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Current and noise correlations in a double-dot Cooper-pair beam splitter
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We consider a double quantum dot coupled to two normal leads and one superconducting lead, modeling
the Cooper pair beam splitter studied in two recent experiments. Starting from a microscopic Hamiltonian we
derive a general expression for the branching current and the noise crossed correlations in terms of a single- and
two-particle Green’s function of the dot electrons. We then study numerically how these quantities depend on the
energy configuration of the dots and the presence of direct tunneling between them, isolating the various processes
which come into play. In the absence of direct tunneling, the antisymmetric case (the two levels have opposite
energies with respect to the superconducting chemical potential) optimizes the crossed Andreev reflection (CAR)
process while the symmetric case (the two levels have the same energies) favors the elastic cotunneling (EC)
process. Switching on the direct tunneling tends to suppress the CAR process, leading to negative noise crossed
correlations over the whole voltage range for large enough direct tunneling.
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I. INTRODUCTION

At low temperatures, electron flow in mesoscopic systems
bears analogies with the propagation of photons in quantum
optics devices. The fermionic analog of the Hanbury Brown
and Twiss experiment for photons is an example: Negative
current-current correlations demonstrate that the statistics of
current carriers in microstuctures corresponds to a degenerate
Fermi gas. Over the last two decades, the issue of whether
all fermionic systems should demonstrate antibunching has
been addressed. It was predicted that if electrons are injected
from a superconducting lead, into a fork consisting of two
normal metal leads, then positive current-current crossed
correlations could be observed.1–4 This phenomenon, called
crossed Andreev reflection (CAR), has since been interpreted
as originating from the splitting of the constituent electrons of
a Cooper pair from the superconductor into the two normal
leads. Because this Cooper pair is a singlet pair of electrons,
the two electrons which are injected into these leads should
preserve their singlet nature, therefore providing a modern
example of the nonlocal character of quantum mechanics in
nanoelectronics.5–10 Bell inequality measurements based on
noise crossed correlations have been proposed to detect this
entanglement.5,11–14

Over the last decade, CAR has been studied extensively
for a variety of geometries. The early proposals pointed out
that positive crossed correlations can be generated either by
selecting the energies of the outgoing electrons or alternatively
by filtering their spins.5 Some theoretical works consider
a superconductor connected in two separate locations to
normal metal leads.15–21 Such works address the effect of
the separation between the normal metal leads on the CAR
signal, and they specify which voltage configuration results
in positive crossed correlations. Other theoretical works
consider hybrid structures where the normal leads are taken
to be ferromagnets or half metals,8,22–24 semiconductors,25

and Luttinger liquids.26,27 Recently the effect of Coulomb
interaction has been studied in some of these systems.28,29

On the experimental side, noise experiments with nor-
mal superconducting devices constitute a real challenge. A

successful experiment demonstrated that the Fano factor of
a single NS junction is 2, corresponding to the charge of a
Cooper pair.30 One of the intrinsic difficulties lies in achieving
controlled, good quality contacts between the two arms and
the superconductor.31 It has also been suggested that nonlocal
effects in the current (Andreev drag) could be probed by
placing two separate contacts to the superconductor. The first
drag experiments were performed in this geometry,32,33 but
one true challenge remains that the signal for drag effects is
very weak, and again that symmetric contacts are difficult to
achieve.34

Two recent experiments35,36 have provided evidence of
Cooper pair splitting in devices consisting of a supercon-
ducting finger placed on the bulk of a single nanowire, both
of whose ends are connected to metallic leads (see Fig. 1).
Because both the superconducting and the metallic leads are
placed on top of the nanowire, two quantum dots are generated
on both sides of the superconductor, and their energy levels
can be controlled with the help of additional gates. This
system constitutes a tunable Cooper pair beam splitter with a
relatively good degree of symmetry. Differential conductance
measurements showed appreciable nonlocal signal which
could be attributed to CAR. Some results also suggest that
local interaction and direct tunneling between the dots may
play an important role. In this work, we choose specifically to
focus on the geometry of Refs. 35 and 36. The main goal of
the present paper is to compute the branching currents of this
device and their crossed correlations. These quantities depend
strongly on the energy configuration of the dots as well as
the presence of direct tunneling between them. In particular
we study which parameters have to be optimized in order to
achieve Cooper pair splitting.

While exploring the above physics, we put some emphasis
on presenting the formal aspects of the calculation, which are
achieved starting from a microscopic Hamiltonian describing
a BCS superconductor and normal leads, all coupled via a
tight binding tunnel Hamiltonian to the dots. Using a path
integral formalism, the lead’s degrees of freedom are integrated
out, which is equivalent to re-summing the Dyson series in
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FIG. 1. (Color online) Double quantum dot coupled to normal/
superconducting leads.

a perturbative Green’s function approach. This allows us to
obtain a rather general formula for the current in terms of
the Green’s function of the dots. More importantly, we are
also able to derive a general expression for the noise crossed
correlations, in terms of a two-particle dot Green’s function.

The outline of the paper is as follows. In Sec. II, we
introduce the model for the Cooper pair splitter. The currents
and the crossed correlations are computed in Sec. III, and
finally we apply our results to various situations (symmet-
ric/antisymmetric case and with/without direct tunneling) in
Sec. IV to describe in which regime elastic cotunneling (EC)
or CAR are optimized. We conclude in Sec. V.

II. MODEL

In this section we introduce the Hamiltonian of the double-
dot system and derive the expression for the tunneling self-
energy. To do so, and in order to clarify notations, we start by
studying the single-dot formalism.37–39

A. Single-dot formalism

1. Hamiltonian

We consider a quantum dot with a single level ε, which
is coupled via tunneling amplitudes tj (j = L,R,S) to two
normal leads and one superconducting lead with supercon-
ducting gap � (see Fig. 2). We label the applied bias voltage
on the left (right) lead VL (VR), where Vj is measured with

FIG. 2. Single quantum dot coupled to normal/superconducting
leads where tL/R (tS) is respectively the tunneling amplitude between
the dot and the normal (superconducting) lead.

respect to the chemical potential of the superconducting lead
whose voltage is set at VS = 0. For simplicity we work with
physical dimensions corresponding to h̄ = 1 and e = 1. The
Hamiltonian of the total system reads

H = HD +
∑

j

Hj + HT (t), (1)

where the dot Hamiltonian is given by

HD = ε
∑

σ=↑,↓
d†

σ dσ (2)

and the lead Hamiltonians are expressed in terms of Nambu
spinors

Hj =
∑

k

�
†
jk(ξk σz + �j σx)�jk, (3)

with σz, σx Pauli matrices in Nambu space and

�jk =
(

ψjk,↑

ψ
†
j (−k),↓

)
and ξk = k2

2m
− μ. (4)

In the case of normal leads, �j is zero. The tunneling
Hamiltonian, which is responsible for transfer of electrons
between the leads and the dot, reads

HT (t) =
∑
jk

�
†
jk Tj (t) d + h.c., (5)

where we introduce the Nambu spinor of the dot electrons

d =
(

d↑

d
†
↓

)
. (6)

We include the voltage dependence in the tunneling term using
the Peierls substitution (performing a Gauge transformation in
order to represent the bias potential as a vector potential). The
tunneling amplitude thus reads

Tj (t) = tj σz eiσz

∫
Vj dt . (7)

We now introduce the bare Green’s functions of the dot (in the
absence of tunneling)

Ĝss ′
0 (t,t ′) = −i〈TC{ds(t) d†s ′

(t ′)}〉0, (8)

where TC is the time ordering operator along the Keldysh con-
tour and s,s ′ labels the position of the times on this contour. The
quantum mechanical averaging is performed with respect to
the Hamiltonian without tunneling 〈· · ·〉0 = Z−1

0 Tr{e−βH0 · · ·}
with Z0 = Tr{e−βH0} and H0 = HD +∑

j Hj . The Green’s
function dressed by tunneling is written as

Ĝss ′
(t,t ′) = −i〈TC{S(∞) ds(t) d†s ′

(t ′)}〉0, (9)

where S(∞) is the evolution operator along the contour

S(∞) = TC exp

{
− i

∫ +∞

−∞
dt

∑
s=+,−

τ ss
z H s

T (t)

}
(10)

and τz is the z Pauli matrix in Keldysh space.

2. Averaging over the leads

In this section we calculate the self-energy associated with
the tunneling between the dot and the leads. Because the
lead degrees of freedom appear quadratically in the total
Hamiltonian, the evolution operator can straightforwardly be
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averaged over such leads:

〈S(∞)〉leads = TC exp

[
−i

∫
C

dt1dt2 d̂†(t1)
̂T (t1,t2) d̂(t2)

]
,

(11)

where we introduce the spinor in Nambu-Keldysh space

d̂(t) =
(

d+(t)

d−(t)

)
. (12)

Here the self-energy associated with the tunneling takes the
form


̂T (t1,t2) =
∑

j=L,R,S


̂j (t1,t2)

=
∑

j=L,R,S

[T †
j (t1) ⊗ τz]ĝj (t1 − t2)[τz ⊗ Tj (t2)], (13)

where 
̂T , ĝj are matrices in Nambu-Keldysh space and ĝj (t −
t ′) = −i

∑
k〈TC{�̂jk(t)�̂†

jk(t ′)}〉 is the local Green’s function
of electrons on lead j . In the literature39 they are typically
given in rotated Keldysh space,

ĝRAK ≡ L̂τ̂zĝL̂−1, with L̂ = 1√
2

(
1 −1

1 1

)
⊗ 1, (14)

where τ̂z = τz ⊗ 1 and 1 is the unity matrix in Nambu space.
With this rotation the Green’s function matrix can be simply
expressed in terms of the advanced, retarded, and Keldysh
components

ĝRAK =
(

gR gK

0 gA

)
. (15)

The components of the leads Green’s functions in the rotated
base have the following form:⎧⎨

⎩
g

R,A
j (ω) = πν(0)ω·1+�j ·σx

iζ
R,A
ωj

,

gK
j (ω) = (1 − 2fω)

[
gR

j (ω) − gA
j (ω)

]
,

(16)

where ζ
R,A
ωj =

⎧⎪⎨
⎪⎩

±sign(ω)
√

ω2 − �2
j , |ω| > �j,

i
√

�2
j − ω2, |ω| < �j,

(17)

with ν(0) the density of states of the normal lead at the
Fermi level and fω the Fermi distribution. We rotate back
in Keldysh space the matrix for the lead Green’s function and
we get the following formula for the self-energy 
̂j in the time
domain:


̂j (t1,t2) = �j

∫ ∞

−∞

dω

2π
e−iω(t1−t2)e−iσzVj t1 [ω · 1 − �j · σx]e+iσzVj t2

⊗
⎡
⎣−�(�j − |ω|)√

�2
j − ω2

τz + i sign(ω)
�(|ω| − �j )√

ω2 − �2
j

(
2fω − 1 −2fω

+2f−ω 2fω − 1

)⎤⎦ , (18)

where �j = πν(0)|tj |2 is the tunneling rate between the dot
and the lead j .

B. Double-dot formalism

For the remainder of this paper we focus on a system of two
single-level quantum dots coupled to one superconducting lead
and two normal leads (see Fig. 3). Such a system was studied

FIG. 3. Double quantum dot coupled to normal/superconducting
leads.

experimentally in Refs. 35 and 36, using a carbon nanotube or
a nanowire attached at both ends to normal metal leads with a
superconducting electrode in the middle.

The double-dot formalism is an extension of the single-dot
one where there appears a new matrix structure in dot space.
The Hamiltonian of the total system reads

H = HD1 + HD2 + HD1D2 +
∑

j

Hj + HT1 (t) + HT2 (t), (19)

where HD1 and HD2 are the Hamiltonians of the two dots,

HDα
= εα

∑
σ=↑,↓

d†
ασ dασ , (20)

and the tunneling between the dots is conveniently written
using Nambu spinors and the tunneling amplitude td :

HD1D2 = tdd
†
1σzd2 + h.c. (21)

These three terms can easily be combined under the following
form:

HD = d̃†
(

ε1 td

td ε2

)
⊗ σzd̃, (22)
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where d̃† = (d†
1 d

†
2) is a spinor in Nambu-dot space. The

tunneling between the dot α and the leads reads

HTα
(t) =

∑
jk

�
†
jk Tjα(t) dα + h.c., (23)

where Tjα(t) = tjασz eiσz

∫
Vj dt and tjα corresponds to the

tunneling amplitude between the dot α and the lead j . This
Hamiltonian corresponds to a system where every dot is cou-
pled to every lead. In order to reproduce the system of Fig. 3, it
is necessary to set to zero the tunneling amplitudes tL2 and tR1

coupling dot 2 with the left lead and dot 1 with the right lead.
Now the Green’s function of the dot electrons has a new

form:

Ǧss ′
αα′ (t,t ′) = −i

〈
TC

{
ds

α(t)d†s ′
α′ (t ′)

}〉
, (24)

with α,α′ corresponding to the dot index. As in the
previous section the self-energy associated with the
tunneling between the dots and the leads is calculated by
averaging the evolution operator over the leads degrees of
freedom:

〈S(∞)〉leads = TC exp

[
−i

∫ +∞

−∞
dt1dt2ď

†(t1)
̌T (t1,t2) ď(t2)

]
,

(25)

where ď(t) =
(

d̃+(t)
d̃−(t)

)
is a spinor in Nambu-dot-Keldysh

space and the self-energy is given by


̌T (t1 − t2) =
∑

j

(
[T †

j1(t1) ⊗ τz]ĝj (t1 − t2)[τz ⊗ Tj1(t2)] [T †
j1(t1) ⊗ τz]ĝj (t1 − t2)[τz ⊗ Tj2(t2)]

[T †
j2(t1) ⊗ τz]ĝj (t1 − t2)[τz ⊗ Tj1(t2)] [T †

j2(t1) ⊗ τz]ĝj (t1 − t2)[τz ⊗ Tj2(t2)]

)
, (26)

whereĝj and 
̌T are matrices in Nambu-Keldysh and Nambu-
dot-Keldysh space respectively. Each element 
̂jαβ(t1 − t2) of
the self-energy matrix (26) in dot space can be obtained from
Eq. (18) by replacing �j with �jαβ = πν(0)t∗jαtjβ .

III. CURRENTS AND CROSSED CORRELATIONS

In this section we derive the currents between the two dots
and the various leads as well as their crossed correlations
using the dot electron’s Green’s function and the tunneling
self-energy calculated previously.

A. Currents

The current from the dot α into the lead j reads

Ijα(t) = i
∑

k

�
†
jkσzTjα(t) dα + h.c. (27)

The average current does not depend on which branch of
the Keldysh contour the time is chosen and therefore can be
expressed as 〈Ijα〉 = 〈Ijα(t+) + Ijα(t−)〉/2 where t± is the
time on the upper/lower branch of the contour. In order to
compute these it is convenient to introduce counting fields
ηjα(t) which appear in the tunneling amplitudes as Tjα(t) →
Tjα(t)eiτz⊗σzηjα (t)/2. The average current from the dot α into
the lead j can then be calculated as the first derivative of the
Keldysh partition function:

〈Ijα〉 = i
1

Z[0]

δZ[η]

δηjα(t)

∣∣∣∣
η=0

, (28)

where Z[η] = 〈S(∞,η)〉0 and S(∞,η) is the evolution
operator in which the counting fields were introduced. After
performing the derivative we obtain the following result for

the current:

〈Ijα〉 = 1

2
Tr

{
(τz ⊗ σz)

∫ +∞

−∞
dt ′(Ǧ(t,t ′)
̌j (t ′,t)

− 
̌j (t,t ′)Ǧ(t ′,t))αα

}
, (29)

where “Tr” corresponds to the trace in Nambu-Keldysh space.
Going to rotated Keldysh space, the average current can be
reexpressed in terms of the advanced, retarded, and Keldysh
components as

〈Ijα〉 = 1

2
tr

{
σz

∫ +∞

−∞
dt ′
(
G̃R(t,t ′)
̃K

j (t ′,t) + G̃K (t,t ′)
̃A
j (t ′,t)

− 
̃R
j (t,t ′)G̃K (t ′,t) − 
̃K

j (t,t ′)G̃A(t ′,t)
)
αα

}
, (30)

where “tr” corresponds to the trace in Nambu space. While the
self-energy 
̃j can be obtained from the results of the previous
section, the Green’s function G̃ remains to be determined. To
do this we write the Dyson equation in the frequency domain
and we obtain the various components of G̃ in rotated Keldysh
space:

G̃R/A(ω)−1 = G̃
R/A

0 (ω)−1 − 
̃
R/A

T (ω), (31)

G̃K (ω) = G̃K
0 (ω) + G̃R(ω)
̃K

T (ω)G̃A(ω), (32)

with

G̃
R/A

0 (ω)−1 =
(

ω1 − ε1σz −tdσz

−tdσz ω1 − ε2σz

)
, (33)

G̃K
0 (ω) = 0. (34)
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In terms of these Fourier transformed functions, the current
can be rewritten as

〈Ijα〉 = tr

{
σz

∫ +∞

−∞

dω

2π
Re
[(

G̃R(ω)
̃K
j (ω)

+G̃K (ω)
̃A
j (ω)

)
αα

]}
, (35)

where we assume that the Keldysh components are anti-
Hermitian while the advanced and retarded components
are the Hermitian conjugates of one another. We can now
calculate the current using the Dyson equations (31) and (32)
and the components of the tunneling self-energy obtained in
the previous section, which read in the frequency domain


̃
A/R

R (ω) = ±i

(
0 0

0 �R22

)
⊗ 1, (36)


̃
A/R

L (ω) = ±i

(
�L11 0

0 0

)
⊗ 1, (37)


̃
A/R

S (ω) = X
A/R

S (ω)

(
�S11 �S12

�S21 �S22

)
⊗
(

1 −�
ω

−�
ω

1

)
, (38)


̃K
R (ω) = −2i

(
0 0

0 �R22

)

⊗
(

tanh
(

β(ω−VR )
2

)
0

0 tanh
(

β(ω+VR )
2

)
)

, (39)


̃K
L (ω) = −2i

(
�L11 0

0 0

)

⊗
(

tanh
(

β(ω−VL)
2

)
0

0 tanh
(

β(ω+VL)
2

)
)

, (40)


̃K
S (ω) = XK

S (ω)

(
�S11 �S12

�S21 �S22

)
⊗
(

1 −�
ω

−�
ω

1

)
, (41)

where we focus on the case VS = 0 allowing us to simplify the
expression for the self-energy 
̃S and introduce

X
A/R

S (ω) = −�(� − |ω|)ω√
�2 − ω2

± i
�(|ω| − �)|ω|√

ω2 − �2
, (42)

XK
S (ω) = −2i

�(|ω| − �)|ω|√
ω2 − �2

tanh

(
βω

2

)
. (43)

B. Crossed correlations

We follow a similar approach to the one developed to calcu-
late the currents. Here however the crossed correlations involve
two current operators evaluated at different times which in
general do not commute. Usually the measurement procedure
dictates which combination of the current-current correlators
is involved in the expression of the measured noise.40–43 For
this reason, we need to compute the unsymmetrized correlator,
which can subsequently be manipulated to be applied to a
desired measurement procedure.

We introduce a partition function Z[η] = 〈S(∞,η)〉0

depending on a counting field ηjαs(t) where j = L,R,S

corresponds to the different leads, α = 1,2 to the two dots,
and s = ± to the branches of the Keldysh contour. This new
counting field enters in the tunneling amplitudes as

Tjα → Tjαe
∑

s iπs⊗σzηjαs (t), (44)

where we introduce π matrices in Keldysh space:

π+ =
(

1 0

0 0

)
, π− =

(
0 0

0 −1

)
. (45)

Now the crossed correlation can be calculated as a second
derivative of this partition function over the counting fields:

〈I−
iα(t)I+

jβ(t ′)〉 = − 1

Z[0]

δ2Z[η]

δηiα−(t)δηjβ+(t ′)

∣∣∣∣
η→0

. (46)

Performing the average over the leads allows us to write the
current-current correlation function:

〈I−
iα(t)I+

jβ(t ′)〉 =
∫

dt1dt2
∑
γ δss ′

∑
σ1σ2σ

′
1σ

′
2

σ1σ
′
1

×
(


̌−s
i,αγ σ1σ2

(t,t1)
̌+s ′
j,βδσ ′

1σ
′
2
(t ′,t2)Ǩss ′−+

γ δαβ

σ2σ
′
2σ1σ

′
1

(t1,t2,t,t
′) − 
̌−s

i,αγ σ1σ2
(t,t1)
̌s ′+

j,δβσ ′
2σ

′
1
(t2,t

′)Ǩs+−s ′

γβαδ

σ2σ
′
1σ1σ

′
2

(t1,t
′,t,t2)

− 
̌s−
i,γ ασ2σ1

(t1,t)
̌
+s ′
j,βδσ ′σ ′

2
(t ′,t2)Ǩ−s ′s+

αδγβ

σ1σ
′
2σ2σ

′
1

(t,t2,t1,t
′) + 
̌s−

i,γ ασ2σ1
(t1,t)
̌

s ′+
j,δβσ ′

2σ
′
1
(t2,t

′)Ǩ−+ss ′

αβγ δ

σ1σ
′
1σ2σ

′
2

(t,t ′,t1,t2)

)
, (47)

where
Ǩ

s1s2s3s4

α1α2α3α4
σ1σ2σ3σ4

(t1,t2,t3,t4) = −〈TC

{
ďs1

α1σ1
(t

1
)ďs2

α2σ2
(t2)ď†s3

α3σ3
(t3)ď†s4

α4σ4
(t4)

}〉
(48)

is the two-particle Green’s function of the dot’s electrons and 
̌
s1s2
j,α1α2σ1σ2

(t1,t2) is the matrix element of the tunneling self-energy
associated with the lead j . In the general case where Coulomb interaction is present on the dots, the two-particle Green’s
function can be expressed in terms of the dressed single-particle Green’s function and the full vertex function. However in our
noninteracting case the two-particle Green’s function reduces to

Ǩ
s1s2s3s4

α1α2α3α4
σ1σ2σ3σ4

(t1,t2,t3,t4) = Ǧs1s4
α1α4σ1σ4

(t1,t4)Ǧs2s3
α2α3σ2σ3

(t2,t3) − Ǧs1s3
α1α3σ1σ3

(t1,t3)Ǧs2s4
α2α4σ2σ4

(t2,t4), (49)
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where Gs1s2
α1α2σ1σ2

(t1,t2) is the σ1σ2 matrix element of the single-particle Green’s function introduced in Eq. (24). Substituting
Eq. (49) into Eq. (47) we obtain the irreducible part of the current-current correlator:

Siα,jβ (t,t ′) = 〈Iiα(t)Ijβ(t ′)〉 − 〈Iiα(t)〉〈Ijβ(t ′)〉

= −
∫ +∞

−∞
dt1dt2Tr{(π− ⊗ σz)[
̌i(t,t1)Ǧ(t1,t

′)]αβ(π+ ⊗ σz)[
̌j (t ′,t2)Ǧ(t2,t)]βα

+ (π− ⊗ σz)[Ǧ(t,t1)
̌j (t1,t
′)]αβ(π+ ⊗ σz)[Ǧ(t ′,t2)
̌i(t2,t)]βα

− (π− ⊗ σz)[
̌i(t,t1)Ǧ(t1,t2)
̌j (t2,t
′)]αβ(π+ ⊗ σz)Ǧβα(t ′,t)

− (π− ⊗ σz)Ǧαβ(t,t ′)(π+ ⊗ σz)[
̌j (t ′,t1)Ǧ(t1,t2)
̌i(t2,t)]βα}. (50)

Performing a rotation in Keldysh space, the irreducible part of the current-current correlation function can be expressed in terms
of the advanced, retarded, and Keldysh components as

Siα,jβ (t,t ′) = −1

2
Re

+∞∫
−∞

+∞∫
−∞

dt1dt2

× tr
{
σz

(

̃K

i G̃A + 
̃R
i G̃K − 
̃A

i G̃A + 
̃R
i G̃R

)αβ

(t,t1)◦(t1,t ′)
σz

(

̃K

j G̃A + 
̃R
j G̃K + 
̃A

j G̃A − 
̃R
j G̃R

)βα

(t ′,t2)◦(t2,t)

− σz

(

̃R

i G̃R
̃K
j + 
̃K

i G̃A
̃A
j + 
̃R

i G̃K
̃A
j − 
̃A

i G̃A
̃A
j + 
̃R

i G̃R
̃R
j

)αβ

(t,t1)◦(t1,t2)◦(t2,t ′)
σz(G̃

K + G̃A − G̃R)βα

(t ′,t)
}
.

Finally we take the Fourier transform of this expression and we obtain the irreducible part of the frequency-dependent current-
current correlation:

Siα,jβ (ω) = −1

2
Re

∫ +∞

−∞

dω′

2π
tr
{
σz

(

̃K

i G̃A + 
̃R
i G̃K − 
̃A

i G̃A + 
̃R
i G̃R

)αβ

ω′ σz

(

̃K

j G̃A + 
̃R
j G̃K + 
̃A

j G̃A − 
̃R
j G̃R

)βα

ω+ω′

− σz

(

̃R

i G̃R
̃K
j + 
̃K

i G̃A
̃A
j + 
̃R

i G̃K
̃A
j − 
̃A

i G̃A
̃A
j + 
̃R

i G̃R
̃R
j

)αβ

ω′ σz(G̃
K + G̃A − G̃R)βα

ω+ω′
}
. (51)

In the following section we compute numerically the current
(35) and the crossed correlation (51) for various regimes and
we comment on the results.

IV. RESULTS AND DISCUSSION

A. Transport without tunneling between the dots

To begin we present the three dominant processes which
can occur in such a system. Then we study two situations: the
antisymmetric case when the energies of the two dots have
opposite positions (with respect to the chemical potential of
the superconducting lead at VS = 0) and the symmetric case
when the energy levels of the two dots are the same. All energy
scales in this section are in units of � and in the subgap regime.
In all the following results we focus on the low temperature
regime (β � 1/�), as the only effect of temperature is to
smooth the signal.

1. Dominant electron transfer processes

Direct Andreev reflection (DAR) [see Fig. 4(a)]. This
process involves an electron which is incident from a normal
lead at energies less than the superconducting energy gap. The
incident electron forms a Cooper pair in the superconductor
with the retroreflection of a hole of opposite spin and
momentum to this incident electron. This is equivalent to
two electrons with opposite spin and momentum from the
same lead forming a Cooper pair in the superconductor. The
inverse process corresponds to the destruction of a Cooper pair
in the superconductor with two electrons propagating in the
same lead.

Crossed Andreev reflection (CAR) [see Fig. 4(b)]. Crossed
Andreev reflection occurs when two spatially separated normal
leads form two separate junctions with a superconductor (the
separation between the two normal leads is assumed to be
smaller than the BCS superconducting coherence length). In
such a device, retroreflection of the hole from an Andreev

FIG. 4. Dominant electron transfer processes.
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reflection process, resulting from an incident electron at
energies less than the superconducting gap at one lead, occurs
in the second spatially separated normal lead with the same
charge transfer as in a normal Andreev reflection (AR) process
to a Cooper pair in the superconductor. For CAR to occur,
electrons of opposite spin and energies must exist at each
normal lead (so as to form the pair in the superconductor). The
inverse process corresponds to the destruction of a Cooper pair
with two electrons propagating in opposite leads.

Elastic cotunneling (EC) [see Fig. 4(c)]. Elastic cotunneling
is the quantum mechanical tunneling of electrons between the
normal leads via an intermediate state in the superconductor.
It does not lead to Cooper pair creation or annihilation in the
superconductor.

According to the configuration of our system one or
several of these processes occur. The goal is to study which
configuration facilitates which process.

2. Antisymmetric case

In this section we focus on the geometry where the two
dots’ levels are opposite with respect to the superconducting
chemical potential. We fix the voltage of the right lead and we
vary the voltage of the left one (Fig. 5).

In Fig. 6 we plot the current which flows in the two
normal leads (IL1 is the current between dot 1 and the left
normal lead and IR2 is the current between dot 2 and the
right normal lead). We see that for voltages below ε1 (the
energy level of the first dot) both currents have the same sign
(with our notation, currents which enter the leads are positive)
and essentially the same amplitude. (Strictly speaking, we
observe a small deviation between the two currents around
VL = ε2.) Above ε1 the currents have a reduced but comparable
amplitude but their signs are opposite.

When the voltage of the left lead is smaller than ε2, the
dominant process is crossed Andreev reflection (CAR) in the
sense that a Cooper pair from the superconducting lead is split
and its constituent electrons are injected into the two leads.
Strictly speaking, below ε2 direct Andreev reflection (DAR)
also gives a contribution, albeit a minor one. This can be
understood by looking at the density of states of the dots:

ρα = 1

π
Im(G̃A)↑↑αα, (52)

FIG. 5. Antisymmmetric case: The energy levels of the dots are
opposite with respect to the chemical potential of the superconducting
lead whose voltage is set at VS = 0. The voltage of the right lead VR

is fixed and we vary the voltage of the left one VL.

1.0 0.5 0.5 1.0
VL

0.08
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0.02

Currents

IR2

IL1

FIG. 6. (Color online) Currents (arbitrary units) as a function of
the voltage of the left normal lead VL for ε1 = 0.5, ε2 = −0.5, VR =
−0.7, β = 100, tL1 = tR2 = tS1 = tS2 = 0.2, and tL2 = tR1 = 0.

where α = 1,2. ρ1 is plotted in Fig. 7. It contains a sharp
double peak at ε1 and a much smaller peak at −ε1 = ε2 which
originates from the proximity effect of the superconducting
lead. In this situation ρ2 (not shown) is exactly symmetric
with ρ1 with respect to the ω = 0 axis. As electrons can tunnel
through these two resonances in the same lead, this explains
the presence of a weak DAR process.

The CAR and DAR processes thus give currents (IL1 and
IR2) with the same sign because electrons injected from the
superconductor only end up in the two normal leads. Elastic
cotunneling (EC) does not give any contribution because
the voltages of each normal lead are not large enough to
allow quasiparticle injection into the superconductor. Note
that the amplitude of the generated currents by CAR is
dominant because this configuration is optimal for the process
of resonant electron transfer through the (large) peaks of the
density of states ρ1 and ρ2 (at opposite energies).

As soon as VL > −ε1, the two currents deviate slightly from
each other because EC comes into play. Indeed, an electron
from the left lead can tunnel into the superconductor via the
(small) resonance in ρ1. It may continue its way to dot 2 using
the (large) resonance in ρ2 which is located at the same energy.
Note at the same time that DAR processes continue to operate,

1.0 0.5 0.5 1.0
ω

1

2

3

4

ρ1

0.55 0.50 0.45 0.40 0.35
0.010

0.015

0.020

0.025

0.030

FIG. 7. Density of states of dot 1 (arbitrary units) for the same
setup as in Fig. 6.
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FIG. 8. Current-current crossed correlation SL1,R2(0) (between
IL1 and IR2) at zero frequency (arbitrary units) as a function of the
voltage of the left lead VL for the same setup as in Fig. 6.

but only for the right lead. This explains why IL1 > IR2 in the
region [−ε1,ε1].

When the voltage of the left lead is larger than ε1, the
CAR process is strongly suppressed because VL is placed
above all resonant levels of ρ1 and ρ2. Electrons injected
from the superconductor are prohibited from entering the
normal left lead. The only allowed processes are thus EC
and DAR. The DAR process from the left lead injects Cooper
pairs into the superconductor, while they destroy Cooper pairs
which are injected as electrons in the right lead. In addition,
EC contributes to transferring electrons from the left lead
to the right lead via the superconductor. The amplitude of
such currents is reduced (compared to the CAR amplitude
in the interval [−ε1,ε1]) because both DAR and EC require
one electron transfer through a “small” resonance of ρ1

and/or ρ2.
In order to confirm these observations, we plot in Fig. 8 the

current-current crossed correlation at zero frequency between
IL1 and IR2. The crossed correlation is positive until ε1 where
the signal drops to zero and becomes eventually negative.
Strictly speaking there is a small structure at −ε1 due to the
(small) resonance of the density of states. At ε1 the cross
correlation has a small secondary peak which originates from
the (large) double-peak resonance in the dot density of states.
For voltages larger than ε1, the negative signal has a much
weaker amplitude than the positive one (below ε1) because the
associated currents are smaller.

We now give a physical interpretation of these results. When
the voltage is smaller than ε1, the dominant process is CAR and
the crossed correlations are positive because the two electrons
of the same Cooper pair are split and end up in opposite leads.
When the voltage is larger than ε1 the dominant process is EC
and the crossed correlations are negative. An electron injected
from the left lead, which tunnels through the superconductor,
then enters the right lead. Note that the generated currents
by DAR do not contribute to the crossed correlation because
the two Cooper pairs which are injected in each side of the
superconductor are independent.

3. Symmetric case

We now focus on the second geometry where the two dots’
levels have the same position (see Fig. 9). Again we fix the

FIG. 9. Symmetric case: Energy levels of the dots are the same.
The voltage of the right lead VR is fixed and we vary the voltage of
the left one VL.

voltage of the right lead VR and we vary the voltage of the left
one VL.

In Fig. 10 we plot the currents in the two normal leads.
We see that contrary to the previous case, the two currents
have a reduced amplitude below VL = ε1 and this amplitude
increases above this voltage. To be more precise, the two
currents are negative and identical below VL = −ε1. In the
interval [−ε1,ε1] the currents remain negative but they differ
slightly. Above VL = ε1, these currents bear opposite sign and
their amplitude has increased.

When the voltage of the left lead is smaller than −ε1, the
dominant processes are CAR and DAR. These two processes
distribute electrons in the two leads in an equivalent manner;
hence they are equal. The smallness of their amplitude can
be explained as above from density of states considerations
(see Fig. 11). Note that in this geometry ρ1 = ρ2: both contain
a large peak at ε1 and a much smaller one at −ε1. For both
CAR and DAR processes, an electron transfer through the
small resonance is required, which explains their amplitude.
In the interval [−ε1,ε1], DAR processes from the left lead
are suppressed altogether, but they still operate with the right
lead. The CAR process also contributes (the two currents still
bear the same sign), and it involves electron transfer through
both the “large” resonance of dot 1 and “small” resonance
of dot 2 (hence the reduced amplitude). Note that in addition
there arises a small contribution from EC processes, but this

1.0 0.5 0.5 1.0
VL

0.02

0.01

0.01

0.02

Currents

IR2

IL1

FIG. 10. (Color online) Currents (arbitrary units) as a function of
the voltage of the left normal lead VL for ε1 = 0.5, ε2 = 0.5, VR =
−0.7, β = 100, tL1 = tR2 = tS1 = tS2 = 0.2, and tL2 = tR1 = 0.
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FIG. 11. Density of states of dot 1 (arbitrary units) for the same
setup as in Fig. 10.

contribution is less important because the electron has to be
transfered through both “small” resonances of the dots.

When the voltage of the left lead is larger than ε1, the
dominant process is EC because electrons of the left lead can
be injected into the first dot (through its “large” resonance);
they tunnel through the superconductor and then they end
up in the right lead via the second dot (through its “large”
resonance also). In this configuration DAR is always present
but its amplitude is reduced, once again because of density
of states arguments (passage through a “small” resonance).
These two processes give currents with opposite sign because
either electrons from the left lead go into the right lead (EC
processes), or two electrons from the left lead form a Cooper
pair in the superconductor (DAR from left lead), or Cooper
pairs are injected from the superconductor into the right lead
(DAR into right lead). CAR is killed because injection of
electrons in the left lead is prohibited since the voltage is larger
than the dot 1 energy. The amplitude of the generated currents
in this configuration is important because this corresponds
to the optimal configuration for EC. Electron transfer then
exploits the maximum of the density of states for both dots.

In Fig. 12 we plot the current-current crossed correlation
at zero frequency between IL1 and IR2. The correlations are
positive below ε1 and then become negative, with a large

1.0 0.5 0.5 1.0
VL

0.008

0.006

0.004

0.002

SL1,R2 0

FIG. 12. Current-current crossed correlation SL1,R2(0) (between
IL1 and IR2) at zero frequency (arbitrary units) as a function of the
voltage of the left lead VL for the same setup as in Fig. 10.

amplitude. Below ε1 the amplitude of the signal is reduced
and it has a structure at VL = −ε1.

When the voltage is smaller than ε1, the dominant process
is CAR and thus the crossed correlations are positive and
the explanation is the same as in the antisymmetric case.
The reduced amplitude of the crossed correlation is explained
by the fact that one electron has to be transferred through
a “small” resonance. The feature at VL = −ε1 corresponds
to the onset for EC process through the small resonances of
the two dots. Above VL = ε1 electrons can pass through both
large resonances of the dot which explains the large (negative)
amplitude of the signal. The generated currents by DAR do not
contribute to the crossed correlation because the two Cooper
pairs which are injected in each side of the superconductor are
independent.

To summarize, we can facilitate the EC regime if we have
the same energy level position for the two dots (the symmetric
case), and the CAR regime is facilitated if we have opposite
energy levels for the two dots (the antisymmetric case). In the
following section we are going to be interested in the effect
of direct tunneling between the two dots, which is relevant in
recent experiments.35,36

B. Transport with tunneling between the dots

In this section we allow tunneling between the two dots
(td �= 0) and we study the effect of this manipulation on the
currents and the crossed correlation at zero frequency.

1. Antisymmetric case

The main effect associated with tunneling between the dots
is that it modifies the density of states of each dot. In Fig. 13
we see that for the antisymmetric case, the weight of the small
resonance (at −ε1 for dot 1 and at ε1 for dot 2) is increased by
such tunneling. The large resonance (at ε1 for dot 1 and at −ε1

for dot 2) now acquires an asymmetric double-peak structure
for positive energies, which disappears for sufficiently strong
tunneling between the dots.

The two currents are plotted in Fig. 14. For VL < −ε1, both
currents are negative with a large amplitude associated with
CAR, as in Sec. IV A 2. Contrary to Sec. IV A, they have
a different amplitude (IR2 > IL1). There are two dominant

1.0 0.5 0.5 1.0
ω
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4
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ρ1

td 0.7

td 0.5

td 0.2

FIG. 13. (Color online) Density of states of dot 1 (arbitrary units)
for various values of the tunneling between the two dots and for
ε1 = 0.5, ε2 = −0.5, tL1 = tR2 = tS1 = tS2 = 0.2, and tL2 = tR1 = 0.
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FIG. 14. (Color online) Currents (arbitrary units) as a function of
the voltage of the left normal lead VL for ε1 = 0.5, ε2 = −0.5, VR =
−0.7, β = 100, tL1 = tR2 = tS1 = tS2 = 0.2, tL2 = tR1 = 0, and the
tunneling between the dots td = 0.2.

processes in play. On the one hand, the presence of tunneling
between the dots allows the transfer of electrons from the right
to the left lead without passing through the superconductor.
On the other hand, as the (small) resonance of dot 1 has been
increased, there is also now the possibility for EC from dot 2 to
dot 1 (this effect was not noticeable in the absence of tunneling
between the dots). In addition, there is also the possibility for
the DAR process, which injects electrons into both leads.

Increasing VL beyond −ε1, CAR is still dominant, but the
currents cross (IL1 > IR2 as in Sec. IV A 2) because both direct
tunneling and EC from dot 1 to dot 2 come into play. The
difference IL1 − IR2 is larger than in the absence of tunneling
between dots because of the increased weight of the small
resonance in the density of states. In this situation, there is
also a contribution from DAR processes in the right lead.

Finally, for VL > ε1 CAR is suppressed. In this regime, the
main processes are direct tunneling and EC from dot 1 to dot
2, as well as DAR from both the left lead to the superconductor
and the superconductor to the right lead. The difference IL1 −
IR2 is further increased by both direct tunneling between dots
and the increase of EC associated with density of states effects.

1.0 0.5 0.5 1.0
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0.005

0.010
SL1,R2 0

td 0.7

td 0.5

td 0.2

td 0

FIG. 15. (Color online) Current-current crossed correlation
SL1,R2(0) (between IL1 and IR2) at zero frequency (arbitrary units)
as a function of the voltage of the left lead VL for various
values of the tunneling between the two dots and for ε1 = 0.5,
ε2 = −0.5, VR = −0.7, β = 100, tL1 = tR2 = tS1 = tS2 = 0.2, and
tL2 = tR1 = 0.

In Fig. 15 we plot the zero frequency current-current
crossed correlation as a function of the voltage of the left
normal lead for various values of the tunneling between the two
dots. For sufficiently weak tunneling parameters, the general
tendency is to favor positive correlations for VL < ε1 and
negative cross correlations for VL > ε1, signaling a transition
from CAR processes to EC processes. When the tunneling
between dots is increased, the crossed correlations are shifted
toward negative values, which results in a reduced positive
signal in the CAR regime and an increased (negative) signal
for the direct tunneling and EC regime. Beyond td = 0.7, the
positive crossed correlation’s signal disappears completely.

We further discuss the structure associated with the dot
resonances at ±ε1. Increasing the direct tunneling between
the dots affects their density of states (see Fig. 13). As
mentionned above, the “large” resonance at ±ε1 (for dot 1/dot
2) has a double-peak structure which disappears when td is
increased, while the “small” resonance acquires a double-peak
structure when increasing td . This constitutes the justification
for the side peak in the current-current correlation near VL =
ε1 to be smoothed out in the presence of strong tunneling.
At the same time, for intermediate tunneling td = 0.2, the
new double-peak structure in the density of states of dot 1
at VL = −ε1 creates a structure in the (positive) current
crossed correlation. Further increasing td , a peak in the crossed
correlation around VL = −ε1 is generated: this peak is shifted
toward VL < −ε1 in accordance with the shift in energy which
is observed in the density of states of dot 1. This peak is the last
stronghold for the observation of positive crossed correlations:
for voltages below (above) it, direct tunneling between the dots
transfers electrons from the right to the left lead (from the left
to the right lead). We therefore interpret the presence of this
peak as the point where the main process in competition with
CAR, which is the direct tunneling, changes sign.

2. Symmetric case

The density of states (which is the same for dot 1 and dot 2)
is drastically different in the case where the two dots have
the same level position when the tunneling between dots is
switched on (see Fig. 16). For moderate tunneling between
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FIG. 16. (Color online) Density of states of dot 1 (arbitrary units)
for various values of the tunneling between the two dots and for
ε1 = 0.5, ε2 = 0.5, tL1 = tR2 = tS1 = tS2 = 0.2, and tL2 = tR1 = 0.
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FIG. 17. (Color online) Currents (arbitrary units) as a function of
the voltage of the left normal lead VL for ε1 = 0.5, ε2 = 0.5, VR =
−0.7, β = 100, tL1 = tR2 = tS1 = tS2 = 0.2, tL2 = tR1 = 0, and the
tunneling between the dots td = 0.2.

the dots, it contains a (large) double peak at positive energies
which is centered near ε1, and a much smaller peak (not shown)
close to −ε1. Further increasing the tunneling, the double peak
becomes well separated, with one side peak shifted toward
negative energies, while the other side peak approaches the
superconducting gap.

The two currents are plotted in Fig. 17. For td = 0.2 the
currents IL1 and IR2 remain negative for VL < 0, which is
symptomatic of CAR and DAR processes, but their amplitude
is drastically reduced because of the lack of weight in the
density of states for negative energies. For VL > 0, the two
currents acquire an opposite sign and we observe two steps
which correspond to the double-peak structure in the density
of states. This corresponds to the situation where both direct
tunneling and EC processes contribute in the same direction.
Further increasing the coupling between the dots enhances
these features.

The crossed correlations are plotted in Fig. 18 for several
values of the tunneling amplitude between the dots. The
sign is positive but vanishingly small for VL < 0, which is
again the consequence of the drastically reduced density of
states for negative energies. The cross correlations decrease
monotonously when VL is increased, but unlike the case
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FIG. 18. (Color online) Current-current crossed correlation
SL1,R2(0) (between IL1 and IR2) at zero frequency (arbitrary units)
as a function of the voltage of the left lead VL for various values of
the tunneling between the two dots and for ε1 = 0.5, ε2 = 0.5, VR =
−0.7, β = 100, tL1 = tR2 = tS1 = tS2 = 0.2, and tL2 = tR1 = 0.

of zero coupling between the dots the crossover from the
CAR-dominated regime to the EC-dominated regime now
occurs close to VL = 0 at td = 0.2. The noise cross correlation
acquires an appreciable amplitude when VL is increased
beyond the characteristic energies associated with the double-
peak structure in the density of states (typically VL = 0.3 and
VL = 0.7 for td = 0.2). At the location of these peaks one
observes some features in the crossed correlation signal. For
larger tunneling between the dots this monotonous decrease
of the cross correlation and its (larger) amplitude is even more
pronounced. It can even occur for VL < 0 because the density
of states of both dots acquires a peak at negative energies, thus
favoring EC process as well as direct tunneling.

V. CONCLUSION

To summarize, we have developed a framework for the
description of the transport properties of a device consisting
of a superconducting finger connected to two normal metal
leads via two quantum dots adjacent to the superconductor.
Two recent experiments35,36 measured the branching currents
in such a device and showed that nonlocal effects were at play,
which is consistent with Cooper pair splitting. Yet it is now
well accepted that the evidence of Cooper pair splitting in
such a device would be more robust if current-current crossed
correlations were measured, which is the main justification for
the present work.

For pedagogical reasons, we started our analysis with the
description of a device where the superconductor is connected
to a single dot (which is in turn connected to normal metal
leads), in order to derive the self-energy which arises from
the coupling of the dot to all leads. Next, we focused on
the experimental geometry of Refs. 35 and 36 with two
dots, allowing for direct tunneling between the two. The
current and noise crossed correlation were computed using the
Keldysh formalism. The branching currents were expressed
in terms of the single-particle Green’s function of the dot,
which is dressed by the coupling to the leads, in the same
spirit as the Fisher-Lee formula.44 Similarly, the noise (and
in particular the noise crossed correlations) was expressed in
terms of a two-particle (dressed) Green’s function for the dot
variables. This second result corresponds to an extension of the
Fisher-Lee/Landauer-Büttiker formula for the noise. Provided
a given choice of interactions within the dot (Coulomb,
electron-phonon, etc.) these formulas for the currents and
current-current crossed correlation are exact if the single-
and two-particle Green’s functions can be computed. For our
purposes, we chose to illustrate the operation of this device
by ignoring such interactions. In this case the two-particle
Green’s function can be decoupled as a sum of products of
single-particle Green’s functions.

The current and the noise crossed correlation were obtained
numerically by solving the Dyson equation. Given the com-
plexity of the device, the number of parameters (voltages,
energy levels, resonance widths) constrained us to focus on
a few specific cases. We focused on transport for voltages
and energy levels all contained within the superconducting
gap, because this corresponds to the regime where Cooper
pair splitting is understood to occur. We looked at two
configurations for the dot energy levels: the antisymmetric
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configuration (the two levels have opposite energies with
respect to the superconducting chemical potential) and the
symmetric configuration (same energies for the two levels). A
crucial concept for the understanding of the generated data for
current and noise is the density of states of the dots: Due to the
proximity effect induced by the presence of the superconduc-
tor, the density of states of a given dot acquires some weight
(“small” resonance) at the energy which is opposite to the
resonant energy of the bare dot (“large” resonance). Electron
transport is therefore favored if the electrons can choose to
be transferred via either a “large” or a “small” resonance of
these dots. We fixed the voltage of a given lead within the
gap, below all resonances, and we varied the voltage of the
other normal metal lead within the whole gap. We started the
discussion assuming no direct coupling between the two dots.
On one hand we observed that the CAR process is optimized
in the antisymmetric case, when both normal lead voltages
are below the dot density of states resonances. On the other
hand we observed that the EC process is the most important
one in the symmetric configuration, when the voltage which
is varied is set above all resonances. A systematic study
of the current/voltage characteristic and of the noise/voltage
characteristic allowed us to identify precisely which processes
(CAR, DAR, EC) are in play when the voltage is increased.
We argued that monitoring of both the branching currents
and the noise crossed correlations is necessary to identify
these processes: For instance, DAR processes contribute to
the current, but not to the noise correlation signal. Finally,
we switched on the direct coupling between the dots and
we repeated the analysis. The density of states of the dots
undergoes strong modifications in the presence of such a
coupling. This coupling has a tendency to spoil the positive cor-
relations: For sufficiently strong coupling, positive correlations
disappear altogether. We therefore provided a rather complete
picture of the operation of this Cooper pair beam splitter
which could be useful in future noise crossed correlation
experiments.

Several extensions of this work can be envisioned. First,
we clearly neglected the separation between the two injec-
tion locations of the superconductor/dot interfaces. In all
theoretical and experimental investigations, this separation
r has to be smaller than the superconducting coherence
length (the “size” of the Cooper pair in the superconductor),
because this leads to an exponential decay of the CAR
(and EC) process. In addition to this reduction, a power-law
decay with kF r (which depends on the dimensionality) is
typically found theoretically,6,20,21,24 and it can lead to a strong
suppression of the CAR and EC processes. Ref. 35 did not find
conclusive evidence of this power-law suppression. It argued
that the segment of the nanowire which is buried below the
superconductor, which acquires a minigap, plays the dominant
role for Cooper pair splitting and should be immune to the
power-law decay because electrons are directly injected to the
dots on both sides. Nevertheless, further investigations of this

power-law suppression with our setup could provide additional
insight.

Second, we have neglected the Coulomb interactions
within the dot, which is justified if the resonant linewidth
is sufficiently large (but not larger than the superconducting
gap) so as to constitute open quantum dots. The inclusion of
interactions within the dots constitutes a definite challenge,
and such interactions can in practice only be included via
approximate treatments such as mean field theory, perturbative
diagrammatic re-summation, or Kondo phenomenology. In
practice, electron interactions allow the transfer of electrons
one by one through each dot. In our device, we can only argue
that successive Cooper pairs emitted by the superconductor
do not overlap significantly if the boundary between the
superconductor and the dots is sufficiently opaque. In the two
experiments which are relevant to this work, it was possible
to characterize the dots by switching off the superconductivity
by applying a magnetic field. Such analysis clearly showed
the presence of Coulomb diamonds, and the boundaries
between them allowed the identification of parameters for
resonant electron transfer. Here we can only argue that
regardless of the physical origin of such resonances, they
will have a characteristic location and width associated with
interactions, and they can be effectively tuned by adjusting
the gate voltages on the two dots. The scenario for adjusting
them antisymmetrically or symmetrically to favor CAR/EC
processes should then be robust. But given the fact that our
intermediate results for the current and noise can be expressed
in terms of exact one- and two-particle Green’s functions, an
extension of the present work including interactions using an
approximate scheme is foreseeable in the future.

Finally, we have focused solely on the zero frequency
noise crossed correlation signal. Noise crossed correlations at
finite frequencies contain additional information, such as the
relevant time scale for Cooper pair splitting in this particular
device. Several entanglement scenarios have addressed the
importance of short times/high frequencies, for instance when
performing an entanglement diagnosis.45,46 Further investiga-
tions along these lines would prove useful.

Note added in proof. Upon completion of the manuscript,
we failed to include some relevant references on master
equations type approaches which are applied to study transport
in the entangler of Ref. 6. Refs. 47 and 48 derived the quantum
master equation for the entangler and computed the branching
currents in this device. Ref. 48 focused on the experimentally
measurable quantities in the light of the recent experiments
Refs. 35 and 36. Ref. 49 computed the zero frequency noise
crossed correlator in order to achieve a Bell inequality test
within this approach.
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