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Photoassisted transport through a mesoscopic conductor occurs when an oscillatory �ac� voltage is super-
posed to the constant �dc� bias which is imposed on this conductor. Of particular interest is the photoassisted
shot noise, which has been investigated theoretically and experimentally for several types of samples. For
dc-biased conductors, a detection scheme for finite-frequency noise using a dissipative resonant circuit, which
is inductively coupled to the mesoscopic device, was developed recently. We argue that the detection of the
finite-frequency photoassisted shot noise can be achieved with the same setup, despite the fact that time
translational invariance is absent here. We show that a measure of the photoassisted shot noise can be obtained
through the charge correlator associated with the resonant circuit, where the latter is averaged over the ac drive
frequency. We test our predictions for a point contact placed in the fractional quantum-Hall-effect regime, for
the case of weak backscattering. The Keldysh elements of the photoassisted noise correlator are computed. For
simple Laughlin fractions, the measured photoassisted shot noise displays peaks at the frequency correspond-
ing to the dc bias voltage, as well as satellite peaks separated by the ac drive frequency.
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I. INTRODUCTION

The understanding of the transport properties of nanoscale
conductors at low temperatures has known tremendous suc-
cesses via experiments in a wide range of systems performed
for the most past in the stationary regime. Correspondingly,
theoretical modeling has allowed the description of these
transport processes via scattering theory approaches as well
as Hamiltonian formulations, in a fruitful dialogue with ex-
perimental investigations. Transport is first characterized by
the average current flowing through conductors. But further
information can be gained via the measurement and analysis
of the current fluctuations1,2 and more generally via the
higher current moments.3 Early investigations of quantum
transport focused almost exclusively on the low-frequency
regime. Few recent experiments have probed quantum sys-
tem on timescales comparable with the electron correlation
time, where new physical effects are expected. The present
work deals with the detection of quantum noise at such high
frequencies, when both a dc and an ac bias is imposed be-
tween the source and the drain of the mesoscopic system.

Indeed, high-frequency measurements can mean several
things. First, if only a dc bias is imposed on the sample, a
stationary current is generated and high frequencies refer to
the Fourier component of the current-current correlation
function in time.4–7 Second, high frequencies can be injected
as a drive on the mesoscopic circuit,8–11 for instance, when
an additional ac drive is superposed to the dc bias. The later
effect is called photoassisted �PA� transport: electrons under-
going transmission from one lead to another are able to
absorb/emit “photons” during this process. PA transport, and,
in particular, PA noise has been studied theoretically and
experimentally on several occasions for diffusive metals,5

tunnel junctions,12 normal metal/superconductor
junctions13,14 as well as quantum point contacts �QPC�.6 The
noise characteristics then displays some structure at values of

the dc bias which are multiple of the ac drive frequency.
However, high-frequency noise detection requires special

care: conventional �low-� frequency noise detection setups
are often inadequate for such measurements, and one must
often resort to on-chip detection schemes, or alternatively/
equivalently to schemes where a good connection to the
measurement circuit is achieved through adapted impedance
lines.15 On-chip detectors have allowed the detection of
single electrons traveling through quantum dots. Such detec-
tors and the device they probe are parts of the same quantum
system and must be treated on the same footing. They bear
the peculiarity that the noise which is measured is a non-
trivial combination of nonsymmetrized noise correlators. For
dc-driven systems there are existing proposals to detect high-
frequency noise using either capacitive or inductive coupling
with an on-chip circuit.16

In a recent theoretical work, a LC resonant circuit, which
was coupled inductively to the mesoscopic device circuitry,
was employed as a detector of both noise and higher current
moments �third moment�.17 The description of this generic
detector included its electromagnetic environment, described
at a bath of harmonic oscillators with the Caldeira-Legett
model.18 Predictions were made on the role of such a dissi-
pative environment and on the relevance of this harmonic
detector to capture on high-frequency current moments.
However, this study considered the case of a mesoscopic
device in a stationary regime �with a dc bias only�. The hy-
pothesis of a stationary regime greatly simplifies the analysis
of the detection process because of time translational invari-
ance. The presence of an additional ac voltage drive breaks
such a property.

Given the interest in the study of time-driven mesoscopic
systems and, in particular, PA noise, it seems necessary to
address how detection with an auxiliary circuit can be
achieved in such situations. The purpose of this work is to
present a high-frequency detection scheme for photoassisted
noise and to illustrate it with a calculation of photoassisted
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noise in a specific situation where signatures of photoassisted
transport are most dramatic. For devices composed of
normal-metal junctions as well as superconducting/normal-
metal junctions, PA noise exhibits singularities at integer ra-
tios of the dc voltage with respect to the ac frequency: the
derivative of this noise exhibits jumps at such locations. On
the other hand, for a weakly pinched quantum point contact
placed in the fractional quantum-Hall-effect regime
�FQHE�,19–23 the PA noise diverges when the dc voltage—
multiplied by the filling factor—is a multiple of the ac fre-
quency. This much stronger singularity is a motivation for us
to apply our measurement scheme to the FQHE situation. We
will show that as in the dc case, the measured noise captures
the response of the mesoscopic circuit at the resonant fre-
quency of the LC circuit. It exhibits a central peak at the dc
voltage, which is surrounded by satellite peaks shifted by the
ac frequency. These predictions have the potential to be
tested in experiments.

The paper is organized as follows. In Sec. II we present
the model for the LC detector. We review the results for the
charge correlator of the dc circuit in Sec. III and extend this
discussion to the PA situation. Section IV is devoted to the
presentation of the QPC in the FQHE regime and its calcu-
lation of PA noise. Plots of these quantities and of the mea-
sured noise are discussed in Sec. V. We conclude in Sec. VI.

II. MODEL

The proposed setup �Fig. 1� is the same as that presented
in Ref. 17, except for the fact that the voltage source on the
mesoscopic device is time dependent. A lead from such de-
vice is inductively coupled to a resonant circuit �capacitance
C, inductance L, and dissipative component R�. The signal
which contains information about the noise of the mesos-
copic circuit is encoded in the time correlation function of
the charge on the capacitor.

We start with the description of the detector. The basic
Hamiltonian which describes the dissipative oscillator circuit
reads

Hosc = H0 + HLC-env, �1�

where

H0 = HLC + Henv �2�

is the Hamiltonian of the uncoupled system “LC oscillator
plus environment,” and HLC-env describes the coupling
between the two.

For dissipative quantum systems, it is convenient to use a
path integral formalism. In the absence of dissipation and
coupling to the mesoscopic device, the Keldysh action de-
scribing the charge of the LC circuit reads

SLC�q� =
1

2
� dtdt�qT�t�G0

−1�t − t���zq�t�� , �3�

where

G0
−1�t − t�� = L��i�t�2 − �2���t − t�� �4�

is the �inverse� Green’s function of an harmonic oscillator
�L is its “mass”�, �= �LC�−1/2 is the resonant frequency of
the circuit, qT= �q+ ,q−� is a two-component vector which
contains the oscillator coordinate on the forward/backward
contour, and �z is a Pauli matrix in Keldysh space. Dissipa-
tive effects are treated within the Caldeira-Leggett model,
where the environment is modeled by a set of harmonic os-
cillators �bath� with frequencies ��n�; the coordinate q is
coupled linearly to the bath oscillators

HLC-env = q�
n

�nxn �5�

with the coupling constants �n.
The partition function of the LC oscillator plus bath, Z

=	DqDxeiS�q,x�, has an action

S = SLC +
1

2�
n

xn
T � Dn

−1 � �zxn − qT � �z�
n

�nxn, �6�

where Dn
−1�t�=Mn��i�t�2−�n

2���t� and the symbol � stands for
convolution in time. The bath degrees of freedom can be
integrated out in a standard manner.24 As a result, the Green’s
function G of the LC circuit becomes dressed by its
electronic environment

G−1 = G0
−1 − � �7�

with a self-energy ��t�=�z�n�n
2Dn�t��z. In the remainder of

this paper, when we mention the LC circuit, it will also imply
the presence of its surrounding electromagnetic environment.

Next, we introduce the inductive coupling between the
mesoscopic device and the LC circuit

Hint = 	qİ , �8�

where İ is the time-derivative current operator.25 This inter-
action is interpreted here as an external potential acting on
the oscillator circuit. To calculate correlation functions of the
LC circuit coordinate q, we introduce the generating
functional

Z��,I� =� Dq exp i
1

2
qT � G−1 � q − qT�z � �	İ + ��� ,

�9�

where �T= �
+ ,
−� is a two-component auxiliary field. Per-
forming integration over the LC oscillator variables q results
in Z�� ,I�=eiSef f��,I� with an effective action �restoring inte-
grals�

FIG. 1. Mesoscopic circuit is coupled to a resonant-dissipative
circuit.
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Sef f��,I� = −
i

2
� dt� dt����t� + 	İ�t��T�zǦ�t − t��

� �z���t�� + 	İ�t��� . �10�

III. CHARGE CORRELATOR

By taking double derivatives of the Kelysh partition func-
tion with respect to the components of the spinor 
, the
charge correlator is obtained

�q��t�q���t�� � Z

−1�I�

�2Z
�I�

�
�t�� � 
�t����
=0

, �11�

where � ,��� 1 are indices specifying the upper/lower
branch of the Keldysh contour. To leading order in the cou-
pling constant 	 between the mesoscopic circuit and the
detector17 this can be expressed in terms of the current-
derivative correlator

K�1�2��1,�2� = �TKİ��1��1İ��2��2meso, �12�

where the average � . . . meso represents a nonequilibrium av-
erage containing information on the occupation of the reser-
voirs connected to the sample and on its scattering proper-
ties. The charge correlator consists then of a Keldysh matrix

�TKq��t�q���t�� = 	2� d�1d�2 �
�1�2

G��2�t − �2�

��z
�2�2K�2�1��2,�1��z

�1�1G�1����1 − t�� ,

�13�

where the integrand contains the Green’s function G����t� of
the LC circuit only. While this Green’s function is a function
of a single time argument because of time translational in-
variance, the current-derivative correlator K�1�2��1 ,�2� is not
a function of the difference �1−�2 if the bias voltage is time
dependent.

A. dc voltage only

We recall the results obtained previously for the detection
of finite-frequency noise in the presence of time translational
invariance. The initial proposal of Ref. 25 for a dissipation-
less LC circuit was to operate repeated time measurements
on the charge q. This allows to construct an histogram for
zero voltage, yielding the zero-bias peak position, its width,
skewness, etc. In the presence of bias, this histogram is
shifted, and acquires a new width, skewness, etc. Informa-
tion about all current moments at high frequencies is en-
coded in such histograms. Here, however, we only focus on
the detection of noise. In Ref. 17, the inclusion of dissipation
due to the electromagnetic environment was shown to be
essential to obtain a finite result for the measuring process.
There, expressions for the off-diagonal Keldysh component
of the charge correlator �TKq−�t�q+�t��= �q�t− t��q�0� were
derived with the help of Eq. �13�. Note that in this situation,
the current-derivative correlator of Eq. �12� is a function of
the difference �1−�2, and the charge correlator is a convolu-

tion product, which explains its dependence on t− t� only.
Going to the rotated Keldysh basis �see Appendix B� al-

lows to rewrite the charge fluctuations at equal time �t= t�� as

��q2 = 	2� d�

2�
GR����GK���K+−���

− �GR��� − GA����K−+���� �14�

with the three Green’s function components given by

GR/A��� = �L��2 − �2�  i sgn���J������−1 �15�

and

GK = �2N��� + 1��GR��� − GA���� , �16�

where N��� is the Bose occupation number of the oscillator
and the bath spectral function is defined as

J��� = ��
n

�n
2/�2Mn�n���� − �n� . �17�

This spectral function is at the origin of the broadening for
the LC circuit Green’s function.

The time-derivative correlators K−+,+− are related to the
Fourier transform of the current-current correlation functions
as K+−���=�2S+−��� and K−+���=�2S−+��� with

S+−��� =� dt�I�0�I�t�ei�t �18�

and S−+���=S+−�−�� corresponding to the response function
for emission/absorption of radiation from/to the mesoscopic
circuit.25,26 With these definitions, the final result for the
measurable excess noise reads

��q2 = 2	2�
0

� d�

2�
�2�������2�S+−���

+ N����S+−��� − S−+����� , �19�

where �����=J����� / �L2��2−�2�2+J2������ is the suscepti-
bility of Ref. 18, here generalized to arbitrary J�����. Eq. �19�
constitutes a mesoscopic analog of the radiation line width
calculation:27 a dissipative LC circuit cannot yield any diver-
gences in the measurable noise. Dissipation is essential in the
measurement process.

Eq. �19� indicates that for an infinitesimal linewidth, the
integrand can be computed at the resonant frequency �, and
the measured noise takes the form of Ref. 25

�q2 =
	2

�L2 �S+−��� + N��S+−��� − S−+����� , �20�

where the prefactor � is defined assuming a strict Ohmic or
Markovian damping �J���=L���, which corresponds to a
memoryless bath which is consistent with the adiabatic
switching assumption, as discussed in Ref. 17.

As an alternative to the measurement of the width of the
charge distribution, one can imagine that the capacitor itself
is coupled to a measuring device �a single-electron tunneling
device� which directly detects the Fourier transform of the
charge correlator.28 Given the fact that the charge correlator
matrix of Eq. �13� is a convolution product in this stationary
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situation, its Fourier transform take the simple form of a
product of matrices

� dt�TKq��t�q���0�ei�t = 	2�G̃����zK̃����zG̃�������,

�21�

where G̃��� and K̃��� are, respectively, the matrix version of
the LC Green’s function and of the current-derivative cor-
relator. Naturally this will have substantial contributions
when both K and G overlap significantly. This constitutes a
rather compact way for describing the detection process in
the case of a constant bias voltage.

B. ac drive and temporal invariance

We now turn to the main point of this section, which is to
address how to deal with the presence of an ac voltage su-
perposed to the dc one. The total bias potential V�t� which is
applied to the mesoscopic device is thus a periodic function
of time with period �=2� /�ac. We start by defining a cor-
relator k�T , t�� from the current-derivative correlator of Eq.
�12�

K�t,t�� � k� t + t�

2
,t − t�� . �22�

Defining T= �t+ t�� /2, t�= t− t�, the charge correlator of Eq.
�13� is rewritten as

�TKq��t�q���t�� = 	2� dt1dt2 �
�1�2

G��2�t� − t2��z
�2�2

�k�2�1�T + t0,t2 − t1��z
�1�1G�1���t1� .

�23�

where t0= �t2+ t1� /2− t� /2. Next, we define the average of the
charge correlator over the period of the ac drive11 as follows:

1

�
�

0

�

dT�q��t�q���t��

= 	2� dt1dt2 �
�1�2

G��2�t� − t2��z
�2�2

��
0

� dT

�
k�2�1�T + t0,t2 − t1��z

�1�1G�1���t1� . �24�

Note that the last integral over the variable T is essentially a
period average of the correlator k�T , t�� with the variable T
shifted by t0. In the presence of an ac drive, this period
average does not depend on the shift t0, because as a function
of the variable T, k�T , t�� contains only harmonics of the
drive frequency �ac. This has been noticed in earlier
works.13,29,30 For our purposes, it means that we can safely
replace t0 by 0. As a result, the period averaged charge cor-
relator takes the form of a convolution product as was the
case for the constant dc bias and it therefore depends only on
the time difference t− t�

Q̂����t − t�� �
1

�
�

0

�

dT�q��t�q���t��

= 	2� dt1dt2 �
�1�2

G��2�t� − t2��z
�2�2

�K�2�1�t2 − t1��z
�1�1G�1���t1� , �25�

where we defined the period averaged correlator

K�2�1�t� �
1

�
�

0

�

dTk�2�1�T,t� . �26�

Finally, the averaged charge correlator can be expressed in
terms of the Fourier transform of both the LC circuit Green’s
function and the period averaged current correlator

Q̂����t�� = 	2 �
�1�2

� d�

2�
e−i�t�G��2����z

�2�2

�K�2�1����z
�1�1G�1����� . �27�

This result is the exact analog of the dc formula Eq. �21�,
extended to and ac drive. In addition, at t�=0, this expression
has the same form as the result of Ref. 17. We have therefore
identified which quantity �K� characterizes the influence of
the mesoscopic circuit on the response of the LC circuit.
Therefore, the protocol for measuring photoassisted shot
noise is the same as in the dc case provided one averages the
response over the frequency of the drive. This averaging pro-
cedure restores the temporal invariance of the charge cor-
relator. In the following sections, we will compute the
current-derivative correlators and their period average for a
specific system: a QPC placed in the conditions of the FQHE
where the elementary transport process is the Poissonian
transfer of Laughlin quasiparticles �Fig. 2�.

IV. NONSYMMETRIZED PHOTOASSISTED NOISE
IN THE FQHE

The calculation of the symmetrized photoassisted noise
has been carried out in Ref. 30. Here we use the same basic
model and generalize the calculations of the noise correlator
to the full Keldysh matrix elements of this correlator. Next,
we extract from these the noise-derivative correlators which
are relevant for the measurement process.

A. Model for quasiparticle backscattering

We use the Tomonaga-Luttinger formalism to describe the
right and left moving chiral excitations. In the absence of

Γ0

V(t)

I B (t)

FIG. 2. Quantum point contact.
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tunneling between the two edges, the Hamiltonian reads

H0 = ��F�

4�
��

r
� ds��s�r�2 �28�

with r=+,− for right and left movers. Here, we focus solely
on the weak backscattering regime because it is already
known that the PA shot noise exhibits some strong singulari-
ties. The backscattering of quasiparticles is described by the
Hamiltonian

HB�t� = �
�

A����t���+
†�t��−�t�����, �29�

where A����t� is a tunneling amplitude which depends on the
applied voltage via the Peierls substitution. Here the notation
�= leaves an operator unchanged for ��=+� or specifies its
Hermitian conjugate ��=−�. �r is the quasiparticle operator
which is expressed in terms of the bosonic chiral field �r

�r�t� =
1

�2�a
ei���r�t�, �30�

where a is a short distance cutoff and � is the filling factor
��−1 is an odd integer to describe Laughlin fractions�. Choos-
ing a time-dependent voltage in the form V�t�=V0
+V1 cos��act� results in a tunneling amplitude

A����t� = �0ei��0t exp
i�
e�V1

��ac
sin��act�� , �31�

where e�=�e and �0 is the bare tunneling amplitude. The
backscattering current is deduced from the backscattering
Hamiltonian

IB�t� =
ie�

�
�

�

�A����t���+
†�t��−�t�����. �32�

B. Nonsymmetrized noise

The general expression for the Keldysh components of the
noise correlator in the Heisenberg representation is

S����t,t�� = �IB
��t�IB

���t�� − �IB�t���IB�t���� . �33�

Since we are interested in Poissonian regime only, the prod-
uct of current averages can be dropped out because it con-
tributes to higher order in the backscattering Hamiltonian.1

Moreover, in this second-order calculation in the tunneling
amplitude �0, there is no difference between the Heisenberg
and interaction picture. The noise then reads

S����t,t�� = − �e��2�
���

���A����t�A�����t���TK���+
†�t���−�t������

���+
†�t�����−�t���������� . �34�

This correlator is different from zero only when ��=−� be-
cause of quasiparticle conservation. Replacing the quasipar-
ticle correlators by their bosonized expression, the noise is
then written in terms of a product over averages of bosonic
fields

S����t,t�� =
�e��2

4�2a2�
�

A����t�A�−���t���TKe−i����+�t��ei����+�t����

��TKei����−�t��e−i����−�t���� . �35�

The final result for the real-time noise correlator is then

S����t,t�� =
�e��2

4�2a2e2�G����t−t���A�t�A��t�� + A��t�A�t��� ,

�36�

where we introduced the chiral Green’s function of the
bosonic fields

G����t,t�� = �TK��r�t���r�t����� −
1

2
�TK��r�t��2�

−
1

2
�TK��r�t����2� . �37�

The double Fourier transform of this quantity, which will
allow to relate it to the noise correlator, reads

S�����1,�2� =� � dtdt�ei��1t+�2t��S�t,t�� . �38�

We now specify the periodic voltage modulation, which al-
lows to write the tunneling amplitude in terms of a series of
Bessel functions Jn

A�t� = �0 �
n=−�

+�

ei��0+n�ac�tJn� e�V1

��ac
� , �39�

which gives the Fourier transform of nonsymmetrized noise

S�����1,�2� =
�e��2�0

2

2�2a2 �
n=−�

+�

�
m=−�

+�

Jn� e�V1

�ac
�Jm� e�V1

�ac
�

�� � dtdt�ei��1t+�2t��e2�G����t,t��

�cos��0�t − t�� + �ac�nt − mt��� . �40�

Next, it is convenient to perform a change of variable �= t
− t� and ��= t+ t�

S�����1,�2� = 2
�e��2�0

2

2�2a2 �
n=−�

+�

�
m=−�

+�

Jn� e�V1

�ac
�Jm� e�V1

�ac
�

�� � d�d��ei��1−�2��/2ei��1+�2���/2e2�G������

�cos���0 +
n + m

2
�ac�� +

n − m

2
�ac��� .

Using standard trigonometric identities, one can write this
expression as a product of separate integrals over � and ��.
Integrals over � contain the �zero-temperature� Green’s func-
tion of the chiral fields and can be expressed in terms of
Gamma function. The result has the form
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S�����1,�2� = 2
�e��2�0

2

2�2a2 �
n=−�

+�

�
m=−�

+�

Jn� e�V1

�ac
�Jm� e�V1

�ac
��I1��1 + �2,��I2

�����1 − �2,�0,��

− I3��1 + �2,��I4
�����1 − �2,�0,��� . �41�

The integrals I1, I2
���, I3, and I4

��� are defined and computed in the Appendix A. The final result for the four Keldysh matrix
elements of the noise correlator is

S�−���1,�2� = 2
�e��2�0

2

4�2a2 �
n=−�

+�

�
m=−�

+�

Jn� e�V1

�ac
�Jm� e�V1

�ac
� �

��2��
� a

�F
�2�

��1 − � sgn��1 + �0 + n�ac����1 + �0 + n�ac�2�−1

����1 + �2 + �n − m��ac� + �1 − �sgn��1 − �0 − n�ac����1 − �0 − n�ac�2�−1���1 + �2 − �n − m��ac�� ,

�42�

S����1,�2� = 2
�e��2�0

2

4�2a2 �
n=−�

+�

�
m=−�

+�

Jn� e�V1

�ac
�Jm� e�V1

�ac
� �

��2��
� a

�F
�2� e−�i��

cos����

� ���1 + �0 + n�ac�2�−1���1 + �2 + �n − m��ac� + ��1 − �0 − n�ac�2�−1���1 + �2 − �n − m��ac�� . �43�

We recognize that since we are dealing with simple Laughlin fractions of the FQHE, � is the inverse of an odd integer and
all Keldysh component exhibit power-law singularities when the quantity �2 ��0+n�ac� vanishes. As a check, it is possible
to recover from these components the previous result for the symmetrized noise30

Ssym��1,�2� =
1

2
�S+−��1,�2� + S−+��1,�2�� = 2

�e��2�0
2

4�2a2 �
n=−�

+�

�
m=−�

+�

Jn� e�V1

�ac
�Jm� e�V1

�ac
� �

��2��
� a

�F
�2�

����1 + �0 + n�ac�2�−1���1 + �2 + �n − m��ac� + ��1 − �0 − n�ac�2�−1���1 + �2 − �n − m��ac�� . �44�

It is also useful to know that the standard property of
Keldysh Green’s functions

S++��1,�2� + S−−��1,�2� = S−+��1,�2� + S+−��1,�2�
�45�

applies as it should for the double Fourier transform expres-
sions.

C. Current-derivative correlators

The relation between the Fourier components of the noise
correlator computed in the previous section and the current-
derivative correlator introduced in Sec. III reads

K�����1,�2� = − �1�2S�����1,�2� . �46�

Yet, we need to relate the noise correlator S�����1 ,�2� to the
correlator k�T ,�� and ultimately, to its time average
K�2�1���. This is achieved using the relation

k����T,�� =� d�1

2�
e−i�1TK�����1

2
+ �,

�1

2
− �� . �47�

So the final result for the four averaged noise-derivative cor-
relators reads

K�−���� =
1

�
�

0

�

dTk+−�T,��

=
�e��2�0

2

4�2a2 �
n=−�

+�

Jn
2� e�V1

�ac
� 1

��2��
� a

�F
�2�

�2

� ��1 − � sgn�� + �0 + n�ac���� + �0 + n�ac�2�−1

+ �1 − � sgn�� − �0 − n�ac���� − �0 − n�ac�2�−1� ,

�48�

K����� =
1

�
�

0

�

dTk++�T,��

=
�e��2�0

2

4�2a2 �
n=−�

+�

Jn
2� e�V1

�ac
� 1

��2��
� a

�F
�2� e−�i��

cos����
�2

� ��� + �0 + n�ac�2�−1 + �� − �0 − n�ac�2�−1� .

�49�

To be complete, we can compute all the Keldysh element
in the rotated basis. This is performed in Appendix B. While
the advanced and retarded contribution does not bear infor-
mation on the nonequilibrium nature of the transport pro-
cesses taking place in the mesoscopic devices and therefore
in the detector, the Keldysh component
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Q̃K = 	2� d�

2�
�G̃R���K̃R���G̃K��� + G̃R���K̃K���G̃A���

+ G̃K���K̃A���G̃A���� �50�

summarizes such an information in a compact way. We recall
that as an alternative to the measurement of the equal time
charge correlator, Eqs. �27� and �50� are also likely to be
measured directly �resolved in frequency� by a single elec-
tron transistor device.28

This completes the calculation of the current-derivative
correlators. In the following section we continue with the
same analysis as with the dc case.17 That is we use the con-
tour ordered elements of the charge correlator, in particular,
the −+ component evaluated at equal time: in Sec.V we in-
sert the expressions for Eqs. �48� and �49� and discuss the
results.

V. RESULTS

We now discuss the formulas obtained in Sec. IV. In all of
the results below, we have checked that when the ac-drive
frequency is set to 0, we recover the dc results for the finite-
frequency noise at �=1 �Ref. 1� and �=1 /3 �Ref. 31�. For
the QPC we focus on the voltage-dominated regime where
the temperature is taken to zero in the current correlator but
it nevertheless enters the detector response.

A. Excess noise in the quantum-Hall effect

We start with a discussion of the results for the nonsym-
metrized excess PA noise. We show in Fig. 3 the curves for
the current-derivative correlator K−+��� �see Eq. �48��,
which is the quantity which enters the expression of the mea-
sured noise �the charge correlator�. This is displayed for two
different values of the filling factor �. We choose for our
main interest the Laughlin fraction �=1 /3, which is, in prin-
ciple, the easiest attainable Laughlin fraction of the FQHE in
experiments, and �=1, the integer quantum-Hall-effect case,
which here also corresponds to the noise characteristics of a
single-channel normal tunneling junction.

Here we have chosen the dc voltage so that the central
frequency �0��eV0 /� is larger than the drive frequency
�ac, and the amplitude of the ac voltage ��1=�eV1 /�� is
such that �1 /�ac=1.

For �=1 /3 we find divergences for K−+��� located at �0

and at sidebands �0+n�ac. Sidebands with n= 1, 2 are
visible. K−+��� vanishes at zero frequency. For frequencies
larger than �=�0+2�ac, this noise-derivative correlator
seems to be negligible. While the formulas for K−+��� show
a power-law divergence, here one has to add a regularization
procedure because strictly speaking, the calculations have
been performed in the weak backscattering regime. This
means that the differential conductance associated with the
tunneling current has to be lower than the conductance quan-
tum �otherwise, one should examine the case of the cross-
over to the strong backscattering regime�. The validity con-
ditions of our results have been previously derived in Eq.
�24� of Ref. 30. For our purpose, it just implies that the
finite-frequency PA noise saturates at locations �=�0
+n�ac.

In the integer quantum-Hall case �=1, no divergences are
found for K−+���. Instead, singularities in the derivative oc-
cur for �0+n�ac and the current-derivative correlator seems
again to be negligible again beyond �=�0+2�ac.

However it is also interesting to plot K−+��� /�2; in this
way we have access to an “averaged” current correlator
�noise� because the term �2 in K−+��� is in fact due to
derivative operators acting on the current correlator. This is
depicted in Fig. 4. For �=1 /3 we again find divergences �at
the same locations as for K−+����. The only noticeable dif-
ference with the latter curves is that the averaged noise does
not vanish at zero frequency. If one ignores the side bands,
the central peak reminds us clearly of the finite-frequency
nonsymmetrized noise computed recently for a QPC in the
FQHE.31

For �=1 the finite-frequency noise again exhibits jumps
in its derivative with respect to frequency but its behavior is
linear between two successive singularities. Thus, for this
ratio of frequencies �0 /�1�1, the excess noise characteris-
tics resemble the finite-frequency noise in the absence of an
ac drive: the later is �essentially� linear for ���0 and van-
ishes beyond this. Yet the PA noise does not vanish at �
=�0, it shows a singularity in its derivative at its location,
together with singularities at �=�0+n�ac �n= 1 is vis-
ible�. To normalize the curves in Figs. 3 and 4 and in the
following section, we use the backscattering current to zero
order in the amplitude of �1 of the modulation which corre-
sponds to the pure stationary regime30
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FIG. 3. Current-derivative correlator for a QPC in the fractional �left� and integer �right� quantum-Hall effect ��0=3�ac, �1=�ac, and
K−+��� is normalized by e�IB�0

2�.
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IB
�0� =

e��0
2

2�2a2��2��
� a

�F
�2�

sgn��0���0�2�−1. �51�

B. Measured PA noise

In this section, we display curves for the charge correlator
at equal times. We consider excess quantities. By excess, we
mean that the charge correlator at zero voltage has been sub-
tracted from the charge correlator at V0 ,V1�0.

In Figs. 5–8 we plot these quantities

Q̂−+�0� = 	2 �
�1�2

� d�

2�
G−�2����z

�2�2K�2�1����z
�1�1G�1+���

�52�

with weak and strong dissipation, low and high �detector�
temperature for two different values of the ratio �1 /�ac,
which corresponds to the argument of the Bessel functions in
the expression of the charge correlator. In the following
curves Q−+ is always normalized by L2 / �	2e�IB�0

2� and dis-
sipation and temperature are in unit of �0. The frequency
�=�0 corresponds to the positions of the central peak.

We start with �0��ac. In order to resolve these peaks, it
is necessary that the width of the resonance level is smaller
than the spacing �ac between peaks. We observe that by
varying �1 /�ac, the relative amplitudes of the peaks can be
modulated.

In Fig. 6, the curves correspond to a ratio �1 /�ac=2: we
can clearly identify the central peak at �=�0 but it is smaller
than in the case �1 /�ac=1 �in Fig. 5�. In this situation we
identify very clearly the first and the second satellite peaks
while the third one �n= 3� is visible but with a lesser in-
tensity. The relative amplitude of the central peak and its
satellite is tied to the oscillatory behavior of the Bessel
function.

When �1 /�ac=1, the 0th order Bessel function, which
corresponds to the central peak has a large amplitude
��0.6�. The first-order Bessel function which corresponds to
the first satellite peak, has a smaller amplitude ��0.2�. The
third Bessel function which corresponds to the second satel-
lite peak is almost zero. On the other hand for �1 /�ac=2, the
zeroth- and the third-order Bessel functions are small com-
pared to its first- and second-order counterparts, thus the
central peak is smaller than the satellites.

Next, we choose �0��ac in Figs. 7 and 8. The finite-
frequency spectrum of charge fluctuations does not seem to
display any longer a central peak with equally spaced
satellites.

In Fig. 7, the curves correspond to a ratio �1 /�ac=1 and
in Fig. 8 the curves correspond to a ratio �1 /�ac=2. In Fig.
7, the curves have a central peak at frequency �0, a second-
ary one at �0+�ac and a third one at �0+2�ac. However
there appear peaks at frequencies −�0+�ac and −�0+2�ac:
this corresponds to the satellites peaks of the negative fre-
quency −�0. We can explain this phenomena as the overlap-
ping of two combs, centered at �0. In Fig. 8, the curves
exhibit the same phenomena but the peaks have different
relative amplitude, which can again be explained from the

argument of the Bessel functions. In these different plots, we
can see on the one hand the effect of dissipation which re-
duces the noise and smooths the peaks. On the other hand we
see the effect of temperature; the measured noise become
negative at higher temperature �as in the case �=1 and dc
applied voltage17� because of S+−S−�0 which is larger than
S+ and because of the large population of LC oscillator
states.

VI. CONCLUSION

The central point of this paper has been the presentation
of a measurement scheme for detecting finite-frequency pho-
toassisted noise of a mesoscopic conductor on which both a
dc and an ac bias is imposed. This scheme uses a dissipative
resonant circuit which is inductively completed to the meso-
scopic circuit, in the same manner as some of the author’s
previous work,17 which we reviewed at the beginning of the
paper. The major hurdle in analyzing PA shot noise lies in the
lack of time translational invariance which results from the
presence of the ac drive. We have shown that by considering
the average of the charge correlator of the LC over the period
of the ac drive, time translational invariance can be restored,
and an extension of our previous detection scheme can be
envisioned.

We illustrated our detection scheme by applying it to a
concrete situation where PA noise features are most visible.
We therefore considered the PA noise generated from a point
contact in the weak-backscattering regime, placed in the re-
gime of the FQHE. While the symmetrized PA noise at zero
frequency was previously derived by some of us, no deriva-
tion of its full Keldysh components at finite frequency was
available to this date. The PA noise contains singularities at
frequencies corresponding to the bias voltage with satellite
singularities separated by the ac drive frequency. These sharp
features in the noise are the main motivation for the applica-
tion of our detection scheme. After deriving in this situation
the current derivative correlator, we were able to compute
explicitly the response of the LC circuit via the charge cor-
relator, and to display the results for a variety of parameters.

Coupling of the detector to an electromagnetic environ-
ment, here modeled by an Ohmic bath of oscillators, smooth-
ens the anomalies of the detected signal. The damping pa-
rameter ought to be smaller than either the dc frequency or
the ac drive frequency in order that the desired effects are
observed. This observation is crucial for experiments and
broadens the scope of the results since the electromagnetic
environment may also model other backaction effects on the
detector.

The second important and nontrivial effect is that the
measured noise become negative if we increase the tempera-
ture of the detector. Remember that we are considering ex-
cess measurements; negative noise thus means that the noise
for nonzero dc and ac voltages is smaller that the noise for
zero voltage.

Given the fact that the ac modulation gives rise to satellite
peaks at �0+n�ac, we distinguished two limits: �0��ac
where the central peak at the dc voltage is surrounded by its
satellites, and �0��ac where the satellites of the negative dc
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voltage frequency can lie in the positive frequency domain of
the charge correlator. Both situations can be realized in prac-
tice. This brings us to the question about optimizing the de-
tection of the location of the central peak and its satellites.
Upon varying the ration between the ac drive amplitude and
the ac frequency, we have shown that one can modify the
respective amplitude of such peaks. This constitutes an addi-
tional knob for detection.

The present results constitute a step in the direction of
fundamental aspects of mesoscopic physics of detection in
the time domain. This is an area of growing importance in
mesoscopic physics when conventional detection machinery
has to be abandoned and novel detection schemes for high
frequencies adapted to the type of experiments on wishes to
perform. Granted, from the experimental point of view, the
LC circuit setup which we have presented here may appear a
bit naive. In the long run, indeed one should attempt to de-
scribe more precisely the connection between the output sig-
nal of the mesoscopic circuit and the transmission lines
which are connected to it. This will be the topic of further
investigations.
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APPENDIX A: KELDYSH NOISE CORRELATOR
CALCULATION

From Eq. �41� we use a standard trigonometric identity in
order to factorize the noise into contributions with � and ��

S�����1,�2� = 2
�e��2�0

2

2�2a2 �
n=−�

+�

�
m=−�

+�

Jn� e�V1

�ac
�Jm� e�V1

�ac
�

��I1��1 + �2,��I2
�����1 − �2,�0,��

− I3��1 + �2,��I4
�����1 − �2,�0,���

�A1�

with

I1��1 + �2,�� = �
−�

+�

d��ei��1+�2���/2 cos�n − m

2
�ac��� ,

I2
�����1 − �2,�0,�� = �

−�

+�

d�ei��1−�2��/2e2�G������

�cos���0 +
n + m

2
�ac��� ,

I3��1 + �2,�� = �
−�

+�

d��ei��1+�2���/2 sin�n − m

2
�ac��� ,

I4
�����1 − �2,�0,��

= �
−�

+�

d�ei��1−�2��/2e2�G������ sin
��0 +
n + m

2
�ac���

�A2�

with the elements of the Keldysh Green’s function for the
chiral field

G����� = − ln�1 + �i
�F���

a
� , �A3�

G�−���� = − ln�1 − �i
�F�

a
� . �A4�

I1 and I3 are expressed in terms of delta functions

I1 =
1

2
����1 + �2 + �n − m��ac� + ���1 + �2 − �n − m��ac�� .

�A5�

I3 =
1

2i
����1 + �2 + �n − m��ac� − ���1 + �2 − �n − m��ac�� .

�A6�

Integrals I2
��� and I4

��� depend explicitly on the Keldysh
indices � and ��. Here, we need two tabulated integrals

�
−�

+� sin��0��d�

� a

vF
− i
��� � i�
 sgn��0�

��0��−1

����
, �A7�

�
−�

+� cos��0��d�

� a

vF
− i
��� � �

��0��−1

����
. �A8�

The results for I2
��� and I4

��� are

I2
�−� =

�

2��2��� a

�F
�2��
1 − � sgn��1 − �2

2
− �0 −

n + m

2
�ac����1 − �2

2
− �0 −

n + m

2
�ac�2�−1

+ 
1 − � sgn��1 − �2

2
+ �0 +

n + m

2
�ac����1 − �2

2
+ �0 +

n + m

2
�ac�2�−1� , �A9�
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I2
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1

2
� a

�F
�2� �

��2��
e−�i��
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2
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2
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2
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2
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����0 +
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2
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2
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2
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i

2
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�F
�2� �e−�i��

��2��cos����
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2
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�2� �e−i��

��2��cos����
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2
�2�−1

.

�A12�

APPENDIX B: TIME AVERAGE CURRENT-DERIVATIVE
CORRELATORS IN THE ROTATED KELDYSH

BASIS

Here, for completeness we compute the components KR,
KA, and KK in the rotated Kelsysh basis. We recall that if the
time-ordered Keldysh components of any correlator �such as
the LC Green’s function� read

Ĝ = �G++ G+−

G−+ G−− � �B1�

then the rotated Kelysh matrix is defined as

G̃ = L�zĜL−1 = �GR GK

0 GA � , �B2�

where L is the unitary transformation

1

�2
�1 − 1

1 1
� . �B3�

We obtain from the expressions of the previous section

K̃R/A��� =
1

�
�

0

�

dTk̃R�T,��

=
�e��2�0

2

4�2a2 �
n=−�

+�

Jn
2� e�V1

�ac
� 1

��2��
� a

�F
�2�

�2

� ��− i tan����  sgn�� + �0 + n�ac��

��� + �0 + n�ac�2�−1 + �− i tan����

 sgn�� − �0 − n�ac���� − �0 − n�ac�2�−1� ,

�B4�

K̃K��� =
1

�
�

0

�

dTk̃K�T,��

=
�e��2�0

2

4�2a2 �
n=−�

+�

Jn
2� e�V1

�ac
� 1

��2��
� a

�F
�2�

�2

� 2��� + �0 + n�ac�2�−1 + �� − �0 − n�ac�2�−1� .

�B5�

Turning now to the charge correlator at equal time, its
matrix expression yields in the time ordered basis

Q̂�0� = 	2� d�

2�
Ĝ����zK̂����zĜ��� �B6�

or in the rotated basis

�zL
−1Q̃L = Q̂ Q̃ = 	2� d�

2�
G̃���K̃���G̃��� . �B7�

This allows to obtain the Keldysh rotated elements of the
charge correlator

Q̃R/A = 	2� d�

2�
G̃R/A���K̃R/A���G̃R/A��� , �B8�

Q̃K = 	2� d�

2�
�G̃R���K̃R���G̃K��� + G̃R���K̃K���G̃A���

+ G̃K���K̃A���G̃A���� . �B9�
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