f

ω2τ 2
e

1 + ω2τ 2
e

(27)

This result has been obtained using a semiclassical
stochastic model [68] of single electron emission from a
dot containing a single electron. This model also does
not take into account correlations with the Fermi sea.
Note also that our single electron emitter generates one
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Figure 8 Different terms of the noise spectrum S(ω) of a single
particle emitter. The blue dashed line represents the Fermi sea con-
tribution responsible for the high frequency cut-off, −SF defined
from Eq. (24), while the red trace is the noise spectrum neglecting
the Fermi sea contribution. The black trace is the total noise spec-
trum obtained from the substraction of the blue dashed line to the
red trace.

electron followed by one hole in a period T0, that is one
charge in time T0/2. The factor 2e2 f in Eq. (27) needs to
be replaced by 4e2 f in our case. A typical trace for the
noise spectrum is plotted on Fig. 8. The noise vanishes at
low frequency and grows on a scale given by the average
escape time, ω ∼ 1/τe. To reveal single particle emission,
current correlations need to be measured on a time scale
shorter than the average escape time, that is, through
high frequency noise measurements (typically at GHz
frequencies) [69]. As exactly a single particle is emitted
at each cycle of the source, the fluctuations cannot be at-
tributed to fluctuations in the emitted charge but rather
to fluctuations in the emission time. Due to the tunnel-
ing emission process, there is a random jitter between
the emission trigger and the emission time. Following
Eq. (27), the noise goes to a white noise limit at high
frequency ωτe � 1 where correlations are dominated by
the first term proportional to δ(t − t′) [56,70]. However at
these high frequencies, correlations with the Fermi sea,
Eq. (24) cannot be neglected and are responsible for a
high frequency cutoff of the noise when ω ≥ 	/(2�) (cor-
relations with the Fermi sea are plotted on blue dashed
line on Fig. 8. Indeed this cutoff can be interpreted as the
impossibility for a particle of energy 	/2 above the Fermi
sea to emit a photon of energy greater than �ω = 	/2 due
to Pauli blocking by the Fermi sea. A good choice of the
measurement frequency thus lies between these two lim-
its: 1

τe
≈ ω � 	/� which naturally sets the GHz as the ap-

propriate range.

Figure 9 Measurements of the high frequency noise S(ω =
2π f ), red dots, as a function of the emission time τe. The red
trace corresponds to the expected dependence, Eq. (28). Dashed
lines correspond to the asymptotic limits of perfect emitter (blue
dashed line) and shot noise (black dashed line). The black points
correspond to the measurements of the emission probability.

4.3 High frequency noise measurements

In the noise measurement, the output ohmic contact on
Fig. 3 is used both for the determination of the average
current and the high frequency noise (for further exper-
imental details, see ref. [71]). The typical order of mag-
nitude for the noise is given by e2 f ≈ 4.10−29 A2.Hz−1 for
a drive frequency f ≈ 1.5 GHz. We implemented a high
frequency noise measurement with a 600 MHz band-
width centered on the drive frequency and a noise sen-
sitivity of a few 10−30 A2.Hz−1 in a few hours measure-
ment time. The noise was calibrated by measuring the
equilibrium noise of a 50 Ohms resistor as a function of
the temperature. In such noise measurements, it is very
hard to change the measurement frequency as it would
be required in order to check Eq. (27). However, the de-
pendence in the measurement frequency goes like ωτe

which allows to work at fixed frequency, chosen as ω =
2π f (where f is the frequency of the excitation drive) but
variable average escape time to check the frequency de-
pendence. Measurements of the noise [54, 67] as a func-
tion of the escape time are plotted on Fig. 9. For short
escape times, the noise exactly follows the expected de-
pendence (blue trace). However, when the escape time
becomes comparable with the half period, the noise de-
viates from the limit of the perfect emitter. This can be
understood, as in this limit of long escape times, elec-
trons do not have enough time to escape the dot and
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the probability of single charge emission deviates from
1 (black dots on Fig. 9). For an average current follow-
ing an exponential dependence, the probability P can
be computed as a function of the average escape time,
P = tanh T0/4τe. As can be seen on Fig. 9, the experimen-
tal points fall precisely on this tanh T0/4τe dependence
(black trace). This finite probability of charge emission
has been taken into account in the heuristic semiclassi-
cal model [54, 68] of single charge emission mentioned
above, the perfect emitter formula is then modified in the
following way:

S(ω) = 4e2 f tanh
T0

4τe

ω2τ 2
e

1 + ω2τ 2
e

(28)

This dependence of the noise for an arbitrary value of
the dot transmission can also be confirmed by numeri-
cal simulations within the Floquet scattering formalism
[54] described above or by real time calculations of sin-
gle charge emission in a tight-binding model [72]. Our
data points agree remarkably well with this dependence
(red trace) which defines two limits. For short times, the
noise follows the perfect emitter limit, there are no fluc-
tuations in the emitted charge and the noise is governed
by the random jitter in the emission time. In the long
time limit, the fluctuations are governed by the fluctu-
ations in the number of emitted charges. Taking ωτe � 1
in Eq. (28), the noise becomes independent of frequency
and proportional to the average current, S(ω) ≈ 2e|〈 Î (t)〉|
for τe � T0/2. In this limit single charge emission be-
comes a random poissonian process. Figure 9 shows the
proper conditions to operate the source as a good single
particle emitter, for τe ≤ 0.3T0/2, the source follows the
perfect emitter limit.

To conclude this section, average current measure-
ment of a triggered electron emitter show that the source
emits on average a quantized number of particles. The
measurement of second order correlations can then
be used to demonstrate that a single particle is emit-
ted at each emission cycle. This single electron emitter
will then be used to characterize and manipulate sin-
gle electron states in optics-like setups. In particular, the
Hanbury-Brown and Twiss geometry, where the electron
beams are partitioned by a beam-splitter will be thor-
oughly studied.

5 Hanbury-Brown & Twiss interferometry

When studying the correlations between two sources
using two detectors, the Hanbury-Brown & Twiss ef-
fect arises from two-particle interferences between di-
rect and exchange paths, pictured on Fig. 10a). As dis-

Figure 10 a) Direct and exchange paths, that interfere when
placing two sources in inputs 1 and 2 and recording corre-
lations between two detectors at outputs 3 and 4. b) Pos-
sible outcomes of two-particle interference experiments when
two indistinguishable particles are placed in the inputs of a
beamsplitter.

covered in 1956 when observing distant stars [73], in-
tensity correlations offer a powerful way to study the
emission statistics of sources. In particular, two particle
interferences lead to different possible outcomes de-
pending on the fermionic or bosonic character of the
two indistinguishable particles that would impinge on
a beamsplitter (Fig. 10b)). On one hand, indistinguish-
able electrons (fermions) antibunch: the only possi-
ble outcome is to measure one electron in each out-
put arm. On the other hand, indistinguishable photons
(bosons) bunch: two photons are then measured in one
of the outputs. Thus, when such particles collide and
bunch/antibunch on the beam-splitter, the fluctuations
and correlations of output currents encode information
on the single particle content of the incoming beams.
First observed with light sources [74], the HBT effect has
since then been observed for electrons propagating in a
two dimensional electron gas [19–21].

A convenient way to implement the interference be-
tween the two exchanged paths on two detectors is to use
the geometry described on Fig. 11. The two sources are
placed at the two inputs of a beam-splitter and the two
detectors at the two outputs. A coincidence detection
event on the detectors has then two exchanged contribu-
tions. Particles emitted by source 1 and 2 can be reflected
to 3 and 4 or transmitted to 4 and 3. These two paths lead
to two-particle interferences in the coincidence counts
of the two detectors. Using electron sources, a quan-
tum point contact can be used as a tunable electronic
beam-splitter with energy-independent reflexion and
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Figure 11 The Hanbury-Brown & Twiss geometry consists in the measurements of intensity auto- or cross- correlations at the outputs of
a beam-splitter (outputs 3 and 4). Depending on the sources (inputs 1 and 2), different properties can be inferred. The source under study
(source 1) is plugged in input 1. Three cases corresponding to three different sources connected to the second input are considered in this
article: a) source 2 is a Fermi sea (“vacuum”) and a single source is partitioned on the splitter, b) source 2 is identical to the one in 1 and
the setup is analogous to the optical Hong-Ou-Mandel experiment, c) source 2 is a reference source used in a tomography protocol of
source 1.

transmission coefficients R and T (R + T = 1) relating
incoming to outgoing modes. As single particle detection
is not available yet for electrons (at least for subnanosec-
ond time scales), coincidence counts are replaced in
electronics by current correlations. The output current
operators Îα(t), (α ∈ {3, 4}) and the output current
correlations Sαβ(t′, t) = 〈δ Îα(t′)δ Îβ(t)〉, (α, β ∈ {3, 4})
can be expressed in terms of input currents and
correlations:

S33(t′, t) = R2 S11(t′, t) + T 2 S22(t′, t) + RT Q(t, t′) (29)

S44(t′, t) = T 2 S11(t′, t) + R2 S22(t′, t) + RT Q(t, t′) (30)

S34(t′, t) = RT
(

S11(t′, t) + S22(t′, t) − Q(t, t′)) (31)

where S11(t′, t) and S22(t′, t) are the current fluctuations
in inputs 1 and 2 and Q(t, t′) denotes the quantum
Hanbury-Brown & Twiss contribution to outcoming cur-
rent correlations. It encodes the aforementioned two-
particle interferences and involves the coherence func-
tions of incoming electrons and holes:

Q(t, t′) = e2v2 G (1,e)
1 (t, t′)G (1,h)

2 (t, t′)

+ e2v2 G (1,h)
1 (t, t′)G (1,e)

2 (t, t′) (32)

This quantum two-particle interference can be unveiled
through the measurement of zero-frequency correla-
tions. Namely, standard low-frequency noise measure-

ment setup gives access to the averaged quantities
Sαβ(ω = 0) = 2

∫
dτ Sαβ(t + τ, t)t. Thus it is possible to ac-

cess the averaged HBT contribution

Q = 2e2v2
∫

dτ
[

G (1,e)
1 (t, t + τ )G (1,h)

2 (t, t + τ )t

+ G (1,h)
1 (t, t + τ )G (1,e)

1 (t, t + τ )t
]

(33)

which is nothing but the overlap between the single elec-
tron and hole coherences of channels 1 and 2, and plays
a key role in the various experiments one can perform in
the Hanbury-Brown & Twiss geometry. In the following,
we will study the three situations described on Fig. 11. In
the first one, a single source is used and partitioned on
the splitter while the second input is kept ’empty’. Con-
trary to the true vacuum obtained in the optical exper-
iment, in electronics, this second input is always con-
nected to a Fermi sea which is a source at equilibrium.
This leads to important differences in the electronic ver-
sion of this experiment. In the second experiment, each
input is connected to a triggered single electron emit-
ter. Two single electrons collide synchronously on the
splitter realizing the electronic analog of the Hong-Ou-
Mandel experiment in optics [23, 75–77]. Finally, using a
reference state in one input, an unknown input state can
be reconstructed and imaged by measuring its overlap
with the known reference state. The principle of such a
single electron state tomography will be described in the
last section.
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5.1 Single source partitioning

Let us first consider the electronic analog of the semi-
nal experiment performed by Hanbury-Brown & Twiss to
characterize optical sources [74], in which a light source
is placed in input 1 whereas the second arm is empty
and described by the vacuum. In the electronic analog,
the single electron source described previously is used,
while the empty arm now consists of a Fermi sea at equi-
librium, with fixed temperature and chemical potential.
The purpose of this experiment is not here to obtain
the charge statistics of the source, that is accessed via
high-frequency autocorrelations described in the previ-
ous section. It in fact reveals the number of elementary
excitations (electron/hole pairs) produced by the elec-
tron source, which has no optical counterpart and stems
from the fact that particles with opposite charges con-
tribute with opposite signs to the current. The total num-
ber of elementary excitations emitted from the source
is hard to access through a direct measurement of the
current or its correlations (that is without partitioning).
Indeed, the emission of one additional spurious elec-
tron/hole pair in one driving period, as represented on
Fig. 6 (sixth period of the drive on the figure) is a neutral
process and cannot be revealed in the current if the time
resolution of the current measurement is longer that the
temporal separation between the electron and the hole.
This temporal resolution is estimated to be a few tens of
picoseconds in the high frequency noise measurement
presented previously. Spurious electron/hole pairs emit-
ted by the source on a shorter time scale thus cannot be
detected. However, the random and independent parti-
tioning of electrons and holes on the splitter can be used
to deduce their number from the low frequency current
fluctuations of the output currents. Using Eqs. (30)–(33),
the excess output current correlations and their low fre-
quency spectrum are given by:

	S33(t′, t) = 	S44(t′, t) = −	S34(t′, t) = RT	Q(t, t′) (34)

S33(ω = 0) = RT	Q (35)

= 2RTe2v2
∫

dτ
[
	G (1,e)

1 (t, t + τ )
t
G (1,h)

F (τ )

+ 	G (1,h)
1 (t, t + τ )

t
G (1,e)

F (τ )
]

(36)

Where 	Q(t, t′) is the excess HBT contribution with re-
spect to equilibrium. As can be seen in Eq. (36) and con-
trary to optics, the single source partitioning experiment
involves two sources, the triggered emitter and the Fermi
sea at finite temperature, through the overlap between

their first order coherence 	G (1)
1 and G (1)

F . This overlap is
more easily expressed in Fourier space:

	Q = 2
e2

Tmeas

∫ +∞

0
dε

[
δne(ε) + δnh(ε)

](
1 − 2 f (ε)

)
(37)

Where δne(ε) is the excess number of electrons (at en-
ergy ε ≥ 0 above the Fermi energy) emitted per unit en-
ergy in the long measurement time Tmeas . Similarly, δnh(ε)
is the energy density of the number of holes emitted at
energy ε ≥ 0 (corresponding to a missing electron at en-
ergy −ε below the Fermi energy) in the measurement
time Tmeas . For a periodic emitter of frequency f , it is
more convenient to use the energy density of the num-
ber of excitations emitted in one period. To avoid defin-
ing too many notations, in the rest of the manuscript,
δne(ε) (resp. δnh(ε)) will refer to the energy density of elec-
trons (resp. holes) emitted in one period. Defining δNH BT

as the number of electron/hole pairs counted per pe-
riod by the partition noise measurement, Eq. (37) then
becomes:

	Q = 4e2 f δNH BT (38)

δNH BT =
∫ +∞

0
dε

δne(ε) + δnh(ε)
2

(
1 − 2 f (ε)

)
(39)

Considering first the limit of zero temperature,
δNH BT = 〈δNe〉+〈δNh〉

2 equals the average number of elec-
trons/holes emitted in one period. This result can be un-
derstood by a simple classical reasoning: electrons and
holes are independently partitioned on the beam-splitter
following a binomial law. As a consequence, the low-
frequency output noise is proportional to the number
of elementary excitations arriving on the splitter. Conse-
quently, measuring the HBT contribution directly gives
access to the total number of excitations generated per
emission cycle. However, large deviations to this clas-
sical result can be observed due to finite temperature.
Indeed, input arms are populated with thermal elec-
tron/hole excitations that can interfere with the ones
generated by the source, thus affecting their partitioning.
As seen in Eq. (37), δNH BT is corrected by − ∫

dε
(
δne(ε) +

δnh(ε)
)

f (ε), corresponding to the energy overlap of ther-
mal excitations and the particles triggered by the source.
The minus sign reflects the fermionic nature of particles
colliding on the QPC. For vanishing temperatures, clas-
sical partitioning is recovered. For non-vanishing tem-
perature, a fraction of the triggered excitations reaching
the beamsplitter find thermal ones at the same energy. In
virtue of Fermi-Dirac statistics, these indistinguishable
excitations antibunch (see Fig. 10): the only possible out-
come consists of one excitation in each output, so that no
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Figure 12 Modified SEM picture of the sample used in the
Hanbury-Brown & Twiss experiment. A perpendicular magnetic
field B = 3.2 T is applied in order to work at filling factor ν = 2.
The two edge channels are represented by blue lines. The emit-
ter is placed on input 1, 2.5 microns before the electronic split-
ter whose gate voltage Vqpc is set to fully reflect the inner edge
while the outer edge can be partially transmitted with tuneable
transmission T . The emitter is tunnel coupled to the outer edge
channel with a transmission D tuned by the gate voltage Vg . Elec-
tron emission is triggered by the excitation drive Vexc(t). Average
measurements of the AC current generated by the source are per-
formed on output 3, whereas output 4 is dedicated to the low fre-
quency noise measurements S44.

fluctuations are expected in that case, thus reducing the
amplitude of the HBT correlations.

An experimental realization [78] confirms these find-
ings. The single electron emitter described in the pre-
vious Sec. 3.2 is placed on input 1 of a quantum point
contact (at a distance of approximately 3 microns), see
Fig. 12. Low frequency current correlations S44 are mea-
sured on output 4 while output 3 is used to to charac-
terize the source through high frequency measurements
of the average ac current generated by the source. The
emitter is driven at a frequency of 1.7 GHz with different
excitation drives (sine or square waves) so as to generate
different wavepackets. For transmissions 0.2 < D < 0.7,
the average emitted charge 〈Qt〉 deduced from measure-
ments of the average ac current equals the elementary
charge e with an accuracy of 10 %. For D � 1, 〈Qt〉 ex-
ceeds e as quantization effects in the dot vanish, and
〈Qt〉 → 0 for D → 0.

Figure 13 presents the HBT low frequency correla-
tions as a function of the beam-splitter transmission

Beamsplitter Transmission T

Color Parameters Qt δNHBT

Sine, D = 1 1.27 0.51
Sine, D = 0.3 0.93 0.63

Square, D = 0.4 1 0.80
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Figure 13 Low frequency HBT correlation S44 as a function of the
transmission of the beamsplitter T , in units e2 f (left axis) and
in A2Hz−1. Three different rf drives are presented: sine drive at
transmission D = 1 (black triangles), sine drive at transmission
D = 0.3 (red dots), square drive at transmission D = 0.4 (green
squares). The plain lines represent fits with the expected T(1 − T)
dependence. Different amplitudes of noise are obtained, reflecting
the fact that antibunching with thermal excitations strongly de-
pends on the energy distribution of the generated wavepackets.

T . For all three curves, the T(1 − T) dependence is ob-
served, but the noise magnitude notably differ. In par-
ticular, δNH BT < 〈Q〉, invalidating the classical partition-
ing of a single electron/hole pair. This discrepancy is at-
tributed to the non-zero overlap between triggered ex-
citations and thermal ones, whose exact value strongly
depends on the driving parameters. An intuitive picture
can be proposed. The highest value of δNH BT is observed
with a square drive. In this case, a single energy level in
the dot is rapidly raised from below to above the Fermi
level of the reservoir, and the quasiparticle is emitted at
an energy εe � 	

2 > kB Tel well separated from thermal ex-
citations. Therefore, we expect the outcoming noise to
be maximum. For a sine wave, the rise of the energy
level in the dot is slower and the electron is emitted at
lower energies and thus more prone to antibunch with
thermal excitations. This tends to reduce δNH BT . As the
transmission D is lowered, the escape time τe increases
and electron emission occurs at later times, correspond-
ing to higher levels of the sine drive. The quasiparticle is
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Dot transmission D Dot transmission D

Sine drive Square drive

Figure 14 HBT contribution δNH BT as a function of the dot trans-
mission D for sine drive (left panel) and a square drive (right panel).
Experimental points are represented by dots (sine) and squares
(square drive) and compared with numerical simulations based on
Floquet scattering theory: Tel,1 = Tel,2 = 0 (red dashes), Tel,1 =
Tel,2 = 150 mK (black dashes), and Tel,1 = 150 mK, Tel,2 = 0 and
Tel,1 = 0, Tel,2 = 150 mK (blue plain and dashed lines).

then emitted at higher energies and are less sensitive to
thermal excitations. δNH BT is then increased, as seen by
comparing the black and red traces of Fig. 13. This intu-
itive picture can be confronted to numerical calculations
within the Floquet scattering theory [54, 61] which can
be used to calculate δne(ε) and δnh(ε) for any type of ex-
citation drive (sine or square) and any value of the dot
parameters. The resulting curves for the energy distribu-
tions can be found on ref [78], they confirm the intuitive
picture discussed above.

These differences in energy distributions can be re-
vealed by the Hanbury-Brown & Twiss interferometry, as
shown on Fig. 14 that presents measurements of δNH BT

as a function of the dot transmission D for two differ-
ent drives, sine or square. Floquet calculations for square
and sine drives at Tel = 0 are presented in red dashed
line: they are almost identical and reach δNH BT � 1 for
D ∈ [0.2, 0.7], as expected for an ideal source that does
not emit additional electron-hole pairs. For D < 0.2, the
shot noise regime is recovered whereas quantization ef-
fects in the dot are progressively lost for D > 0.7. The ef-
fect of temperature in arm 2 (Tel,2 = 150 mK, Tel,2 = 0) is
shown in blue line. As already discussed, the presence of
thermal excitations reduces δNH BT . This effect decreases
when lowering the transmission, and is more pro-
nounced for sine wave than for square drive. Remarkably,
the effect of temperature in arm 1 (blue dashes) is identi-
cal to the one in arm 2. When a temperature of 150 mK
(extracted from noise thermometry) is introduced in
both arms, a good agreement is found with the experi-
mental data (black dashes). This confirms the tendency
to produce low energy excitations when using a sine
drive, and energy-resolved excitations using a square
drive. Note that the Floquet calculations do not take into

account the energy relaxation [79] along the 3 microns
propagation towards the splitter that will be discussed in
the last section of this article. It only provides the energy
distribution at the output of the source, 3 microns away
from the splitter where the collision with thermal exci-
tations occur. The good agreement with Floquet calcula-
tion implies that energy relaxation has a small effect on
the total number of excitations and would require a di-
rect measurement of the energy distribution (and not of
its integral on all energies) to be characterized.

5.2 Hong-Ou-Mandel experiment

The previously discussed antibunching effect bears
strong analogies with the photon coalescence observed
in the Hong-Ou-Mandel experiment [23]. While quasi-
particles are generated on-demand in the first input,
thermal excitations are however randomly emitted in
the second input. To recreate the electronic analog of
the seminal Hong-Ou-Mandel experiment [80–82], two
identical but independent single electron sources can be
placed in the two input arms of the beamsplitter, as pic-
tured in Fig. 15.

As in the seminal HOM experiment, the antibunch-
ing of the on-demand quasiparticles provides a direct
measurement of the overlap of the two mono-electronic
wavefunctions, i.e. their degree of indistinguishability.
Indeed, for two sources generating periodically (pe-
riod 1/ f ) a single electron described by the wavefunc-
tions φe

1(x) and φe
2(x) above the Fermi sea (well sep-

arated from thermal excitations), as seen in Sec. 2.3,
the coherence function for source i reads 	G (1,e)

i (t, t′) =
φe

i (−vt)φe,∗
i (−vt′) such that we have:

	Q = 4e2 f
(
1 − |〈φe

1|φe
2〉|2) (40)

For perfectly distinguishable electrons, 〈φ1|φ2〉 = 0 and
the classical random partitioning of two electrons is re-
covered. However, for perfectly indistinguishable elec-
trons, 〈φ1|φ2〉 = 1 and the random partitioning is fully
suppressed. The overlap between the two particles can
be modulated by varying the delay τ between the excita-
tions drives. Dividing 	Q by the total partition noise of
both sources (2e2 f for each source neglecting tempera-
ture effects) one then gets the normalized HOM correla-
tions 	q as:

	q = 1 − ∣∣ ∫ dt φ
e,∗
1 (t)φe

2(t + τ )
∣∣2

(41)

When working at finite temperature, the partition noise
in the HOM and HBT configurations is reduced from
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Figure 15 Modified SEM picture of the sample used in the Hong-
Ou-Mandel experiment. The electron gas is represented in blue.
Two single-electron emitters are located at inputs 1 and 2 of a
quantum point contact used as a single electron beamsplitter.
Transparencies D1 and D2 and static potentials of dots 1 and 2 are
tuned by gate voltages Vg ,1 and Vg ,2. Electron/hole emissions are
triggered by excitation drives Vexc,1 and Vexc,2. The transparency
of the beamsplitter partitioning the inner edge channel (blue line)
is tuned by gate voltage Vqpc and set at T = 1/2. The average
ac current generated by sources 1 and 2 are measured on out-
put 3 while the low frequency output noise S44 is measured on
output 4.

their overlap with thermal excitations (see previous
section). However, if the generated quantum states in
sources 1 and 2 remain indistinguishable, the antibunch-
ing effect remains total and numerical simulations using
the Floquet scattering formalism show that 	q is only
marginally modified.

This experiment [83] was realized using similar
sources (level spacings 	1 � 	2 � 1.4 ± 0.1 K), driven
at frequency f = 2.1 GHz with square waves. A delay
τ between both drives can be tuned with an accuracy
of 7 ps. For D1 � D2 � 0.4, both sources are expected
to produce energy-resolved excitations relatively well-
separated from the Fermi sea and with charge 〈Qt〉 � e,
thus achieving with reasonable accuracy the ideal gener-
ation of single-electrons wavepackets.

The resulting HOM correlations are presented in
Fig. 16 as a function of delay τ . A dip in the correlations
is clearly observed around τ = 0. The measured noise
is normalized by its value on the plateaus observed at
large delays, and matches as expected the sum of the
HBT contributions of each source, that are measured in-
dependently by alternatively turning one of the sources

Figure 16 Excess noise 	q as a function of time delay τ and nor-
malized by the value on the plateau observed for long delays. The
sum of both partition noises (in the HBT configuration) is depicted
by the blue blurry line, while the red trace is obtained with a fit by
	q = 1 − ηe−|τ−τ0|/τe

off. As seen in Sec. 3, for a square wave excitation, sin-
gle electron emission is described by an exponentially
decaying wavepacket, with decay time τe and energy ε0

that depends on the amplitude of the square excitation:
φe

1(t) = φe
2(t) = θ(t)√

τe
e−t/2τe e−iε0t/�. 	q then takes the follow-

ing simple form:

	q = 1 − e−|τ |/τe (42)

Taking into account a loss in the visibility η and an error
on synchronization τ0, fitting with 	q = 1 − ηe−|τ−τ0|/τe

then gives τ0 � 11 ps, τe = 62 ± 10 ps and η = 0.5. The ex-
tracted value of τe is consistent with independent mea-
surements via the average current. Though effects of the
partial indistinguishability of the generated excitations
are indubitable, the visibility η is far from unity. This may
be the result of parameter mismatch between the two
sources, resulting in reduced overlap of the wavepackets,
but also from decoherence effects due to interaction with
the environment. Such effects will be discussed in Sec. 6.

5.3 Electron-hole correlations in the
Hong-Ou-Mandel setup

A unique property of electron optics compared to pho-
ton optics is the ability to manipulate hole excitations in
addition to electron excitations. Performing the HOM ex-
periment with identical single hole excitations in the two
input arms of the beamsplitter will produce results simi-
lar to those of electrons (with hole wavefunctions replac-
ing electron wavefunctions in Eq. (41)). But performing
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the HOM experiment while injecting a single electron ex-
citation in one input arm of the beam-splitter, and a sin-
gle hole excitation in the other arm will produce results
which have no counterpart in optics [82].

In order to get useful analytical formulas, we first con-
sider theoretically states where one electron charge has
been added (removed) from the Fermi sea

|�e〉 =
∫

dx φe(x) ψ†(x) |F 〉

|�h〉 =
∫

dx φh(x) ψ(x) |F 〉 (43)

where |F 〉 is the Fermi sea at temperature Tel , and φe(x),
φh(x) the electron and the hole wavefunctions in real
space. Taking the electron-hole symmetric case for sim-
plicity (φe(εF + δε) = φh(εF − δε)), the normalized HOM
correlation 	q̄ becomes:

	q̄ = 1 +
∣∣∣∣∣
∫ ∞

0 dε φe(ε)φh,∗(ε)e−iετ/� f (ε)(1 − f (ε))∫ ∞
0 dε |φe(ε)|2(1 − f (ε))2

∣∣∣∣∣
2

. (44)

Comparing this with Eq. (41), we notice important
changes. First, the interferences contribute now with a
positive sign to the HOM correlations, that is, the oppo-
site of the electron-electron case. Electron-hole interfer-
ences produce a “HOM peak” rather than a dip. Second,
the value of this peak depends on the overlap of the elec-
tron and the hole wave packets times the Fermi product
f (ε)(1 − f (ε)). This peak thus vanishes as Tel → 0 since it
requires a significant overlap between electron and hole
wave packets, a situation which only happens in an en-
ergy range ∼ kB Tel around εF , where electronic states are
neither fully occupied nor empty.

Note that the many-body state |�e〉 (or |�h〉) created
by the application of the electron creation (or annihi-
lation) operator is quite complex when the wavepacket
φe(x) (or φh(x)) has an important weight close to the
Fermi energy. Indeed, due to the changes imposed on
the Fermi sea, many electron-hole pairs are created, and
the state is not simply one electron (or one hole) plus the
unperturbed Fermi sea. The appearance of a positive
HOM peak can be attributed to interferences between
these electron-hole pairs coming from the two branches
of the setup. It is quite remarkable that eventually, the
peak can simply be computed from the overlap of the
electron and hole wavepackets (see Eq. (43)).

To simulate the electron-hole HOM peak with the real
electron emitters, we have used the Floquet scattering
matrix formalism. We have computed the correlations
	q̄ when the two single electron sources in the two input
arms of the beam splitter are submitted to a square drive.

Figure 17 Upper panel: Electron (left) and hole (right) emission
process, for a square voltage drive of period T0 = 400 (in units of
�/	), for the two positions of the dot levels (values V+ and V− of
the drive). The position of the dot levels is parametrized by ε with
respect to the Fermi energy E F . Bottom panel: Theoretical predic-
tion for the excess noise 	q̄ as a function of the time delay τ ,
showing the electron-hole HOM peaks around τ = T0/2 = 200.
The different curves are for ε = 0.5, 0.4, 0.25 and 0 (in units of
	). Tel = 0.1	 and the transparency D = 0.2 in both panels.

As these sources periodically emit an electron and then
(after half a period) a hole, the correlations obtained for a
time delay close to a half-period correspond to the corre-
lations between an electron and a hole. The results for 	q̄
as a function of the time-delay τ are shown on Fig. 17, for
a drive period of 400 (in units of �/	). As the correlations
are proportional to the overlap in energy of the electron
and the hole wavefunctions (see Eq. (44)), in order to ob-
serve a peak the electron emission and the hole emission
need to happen at energies not too far apart. This can be
controlled by the dot level position of the single electron
source with respect to the Fermi energy: when a dot level
is close to resonance with the Fermi energy (ε = 0 on
Fig. 17), the energy overlap between the emitted electron
and the emitted hole is important, and a large peak in the
correlations 	q̄ is observed. On the other hand, when the
dot levels of the single electron sources are far from res-
onance (ε = 0.5 on Fig. 17), there is no overlap in energy
between the emitted electron and the emitted hole, and
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no peak is visible in the correlations, as observed on the
experimental data of Fig. 16 where electron/hole corre-
lations are below experimental resolution. The temper-
ature used in these simulations is Tel = 0.1	, which is
similar to the experimental value.

5.4 Tomography of a periodic electron source

In the previous experiments, properties of the source
can be inferred by measuring, through current correla-
tions, the resemblance between the state in input arm 1
and its counterpart in input arm 2. Indeed, HBT correla-
tions yield information on the energy distribution of the
source, by taking the Fermi sea as a reference, whereas
HOM correlation demonstrate the indistinguishability
of two quantum states generated by two independent
sources. In fact, the complete coherence function in en-
ergy domain 	G̃ (1,e)(ε, ε′) of a source of electrons and
holes can be obtained in the HBT geometry by placing
in input arm 2 different reference sources and measur-
ing the corresponding current correlations. These spec-
troscopy [84] and tomography processes [31], inspired
by the optics equivalent [85–87] could provide a direct
image of electron wavepackets propagating in quantum
Hall edge channels through the determination of the
first order coherence in the ε, ε′ plane. For a periodic
source, the definition of the first order coherence in the
energy domain needs to be slightly modified. Indeed,
	G (1,e)(t, t′) has a T-periodicity in the time t̄ = t+t′

2 , and
no periodicity along τ = t − t′. Using these two variables
in time, the Fourier transform is defined in the following
way:

G (1,e)(t, t′) =
+∞∑

n=−∞
e−in�t̄

∫
dω

2π
G̃ (1,e)

n (ω)e−iωτ (45)

From the above definition, G̃ (1,e)
n (ω) and G̃ (1,e)(ε, ε′) are re-

lated through:

G̃ (1,e)(ε, ε′) =
+∞∑

n=−∞

δ(ε − ε′ − n��)
h

G̃ (1,e)
n

(ε + ε′

2

)
(46)

Due to the periodicity in time, G̃ (1,e)(ε, ε′) takes dis-
crete values along the energy difference ε − ε′ = n��

while the sum of energies takes continuous values, ε+ε′
2 =

�ω. The population in energy domain thus corresponds
to the n = 0 component of G̃ (1,e)

n (ω) while the coherences
correspond to n �= 0.

The source contribution of the coherence function
	G̃ (1,e)

n (ω) can be fully reconstructed in the n�� = ε − ε′,
�ω = ε+ε′

2 plane by applying as a reference state on in-

Figure 18 The spectroscopy and tomography of a periodic elec-
tron source can be achieved by modulating in a controlled way
the two-particle interference, in the HBT geometry, between the
source under study and reference sources. a) Sweeping the volt-
age Vdc applied on the ohmic contact in input 2 enables to ex-
tract the diagonal part of the coherence function of the source
in input 1, namely the energy distribution δne/h. b) A dynamical
modulation of the partition noise by applying a voltage Vn(t) =
Vdc + Vac cos(n�t + φ) similarly gives access to the harmonics
	Gn, n �= 0 of the coherence function.

put 2 a voltage Vn(t) = Vdc + Vac cos(n�t + φ) sum of a
dc bias and an ac excitation at angular frequency n�.
The complete description of this tomography protocol
lies beyond the scope of this article and can be found
in Ref. [31]. However an intuitive understanding can be
drawn, that mainly relies on the two-particle interfer-
ence between the electron source under study and the
reference source. Let us first focus on the reconstruc-
tion of the n = 0 component of the coherence function,
associated with the energy distribution, δne/h that is on
the spectroscopy of the electron source. A sketch sup-
porting this discussion is presented Fig. 18a). In the case
n = 0, only the dc part of the voltage applied on input 2
is kept: V0(t) = Vdc that shifts the chemical potential of
the connected edge by the value −eVdc. As already men-
tioned, a two-particle interference can only occur be-
tween states of same energy. An electron at a well defined
energy ε0 finds a symmetric partner in input 2 only if
ε0 < −eVdc (in the limit of vanishing temperature). Under
this threshold, antibunching occurs with unit probability
and partition noise is reduced to zero. Otherwise, for ε0 >

−eVdc, the random partitioning takes place, regardless
of the presence of the DC bias. Accordingly, by sweep-
ing the bias Vdc, one can then reconstruct the probabil-
ity of finding a particle at energy ε, namely δne/h(ε) =
h2 f

v 	G̃ (1,e)
n (ε/�) from the Vdc dependence of the parti-

tion noise due to antibunching effects. Due to thermal
smearing effects, the resolution of such a spectroscopy
is in fact limited to kTel in the presence of a finite tem-
perature Tel . In the same manner (Fig. 18b)), dynamical
modulations of the noise with a reference voltage Vn(t) =
Vdc + Vac cos(n�t + φ) enables to gain access to harmon-
ics 	G̃ (1,e)

n (ω) for n �= 0, that is the off diagonal elements
ε − ε′ = n�� in the ε, ε′ plane.
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Figure 19 Examples of coherence functions in the complex plane. For transmissions D = 1, D = 0.4, D = 0.1, odd and even harmonics
of coherence functions 	G (e) are plotted as a function of energy in a 2D plots. In contrast with the case D = 1, excitations are energy
resolved at rather high energies ±	/2 for D = 0.4 and D = 0.1. When emission probability drops (for D = 0.1), emission of holes
and electrons are correlated as the generation of an electron is subject to the generation of the preceding hole

Using once again the Floquet scattering formalism,
simulations of the coherence function of a periodic
source have been realized, in the case of the single elec-
tron/hole source: three cases with different sets of pa-
rameters illustrate the key features on Fig. 19. For clar-
ity, odd and even harmonics of 	G (e)(ω) are plotted on
separate graphs as they have different parity with re-
spect to ω: 	G (e)

2 p is odd while 	G (e)
2 p+1 is even. First, these

graphs clearly highlight the four quadrants identified
in Fig. 2. For a transmission D = 0.4, the parameters
are close to the optimal values: every charge is emitted
during the dedicated emission cycle and the excitations
are highly energy-resolved, around energies ±	/2. Only
weak e/h coherences are detected: the emission proba-
bility is very close to one, so that the emission of an elec-
tron is decorrelated from the emission of the previous
hole as the emission probability is close to one. Going to-
wards higher transmission (D = 1) yields excitations that
lie mostly at low energy, and spread over a wide range of
energies. Since the transmission is high, the two emis-
sion events of electron and holes are once again decorre-
lated. On the opposite, for lower transmissions (D = 0.1),
strong e/h coherences appear as the emission probabil-
ity is much smaller than 1. Production of holes and elec-

trons are correlated as the emission of an electron is sub-
ject to the emission of the preceding hole, which does not
take place in each cycle.

Note that, as suggested in refs [88, 89], the coher-
ence function of the source could also be measured in
time domain, 	G (1,e)(t, t + τ ), measuring the current at
time t at the output of a Mach-Zehnder interferometer
as a function of the difference τ in the propagation time
between the two arms of the interferometer. This method
implies a simpler measurement (average current instead
of current fluctuations) but a more complicated sample.
Also, decoherence effects during the propagation in the
interferometer [90–93] would have to be taken care of.

6 Interactions in electron quantum optics

6.1 Interaction mechanism in quantum Hall edge
channels

In the previous sections of this manuscript, electron-
electron interactions have been neglected, regarding the
presentation of the general framework of electron quan-
tum optics (Sec. 2) as well as in the discussion of the
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experimental results where the propagation along the
channels was assumed to be interaction free and dis-
sipationless. Most results can indeed be first analyzed
without taking into account the presence of interaction-
induced decoherence of the mono-electronic excita-
tions. However, due to their one-dimensional nature,
quantum Hall edge channels are prone to emphasize in-
teraction effects. In 1D systems, the motion of an elec-
tron interacting with its neighbours strongly affects the
latter, so that the picture of quasi-free quasiparticles
(Fermi liquid paradigm) holding for 2D and 3D sys-
tems is not adapted. It is replaced by the Luttinger liq-
uid description, that relies on bosonic collective exci-
tations [94], called edge-magnetoplasmons in quantum
Hall systems. Moreover, inter-channel Coulomb interac-
tions then couple neighboring edge channels (at filling
factor ν > 1), leading to the appearance of new collective
propagation eigenmodes [91].

The simplest model of two interacting co-
propagating edge channels (ν = 2) illustrates the
typical interaction mechanism. In the absence of both
inter and intra channel interactions, currents propagate
independently in each channel at the bare Fermi velocity
v. The current ik(x, ω) flowing in channel k (k = 1, 2) at
position x and angular frequency ω is simply related to
the current at position x = 0 by the phase ei ωx

v acquired
along the propagation: ik(x, ω) = ei ωx

v ik(0). If only intra-
channel interactions are turned on, channels 1 and 2
are not coupled such that current propagation along
each channel is still described by a phase with a velocity
renormalized by interactions. However, when including
interchannel interactions, outcoming currents ik(x, ω) at
position x are related to incoming ones at position x = 0
via a 2 × 2 scattering matrix Semp(ω, x) [95]. Note that
Semp describes the scattering of edge magnetoplasmons
and not electrons, so that Semp acts on the current rather
than on the fermion field operator â in usual Landauer-
Büttiker scattering formalism. The diagonalization of
the scattering matrix Semp then gives access to the new
propagation eigenmodes, that couple both channels.
In particular, in the limit of strong interactions the two
eigenmodes consist in a slow neutral dipolar mode
for which the charge is anti-symmetrically distributed
between both channels, and fast charge mode with
symmetric charge distribution [91] as depicted in Fig. 20.
Due to Coulomb repulsion, the charge mode propagates
much faster than the neutral one, vρ � vn. The appear-
ance of these eigenmodes bears strong similarities with
the separation of the spin and charge degrees of freedom
in non-chiral quantum wires [96–98].

Various experiments have been carried out to inves-
tigate the coupling between edge channels and their ef-

Figure 20 In case of strong coupling between edge channels, a
charge density wave in channel 1 is decomposed on two new prop-
agation eigenmodes: a slow neutral mode of velocity vn with an-
tisymmetric distribution of the charge, and a fast charge mode
(velocity vρ � vn) with a symmetric repartition of the charge.

fect on the relaxation and decoherence of electronic ex-
citations. This coupling has been shown to be responsi-
ble for the loss of the visibility of the interference pattern
in Mach-Zehnder interferometers at filling factor ν = 2
[7, 16, 99]. In this case, the coupling of the external chan-
nel (which is the one probed in the interferometer) to
the neighboring one leads to decoherence as informa-
tion on the quantum state generated in the outer chan-
nel is capacitively transferred to the inner one acting as
the environment. The influence of interchannel coupling
on the energy relaxation of out of equilibrium excitations
emitted in the outer edge channel has also been probed
[100, 101] at filling factor ν = 2 using a quantum dot as
an energy filter. These results have shown that coherence
is lost and energy relaxes on a typical length of a few
microns. Numerous theoretical works have successfully
interpreted decoherence in interferometers [90, 91, 102]
and energy relaxation along propagation [95,103–105] as
stemming from interchannel Coulomb interactions. As a
consequence, decoherence and relaxation can be con-
trolled to some extent for example by the use of addi-
tional gates used to screen the interchannel interaction
or by closing the internal edge channel which then ac-
quires a gapped discrete spectrum such that interactions
are fully frozen for energies below the gap. The latter
technique has been shown to decrease both the energy
relaxation [106] and the coherence length [18, 107].

Coupling between channels have also been inves-
tigated through high frequency current measurements
that directly probe the propagation of edge magne-
toplasmons in a quantum Hall circuit. Numerous ex-
perimental works have investigated the propagation of
charge along quantum Hall edge channels, both in the
time [108–110] or in the frequency domain [111–113].
However, in the ν = 2 case for example, to access all
the terms of the 2 × 2 scattering matrix Semp(ω, x) and
reveal the nature of the eigenmodes, one needs to se-
lectively address each edge channel individually. Us-
ing a mesoscopic capacitor to selectively inject an edge
magnetosplasmon in the outer edge channel and a
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Figure 21 Schematics of interactions with the environment. A sin-
gle particle propagating on an edge channel enters the interac-
tion region. After the emission of plasmonic waves in the environ-
ment, the edge channel is entangled with the environment at the
output.

quantum point contact to analyze the scattering of the
emp to the outer and inner edge channels after a con-
trolled interaction length, the scattering parameters of
Semp(ω, x) and their frequency dependence could be in-
vestigated, thus revealing the nature of the neutral and
charge eigenmodes by a direct measurement of the cur-
rent at high frequency [114]. Recently, interchannel inter-
actions could also be characterized using partition noise
measurements [115] to measure the excitations (elec-
tron/hole pairs) induced in the inner channel when elec-
trons were injected selectively in the outer one.

The existence and nature of the interchannel cou-
pling is thus now well established, however its influence
on any arbitrary single electron state generated above the
Fermi sea by single particle emitter is a challenging prob-
lem that still requires theoretical and experimental in-
vestigation. Some results can be obtained in the specific
case of a single electron state emitted at a perfectly well
defined energy ε0 above the Fermi sea [79].

6.2 Decoherence of an energy-resolved excitation

A single electronic excitation created on top of the Fermi
sea enters at x = 0 in a region where it interacts, via
Coulomb interaction, with an environment along a prop-
agation length l, see Fig. 21. The external environment,
which can be any capacitively coupled conductor like an
external gate or the adjacent edge channel in the ν = 2
case is labeled as conductor 2 while the edge channel
along which the excitation propagates will be labeled as
conductor 1. As discussed previously in the context of
two coupled edge channels at ν = 2, the interaction be-
tween both conductors can be encoded in the scattering
matrix Semp(ω, l) which gives the scattering coefficients
for charge density waves of angular frequency ω prop-

Figure 22 a) Energy distribution before (blue curve) and after
(red curve) interaction along the propagation length l. b) Typical
dependence of the quasiparticle peak height on the interaction
length l.

agating in conductors 1 and 2 from the input x = 0 to
the output x = l of the interaction region. During prop-
agation in the interaction region, a single particle will
emit plasmonic waves in the environment (in the follow-
ing the input state of the environment will be considered
to be at equilibrium at zero temperature). The environ-
ment and edge channel 1 are then described by a com-
plex many-body state where the edge channel and en-
vironment are entangled. Tracing out the environmental
degrees of freedom at the output, the state of edge chan-
nel 1 cannot be described as a pure state anymore and
the off-diagonal terms of the first order coherence func-
tion can be drastically reduced.

The single electron coherence that describes the
electronic state in edge channel 1 at the input of the
interaction region (x, y ≥ 0) is known, 	G (1,in)(x, y) =
φe(x)φe,∗(y) ∝ ei ε0(x−y)

�v (we prefer here to use the x, y no-
tation than the t, t′ one to distinguish between the in-
put and output of the interaction region). In Fourier
space, the energy distribution consists of a Dirac peak
at energy ε0 above the Fermi sea, δne(ε) = δ(ε − ε0) (see
blue curve on Fig. 22a). Note that as a consequence
of the specific choice of the input wavepacket (plane
wave of well defined energy), the input state is station-
ary in time such that the coherence function in Fourier
space is fully determined by the diagonal part δne(ε).
At the output of the interaction region, one can guess
the shape of the output energy distribution: the elec-
tron has lost some energy, as a consequence, the quasi-
particle peak is reduced to the height Z ≤ 1 (which
eventually goes down to zero as the propagation length
increases, see Fig. 22b)) and a relaxation tail δn(t)

e (ε) ap-
pears below the quasiparticle peak. This energy can be
transferred both to the environment but also to the
Fermi sea through the creation of additional electron-
hole pairs. This can be seen by the appearance of a
non-equilibrium energy distribution δn(r)

e (ε) at small en-
ergies above the Fermi sea. At high enough energy
ε0 each of these two contributions can be identified
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and associated with a decoherence coefficient of the
emitted wavepacket: φe(x)φe,∗(y) → φe(x)φe,∗(y) D(x −
y) with D(x − y) = DF S(x − y) × Denv(x − y) where DF S

stands for a Fermi sea induced decoherence and Denv for
the decoherence induced by the external environment.
These two decoherence coefficients can be directly ex-
pressed as a function of the plasmon scattering matrix in
the interaction region [79]:

Denv(x − y) = exp
∫ ∞

0

dω

ω
|S21(ω)|2(ei ω(x−y)

v − 1
)

(47)

DF S(x − y) = exp
∫ ∞

0

dω

ω
|1 − S11(ω)|2(ei ω(x−y)

v − 1
)

(48)

D(x − y) = exp
∫ ∞

0

dω

ω
2�(

1 − S11(ω)
)(

ei ω(x−y)
v − 1

)
(49)

In this regime, the Fermi sea appears as an extra dissi-
pation channel which must be taken into account into
an effective environment. Note that here, this picture
emerges in the high energy limit and is not valid when
the extra-particle relaxes down to the Fermi surface. In
this latter case, separation of the extra particle and the
additional electron-hole pairs created above the Fermi
sea is not possible and the decoherence coefficient D(x −
y) cannot be identified as easily. This decoherence coef-
ficient which suppresses the off diagonal coefficients of
the first order coherence (D(x − y) → 0 for |x − y| → ∞)
has important consequences on a Hong-Ou-Mandel ex-
periment which is a sensitive probe of the off-diagonal
components (coherences). Let us assume for simplic-
ity that the decoherence factor takes the simple form

D(t, t′) = e− |t−t′ |
τc (the decoherence factor has been ex-

pressed in time instead of position using x = −vt). In
this case, Eq. (41) for the normalized output noise in the
HOM experiment which was valid in the case of two pure
states at the input of the splitter (absence of decoher-
ence) needs by the following expression which takes into
account decoherence:

	q = 1 −
∫

dtdt′φe
1(t)φe,∗

1 (t′)φe
2(t′)φe

2(t)D1(t, t′)D2(t′, t)

(50)

Taking φe
1(t) = �(t)√

τe
e− t

2τe e−iε0t/�, φe
2(t) = φe

1(t + τ ) where τ

is the tuneable time delay between the emission of

the two sources, and D1(t, t′) = D2(t, t′) = e− |t−t′ |
τc , one

obtains:

	q = 1 − ηe− |τ |
τe (51)

η = 1
1 + 2τe/τc

(52)

This model of decoherence predicts a reduction of the
HOM dip at τ = 0 while keeping the shape of an expo-
nential decay when varying the delay τ . This model pre-
dicts that a wavepacket with a small temporal extension
and in particular much smaller than the coherence time
τc is not affected by decoherence, η ≈ 1. On the contrary,
a wavepacket with a large temporal extension (τe � τc)
is drastically affected by decoherence and the HOM dip
vanishes, η ≈ τc

2τe
. In this limit, the electron cannot be de-

scribed by a coherent wavepacket with a well defined
phase relationship between its various temporal compo-
nent but rather by a classical probability distribution of
different emission times of typical extension given by τe.
In this case, the width τe plays the role of a random delay
between the two sources which explains the reduction of
the HOM dip. In our experiment, we measure η ≈ 0.5 for
τe ≈ 50 ps which is consistent with τc ≈ 100 ps.

6.3 Interactions in the Hong-Ou-Mandel setup

We now provide a quantitative description of the effects
of Coulomb interactions in the Hong-Ou-Mandel setup
in the case of interchannel coupling at filling factor 2.
We consider the case of short range interchannel inter-
actions and strong coupling such that the eigenmodes
are the symmetric fast charge mode (with velocity vρ)
and the slow antisymmetric neutral mode (with velocity
vn � vρ) as described in Sec. 6.1. Finite temperature of
the leads can also be included.

The single electron source is modeled through the in-
jection of single wave-packets at a given distance l from
the QPC (chosen symmetrically for the two incoming
arms: x = ±l). As previously discussed, the wavepack-
ets are defined as exponentials in real-space, φ2(x) =

1√
vτe

e−iε0 x/(�v)e−x/(2vτe)θ(x), and for the sake of simplicity,
we focus on the interference between identical wave-
packets, φ1(x) = φ2(−x).

The normalized HOM correlation then reads [116]:

	q̄(τ ) = 1 − Re [qHOM]
Re [qHBT]

(53)

where

qHOM =
∫

dx1dy1

∫
dx2dy2φ1(x1)φ∗

1 (y1)g (0, x1 − y1)

×φ2(x2)φ∗
2 (y2)g (0, y2 − x2)

×
∫

dtdt′Re
[
g (t′ − t, 0)2] ×

[
1 − h(t; x2, y2)

h(t′; x2, y2)

]

×
[

1 − h(t′ + τ ; −x1,−y1)
h(t + τ ; −x1,−y1)

]
(54)
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qHBT =
∫

dx1dy1

∫
dx2dy2φ1(x1)φ∗

1 (y1)g (0, x1 − y1)

×φ2(x2)φ∗
2 (y2)g (0, y2 − x2)

×
∫

dtdt′Re
[
g (t′ − t, 0)2]

×
[

2 − h(t; x2, y2)
h(t′; x2, y2)

− h(t′; −x1,−y1)
h(t; −x1,−y1)

]
(55)

and the auxiliary functions introduced are given by

g (t, x) =

⎡
⎢⎢⎣

sinh
(

i
πa
βvρ

)

sinh
(

ia + vρ t − x
βvρ/π

)
sinh

(
i

πa
βvn

)

sinh
(

ia + vnt − x
βvn/π

)
⎤
⎥⎥⎦

1/2

,

h(t; x, y) =

⎡
⎢⎢⎣

sinh
(

ia − vρ t + x + l
βvρ/π

)

sinh
(

ia + vρ t − y − l
βvρ/π

)
⎤
⎥⎥⎦

1
2 ⎡
⎢⎢⎣

sinh
(

ia − vnt + x + l
βvn/π

)

sinh
(

ia + vnt − y − l
βvn/π

)
⎤
⎥⎥⎦

1
2

.

The variable a is a spatial cutoff, which ultimately
needs to be sent to 0, and β = 1/(kB Tel).

Numerical evaluation of Eq. (53) can be performed
thanks to a quasi Monte Carlo algorithm using impor-
tance sampling [117], results are presented on Fig. 23. As
we vary the time delay τ of the right-moving electron over
the left-moving one, our computations reveal the pres-
ence of three characteristic signatures in the noise (see
Fig. 23): a central dip at τ = 0, and two side structures
which emerge symmetrically with respect to the central
dip at τ = ±l(vρ − vn)/vρvn. The depth and shape of these
three dips are conditioned by the energy resolution of
the incoming wave-packets. Away from these three fea-
tures, the normalized correlations saturate at a constant
value, representing the Hanbury-Brown and Twiss con-
tribution. This corresponds to the situation where the
electrons injected on the two incoming arms scatter in-
dependently at the QPC.

This interference pattern can be interpreted in terms
of the different excitations propagating along the par-
titioned edge channel. After injection, the electron
fractionalizes into two modes: a slow neutral mode with
anti-symmetric distribution of the charge between the
injection and the co-propagating channels and a fast
charge mode with a symmetric repartition of the charge
among the two channels. The central dip, which corre-
sponds to the symmetric situation of synchronized injec-
tions, thus probes the interference of excitations with the
same velocity and charge. These identical excitations in-
terfere destructively, leading to a reduction of the noise
(in absolute value), thus producing a dip in the normal-
ized HOM correlations.

Figure 23 Normalized HOM correlations as a function of the time
delay τ , for two different type of wave-packets: (upper) one with
an escape time τe = 22 ps and emitted energy ε0 = 0.175 K and
(lower) one with an escape time τe = 44 ps and emitted energy
ε0 = 0.7 K. In both cases, Tel = 0.1 K.

A striking difference with the non-interacting case is
that the central dip never reaches down to 0 as observed
experimentally (see Sec. 5.2). The depth of this dip is ac-
tually a probing tool of the degree of indistinguishability
between the colliding excitations [80]. Our present work
suggests that because of the strong inter-channel cou-
pling, some coherence is lost in the other channels, and
the Coulomb-induced decoherence leads to this charac-
teristic loss of contrast for the HOM dip. This effect gets
more pronounced for further energy-resolved packets.
As depicted in Fig. 23, while for “wide” packets in energy
(γ = 2ε0τe

�
≈ 1) the contrast (defined as η = 1 − 	q̄(0)) is

still pretty good, η ∼ 0.8, the loss of contrast can be dra-
matic for energy-resolved packets, with η ∼ 0.4 for γ = 8.

Adjusting the time delay appropriately, one can also
probe interferences between excitations that have differ-
ent velocities. This effect is responsible for the side struc-
tures appearing in the noise: at τ = l(vρ − vn)/(vρvn), the
fast right-moving excitation and the slow left-moving
one reach the QPC at the same time while the dip at τ =
−l(vρ − vn)/(vρvn) corresponds to the collision between
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a slow right-moving excitation and a fast left-moving
one. Like the central dip, these lateral structures cor-
respond to the collision of two excitations of the same
charge, which interfere destructively. Their depth is how-
ever less than half the one of the central dip. This can be
attributed to the velocity mismatch between interfering
excitations, as it indicates that they are more distinguish-
able. This difference of velocity of the two colliding ob-
jects is also responsible for the asymmetry of the lateral
dips. Typically, the slope is steeper for smaller |τ |. This
asymmetry is very similar to the one encountered in the
non-interacting case for interfering packets with differ-
ent shapes, where a broad right-moving packet in space
collides onto a thin left-moving one [82].

7 Conclusion

As detailed in this manuscript, optical tools and concepts
can be used in a very efficient way to understand and
characterize electronic propagation in a quantum con-
ductor. Within this framework, electronic transport is an-
alyzed through a simple single particle description which
captures most of the features of electron propagation but
is only correct in the non-interacting photon-like case.
In the presence of Coulomb interactions the correct de-
scription relies on the resolution of a complex many-
body problem.

The production and manipulation of single-particle
states provide a direct test bench for single-particle
physics. Using controlled emitters with tuneable param-
eters, a wide range of single particle wavefunctions can
be engineered both in time or energy [78, 118] space.
Coulomb interaction during propagation with the sur-
rounding electrons of the Fermi sea and nearby conduc-
tors will strongly affect the state of a single excitation.
Consequently, even the propagation of a single electron
tends to a complex many body problem: as the elec-
tronic wavepacket propagates, it relaxes and decoheres,
and additional electron-hole excitations are generated.
This mechanism sets the limits of electron quantum op-
tics: during propagation, a single-particle excitation is
diluted in collective excitations, so that the possibility
of manipulating a pure single-particle quantum state is
lost. To get a complete understanding of the effects of
Coulomb interactions, it is necessary to picture fully the
electronic wavefunction in energy or time domains. The
tomography protocol suggested in [119] provides a com-
plete imaging of the first order coherence in energy do-
main from noise measurements in the Hanbury-Brown
and Twiss geometry. In particular the energy distribution
of mono-electronic excitations could be extracted from

the variation of the output noise when shifting the chem-
ical potential of a Fermi sea used as reference state in one
input. The measured energy distribution after a tune-
able propagation length could be compared with the non
interacting theory presented in Sec. 4 in analogy with
the spectroscopy of a non-equilibrium stationary elec-
tron beam performed in ref. [51, 100] using a quantum
dot as an energy filter. The energy distribution is also di-
rectly related to heat transfers and heat fluctuations gen-
erated by single particle emitters [120, 121] and could
thus be inferred from nano-caloritronic measurements.
In the time domain, the first order coherence could be
measured using a single electron emitter at the input of a
Mach-Zehnder interferometer [88].

Beyond the study of the propagation of a single exci-
tation, proposals have been made to manipulate coher-
ently single to few electronic excitations, connecting the
physics of quantum conductors to quantum informa-
tion processing. For example, the Mach-Zehnder geom-
etry, together with two single electron emitters placed at
the input, could be used to postselect entangled electron
pairs [122–124] or to generate GHZ states [125]. How-
ever, such coherent manipulations would require to re-
duce and circumvent the effect of Coulomb interaction
in quantum Hall edge channels for example by closing
the internal edge channel [106, 107]. Energy exchanges
between neighboring edge channels are then frozen for
energies below the excitation gap of the internal edge.
As pioneered in [126], coherent manipulations could also
be performed on the spin degree of freedom. By trans-
ferring charge in a controlled manner between the two
co-propagating edge channels of opposite spins at filling
factor ν = 2, any coherent superpositions of spins could
be achieved.

Finally, another extremely interesting route would be
to extend these concepts to other ballistic electronic sys-
tems. Of particular interest would be the study of trig-
gered charge emission along the edge channels of the
fractional quantum Hall regime [127]. The question is
whether one can emit and manipulate a single quasipar-
ticle of fractional charge in the same fashion as single
electronic excitations for integer values of the filling fac-
tor. In particular the study of two-particle interference
would be of particular interest as they are sensitive to
the phase associated with the exchange of two particles
and could thus provide a way to measure the statistics of
fractional excitations. Another possible implementation
would be the recently discovered helical edge states of
quantum spin Hall effect [128, 129]: an equivalent of the
mesoscopic capacitor in such a system has already been
proposed [130, 131], enabling the generation of time-bin
entangled pairs of electrons.
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[67] A. Mahé, F. D. Parmentier, E. Bocquillon, J. M. Berroir,
D. C. Glattli, T. Kontos, B. Plaçais, G. Fève, A. Ca-
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82(1), 013904 (2011).

[72] T. Jonckheere, T. Stoll, J. Rech, and T. Martin, Phys.
Rev. B 85(4), 045321 (2012).

[73] R. Hanbury-Brown and R. Twiss, Nature 178(4541),
1046–1048 (1956).

[74] R. Hanbury-Brown and R. Twiss, Nature 177(4497),
27–29 (1956).

[75] C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y.
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[80] G. Fève, P. Degiovanni, and T. Jolicoeur, Phys. Rev. B
77(3), 035308 (2008).

[81] S. Ol’khovskaya, J. Splettstoesser, M. Moskalets, and
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B. Plaçais, A. Cavanna, Y. Jin, and G. Fève, Science
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