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Weak localization of light by cold atoms: The impact of quantum internal structure
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Since the work of Anderson on localization, interference effects for the propagation of a wave in the
presence of disorder have been extensively studied, as exemplified in coherent backs¢&BSiraf light.
In the multiple scattering of light by a disordered sample of thermal atoms, interference effects are usually
washed out by the fast atomic motion. This is no longer true for cold atoms where CBS has recently been
observed. However, the internal structure of the atoms strongly influences the interference properties. In this
paper, we consider light scattering by an atomic dipole transition with arbitrary degeneracy and study its
impact on coherent backscattering. We show that the interference contrast is strongly reduced. Assuming a
uniform statistical distribution over internal degrees of freedom, we compute analytically the single- and
double-scattering contributions to the intensity in the weak-localization regime. The so-called ladder and
crossed diagrams are generalized to the case of atoms and permit to calculate enhancement factors and
backscattering intensity profiles for polarized light and any closed atomic dipole transition.
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[. INTRODUCTION ternal structure makes the atom behave very differently from
a point dipole scatterer. Indeed, coherent backscattering of
Interference of waves is the general feature shared by difeolarized light by a laser-cooled gas of Rubidium atoms has
ferent fields of physics such as optics, acoustics, and quafeen observed recenti14,15 in the weak-localization re-
tum mechanics. For waves propagating in disordered medidime. There, surprisingly low enhancement factors for the
it was believed that interference effects would be scramble®ackscattered intensity indicate that interference is less effi-
and that a reliable Boltzmann transport theory would emergéient for atoms than for classical point dipole scatterers. A
[1]. But Anderson2] predicted in the context of solid-state careful study of the coherent propagation of light waves in
physics that interference can inhibit the propagation of matatomic gases therefore promises to be of great interest for
ter waves in disordered medianderson localization Since ~ both fields “multiple scattering in disordered media” and
then, many theoretical and experimental works have showrcold atoms.”
that elastic multiple scattering in the presence of disorder is In this paper, we show in detail how the internal atomic
full of rich phenomend3-5]. The coherent backscattering structure can account for the reduction of the enhanced back-
effect, an interferential enhancement of the average reflectegfattering of polarized light by atoms. In particular, we gen-
light intensity in the backscattering direction, was the firsteralize the theory of single and double scattering of polarized
direct experimental evidendé—8] that interference of light light by classical point scatterers to the case of atomic scat-
waves persists in the presence of disorder and has been dgrers with an arbitrarily degenerate dipole transition. Be-
tensively studied for the past fifteen years. cause of this degeneracy, the full atomic scattering tensor has
At the same time, considerable advances were achieved i@ be considered. It will be shown that its nonscalar parts are
creating and controlling dilute gases of cold atoms, leadingesponsible for a single scattering background in all polariza-
to the experimental observation of Bose-Einstein condensdion channels and a drastic reduction of the interference con-
tion in 1995 and triggering active experimental and theoretirast.
ical research9]. It is not surprising that cold atomic gases  The paper is organized as follows. Section Il introduces
have been Suggested as promising media for Stfgnger- the basic notions of enhanced backscattering of |Ight by a
son localization of light[10]. Well-defined atomic transition Standard disordered medium. Section Ill presents an analysis
lines allow strongly resonant light scattering with cross secOf single- and double-scattering amplitudes of light by atoms
tions of the order of the squared optical wavelength, muctnd shows qualitatively how a quantum internal structure
bigger than the actual size of the atom. In this respect, atom&duces the backscattering enhancement. In Sec. IV, the
are natural realizations of the mathematical concept of poingingle- and double-scattering intensities are calculated ana-
dipole scatterergalso known as resonant Rayleigh scatter-lytically, preparing the way for the quantitative analysis con-
ers, a paradigmatic model in the context of multiple scatter-tained in Sec. V.
ing [11-13. However, this simplified description has be-
come questionable. The atomic dipole transition interacting Il. ENHANCED BACKSCATTERING OF LIGHT
with light in real experiments is usually more complicated:
both the ground statéwith angular momentund) and the
excited statéwith angular momentund,) present an impor- A wave, characterized by its wave-lengthor wavenum-
tant degeneracy, necessary for cooling and trapping. This iberk=2/\ in vacuum, incident upon a disordered medium

A. Two-wave interference
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is scattered into a multitude of partial waves. If the indi- ence. The so-called crossed terpi6) contains the interfer-
vidual scattering events are elastic, these partial waves are alhces between direct and reverse amplitudes. Under well-
coherent and interfere. In the weak-localization regime, indichosen experimental conditions, where all paths and their
vidual scatterers with a scattering cross-sectioare distrib-  reverse counterparts have exactly the same amplitude, the
uted with number density so that the scattering mean free constructive two-wave interference leads to a maximal con-
path/'=1/no is much larger thai. This condition, equiva- trastl -(0)=1,(0). Awayfrom the backward direction ()
lently stated ak/>1, says that the mean distance betweens averaged to zero once the typical phase difference of in-
scattering events is much larger than the wavelength, so th&rfering amplitudes approachésp~ 1. Taking the double-
waves propagate almost freely inside the medium. In thiscattering contributionN=2), the distance ,,=||r;—r,||
regime, the wave amplitud& can be constructed by coher- will be given on average by the scattering mean free path
ent superpositiod= X ,a,, of partial waves that are scattered To first order in6, the typical phase difference then Asp
along a quasiclassical path joining the positions of consecu=k/ 9. Therefore,| -(#) decreases to zero over an angular
tive scattererd16]. The positions of all scatterers in turn scale 1k/ that is very small in the weak scattering regime
determine the precise shape of the resulting interference pat7’>1. Higher orders of scattering involve paths with end-
tern, as observed in the speckle figures of scattered lasgbints further apart and thus contributeltowith a smaller
light. angular width. For a semi-infinite and nonabsorbing scatter-
This interference pattern is naively expected to be washephg medium, the sum of all contributions has been shown to
out when averaged over the realizations of the disofft&r result in the so-called coherent backscattering cone, a sharp
example, by thermal motion of the scattejeris fact, the intensity peak exactly in the backscattering directja®—
average intensityl =(|A|%) separates into independently 21]. When higher orders of scattering become relevant, the
squared amplitudes and the sum of interference teims, width of the backscattering enhancement is determined not
:§p<|ap|2>+gp¢p,<apap,> (the brackets indicate an aver- by the scattering mean free path but rather by the transport
age over realizations of disorder, the bar denotes complesiean free path’,=//(1—(cos#)); here,(.) denotes an av-
conjugation. If the scatterers are distributed randomly, dif- erage over the differential cross section.(tos6)=0, the
ferent scattering pathg(# p) involve uncorrelated phases. two length scales are identicaf,=/". This is true for iso-
The interference terms may be expected to Vamgbap,> tropic point scatterers and unpolarized atdnfsSec. v D, 3
=0, yielding the uniform average intensity that is familiar to SO scattering and transp_ort mean free path _w_|II be identified
us from the view of most natural objects like clouds. In thethroughout the rest of this articles andl, exhibit a smooth
context of light scattering, it was first realized by Watsonangular dependence with respect to the normal of the surface
[17], de Wolf [18] and others, however, that each multiple- ©f the medium(Lambert's law[22]). They can thus be taken
scattering sequence visitiny scatterers in a given order constant, for not too oblique incidence, on the backscattering
(1, ... N) has exactly one reversed counterpait (..,1). angular scale k. _ _ _
The phase difference between the two corresponding partial The ratio of the average intensity at backscatteti(@)
waves(visiting the same scatterers, but traveling in opposite= st 1. +1c(0) to the average background intensity
directions is given byA ¢=(k+k’)-(r;—ry), wherek and  |(k76>1)=Is+1_is the enhancement factor
k' are the incoming and outgoing wave vectors, ap@and 14(0)
ry are the positions of the first and last scatterer along the a=1+-S
scattering path. The phase difference is exactly zero in the IstIL
backscattering direction whete = —k. Zero phase differ- ) , . . . .
ence means constructive interference, independent of the alt$ Maximum valuer=2 is attained if and only if there is no
tual path configuration. This constructive two-wave interfer-Single-scattering backgrounts=0, and the contrast of the
ence therefore survives the ensemble average and gives ridéo-wave interference is perfedig(0)=1. .
to coherent backscattering, the enhancement of the multiple
scattered intensity in the backward direction by a factor of C. Polarization and reciprocity
two.

: @

Since light is a vector wave, polarizatiéwhich describes
the direction of the electric-field vectois an essential ingre-
B. Enhancement factor dient of any analysis of the enhancement factor. The

There is an exception to the Systematic interference bénCidGnt-ﬁG'd polarization; and the scattered-field polariza-
tween direct and reverse amplitudes: scattering paths that af@n &' define two sets of orthogonal polarization channels.
their own reversed do not give rise to any interference ternfor linearly polarized incident light, the scattered light can
and thus add a uniform background to the average scatter&® analyzed with parallel (liplin) or perpendicular
intensity. In the weak-scattering regirke’>1, this uniform  (lin L lin) polarization. For circularly polarized incident
background reduces to the single-scattering contribution  light, it is convenient to use the concept of helicity, i.e., the
In this regime' the average intensity can be written as a sur@rientation of the circular polarization with respect to the
of three termsl (8) =1(6) +1,(6) +1(6) as a function of direction of propagation. The scattered light can be analyzed
the angled with respect to the backscattering direction. Here,with preserved helicity I || h) or flipped helicity (L h). At
the so-called ladder terrh (6) is the contribution of all €xact backscattering, these two cases, respectively, corre-
squared multiple-scattering amplitudes, neglecting interferspond to flipped ¢'=¢) and preserved polarizatione(
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=¢). Note that the circularly polarized light scattered back-therefore is ideal for strong elastic multiple scattering.
wards by a mirror has the same polarization, thus, flipped < Because of the high polarizability of atoms near an
helicity. atomic resonance, it is rather easy to indooalineareffects

For classical scatterers, the following results have beere.g., saturationwith only few milliwatts of laser power.
established23,24]: (i) Single scattering in the backscattering pespite some studies of multiple scattering in nonlinear me-
direction is absent in the lin lin andh || h channels for scat- dia [26], it is basically unknown how this affects CBS by
terers of spherical symmetryii{ In the absence of an ex- atoms.
ternal magnetic field, the reciprocity theorefsee below « When an atom scatters a photon, its velocity changes by
assures thatc(0)=1 in the parallel channels lihlin and  an amount of the order of mm/s. Thiecoil effect becomes
h| h. Satisfying simultaneously condition® and (i), an  important for cold atoms with typical velocities of a few
enhancement factor=2 has been predicted and observedcm/s.
for spherically symmetric scatterers in thé h polarization « The atomic resonances being very narrow, atoms may be
channel[25]. driven in or out of resonance because of bappler effect.

As reciprocity is an important notion for coherent back- Adding the contributions of the various velocity classes to
scattering(CBS), let us precise this point. Reciprocity is a the CBS signal is far from obvious.
symmetry property stemming from the invariance of the fun- « Atoms also have a quantuinternal structure For a
damental microscopic dynamics under time revef@d].  given transition line, the total angular momentunof the
Reciprocity assures that amplitudes relating to scattering praatomic ground state in general is not zero. In the absence of
cesses where initial and final states are exchanged and tinggyy external magnetic field, the ground state then i3 (2
reversed are equal. For the scattering of incident light with+ 1)-fold degenerate. As a first consequence, there is the
wave-vectok and polarizatiore into light with wave-vector  possibility of elastic light-scattering processes that change

k’ and polarizatione’, it implies the internal atomic substatdegenerate Raman transitions
_ — Subsequent light scattering then gives rise to optical pump-
Tai(ke—K'e") =T —k'e"— —Ke). (@ ing.

Do ) ) _ « When the atoms are very cold, their de Broglie wave-
Here, Ty (ke—k'e’) is the amplitude of a given scattering |ength becomes comparable to the optical wavelength. In this
sequence, and(—k'e'— —ke) is the amplitude of the regime, the external atomic motion must be treated quantum
reciprocal proceséhe bar denotes complex conjugatiom  mechanically. For high enough density, Bose-Einstein con-
general, these reciprocal amplitudes describe different scagtensation sets in.
tering processes, and thus, cannot interfere. CBS interference Addressing all these problems is beyond the scope of this
arises between amplitudégy, (ke—k'e") associated to paper. We will focus our present investigation on the crucial
direct and reverse scattering paths with the same initial angble of the atomic internal structure, making use of several
final direction of propagation and the same polarization. The&implifying approximations.

reciprocity relation(2) thus assures equality for the two CBS  First, we assume the weak-scattering relatiofs>1 to

amplitudes if and only if two conditions are met: hold. This will be the case for sufficiently low-densityof
_ the atomic medium. Indeed, as the resonant atomic cross
k'=—k and &'=¢. ()  sectiono=1/n/" is of the order ofA?, weak scattering is

. . ) implied by the low-density condition\3<1. In this regime,
From these conditions, it follows that the CBS amplitudes ofihe independent scattering approximatio8A) is justified
any given path and its reverse are equal at backscattering 1], Equivalently, recurrent scatterirge., sequences visit-
the lin| lin and h| h channels, implyind(0)=1.. On the ing a given scatterer more than ohan be neglected. The
other hand, away from the backscattering direction or in thejngle-scattering transition matrix then suffices to compute
perpendicular channels, the relati@) is still valid, but says  the single scattering intensity that, in turn, serves as a build-
nothing about the pairs of amplitudes that interfere for CBSing plock for higher-order scattering. In this regime, the av-
These amplitudes are therefore expected to be different, leagdrage index of refraction of the medium is very close to unity

ing to a reduced contragg<<l . (cf. Sec. IVA).
Second, we use quantum-mechanical perturbation theory
. AMPLITUDES FOR SCATTERING OF LIGHT to describe the scattering of light by an atom. This will be
BY ATOMS valid as long as the laser intensity is sufficiently 1¢27].

We will restrict our calculation to the case of one-photon
scattering, determining the transient response of the system
We are interested in the situation where the scatterers arather than its stationary state. This method thus ignores satu-
not macroscopic objects, but individual atoms. One mayration effects and optical pumping. In principle, both could
think of several specific characteristics of atomic light scatbe described by carrying the perturbation to higher numbers
terers that affect coherent backscattering: of scattered photons, but practically one has to calculate the
« Atoms have extremelyparrow resonancesClose to an stationary density matrix by solving the multilevel optical
atomic resonance, the light scattering cross-section is of thBloch equations. In the experimental application sof 14,
order of the square of the wavelength, much larger than théhe laser intensity was kept well below the saturation inten-
geometric cross-section of the atom. A dense cloud of atomsity. Furthermore, optical pumping in the bulk of an optically

A. Description of the atomic medium and approximations
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FIG. 1. Energy representation of a degenerate atomic dipol
transition, here forJ=1, J.=2. Arrows mark atomic transitions

| Jeme) arbitrary quantization axis are denoted hym) for the
ground state £ J<ms=J) and by|J.m,) for the excited state
(—Je=me=Jy).
The restriction to a singld— J, transition could be re-
| Tm) laxed at the price of more complicated calculations since, in
essence, the various transitions contribute independently to
%he atomic scattering tensor, the essential ingredient of our
from the initial substate, hefd,m=J), under scattering of a pho- analysis as shown below. We will also assume thatXhe

ton. In the absence of an external magnetic field, all transitions are_"]e_tr"’ms't'_On 'S, Closed{ so that Ilght. scaytermg IS purgly
elastic. Solid arrows: Rayleigh transitions, conserving the magneti€'@stic. Again, different final states with different energies
quantum numberrti’ =m). Dotted arrows: degenerate Raman tran- could be included along the same lines of reasoning.
SitionS, Changing the magnetic quantum num(jm're m=m-1 |ﬂ the fO||OWIng, we reca” the amp“tude fOI’ the Scattel’lng
andm’=m—2). of one photon by one atoifsingle scatteringand determine
the amplitude for the scattering by two atorfi®uble scat-

. , . I tering. We discuss how the degeneracy of the atomic dipole
thick atomic cloud is expected to be severely limited by muI-transition affects the CBS enhancement fadr We will

tiple scattering. .
Third, we treat the external motion of the atoms classi-USe @ full guantum-mechanical treatment of both atoms and

cally. In other words, we require the atoms to be sufficientl electromagnetic field. While the internal atomic degrees of

\/ . .

hot so that the coherence length of the external wave funcf_reedom can qnly be dgscnbed quantum mechanically, the
S : . electromagnetic field will be described by quantum Fock
tion is shorter than the optical wavelength. This is the Casg, ias for reasons of symmetrv. An equivalent treatment can
for cold atoms created in a standard magneto-optical trag. y Y- d

e set up for low-intensity coherent states that are known to
The present treatment does not apply, however, to ultra-col . ) T
; . ; correspond closely to a classical light fi¢2B].
atoms as, e.g., in a Bose-Einstein condensate.

The question of the recoil effect can then be addressegtomircoiigzgtetsh%, f?nge;retrigﬁgldogz |2thvetf;ns;sggcal
rather easily. Indeed, light imparts various momentum kicks . . yi€lg ,
d transitions between different substates’ £m) are

to the atoms defining a scattering path, but these momentufl]’ I .
transfers are identigal for the (?irzct and reverse paths ac[alleddegenerate Raman transitioriet us stres_s that, since
backscattering. Consequently, the recoil effect does not affe ne-_photon scattering on a dege_nerate atomic dipole transi-
the interference between the amplitudes along the two path on 1S necessgnly elastic, inelastic processaso known as

Let us now discuss the role of the atomic motion. Close to amansce_ltterlng are completely .absent of our analysis. In
an atomic resonance of widfh, the average time an atom the folloxvm_g, WE use natura_lll?lts Wheﬁ_afc=1 so that
takes to scatter a photon 5 1. If, in the meantime, atoms [length]=[time] =[frequency "=[energy .
move by more than an optical wavelength, then the interfer-
ence term between direct and reverse scattering sequences B. Single-scattering amplitude
will be spoiled[28]. To avoid this, we require the spreadf
the atomic velocity distribution to satisfy

i:

In the single-scattering situation, an atom at fixed position
r is exposed to a plane light wave with wave-vedtoran-
ko <T. (4) gular frequencyw =Kk, and transverse polarizatian We de-
scribe the uncoupled system by the sum of the atomic inter-
nal Hamiltonian and the free field Hamiltonian,
If this condition is met, atoms can be thought as being fixed
in space during the multiple-scattering proc¢ss]. On a
much longer time scale, the motion of the atoms simply acts
as a configuration average. Typically, Ed) is satisfied for
atoms slower than few m/s, which is true for atoms originat- N o ]
ing from a magneto-optical trap. Note that Ed) can be Here, a, and a,, are the_ usual annlhllatlon and creation
alternatively viewed as a resonance condition: under scatteRPerator of a transverse field mode with wave-vedét@nd
ing, the Doppler shift will not bring atoms out of resonance.Polarization vectore. The corresponding one-photon Fock
Under these conditions, the most important effect willState will be denotedke) where the transversalityk( €)
come from the internal structure of the atoms, i.e., the de.zo is understood. The interaction between atom and ||ght is
generacy of the light-scattering transition. We assume tha@iven in the dipole form b= —D- E(r). The atomic dipole
the incident light is nearly resonant with an atomic transitionoperatorD connects the subspacés; and ;_(since we
of (bare angular frequencw, between a ground state with consider a closed transition, no other subspaces are inyolved
total angular momentund and an excited state with total with reduced matrix-elementJd|D||J)=D2J.+1 [30].
angular momenturd, (see Fig. 1 Since no external mag- The electric field operator at the atomic position is given by
netic field is supposed to be present, the atomic ground state
and the excited state are, respectivelyJ{2)-fold and
(2t 1_)-fo|d degenerate. The corresponding substates with E(r)=i E &, et exi(k-r)]+H.c. (6)
magnetic quantum numbens and m, with respect to some K;el k

Ho= w0, [Jeme(Jemd+ > wa],ay,. (5)
Mg k,elk
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2

ke Jm/ wg
% W)= 55T (10
Jm

k'e

) N ) is given as the ratio of the squared Rabi frequerioy
FIG. 2. Feynman diagram for the transition-matrix elemiept squared coupling strengtrand the resonant denominator

[Eg. (8)] near resonance. Wavy lines denote photons, straight IineRnOWn for point dipole scatterefd1]. The novelty of the
atomic internal states. The thick line stands for the dressed propa- '

gator (5+iT/2)"* of the excited atomic state. The absorption ver- Present approa(I:h lies in the peculiar tensor pafor a given
tex yields a factorwgexp(k-r)(Jemd e-d|Im), the emission vertex ~ transitionm—m’, the dimensionless matrix element
yields a factorwgexp(—ik’-r){Jm’|&’ - d|Jdme), and all intermedi-

ate variables, herm,, have to be summed over. fij(m,m/)zu m'|didj|J m) (1)

The field strengttf,, = (w/2€,L°%)*? is defined in terms of a _ _ _ _
quantization volumd.? that eventually disappears in results defines the scattering tensor that connects the incoming to
of physical significance. the outgoing polarization. This>33 t matrix can be decom-
The probability amplitude for a transition from an initial posed into its scalar, antisymmetric, and symmetric traceless
state|i)=|ke;Jm) to a final state|f)=|k’e’;Jm’) is the components, transforming irreducibly under rotatipa@].

elementS;; of the scattering matrix. The transition amplitude A classical point dipole scatterer is characterized by a

for i f is written matrix proportional to unity{11]. This behavior is repro-
duced by the elementary dipole transitids0, J.=1. In-
Sii=—-2imé(w—o')T(w+i0), (7) deed, the only matrix element of the scattering operator

_ N yields the scalar pa|<t00|fij|00>= 8j . Nonspherical classi-
in terms of the transition operatof. Here, because the g scatterers also display an additional traceless symmetric
atomic ground state is degenerate, energy conservation, 8§yt in their scattering matrix. In the case of atoms, there-
sured by the delta distribution, implies elastic light scatteringre, it is the antisymmetric part that is characteristic for the
(0" =w). The matrix elemenT;(2) is calculated perturba- guantum internal structure. The antisymmetric part simply
tively using the Born expansiol(z) =V+VGy(2)V+...  implies that an atom scatters light with polarization-
in powers of the interactioV and the resolvenGo(z)=(z  dependent strength. To be more specific, consider scattering
—Hyp) " of the unperturbed system. The excited atomic statf circularly polarized light in a Rayleigh transitiorm
can be eliminated by partial summation of the Born series- guantization axis is the direction of propagatiofihe
dressing the transition frequency and introducing a finite life<scattering strengths for the two possible helicities are differ-
time [27]: 6= w— w, is the detuning from thédressegltran-  ent because the Clebsch-Gordan coefficients associated to
sition frequencywo~w, andT'=D?w3/3me, is the natural  the transitiongJ,m)«|J.,m=1) are unequal.
width of the atomic excited state. This situation is somewhat similar to the usual Faraday
Let us define the reduced dipole operaderD/D and the effect where circular polarizations with opposite helicities
Rabi frequencywg=D¢&,. The transition-matrix element are scattered differently in the presence of an applied mag-
Tii=(k'&",dJm'|T(w+i0)|ke,Jm) near resonance then is netic field[32]. There are, however, significant differences:
in the Faraday effect, the antisymmetric part of the atomic
polarizability depends both on the magnetic-field direction
and on the direction of light propagation; for the atomic scat-
tering operator, antisymmetry is a fully intrinsic property.
represented by its Feynman diagram in Fig. 2. The conditioWhen averaged over the internal state, the antisymmetric
“near resonance” meand<w, (but not necessarily<TI). part of the atomic scattering operator vanishes, leading to a
Therefore, antiresonant scattering, i.e., first emission, theaymmetric polarizability and to no dichroism inside the ef-
absorption, can be neglected. fective medium(cf. Sec. IV A). Thus, the degenerate atomic
In Eqg. (8), all information about the atomic internal de- situation ressembles @ero magnetic fieldFaraday effect
grees of freedom and polarization has been factorized intdepending on the internal state of the atom.
the matrix element The degeneracy of the atomic ground state also implies
that, by scattering a photon, the internal state may change
(cf. Fig. 1. The possibility of changing the internal state
leaves more choice for the photon polarization. Which polar-
(9) ization is possible for which transition follows from the con-
servation of angular momentum. In exactly the backscatter-
This defines the scattering operatdhat acts on the product jng direction k’'= —k) and choosing the quantization axis
spaceH,;® 2 of atomic internal states and polarizations. It is along the direction of propagation, the following relations
the scattering operatdrthat characterizes the scattering ob- hold: linearly polarized light is scattered into the |iin
ject and contains all relevant information about the scatteringhannel by a Rayleigh transitionm(=m), and into the
procesg31]. We can separate its frequency dependence fromin L |in channel by a degenerate Raman transitiom’(
its tensor structuret(w) =t(w)t where —m|=1); circularly polarized light is backscattered into the

2
wWR

=552

(m'| (&' -d)(e-d)|Im) €& KT (g)

2
wWR

5+im<3m’|(?-d)(s-d)pm).

(Im'| €’ -t- elIm)=
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ke Jmj The matrix elemeriT{’®") for the reversed path is obtained
from Eq.(12) by exchanging the roles of atoms 1 and 2. The

Jmy Jm internal matrix element13) becomes

Jmy K¢ =& -ty(m;,m})-A-t,(m,,mp)- e. (14)

FIG. 3. Feynman diagram of the direct transition matrix element
T{9 [Eq. (12)]: resonant scattering first by atom 1, then by atom 2.
The Feynman rules are defined in Fig. 2.

The two amplitudesT{%"” and T{{®") describe indistin-
guishable processes and interfere. A maximal contrast in the
backscattering direction is obtained if and only if the ampli-

h_L h channel by Rayleigh transitionr( =m), and into the tudes have equal magnitudg;=t.,. But due to the non-
h|h channel by a degenerate Raman transitipm’ m scalar part of the atomic matrix, we expect that in general
|=2). the matrices do not commuti; A -t,#t;- A -t,, so that Egs.
Therefore, the single-scattering amplitude shows that13) and(14) are not equal. An exception to this rule is of
changes in the atomic internal state permit changes in theourse the casm;=m,, m;=m, where the exchange sym-
light polarization. Since, in general, the atomic internal statemetry assures their equality. Furthermore, we can see that it
is not under control, the single backscattering contributioris precisely the antisymmetric part of thematrix that is
cannot be removed by polarization analyéigth the only  responsible for the inquality of amplitudes in the parallel
exceptionJ=1/2 in theh | h channel and degrades the ob- polarization channels. Indeed, if the one-atbmatrix were

servable enhancement facid. symmetric, then g ~f1(m1,m1)~A-fz(mz,mé) e=¢
_ _ -t(my,my)A-t,(m;,m})- €. In the parallel channels’

C. Double-scattering amplitudes =g, from this would immediately follow the equality of the
1. Direct and reverse transition amplitudes direct and reverse matrix elemens3) and (14). But be-

. o o cause of the antisymmetric part of the atomic scattering ten-
In the double-scattering situation, a plane wave impingeg,, i, general

upon two atomsy= 1,2 at fixed positions, . The interaction
between atoms and field in the full Hamiltonian is n&tw
=—D;-E(r{) —D,-E(r,). This interaction defines a transi-
tion operatofT along the lines of Sec. Il B. Resonant dipole et (M. m)-A-T(me.m))- & 15
interaction between the atoms arises from the exchange of & to(Mz,Mp)- A-ty(my,my)- €7, @3

phqtons. Among the numerous Qiﬁerent diagrams that deéo that the two interfering amplitudes are different in magni-
scribe the transition  |i)=|ke,Jmy,Jmy)—|f)

, , X X g ' tude. An explicit example for unequal interfering amplitudes
=|k'e’,dJm;,Jmy), the two dominant diagrams involving

_ ; ! _in the h|| h channel-one is zero while the other is not—has
both atoms are concatenations of two single-scattering dig;eepn given if33].

grams. The first diagram, shown in Fig. 3, describes the di-
rect scattering path: absorption of the incident photon by 2. Reciprocity revisited

atom 1 and emission of the final photon by atom 2. The ] ] ] ) )

diagram for the reversed path is obtained by exchanging the A guéstion may arise at this point: Does the imbalance of
role of the two atoms. The Feynman rules introduced in Figamplitudest 4, # t ., contradict the theorem of reciprocity?
2 permit to write out the scattering amplitudes. As usual inThe answer is no: the complete system “field and atoms”
diagrammatic expansions, a sum over the virtual intermediobeys reciprocity, but this does not imﬁur:frev, The clas-
ate states has to be carried out, here, the excited atomic statsigal reciprocity relatiori2) has to be generalized to take into
and the intermediate photon. The matrix element for the diaccount the sdim} of the internal variables of all atonig4]:

rect scattering path in the far-field approximatikn,,>1
takes the following form:

& ty(my,my)- A ty(my,mp)- &

Td”(ks'{m}_’k,s"{m/}):(—l)zi (m{ —my)
3r't%(w) explikriy) :

402 Krp gr €17k (1) X Tred —k'€’,—{m'}——ke,—{m}).
R

(16)

dir) _
Tign— -

Again, all information about polarization and internal struc-

ture is factorized into the dimensionless matrix element This relation shows that in order to obtain the reciprocal

sequence of a given sequence, the signs of all internal quan-
tum numbers have to be flipped. The reciprocity relafib)
assures the equality of two interfering CBS amplitudes only

. . . ! . if three conditions are met: the two classical conditi¢8s
Here, the dimensionless one-atérmatrices, defined in Eq. o jight direction and polarization, and a third one pertaining
(11), are connected by the projectay; = &; —nin; onto the o the atomic internal variables,

plane transverse to the unit vectorr,,/r ;5 joining the two

atoms. {m’'}={-m}. (17)

tg=¢&'t(my,m))-A-Ty(my,my) - e. (13)
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Whereas the direction of observation and polarization can bao matter whether they describe degenerate Raman or Ray-
controlled experimentally, this is impossible for the internalleigh transitions.
atomic states in an optically dense medium. Just as in the A closer analysis of the situation in the channels of circu-
case of scattering away from the backward direction or intdar polarization permits the following remarks. In the channel
perpendicular polarization channels, reciprocity includinghL h of flipped helicity, a selection rule special to the
the internal states never ceases to be valid, but simply bélouble-scattering configuration admits only Rayleigh transi-
comes inapplicable to predict the equality of interfering am-tions to the crossed intensity. Th'e. ladder intensity contains a
plitudes. It follows that although there might be some ampli-contribution from Rayleigh transitiongqual to the crossed
tudes satisfying conditiori17), the majority will not, and intensity) a_n_d an add|t!0nal contribution from degenerate Ra- _
perfect interference contrast is lost. Of course, in the case dfian ransitions. In this sense, the degenerate Raman transi-
the elementary dipole transitiah=0, J,=1, the condition tions are responsible for a reduged .double—.scatterlng interfer-
(17) is trivially fulfilled since all atoms verifym’=m=0 ence in _thehJ_ h channel. This is cons_lgtent with the
and we recover the classical case. observation that degenergte Raman tranS|t|on_s make the _at-
. . . . . . ms behave as nonspherical scatterers for which reduced in-
_Classmal regprocny_for light sce_lttenng has peen den_ve erference in the perpendicular channels is expected. But for
using Maxwell’s equations for a linear scattering mediumy;oner scattering orders, Raman transitions contribute also to
provided that its constitutive tensofdielectric constant, per-  ha crossed intensity, and it is no longer evident to compare

meablility, and conductivity be symmetric[35]. In the  he relative weights of Rayleigh and Raman contributions.
present case, when one does not consider the internal atomic Tpe explicit example of a double Rayleigh transition in
states as intrinsic variables of the system but as given parange h | h channel with zero interference given in RE33],
eters for each path, thiematrix t((m,m’) then has an anti- shows that Rayleigh transitions also are responsible for a loss
symmetric part. In this respect, atoms with degenerate traref contrast. On the other hand, the fact that Raman transi-
sitions constitute a scattering medium that does not obetions give to atoms some characteristics of nonspherical scat-
classical reciprocity, and a reduced interference is no suiterers does not by itself imply a loss of contrast: the reciproc-
prise. Indeed, the same is observed in scattering media witky theorem is independent of the actual shape of the
the Faraday effedt36,37] where the external magnetic field scatterers and applies to spherical as well as to nonspherical
is said to break time-reversal invariance. classical scatterers. For example, a double Raman transition

Finally, let us note that the ensemble average over théuch that (n;=m,=—m;=—m,+0) satisfies the reciproc-
internal variablegm} cannot restore the equality of the direct ity condition (17) and has perfect contragis is also evident
and interference contributions to the diffuse intensity. In-from the exchange symmejryin the sum of all scattering
deed,1(0) is equal tol, if and only if, for each pair of amplitudes, Raman scattering amplitudes can even be domi-
scattering paths, the direct and reverse amplitudes are equagnt in the backscattering interference signal. An explicit ex-
In the sum of all contributions, the equal amplitudes cannomple of such a situation is given in Fig. 9.
win back what the nonequal amplitudes have lost: the result In fact, independently of the scattering order, it is pre-
is a reduced overall enhancement factor. cisely the antisymmetric part of the atomic scattering tensor
that is responsible for the loss of contrast in the parallel
polarization channels. This antisymmetric part appears for
both degenerate Raman and Rayleigh transitiohshe un-

In the case of the elementary dipole transitids 0, equal scattering of circularly polarized light with different
Je=1, the atomic scattering tensor only has a scalar partelicities as mentioned in Sec. Il)BTherefore, the degen-

(OOIf”-|00>= 8. The analysis of the double scattering am- erate Raman.transit.ions musbdt be held responsible alone
plitudes in Sec. 1l C 1 shows that the internal amplitudesfor the reduction of interference contrast.
then are equal and full interference contrast is guaranteed. As
for J=0, no degenerate Raman transitions ¢ m) can oc-
cur, the following question is inevitable: can the decrease of
interference contrast be attributed to the Raman transitions
alone? We wish to describe the light propagation inside a macro-
Indeed, one might be tempted to suggest incoherence afcopic disordered medium on average. Starting from an en-
the Raman scattered ligfite., the loss of phase coherence in tirely symmetric microscopic description of matter and light,
spontaneous emissipas the origin for this loss of contrast. the ensemble average is a trace over the matter degrees of
In the present description, however, thisnst a pertinent freedom. This trace contains an average over atomic posi-
explanation. It is true that the Raman scattered light does naions as well as an average over the internal degrees of free-
interfere with the reference light from the source: the respecdom. This is analogous to the case of classical nonspherical
tive final atomic states are orthogonal and the two amplitudescatterers where averages over position and orientation have
do not describe indistinguishable procesgbss is a typical to be performed. We suppose in the following that the atomic
“which-path” argument [38,39)). But a photon scattered sample is prepared without correlations between positions
elastically along the direct path interferes very well with theand internal substates, and that different atoms are uncorre-
same photon scattered along the reverse path — as long kged. This is a reasonable assumption for a cloud of cold
the internal states of all atoms in both processes are identicalfoms created from a standard magneto-optical trap. The two

3. The role of degenerate Raman transitions

IV. ANALYTICAL FORMULATION OF THE INTERNAL
ENSEMBLE AVERAGE
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averaging procedures then become independent. As far as The susceptibility of the dilute atomic mediumys=na,
positions are concerned, we will use the averaging techand the condition of low density now reafisa|<1. The
niques developed for classical point scattef@isIn the in-  effective refractive index then is given bby=1+na/2. Its
dependent scattering approximation, the average over the imeal part is very close to unity, and we need not distinguish
ternal quantum numbefgn} can be expressed as traces overbetween the optical wavelength in the medium and in the

a one-atom density matrix and one-atom operators. vacuum. Its imaginary part describes attenuation of the aver-
age amplitude, and here the effect of the dilute medium is
A. Average amplitudes: Effective medium essential. Since we do not describe any absorption, all at-

tenuation is necessarily due to scattering from the initial

Tracing over the matter degrees of freedom defines ap,,qe into other modes. This argument is the essence of the
effective medium for the average propagation of light amp“'optical theorem

tudes and intensities. In this paragraph, we will deal with the
rather simple issue of the average amplitude. As will be seen,
the internal structure of the atomic scatterers provides no
major surprise, and we are able to recover the well-known , . .
properties of a dilute atomic gd29]. The impact of the We thus find the total scattering cross section
effective medium on the amplitude is described by the self

energy> (w) that renormalizes the vacuum light frequency b7 1

o [11]. In the independent scattering approximation, the self Trot= V1 K2 1+482T2
energy is proportional to the average scattering operator,

_ _ ‘ This well-known expression features the resonant dipole

(@) =NTrpt(w)=N(Hw))in- (18 cross section 6/k?=3\?%/27 and the Lorentzian line shape
Because of the vector character of the light wave, the seffor detunings around the resonance with width _
energy is formally a second rank tensor. Assuming a scalar The mean free path of the light inside the average medium
density matrix, i.e., a uniform distribution over internal IS /= —2[ImX(w)] . By virtue of the optical theorem, it
states, the internal average simply projects onto the scallepends on the total cross section and on the number density
part: 3(w)=3(w)1. Calculating the average is elementary Of scatterers through
using the closure relation of Clebsch-Gordan coefficients,

o= —2L3Im (&-t- &)=k Ima(w). (23)

(24)

and we find S 1 (25)
Nt
37 T2
E(w):nMJE S+il/2 (19 and is independent of both the polarization and the direction

of propagation. This reflects statistical invariance of the
Here, we define for convenience the ratio of multiplicities atomic medium under rotation. _
In summary, in the weak-density and weak-scattering re-
2J.+1 gime, the internal structure has very small influence on the
MJ=3—, (200  properties of an average light amplitude. For a uniform sta-
(23+1) - P . >
tistical distribution over internal states, all average quantities
are isotropic and are only modified by a factdr;=(2J,
+1)/3(23+ 1) with respect to the classical dipole point scat-
terer whereMy=1. This is not surprising since the internal
L3 average over a scalar density matrix simply selects the scalar
a(w)=— —(t(®))int- (21 part of the atomic scattering operator. The antisymmetric part
@ that appeared as the genuine quantum feature in Sec. lll

.. . . herefore is n resent here.
Writing out the internal average as a weighted sum oveF erefore Is not present here

substates,

with My=1. The atomic polarizability close to resonance is
given by

B. Average intensities

_ Coherent backscattering is an interference effect for the
<t(w)>'m_§ Pr(Imit(w)[Im), 22 average intensity, which ?)f course must be distinguished
from the square of the average amplitude. Consequently, we
it is evident that solely the Rayleigh transitions'(=m) stress that it is not sufficient to calculate quantities pertaining
enter into the definition of the self energy and of the polar-to the average amplitudesuch as the polarizability or the
izability. In the case of a uniform distribution with weights scattering mean free patlin order to decide whether the
pm=(2J+1)"1, this average selects the scalar part of theinternal structure affects CBS or localization. In the follow-
scattering operator. A thorough discussion of the polarizabiling paragraphs, we show how proper use of tensor algebra
ity, the scattering operator, and its analysis by decompositiomakes it possible to analytically perform the averaging over
in irreducible components can be found in the textbook bythe atomic internal degrees of freedom. In the specific case
Berestetskiiet al. [31]. of a semi-infinite medium, exact averaging over the external
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position of the atoms is also possible for the single- ands not factorized in terms of elementary scalar products. But

double-scattering contributions. by expliciting the transverse projectds; = &; —n;n; , it be-
The average scattered intensityar away from the me- comes

dium can be calculated in terms of the dimensionless bistatic

coefficient[40] t21=(&"-dp)[(dz-dy) = (N-d)(N-dp)](£-dy). (32
y= 4_77 d—a(ks—>k’e’) (26) All averages(28), (30), and (31) can then be expressed as
A \dQ ' linear combinations of the one-atom trace

Here, the light incidence is supposed to be perpendicular to Tr p(X4-d)(Xg- d)(Xp-d)(Xq-d)]
the surfaceA of the medium that will be taken to become the
half spacez>0 asA— . The average differential cross sec- \where the fixed vectors, stand fore,e,&’,&',n, ord’ (the
tion is determined by Fermi's golden rule which reads dipole operator of the other atgmRather than calculating
do L6, ;aach t(ta)rm separatéally, we dstermine rt]he one—aton:jttr)ac?1 for
b ' 2 our arbitraryx, and later substitute what is require the
<m(k8_)k £ )> T a2 (ITk'e" ke)|). (27 single- and )(;ouble-scattering terms. | ’

The square of the transition operator means explicitly C. The single-scattering vertex
IT(k' €' ke)|?=(ke|T(w+i0)'|k e }k'e'|T(w+i0)|ke)

and acts on the atomic states only. Note that the facfor We proceed to calculate the dimensionless trace function

cancels with the inverse factor coming from the squared tran- 1
sition operator, so that the quantization volume finally disap- T(X,)= M—Tr[p(x4- d)(Xz-d)(Xp-d)(%1-d)]. (33
pears. J

For single scattering, Eq83) and(9) show that the inter-
nal average has to be taken over the square ofdieen-
sionles$ scattering operator:

It depends linearly on the components of thg albeit in a
complicated manner, involving the characteristics of the tran-
sition and the elements of the density matrix. A systematic
T a2y - , ] way of evaluating the trace is a development in terms trans-
(et el Ym=Trlp(e-d)(e"-d)(&"-d)(e-d)]. (28) forr):]ing under i?reducible representat?ons of the rotation
It is crucial that the average be taken over the square of th@roup[41]. We shall explain the solution in the simplest case
scattering tensor. This is not equivalent to taking the squar#&hen the atom is distributed with equal probability over its
of the average, which is essentially the polarizabili2j). internal substates. Since the corresponding density matrix is
Again, the trace over a scalar density matrix will select thethen proportional to unity and therefore a scalar under rota-
scalar part of the averaged operator. But, as becomes evideifns, the trace selects the scalar part of the averaged opera-
in Appendix A, now the antisymmetric and symmetric trace-tor. The result can only be a function of the scalar products
less parts can combine with their counterpart in the directX.-Xg), of the most general form
product and contribute a non-trivial scalar component.

In the double-scattering situation, the two atoms are T(Xa) =W1(X1- X2) (X3° Xa) + Wa(X1- X3) (X2* X4)
coupled by the intermediate photon. Let +Wa(Xy-Xa) (X Xa)- (34)
EZIZE'Ez'A'El'E (29)

The coefficientsw; are calculated explicitly using the stan-

be a short-hand notation for the contracted double—scatteringard techniques of irreducible tensor operat@tstails are

operator for the direct path, arg, for the reverse path. The

iven in Appendix A:

ladder contribution to the double-scattering intensity, just So— Sy S-S, S +5S,
like in the classical case, is given by the average sum of the Wq= 3 Wy= 5 Wy= 5 (35
squares of the two amplitudes,
2 2 where
T p1o[tor*+[t12)]. (30
2
Here, p,, is the two-scatterer density matrix. The crossed Sc=3(2J,+1) K (36)
contribution is obtained, again in perfect analogy to the clas- K € J J

sical case, by the interference between the direct and reverse
amplitude The “6J” symbols [30] (or Wigner coupling coefficienjs
o contain all essential informations about our problem. They
T piotiotoexdi(k+k')-ro]+(12))]. (3D are the simplest scalar quantities that can be constructed

from the basic ingredient3, J., 1 (the rank of the vector

Since the atoms are uncorrelated, the density matrix factowperatord) andK (the tensor ranks of the irreducible com-

izes, p1o=p1® p,. Furthermorep,=p since the atoms are ponents of the scattering operatdfhe “6J” symbols intro-

identically distributed. The two-atom scattering oper&a®) duce the following useful selection rules:
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(i) |3—JJ=1, the usual selection rule for a dipole tran-  To determine the bistatic coefficient now means to aver-
sition; age EqQ.(40) over position. We assume a semi-infinite, ho-
(i) 0=<K=2: the scattering operator is the direct productmogenous medium of independently distributed atoms. The
of two vector operators and thus has irreducible componentsingle-scattering bistatic coefficient then is
of rank K=0,1,2. In other words, the change of the atomic
angular momentum is limited ttm’—m|<2 for the one- :4Ln 3 <d;'5> —221/
photon scattering; A Jzo dQ /..
(iii) K=2J: the ground-state degeneracy determines
which tensor rank comes into play. Fb=0, K=0 and thus  The exponential takes account of the extinction of incoming
only Rayleigh transitionsm’—m=0 are possible; forJ and scattered light with the mean-free-patinside the scat-

=1/2, K=0,1 and degenerate Raman transitions stti tering medium. Since the differential cross section is inde-

—m|=1 become possible; fai=1, K=0,1,2 and all pos- pendent of the position, the integral is readily calculated and

sible transitiongm’ —m|<2 can take place. we find
A sum rule overK for the “6J” symbols implies that the

w coefficients are not independent but obey

|
~

]

3 3 -7 2 I 2
Wy Wyt 3wa=1 37) Vs 4 . . 4(W1|9 >+ wo|e - g +ws).
for arbitraryJ,J.. Explicit formulas for thew; are contained (42)
in Appendix B1. The coefficientsw;(J,Je) carry the weights of the different
We introduce a diagrammatical representation for thecontractions of the polarization vectaifer detailed expres-
trace function(34) sions, see Appendix B)1lIn the case of a transitiod=0,
J.=1, these coefficients are simply{,w,,w3)=(1,0,0).
X;TTX2 1—2 1 2 2 So one recovers exactly the classical expresgianh
=w +w, >< +ws ‘
x,—x;, 4—3 4 3 4 3, 3 E¢ 4
(39) Y=g ’=Z|s’-s|2. (43
£E——¢

This four-point intensity vertex is the weighted sum of the
three pairwise contractions between the vecigrsA factor
w; comes in for the horizontal pairwise contractior; (

-X2) (X3 X4), a factorw, for a diagonal pairwise contraction, complex conjugate amplitude by the same scattédemti-

and a factorw; for a vertical pairwise contraction. It res- : . L
sembles Wicks's theorem known from Gaussian integratior];'eoI by the dashed line The only possible connection is

[42], but here, the weights of the possible contractions ar&0rizontal, giving the factote’- £ that implies a dipole
not equal. As in quantum field theory, this diagrammatic repfadiation pattern. For atoms, however, the coefficiemjs
resentation proves especially useful for the systematic de2nd W3 come into play and lead to contributions in the

In the classical diagram, the upper line, read from left to
right, signifies scattering of the wave amplitude, and the
lower line, read from right to left, signifies scattering of the

scription of higher-order scatteringf. Sec. IV B. lin L lin channel(whereg’ - = ¢’ - £=0) as soon ad=1/2.
WhenJ=1, there is a signal even in the helicity preserving
D. The single-scattering contribution backscattering channéi | h (where £'-£=0, € -e=1).

Now we see why the polarizabilit§21) is not sufficient to
describe the scattering by a degenerate transition. The polar-
izability is essentially the average scattering tensor, a two-

oty = 2 C 12 point vertex connecting the incoming to the outgoing polar-
(e t-elim=Ms(wale"- &l +wo|e"- e]*+ws). (39 ization. If the atom is distributed with equal probability over
The average differential cross section for single scattering offS substates, the polarizability then is diagonal and defines a
an unpolarized atom is purely horizontal contraction proportional te’ - £2. But the
internal structure of an atom allows also for diagonal and
vertical connections in the single-scattering diagram: the
classical line stretches to a two-dimensional ribbon.

Using e=x; =X, and&’ =x,=X in Eq. (34), the internal
averageg(28) for the single-scattering contribution becomes

do 3o —
<d_QS>im: 8;01(W1|£'-8|2+W2|£’~8|2+W3) (40)
in terms of the total scattering cross secti@d). Using this E. The double-scattering contributions
expression, we see that the sum r(8&) simply represents

flux conservation. All angular information is contained in the
squared moduli of polarization contractions. Since these e
pressions are even in the scattering angjléhe mean value

Van Tiggelen et al. [43] have calculated the double-
scattering contribution to the ladder bistatic coefficient in the
*6ackward direction,

(cos#)=[dé(da/dQ2)cosh vanishes, justifying that the trans- 9 e~ (ztriztz)l/
port mean free path,=//(1—{(cos#)) is equal to the scat- 7L2=—/2f drdry——F——P, (49
tering mean free path’. 16mA/ <)z >0 rio
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for classical point scatterers in a half space, within the weak- 9 e (sm+r1p+52)//
scattering limitk/>1 and in the far-field approximation Yeo= /zf d®r,dr, e S
kri,>1. Here, the exponential describes the attenuation of 16mA/ <) 2, >0 EP)

incident, intermediate, and scattered light with mean-free-
path /. For classical dipole point scatterers, the polarization

kernel is given byP(9=|¢’-A-€|2 For atomic scatterers where s=3(1+1/cosé). For classical dipole-point scatter-
under the same conditions, E@4) remains valid. As all ers, the crossed and ladder polarization kernels are equal,
information about the internal structure is connected to theP{S)=pP($) . This assures that in the backscattering direction
polarization, only the polarization kernel has to be general{9=0, k’=—k), crossed and ladder intensities are equal
ized. Keeping track of all factors, it follows from Sec. IV B (the strict equality for all polarizations is characteristic of
that the polarization kernel is given as the internal averageouble scattering; for higher-scattering orders, equality of
(30) over the square of the dimensionless double scatteringrossed and ladder is only given for parallel polarizations
operator In the case of atomic scatterers, E49) remains valid, but

the polarization kernel has to be generalized. Casting the
internal averagé€31) in diagrammatical form, it is

X cog (K+k')-r15]Pca, (49)

PL=My%([e tp- Aty £)in. (45)
E A7?5’
Using Egs.(29) to (38), it is represented by the generalized Por= X . 50
ladder diagram EJA e (50
£ A £’ The crossed diagram is evaluated efficiently using the con-
PL,= ) (46) traction rules defined above for the ladder diagram. Explic-
£ A &’ iﬂy,

Peo=(W2+w3)|e"-A-g]?+2w,wa(e' - A-&')(e-A- &)
This double-scattering ladder diagram is the product of two
single-scattering diagran(88) connected by the polarization +(Wy+Wa)W,[ (e-€")(&-A-€')+(g-&')(e-A-g')]
propagatorA;;=&;—n;n;, one for the amplitude(upper
line) and one for its complex conjugatéower ling. The
diagram is evaluated using the following rules. Each scatte
ing box yields three pairwise contractions: horizontal with
weight w4, diagonal with weightw,, and vertical with
weightw;. Now choosew;w; for the two boxes and contract
the vectors accordingly. For exampiwﬁ comes with the

twofold horizontal contractiofe- A - £'|2; wyw, andw,w;

+2wl|e’ - €l (51)
2

rC)bviously, the crossed kernel is not equal to the ladder ker-
nel, Pc,# P ,. What is the relation between the two? In the
classical theory, one habitually uses time reversal invariance
to reduce one to the other: returning the lower line of the
crossed diagram for classical point scatterers

both give|s-A~s’|2. For the vertical connections involving e——A—¢'
factors ofw;, one has to use that the polarization propagator pleb—
is a projectorA- A=A, and its total contractiofarising for G A (52)

w3) is 2;A;;=2. Finally
the connecting lines are straightened out, and the crossed
diagram becomes equal to the ladder diagr@® in the

parallel polarization channels = . This is the signature of
+(w1+w2)w3[(;A-s)+(?-A.e’)]+2w§. reciprocity and assure a perfect m_terference contrast in the

backscattering direction. But returning the bottom line of the
(47)  generalized crossed diagra0), we find

PL=(W2+w2)|&'-A- &2+ 2w w,|e’ - A g]?

For classical dipole scatterers, modeled by a transifion P _ “’:X:AXEJ (53
c2 —
£ A £

=0, J.=1, one hasw,,w,,w3)=(1,0,0) and recovers the

known resuilt ﬂhich differs from the ladder diagrari#6), even if we put

A Y €' =e. What has happened? The ribbon that has replaced the
classical line cannot unwind and blocks the diagram topo-
logically. It blocks because the diagonal and the vertical con-
traction are not equivalentw,# ws. Only in the casel=0,
J.=1, we havew,=w3=0, and one recovers the correspon-
The crossed bistatic coefficient for the double-scatteringlence to the classical point dipole scatterers. EquaBan
contribution as calculated by van Tiggelehal. [43] under  shows thatw,=ws5 if and only if s;=0. The coefficiens;
the same assumptions is stems from the antisymmetric part of the scattering operator

E
Pid= =& -A- g% (49)
£ A €'
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0.8 v - ‘ \ : For classical point dipole scatterers, the single-scattering
a) h bistatic coefficient isys=3/4 in the channelh L h and
0.6 f Y. 1 lin|/lin (corresponding to the reflection from a mirrand
g V¥V .g.y.y g ¥s=0 in the channel$|| h and linL lin [43]. Figure 4 re-
Y 04 - a.. A A A-AA pro.duce_s these values for the transitibn0, J.=1. As ex-
B85 g ogoEE- plained in Sec. Il B, forJ>0 degenerate Raman transitions
02 | :v: & I become pQSS|bI¢ and open th_e cIasspaI]y forbidden channels:
) A A A A a4 the first signal is obtained in the linlin channel forJ
YW ¥¥- =1/2 and in theh | h channel forJ=1.

v .’/,_y——/v—“v-"v" L
03 ‘ ‘ In all four polarization channels, the graphs of the two
. transition typesl,=J=*1 (upward and downward triangles

0.6 [\ I tend towards the same value &s>>. Indeed, as shown in

v .- Appendix B 1, the coefficientsy; for these two transition
TS 04t :4:;:' types have the same limit, corresponding to asymptotically
TV equal Clebsch-Gordan coefficients.
B - il - - . 2 The following two main conclusions are to be drawn from
' B L Fig. 4:

oY , ‘ , 1 (i) A degeneracy of the atomic dipole transition leads to a

0 1 2 3 4 5 single-scattering contribution to the backscattered intensity
J in all four polarization channelgwith the only exceptiord

=1/2 in h| h); this background signal therefore cannot be
eliminated by polarization analysis and reduces the observ-
able height(1) of the coherent backscattering peak;

(ii) The intensity in theh| h and linL lin channels al-

FIG. 4. Single-scattering intensity in terms of the bistatic coef-
ficient (42) in the backscattering direction as a function of the
ground-state angular momentuln(a) preserved and flipped helic-

ity in the circular polarization channel&y) parallel and perpendicu- . oo S
lar polarization in the linear channels. Full symbols: parallel chan-Va&ys stays below the intensity in the. h and lin| lin chan-

nels (| h and lin||lin). Open symbols: perpendicular channels nels, respggti\{ely; the single-.scattering Cor'ltribution thus is
(hL h and linL lin). Transition types: ¥,V): J,=J+1, (W,0): always minimized by choosing the classically forbidden
Je=J, (A,A): J=3-1. channels.
(cf. Appendix A. As the analysis of the double-scattering B. Double-scattering Interference contrast

amplitude in Sec. Il C already showed, it is the antisymmet- The contrast of second-order backscattering interference,
ric part of the atomic scattering operator that is responsible

for the reduction of the backscattering enhancement in the c _ vc2A0)
parallel channels. 27y,

(54)

is determined by the crossed and the ladder bistatic coeffi-
cients, given in Eqsi44) and(49) as integrals over the gen-
eralized polarization kernel$47) and (51), respectively.
The results of the previous section enable us to calculat&€hese integrals can be evaluated analytically, and their ex-
analytically the intensity of polarized light scattered at firstpressions as functions df and J,, in the four polarization
and second order by atoms that are positioned randomly in eéhannels are contained in Appendix B. Here, we plot the
half-space. The spatial integrals in Eq44) and (49) are interference contrast, in Figs. 5 and 6 in the four standard
challenging because of the half-space geometry, but can hgolarization channels as a function of the ground-state angu-
performed fully analytically — see Sec. B3. We thereforelar momentuml.
obtain the various enhancement factors at backscattering as Two features of Fig. 5 are particularly striking: First, a
well as the shape of the backscattered cone fully analyticallyperfect contrast,=1 is obtained solely for the transitiah
In this section, we analyze the contributions of single and=0, J.=1 corresponding to classical point dipole scatterers.
double scattering to the backscattered intensity and detefFhe degeneracy of the atomic transition then degrades the
mine the second-order enhancement factor as a function @bntrast considerably. For instance, in the channel of pre-
the polarization channel and the atomic dipole transition. served helicity fi| h) and for a transition of typd.=J+1
(full downward triangles in Fig. b the contrast drops to
about 0.3 already at=1/2 and takes typical values of 0.2.
Second, the channdl L h can offer a contrast up to three
The single-scattering intensity in terms of the bistatic co-times higher than the chanrie|| h, depending on the transi-
efficient ys is given by Eq.(42) as a function of the ground- tion type and the degeneracy of the ground state.
state angular momentudy the transition type,—J=0,=1, Figures %b) and b) show that in the crossed channels
and the polarization vectors. Figure 4 showsfor all tran-  (h L h and linL lin), the contrast is always maximized for a
sition types and the four standard polarization configurationstransition typel.=J+ 1. But in the parallel channelsh( h

V. ENHANCEMENT FACTORS AND PEAK ANALYSIS
FOR ANY ATOMIC TRANSITION

A. Single-scattering background
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FIG. 5. Contrast of double backscattering interferefte® as a FIG. 6. Contrast of double backscattering interferefte® as a

function of the ground-state angular momentdrfor circular po-  function of the ground-state angular momentdrfor linear polar-
larizations: (a) conserved helicity(b) flipped helicity. Transition izations:(a) parallel polarizations(b) perpendicular polarizations.
types: V,V): Jo=J+1, (W,0): J.=J, (A,A): J;=J—1. Transition types: ¥,V): J.=J+1, (WM,0): J.=J, (A,A): I,
=J-1.

%?Selc;nlulrgljgéI:lotrhfrlgrﬁirt \ff\?‘:gf :E: ccgr?:rr:;ézlse\?gr?- tering is modified. Numerical simulations can determine the
approaches one. A contrast of one indicates that the antisy C—)Ie.Of. restricted geometry and are currently under study.
metric part of the scattering tensor vanishes. Indeed, therellmmary results' ShOV.V that the ratlo' of the 'double-
Clebsch-Gordan coefficients display a symmetry that sup_§catter|ng crossed intensity to the ladder intensity is almost

presses the antisymmetric part of the scattering tensdg, as mde_pendent of the shape .Of the me_dlum. In other words, it is
oo, the internal structure that is essential for the low contrast of

the interferences, not the spatial arrangement of the various
atoms. Thus, the present analytical calculation permits to fol-
low how the effects of single-scattering background and re-
Figure 4 shows that the smallest single-scattering signal iguction of interference contrast combine to result in small
obtained in theh || h channel forJ;=J+1. This configura- enhancement factors.
tion could also be expected to render the best enhancement Figures 7 and 8 show the enhancement fa¢t® as a
factor. However, Fig. 5 shows that the interference contrasfunction of the ground-state angular momentum for the four
in this configuration is particularly low. As will indeed be standard polarization channels.
seen in this section, the choice &=J+1 andh| h does The difference between Figs. 5 and 7 is given by the
not guarantee an optimized backscattering enhancement. Dgingle-scattering contribution, shown in Fig(a# In the
pending on the degeneracy, the crossed channel or the traphannel of conserved helicityh(| h), the lowest single-
sition typeJ,=J can offer a better interference contrast andscattering intensity is observed for tldg=J+1 transition
lead to a higher-enhancement factor. type, so that the enhancement factor, following closely the
An enhancement factor up to second order, interference contrast, drops from its classical value 2 to about
1.2. The already poor contrast for tlg=J—1 transition
type is further reduced by single scattering. The increasingly
good contrast fod,=J at higher values of is counterbal-
anced by an important single scattering contribution, so that
combines the single- and double-scattering contributions. Ithe effective enhancement stays below 1.4. We thus find that
has to be pointed out, however, that its exact value may ndhe classical enhancement factor of two in the helicity pre-
be compared directly to experimental results. Indeed, eitheserving channel is irrevocably lost for atomic scatterers as
the scattering medium has the semi-infinite geometry of a&oon as}>0.
half space, but then third- and higher-scattering orders can- Although the contrast of interference tends to be higher in
not be neglected. Or it has the finite geometry of a laserthe h L h channel than in thén || h channel(Fig. 5), the
cooled atomic cloud that truncates higher-scattering ordersingle scattering contributiofFig. 4(b)] also is more impor-
but then the relative weight between single and double scatant, resulting in low-enhancement factors below 1.31.

C. Backscattering enhancement factor

YcA0)

a=1+ ,
Vst Y2

(59
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FIG. 7. The second-order backscattering enhancement factor FIG. 8. The second-order backscattering enhancement factor
(55) as a function of the ground-state angular momentufor ~ (55) as a function of the ground-state angular momentifior
circular polarizations(a) conserved helicity(b) flipped helicity. ~ linear polarizations(a) parallel polarizations(b) perpendicular po-
Transition types: ¥,V): J.=J+1, (M,0): J.=J, (A,A): J. larizations. Transition types:W,V): J.=J+1, (W,0): J.=1J,
=J-1. (A,A): J=J—1.

D. Enhanced backscattering peaks fod=3, J.=4

. . , The scattered intensity enhancement
The enhancement factors in the linear channels, displayed
in Fig 8, show the same characteristics. With the only excep- Yoo 1)
tion of theJ=0, J,=1 transition in the lin_ lin channel, we a(p)=1+—— (56)

. . . ” ) Yst Y2
find that all possible atomic transitions yield enhancement

factors below 1.35. as a function of the reduced scattering angkek/ 0 for any

The interplay between single-scattering background an@tomic transition and any polarization is given analytically in
interference contrast makes it difficult to predict in which terms of the bistatic coefficientsee appendix B for detals
configuration the optimal enhanced backscattering can bBigure 9 displays the backscattering pegfu) for the case
measured. Intuition formed with classical scatterers wouldhat has been experimentally studied: the optical transition
recommend a transition of typk=J+1 and theh||h chan-  between two hyperfine levels=&3 and F.=4) of laser
nel. But for a high enough degeneracy of the atomic transicooled Rubidium atomgL4]. Hyperfine levels are character-
tion, classical intuition turns out to be a bad counselor. Fofz€d by a total angular momentumincluding the coupling
J=3, J,=4, the calculated effective enhancement factor igVith the nuclear spin; our analysis applies to any total angu-
higher in theh L h channel @=1.21) than in thén || h chan-  1&f momentum which we continue to note here byThe
nel («=1.17). This had first been observed experimentall)}ﬁ"ghfeSt peak arises in the channel of flipped helidity. (),

[14] and remained puzzling until taking into account thef[he I'|near peaks are aImost' equwalent, and the smallest peak
atomic internal structur33]. is given for preserved helicityh(| h). The calculated en-

Figure 7 indicates that an optimized enhancement is e r_lancement_factor in all four channels is of the order of 1.2.

. . XThe experimentally measured enhancement factors are
p_ected for a _tran3|t|ode=_J_ n Fheh I channe_l. However, a smaller than the present values because the atomic cloud has
d|recF .expenmental yer|f|cat|on seems delicate b_ecguse ither a uniform density nor the geometry of a half space.
transition of typee=J is not closed in generdthe emission  Neyertheless, we stress that the calculated peaks reproduce
of a photon from the excited levdl, to a final levelJ,=J

_ _ : semi-quantitatively the experimental ones as show88j.
—1 is allowed. These events cut off elastic scattering paths = The shape of the CBS cone for atoms is similar to the one

and yield a high background intensity, unfavorable for ex-for point dipole scatterers: the angular width is of the order
perimental detection. An interesting exception to this rule isof 1/k/ and can vary by a factor two depending on the

the closed transitiod=J,=1/2, which has the additional polarization channel. In the helicity channels, the CBS cone
advantage that no single scattering background pollutes ths isotropic. In the linear channels, its presents an anisotropy

h| h channel. that is characteristic of polarization memory in low-order
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application of the present method to higher orders of scatter-
ing. Finally, going beyond the weak-localization regime, fur-
ther research is needed in order to decide whether the inter-
nal structure is not a substantial difficulty in the quest for the
strong localization of light in cold atomic gases.

2l hih | lin||lin |
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FIG. 9. The intensity enhanceme(B6) as a function of the
reduced scattering angje=k/ ¢ for J=3, J.=4 in the four po-
larization channels. In the linear channels, the intensity is scanned APPENDIX A: TRACE EVALUATION USING
in the direction parallel to the incident polarization. In the helicity IRREDUCIBLE TENSOR OPERATORS
channels, the intensity is independent of the scan direction. The ) )
dashed curve in thé | h channel shows CBS contribution from I the following, we employ the standard theory of irre-
Rayleigh transitionsrg’ =m) only. In this channel, the dominant ducible tensor operators as exposed in the textbooks by Ed-
contribution to the CBS peak comes from Raman transitions bemonds[30] and Blum[41]. We have to calculate
tween different substatem’ #m, see also Sec. Il C 3. .
scattering[44], see also Appendix B 5. In the ljdin chan- Ta) MJTr[pJ(X4 D% - ) xy-A)]. - (AD)
nel, it extends further in the direction of the polarization than
perpendicularly, reflecting the anisotropy of the dipole scatwhere d=d® is the reduced dipole operatoi=D/D, an
tering cross-section in the Fourier plane. irreducible tensor operator of rank 1 acting upon the eigen-

A small scattering angle is associated to endpoints of scastates|Jm) of the angular momentum operatal$ and J, .
tering paths lying far apart. Conversely, short scattering pathés reduced matrix element is by definitiofJ/|d[|J)
dominate for larger scattering angles. Analytical results for= y2J.+1. We introduce the ratio of multiplicitiedv
double scattering thus provide information about the wings=(2J.+1)/3(2J+1) for convenience. The<a=x&1) are
of the backscattering peak that are in principle measurablfixed free vectors commuting with?,J, ,d. Therefore, the,,
experimentally. Appendix B5 contains the analytical expresare irreducible tensors of rank 1, but not operators, and the
sions for the wings of the backscattering peak in the foutrace(A1) acts only ond.
usual polarization channels. It can be seen that the intensity Let O be an operator decomposed into its irreducible
decreases ak{ 6) ! in all four channels, with coefficients components,
depending ond, J.. Furthermore, the anisotropy in the linear
polarization channels, i.e., the dependence of the scattered
intensit inci izati 0=2> a0f. (A2)

y on the angle between incident polarization and the = La~q
direction of the scan, decreases as the degeneracy of the
gtomic .transitiqn incrgasgs. This reduction of the anisotrop)(ts averagg(O)="Tr pO in a system described by a density
is consistent with t_he intuitive picture that degen_e_rate atom"?natriXp can again be decomposed,
transitions depolarize the incident light more efficiently than
dipole-point scatterers and that the memory of direction as

. X . . R a
seen in the backscattering anisotropy is lost more rapidly. Trpo=> 4 _ L3 I lloM™13y. (A3
PO=2 o 2 P3N0V, (A3)

VI. CONCLUSIONS AND OUTLOOK All angular information has been concentrated into the coef-

The internal structure of an atom determines its light scatficientsa 4 and the components
tering properties. We have shown that a degeneracy of the
atomic dipole transition reduces the observable backscatter- . "N L= -myy ) -
ing enhancement factor in two ways: single scattering is Pq(JJ )_n%, (=) (3" =mmv[La)(Imlp|J'm")
present in all polarization channels and the nonscalar part of ' (A4)
the scattering tensor reduces the contrast of CBS interfer-
ence. A complete analytical solution for the case of unpolarof the so-called statistical tensor operator.
ized atoms has been presented together with a generalization If the system is distributed with equal probability over all
of the classical ladder and crossed diagrams to the case sfibstate§Jm) for a givenJ, the density matrix with ele-
atoms. An immediate extension, under current study, is thenents(Jm|p|J’'m’)=(2J+1) 18,5 Smny is purely scalar,
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and its only nonzero irreducible component p§=(2J The last thing to do now is to evaluate
+1)" Y2 The trace(A3) then reduces to
(—)(2K+1)"2agg(K) =[x1%2]™)- [x3%,4] .
oo (A12)

V2J+1 This scalar product of two irreducible tensors of rank 2 can
All we have to do now is to decompose the operafor @dain be written in any basis, in irreducible components as
= (X4~ d)(Xg-d) (X,-d)(x;-d) into its irreducible compo- Well as in Cartesian components,
nents, determine the coefficieay, and the reduced matrix
element(J||0(®||J). We begin with decomposing the opera- (K) (K)_ (K) (K)
X1X -[X3X = X1 Xo |5 [ XaXalii - (A3
tor of second ordeo;,= (x,- d)(x;-d). The scalar products DXl [xexal ZJ Dxaxelif [Xsxalji” - (AL3)
can be expressed in any basis, in the Cartesian basis as well

as in irreducible components, The cartesian componerits,x,]{ are given by the usual

decomposition of matrices: fa€ =0, the scalar part or trace

TrpO= (J]|0©)]3). (A5)

2 K
0= 2 2 () MIxpx]Hdd]fY. (A6) .
[XaXgliP' =3 (XaXp) iy (A14)
Here,[A®B&)] denotes the direct product of two irreduc-

ible tensors. The irreducible components of the product argor K=1 the antisymmetric part
composed from the irreducible components of the factors,

1
[A(")B("')]ETTE% (kk'rs|KmA®BK) | (A7) [XaXg1= 5 (XaiXgi = XaiX i), (A15)
using the Clebsch-Gordan coefficietkk’rs|Km). Applica-  and forK=2 the traceless symmetric part

tion of the inverse formula

1 1
, , [X X512 =2 (XX gi + X Xgi) — = (Xo - Xg) S - (A16)
AROBR =2 (KK mm [La)[ARBKIIE  (AB) A A
L,q

. Putting everything together, we summarize
to the productO=0,440,4 leads to the decomposition g yting tog

, , 1 1 K)?2
O=KK§,:Lq (=) K = X x5] K X%, 1K )](J-()q ﬂxa)=3(2\]e+1); {J ] JJ Tk (Xo)
X [[dd]®[dd]®)], (A9) 1
Tozg(xl'xz)(xs'xﬂ (A17)

which is a linear combinatioisum overK,K’) of totally
decomposed operatofsum overL,q). Under the trace ac-
cording to Eq.(A5), only L=g=0 survives so that we are
left with a sum of three termK=K’'=0,1,2.

The reduced matrix element (J|]|OO(K)||J)
=J||[[dd]®[dd]®]©)]||J) can be calculated using the 1
general formula To=5[(%1-Xa) (Xg-Xa) F (X1 X3) (Xg- Xa) ]~ Tp-

1
7'125[0(1' X4) (X2 X3) = (X1 X3) (X2 X4) |

' (K R(K")7(K")
(J'[[AYBYTEV]|J) This form shows nicely that the scalar, antisymmetric, and

k k' k' traceless symmetric parts of the single-scattering operator
307y combine with their counterparts in the direct product and
contribute to the scalar trace. Regrouping of the different

:(_)k"+J+J’(2kH+ 1)1/22
J//

X<J,||A(k)||J"><J,,||B(kr)||J> (A10) ::\(/)rétractlons leads to the vertex for(84) presented in Sec.
for the reduced matrix element of the direct product of two
irreducible tensor operators acting on the same sy$8h APPENDIX B: ANALYTICAL EXPRESSIONS OF THE
Two iterated applications of this formula yield DOUBLE SCATTERING-CONTRIBUTIONS
2K+1\12(1 1 K)?2 1. Values of transition-dependent coefficients
(OO(K)[3) = (2e+ 1)%(—)" " -
2J+1 J J X For J.=J+1, the transition-dependent coefficie&5)

(A11) are explicitly
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. 6J°+17J+10, i=1 9[I (Wit wy)2 4] W W et | 2]
==[ly(wy+w W W Wi+ w,y)w ws].
Wi=10(3+1)(2J+1)X —43(3+2), =2 V2= glllWa™Wa W W 1g(Wyp ™ W2 )W3 T 14W3
J(6J+7), i=3. (B6)
(B1) Here, the termsw?+w5 have been completed towg
For J.—J +Ww,)?, simplifying all following expressions. The coeffi-
Or Je=+, cientsw;(J,Jo) carry the dependence on the atomic transi-
2 o tion, and the coefficient$; are given as functions of the
1 2)°+2J+1, =1 polarization channels
wi=—o—-—x1{ 2(J+2)(J-1), i=2 (B2
10(J+1) 21242341 i=3. h{h hih lin || lin lin 1 lin
I = In2—32 In2—-% =
ForJe=J-1, I, 2In2-1  —(2In2-1) 0 0
L (6J+1)(J—-1), i=1 (B7)
Y YT E B -4J+1)J-1), i=2
w; 10020+ 1) X ( )( ) ! (B3) and
(J+1)(63-1), i=3. 1
[3=2In2—5, 14,=2In2, B8
As pointed out in Sec. IV E, the antisymmetric part of the 3 2 4 (B8)

scattering tensor plays no role when=w;. The only finite

values ofJ, J, for which this condition is fulfilled areJ in all four channels. The coefficieht for the four channels
=0,J.=1, the case of the classical dipole-point scattererhad been derived in Reff43], the others describe the gener-
wherew,=w;=0. The coefficients take nontrivial values in alization to the case of degenerate atomic transitions.

the limit J—oo:

3. Crossed contribution

*1 (B4) The calculation of the crossed contribution given by Egs.

(49) and (51) follows the same lines. There is however a
complication due to the cp&+k')-rq,] term. We choose
and we see that a nontrivial realization,=w3=1/5 of a  the spherical coordinates ,,9,¢) such that thex axis is
vanishing antisymmetric part of the scattering tensor is giveralong k+k"), that is in the direction of observation. The
asymptotically in the casé.=J— . integral over the transverse components gfand over g;
+2,)/2 andr ., yields the following result:

1 (3—23, Jo
(Wl,Wz,Ws)—EX (222, 3,

=J

2. Ladder contribution

- . . . . 9 SiNYPcy ¥, ¢)ddde
The six-dimensional integral44) with the generalized YCZ(“):EJ f 5 20"
ladder polarization kernglt7) can be exactly calculated. The 1+[cosd|+ u*(1—[cosd|)cos'e
first (trivial) step is to use the translational invariance per- (B9)

pendicularly to the incoming direction, and reduce it to an

! . . where

integral over the three components of the interparticle vector

ri, and over ¢, +2,)/2. In a second step, we use spherical w=0k/ (B10)
coordinatesi(;,, 9, ¢) for ri,, whered is the angle between

the z direction andr121 and (0] the azimuthal angléin the is the reduced Scattering ang|e_

circularly polarized case, the ladder kernel is independent on The kernelP, is a combination of simple trigonometric

¢). The integrals overy, and (z;+2,)/2 are then easily functions of 9 and ¢. This makes it possible to calculate
performed, leading to the double scattering ladder contribupasily the integral ovep, leading to

tion
91 C(x;J,Je)

9 SinNIP (9, ¢)ddde _ .
= YeA 1) dx
"2 327J f it[coso] B9 8Jo 1+ )7+ p2(1—x)

. (B1D)

where the crossed kern€l(x;J,J.) depends on the atomic

expressed as an integral over the direction transitionJ—J, via the coefficientsy;

=(sindcosg,sinfdsing,cosy) of the interparticle vector.
The kernelP,,, given by Eq.(47), involves only simple

C(x;J,Jo) = (W1 +W3)%Cq(X) + W W5Co(X
trigonometric functions oy and ¢, which makes the calcu- ( ) = (W1 FWg)"Ca(X) + WaWsCa(X)

lation of the integral easy. The result depends of course on +(wl+w3)w203(x)+w§c4(x) (B12)
the incoming and outgoing polarizatiomsand €’.
We finally obtain and the functiong;(x) depend on the polarization channel:
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h h hlh lin || lin lin L lin
ci(¥)  F(1-x3)2  2(1+xH)? F(1+xH)2+A '
Co(X) 2x? 0 0 2x?
c3(x) 1+x2 0 1+x%+B; 0
c4(X) 2 0 2 0

(B13)

In the hL h channel, the only nonzero coefficient is
c1(x). This means that apart from a multiplicative factor
(w;+wg)?, the backscattering peak for any atomic transition
has exactly the same shape as the classical peak. This is due
to the fact that only Rayleigh transitions contribute to the
CBS peak in thenh L h channel and that the radiation dia-

PHYSICAL REVIEW A64 053804

9
= [—4-2u%+3 2
Ya(p) 8(1_M2)2[ 4=2p"+3V1+pu
+(2+uHF ()], (B17)
Yy (M)=L[—4—2M2+3v1+ﬂz
T 16(1- u?)?

+(4—4p®+3utF(p)],

9
74(//«):ZF(M)-

gram of such transitions is—averaged over the magnetic « |n theh L h channel

guantum number—identical to the one of classical point-
dipole scatterers. In all other channels, the form of the back-
scattering peak itself is changed, be it only in minor ways. In
the linear channels, a supplementary complication arises be-
cause the intensity depends on the angleetween the in-
cident polarization vector and the direction of the observa-
tion. =0 corresponds to a scan parallel to the incident
polarization vectorg= /2 to a scan perpendicular to the
incident polarization vectotin Ref.[43], the opposite con-
vention is chosen This anisotropy of the backscattering en-
hancement, observed already for classical point scatterers, is
contained in the expressions

()=

—————[—2(80—56u2+42u*+ 39u°)
256(1_M2)4[ ( L n e

+(122— 144u”+ 127u*) 1+ u?
+3(32— 64u+96u*— 48u8+19u’)F(u)].
(B18)

* In the lin|| lin channel

y2)2 4 yi(p)= —————[ —288+48u?— 252u*— 138u°®
A“=¥(1+x2cos4¢)+ ! 2X X cos2p, ST a1t
+(222— 144u2+ 237u*) 1+ u?
_ _ 2
Bj=(1-x*)X cos 25, (B19 +(192- 38442+ 720u ~ 336u°+ 123u°)F ()
AL=(1_8X2)2(1—X2003 i), +A;()cos 2p+ Ay()cos 4p], (B19)
. 9
with ya(p)= m[_4_2“2+3\/1+“2
X:1—2\/(1+X)2+M2(1_X2)_1_X' (815) +(4_4M2+3M4)F(M)+B(M)COS%]
(1-x)u?

Finally, the integral(B11) can be calculated analytically.
The expressions are rather complicated and we give them for
completeness. We obtain

Yoo ) = (Wy+Wz) 2y (p) +Wiwzy,(p)
+ (W1 +W3)Woys( i) +Woya(p),  (B16)

where the nonzero functiong(w) are given by the follow-
ing expressions:
« In theh| h channel

vilp)= [32—176u”—84u"+18u°

256(1— u?)*
+(— 22+ 1442 — 17u*) 1+ u?+3u*
X (48— 16u>+3u*)F ()],

053804-18

yi(m)=

9
7’4(#):ZF(M)-

¢ In the linL lin channel

512(1—_M2)4[32— 176u’—84u*+18u°
+(— 22+ 14442 - 17u*) 1+ p2+ 3t
X (48— 16u°+3u*)F(u) — Ag(p)cos 4¢],
(B20)
Ya(p)= 8(%#2)2[—4—2,u2+ 3V1+pu?
+(2+ pHF(u)].
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All other v; are zero as evident frofB13). In the linear
channels, the anisotropic contributions from EB14) are
weighted by

Ay(p)=[—56(—2+8u’+4u’+5u)

+28(—4+18u2—14u*+ 15u®) 1+ u?
+12u*(16+8u2+6u*+5u8)F(u)]/ u?,

Ay(w)=[48—152u%+128u’*+ 48ub—212u8— 7010+

(— 48+ 17612~ 222u*+ 888+ 111u8) 1+ u?
+3u8(8+24u+3u*)F(u) ]/ ut, (B21)

B(u)=[2—4u—4u*+(—2+5u?)\1+
+ut(2+ u?)F () p?.

In all these expressions, the auxiliary functiefw) is given
by

1 1
F(u)=2arg cos(v— —arg cos?E —) . (B22
|1l u?

Under this formF(w) is not a manifestly real function qf.
It can be rewritten as

2 N1+ pt-1
ﬁargﬂn?(\/_z—#zwl—/ﬁ , |M|<1
2 i \/1+,u2—1
marcsu’( 2 V=11, |u|>1.
(B23

In table (B13), the functionc,(x) is just a constant, without
any angular dependence @nor x=cos®. The correspond-
ing contributiony,(ux) in Eqgs.(B17) and(B19) is essentially
F(u). We see therefore th&(u) is—within a factor 9/4—

PHYSICAL REVIEW A 64 053804

9
YcA0)= g[Cl(WDL W3) 24 CoWi W3+ Ca(Wy +W3) W,
+c4wal, (B24)

where the numerical coefficients are given as functions of
the polarization channels

h|h hlh lin | lin lin L lin
cy = In2—32 In2—% =
Cy 2In2-1 0 0 2In2-1
C3 2In2-3 0 2In2—3 0
Ca 2In2 0 2In2 0

Just as for the ladder contribution, the coefficiepthad
been derived in Ref43], the others describe the generaliza-
tion to the case of degenerate atomic transitions. In the par-
allel channels, all crossed coefficients are equal to the
corresponding ladder coefficientsEgs. (B7)—(B8). This is
the signature of reciprocity since the ladder and crossed con-
tributions are then equal fav,=ws;. In the perpendicular
channels, no such correspondence can be observed.

5. Wings of the crossed contribution

For a large reduced scattering anglek/ 6> 1, the pre-
vious expressions can be expanded in poweys of, giving
the wings of the enhanced backscattering peak. This
asymptotic expression describes the wings of the back-
scattering peak even if higher orders of scattering contribute
to the intensity at smaller angles. The crossed bistatic coef-
ficient in the wings becomes

O
Yelp)= @[al(Wﬁ‘Ws)z*' a,W W3+ ag(Wq+wsz)w,

+a,wa]+0(u?), (B25)
where the wing coefficients are
hjh hih lin | lin lin L lin
ap o1 &1 =(3+2 codp+3codp)  Zsid
1 1
2V 2 0 0 z
as 3 0 2(1+cog¢) 0
a, 1 0 1 0

the crossed double-scattering bistatic coefficient for a scalar . o . _
wave scattered by a semi-infinite homogeneous medium of The wing coefficients in the linear channels depend on the

point scatterers. It is a bell-shaped function around 0
with width of the order of unity.

angle ¢ between the incident polarization and the direction
of the intensity scan, carrying the anisotropy of the linear

With the help of the previous expressions, the scattereftackscattering peaks. In the Jifin channel, the intensity is
intensity can be plotted, for all atomic transitions, all polar-higher in the direction of the polarizatiorp0) than per-

ization channels and all directions of observation.

4. Crossed contribution for exact backscattering

In exactly the backscattering directign=0, the above

pendicular to it, yielding a cigar-shaped intensity pattern in
the plane of observatiofin Eq. (A.5) of Ref.[43], a term
—(3/4)sirf2¢ is missing, otherwise all coefficients coin-
cide]. In the linL lin channel, the intensity is smaller in the
directions of incident ¢$§=0) and scatteredg= 7r/2) polar-

expressions simplify considerably, yielding the crossed biization than along the diagonals, yielding a cloverleaf pattern

static coefficient in the backscattering direction

in the observation plane. As pointed out in Rf3], in the

053804-19
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lin L lin channel the classical coefficieat o sirf2¢ vanishes

PHYSICAL REVIEW A64 053804

w1 in all directions, thus reducing the anisotropy. In the

if the intensity is scanned in the direction parallel or perpendin || lin channel, the above expressions permit to verify that

dicular to the incident polarizationg(=0,77/2). That means
that the peak decreases in thesedirectiong asinstead of
w1 But for atoms, a second constant coefficiapt= 1/2

comes into play that maintains @odulatedl decrease as

the classical anisotropy ratigc(¢=0)/yc(dp=m/2)=8/3

decreases as the atomic degeneracy increases, converging to

40/19 for transitions of typd.,=J*+ 1 and to 40/22 for tran-
sitions of typeJ.=J asJ—oe.
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