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Chaotic Hamiltonian ratchets for pulsed periodic double-well potentials:
Classical correlations and the ratchet current
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We present analytical derivations of the diffusion rates, ratchet currents, and time scales of a new ratchet in
a fully chaotic Hamiltonian system, introduced in Phys. Rev. L&&, 194102(2002, with a proposed
implementation using atoms in pulsed standing waves of light. The origin of this type of ratchet current is in
asymmetric momentum diffusion rates which result when a “double-well” lattice is pulsed with unequal “kick”
periods. The form of the new short-time correlations which modify the diffusion rates are derived. The
resulting formulas for the classical energy diffusion rates are shown to give good agreement with numerical
simulations. A closed analytical formula for the ratchet current is also obtained, which predicts correctly the
current magnitudes and current reversals. The characteristic “ratchet time,” a classical time scale associated
with the momentum-diffusion ratchet is derived analytically. The competition between the ratchét, tme
the quantum break timg is investigated further.
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I. INTRODUCTION with unequal periods. The characteristic of this system is an
asymmetric diffusion in momentum: in other words, equal
Recent advances in cold atom physics, such as techniquesimbers of particles would diffuse right or left, say, but one
for manipulating atoms in optical lattices, have led to experi-direction would do so with larger momenta, hence generating
mental implementation of a rich variety of quantum dynami-a net current. Hence we term this a momentum-diffusion
cal phenomena. One particular example is the successfuatchet.
demonstration of dynamical localizatigh—3], the so-called A key result of our previous work7] was to show that
guantum suppression of classical chaotic diffusion. there is a distinctive time scale associated with this process:
The current interest in coherent atomic dynamics in peristarting from an ensemble of particles with, initially, zero
odic potentials has been paralleled by burgeoning activity iraverage momentum curre(p(t=0)), we found the current
the area of ratchet dynamics. However, most ratchet studiegrows with time. However, eventually, a finite classical cur-
were motivated by interest in biophysical or mesoscopic sysrent was obtained, with a maximum value reached after a
tems and involved some form of Brownian motion combinedcharacteristic time scale, the “ratchet timg,”
with dissipation[4]. There was little work, in comparison, on In this system, asymmetry in the momentum distribution
Hamiltonian ratchets; the latter are of special significance iraccumulates until a finite nonzero value is reached,.at
cold atom physics since they alone can preserve quantuiwhile the value of the current saturates to a constant value,
coherence over longer time scales. the average kinetic energy of the classical ensemble grows
Two exceptions are recent proposals for mixed-phasevithout limit. Hence practical implementation of the classi-
space ratchetfb,6]. In Ref. [5], the spatiotemporal symme- cal version of the chaotic Hamiltonian ratchet is less inter-
tries which must be broken to generate directed motion weresting. However, for the corresponding quantum system, the
considered. Directed motion was attributed to the desymmegshenomenon of dynamical localization “freezes in” this mo-
trization of Levy flights. In Ref[6] a sum rule was obtained mentum asymmetry, ensuring that the current is not diluted
for the currents carried by different invariant manifolds in aby continual expansion of the momentum distribution. For
mixed phase space. From this it was deduced that directetie maximal quantum current, one must ensure that the quan-
transport in a Hamiltonian system must originate from antum break timet” at which dynamical localization occurs, is
inbalance between currents in stable regioag., islands  approximately the same as the ratchet tithein order to
and currents in the chaotic regions. The fully averaged cursuppress momentum diffusion at the point where the asym-
rent for a uniform phase space density of a Hamiltonian sysmetry is largest.
tem must be zero; this, one can argue, may exclude directed A related system, an optical lattice with a rocking linear
transport in a fully chaotic systefd,6]. potential, with a similar directed motion mechanism was
In Ref. [7] it was demonstrated that a type of fully cha- later investigated by us in R€f8]. An experimental version
otic, Hamiltonian directed transport is possible. The pro-of the latter was demonstrated using cesium atoms in an
posed system involves broken spatiotemporal symmetries asptical lattice[9]. The double-well ratchet presented here has
stipulated in Ref[5] and does not violate the sum rule since not yet been investigated experimentally, but is in principle
it is unbounded in momentum and therefore does not attain amenable to existing techniques in cold atom physics.
uniform phase-space distribution. An implementation was In Ref.[7], only a heuristic derivation of the time scdle
proposed using cold atoms in double-well lattices pulsedvas presented. While it was explained that the asymmetric
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diffusion originates in neglected corrections to the diffusion

rate which are obtained when one considers correlations be- 5
tween short sequences of kicks, no expressions were pre-
sented. Here we provide formal derivations fprand the
analytical form to the asymmetric diffusion rate. We also
derive a closed analytical expression for the current itself and
show that we can predict current reversals without resorting
to a numerical study of the dynamics. These are the main
new results in this paper.

We show below that the current-generating diffusive cor-
relations of the double-well ratchet are significantly more
complicated than for the rocking ratchet in RE8]. For in-
stance, we find that there are in fact several significant time
scales corresponding to the different important correction

terms. The observed saturation point corresponds simply to FIG. 1. Poincaré surfaces of section for the chaotic Hamiltonian

the longest one among these. __ratchet.(a) At low kicking strength(K=0.1) the asymmetry in the

In Sec. Il, we outline the basic features of the physicalsystem is already appareri) At K=2 the system is in the globally
system. In Sec. Ill we derive corrections to the diffusion chaotic regime; note the absence of any islands/tori. It is in this
coefficient which give rise to momentum-dependent diffu-yegime that our numerical simulations are performed. Each plot was
sion rates. We obtain an analytical form for the diffusion calculated by starting 400 initial trajectories evenly spaced over a
coefficient[Eq. (3.9)] that yields close agreement with nu- range ofx:[0, 2] andp:[-10, 10 then kicking each trajectory 200
merical simulations. We also investigate the time scales intimes.
volved in the system, and derive the form fp{EQs.(3.12
and(3.13]. In Sec. IV we obtain a closed formula for the  The introduction of unequally spaced kicks breaks the
momentum currenEq. (4.2)] which yields good results and time reversal symmetry, which is necessary to generate a
enables us to analyze features of the numerical results sugtonzero current in the systeff]. In this paper, we focugs
as current reversals. Hence, E¢3.9+3.11) and Eq.(4.2)  in Ref.[7]) on a cycle of three kickéncyc=3) such that the
represent the main new equations. In Sec. V we briefly respacings areT;=(1+b), T,=1 and T;=(1-b), with b a
view the quantum behavior of this system and present a fewmall parameter.
additional results showing the competition between dynami- Eqr low values of the kicking strengtK, the classical
cal localization and the classical asymmetric diffusion Pro-phase space demonstrates the momentum asymmetry in the
cess. Finally, in Sec. VI, we conclude. dynamics, with islands and tori having no partners at corre-
sponding negative momenta. A key feature of our system is
that it works in the regime of global chaos and does not
depend on the presence of regular structures in phase space.

The ratchet system introduced in R¢T] is based on a A typical Poincaré surface of section from the parameter
modified form of the well-studied Kicked Rotor system, Space we have studied is shown in Fig. 1, showing the ab-
where we have replaced the sinusoidal motion of the rotofence of visible islands or KAM tori.

Momentum, p
=)
Momentum, p
=)

0 5
Position, x Position, x

Il. THE CHAOTIC HAMILTONIAN RATCHET WITH
PULSED DOUBLE-WELLS

with a double well potential The observed build up, with time, of asymmetry in the
_ _ momentum distribution is due to differing classical momen-
V(x) = sinx + asin(2x + ¢) (2.2 tum diffusion rates for particles with positive momenta rela-

F_ive to those with negative momenta. For physical insight
(and before we derive a more rigorous treatment of the dif-
fusion process in the next sectiprwe show in Fig. 2 the

p? _ . energy absorbed by an ensemble of particles for a typical set
H =E+K[smx+asm(2x+ )] of parameters. At=0 all the particles hag=0. We plot
separately the total energy of the particles with negative mo-

and introduced unequally spaced kicks, such that the Hami
tonian for the system becomes

o M menta and those with positive momenta, as a function of
Xg} Mz_l t- S-rtot‘“ETi . (2.2) time. The figure shows clearly that fa&r=0.05, and time

t<<2000 or so, particles with positive momenta absorb ki-
In effect, we have a kicked rotgthe QKR in the quantum netic energy significantly more slowly than particles with
cas@, with a spatially asymmetric potential, kicked with a negative momenta. But the average is close to the well
repeating cycle of unequally spaced “kicks.” Theare the known *“quasilinear” rate(E)qu|t:(K§ﬁ/4)t, associated
time intervals between successive kicks, which form a cyclavith a random walk in momentum space. These rates appear
of length ncyc, with Ty, =X{5°T;. This “kicked ratchet” is  to equalize after a certain time and to reverfte-Dy.
associated with an effective kicking strengthKes; From Fig. 2 one can clearly see that the energy splitting is
=K\1+4a’. In the lowest order of approximation, the energy not only momentum dependent, but that the corresponding
of an ensemble of classical particles grows linearly with timeratchet time is dependent dmn the perturbation to the kick-
as<p2/2>:(K§ﬁ/4)t. ing period. In Ref[7] we attributed the cause of these dif-
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100001 T K2
K=1.6; a=1/2 _/'l ,' D= 7{1 = 49K = 235(K) -+ }. (3.2
O | Here, for example, theJ;(K) term arises from the two-kick
, correlation which has the fornC(2,p)=(V'(x)V'(X2)).
A 5000k T | Here x; is the x coordinate after kick and the average is
2 carried out over all phase-space coordinates. One can clearly
see that for the standard map, the diffusion coefficient is
=005 | momentum independent. As the results below show, in our
- ‘y’:%ﬁ?tz: . case, the diffusion coefficient becomes momentum depen-

dent. The calculation, outlined below, is an extension of the
method of Rechester and Whit&2], and is detailed in full in
the Appendix.
Starting with an initial momenturp,, the diffusion coef-
FIG. 2. Figure illustrates differential energy absorption for par-ficient can be written in terms of the conditional probability
ticles with positive and negative momenta. An ensemble of particle@]ensityQ that the system evolves to a stdtg,p,) at time
(all with p=0 at initial time,K=1.6, a=0.5) is evolved, andp? is  t=N (that is, afterN kicks):
calculated separately, at each time, for particles with positive and

il ! . ! . ! . ! .
0 1000 2000 3000 4000 5000
time —

negative momenta. The two upper curyasar the(-) sign] show 1

(p?) as a function of time for particles with negative momentum and D(N) = N J Q% P, N[X, p, 0)P(X,p, 0)

two different values ob, the two lower curve$near the(+) sign]

show the corresponding curves for particles with positive momen- X (pn — p)2dxdprdxdp, (3.3

tum. We see that particles with negative momenta, for a certain time
period absorb energy faster than those with negative momenta. Nowhere the initial probability distribution is given by
also that the behavior becomes linear after a certain time. B

P(x,p,0) = (2m)~*&(p - po)-

fering diffusion rates to correlations between short sequencegsing the recursion property of the conditional probability
of kicks in the evolution sequence, yielding corrections toQ, and the 2r periodicity in thex variable, we can write the
overall diffusion rate. In effect, the diffusion rate for this diffusion coefficient agsee the Appendijx

system becomes local in momentubr=D(p,t). It is also

not linear in time — as seen below, except for very short ) ” * N orom dx;

times and for very long times. In the next section we derive D= im— > - > ]I ESZN

in detail these corrections, investigate the time scales in- —e N my=—e - m=-iz0Jo 14T

volved and hence can analyze the general behavior seen in N

Fig. 2. X expl >, {im;[x; = X1 = (G — =) (po + %—1)]}> ,
j=1

(3.9
Ill. THE MOMENTUM DIFFUSION COEFFICIENT .
where we define
At the lowest level of approximation in ratchet and rotor i
systems, the growth of the average energy, in the absence of S=- S V(%) (3.5
phase space barriers, can be approximated by the quasilinear v I '
formula Dq|xK2/4 [10]. However, this approximation ne-
glects the effect of correlations between consecutive kick8y setting m=0 for all j in the above formula, one simply
which can significantly modify the diffusion coefficient. In recovers the quasilinear diffusion. In order to examine the
the case of the standard mpgorresponding, in Eq2.2) to  contribution of various correlations one must look at the
a=0,b=0], the energy growth for an ensemble of classicalproduct of terms where the;nare set to an appropriate non-
particles with initial momentunp, is given by zero value.
The main corrections to the diffusion rate for the ratchet
. are found by considering the two-kick correlatioB62,p),
<(p— po)2> ~Dt=Dgt+t3 Cll.p). (3.1) i_.e., choosing the term\Z(x)V'(x.,) in the pro_ducts,i
2 =S5\S\. For smallb, the leading contribution to this correc-
tion comes by takingn,,=+1 andm,,;=—m;, (all otherm
zero; this gives the contribution of th€ sinx part of the
where theC(l) terms are corrections to the quasilinear diffu- potentia), or my,,=+2 andm;,;=—m;,, (contribution of the
sion resulting from correlations between successive kicks. sin 2x part of the potential Since there are three different
These corrections have been studied extensively for théme intervals possible between kickandi+2 (T,+T,, or
standard map, resulting in an adjusted diffusion coefficienil,+ T3, or T3+T,), one has to calculate three different con-
[10,17: tributions for these three cases. Summing the results for all

=1
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(2Ka)?
6

kicksi between 1 andl, we get a contribution from the sin (asymn)
part of the potentialthe full derivation is contained in the Csinz (2,P) =

= > J4-5(2K(1 +b))I(4Ka(1 + b))
Appendix: s

X sin 4pgh sin§s+ S 34 x(2K)I(4Ka)
S

©

K2
Csinx(2,p) = - —{E Jo-2(K(1 +b))Jy(2Ka(1 + b)) _ o
6= X sin 2pgb sin s+ > Jua(2K(1 = b))

ar
Xcog 2pgh + —s| + >, Jo_»(K)J(2Ka . .
5( PO ) 2;‘ 2-a(K)J{(2Ka) X J(4Ka(1 - b))sin 2p0bS|n7—2751. (3.9
Xco{pob— 7—Ts> +E Jo_a(K(1 - b)) These formulas can now be rearranged to give the total
2 —oo correction to the diffusion coefficient as a function of the

three simpb present(note that we use’'=2-2s ands'=4
X J4(2Ka(1 - b))cos( pob - gs)] . (3.6 - 2s for clarity):

K2

The sum overs formally spans the rangs=+~, but for clevmm(2,p) = - E{S'” pob{z [3s(K)Js(2Ka)
typical K values converges fds| <20. This result is valid s
for short times. For longer timeghat is, larger kick value
N), the correction to the average energy growth is no longer
linear in time, and eventually saturates to a given value. This
is discussed later, together with the ratchet time.

The cosines in Eq(3.6) can be expanded; for example,
the first term in Eq(3.6) becomes

+ 34 (K(1 - b))J(2Ka(l - b))]sin7—27s

- sin 2pob{ (22)%>, [J«(2K)JI(4Ka)
+Jg(K(1 +b))JI(2Ka(1 +b)) + (2a)?

2 . T
Ch =73 3, a(K(L+b)(2Ka(1 +b) X Je (2K 7D aKall - b))]s'”?}

X (cos Db cosgs— sin 2p0b sin%s) : *sin 4p0b{ (2a)2§ Jo(2K(1 + b))

x J(4Ka(1 + b))sin7—TsH . (3.9
If we wish to consider only the build up of asymmetry in the 2
system aboup=0, we can neglect the even terms. The asym- 16 torm above does not incude the time dependence or
metry wh|c_h drives the directed transport is o!ue ;olely to t_hqnformation on the ratchet time scales. An analytical form for
s!nnpob (n=1, 2 3 dependent_ terms in the dlffusm_n coeffi- these time scales is obtained by taking the full time depen-
cient (those which are odd with respect to reflection aboutyence into account in the calculatiofsee the Appendix
p=0). We therefore simplify Eq(3.6) to For each simpb term, there is a time-dependent function

®(N,bK,n). We rewrite Eq.(3.9) as a Fourier series, with

K2 the Bessel function products replaced by coefficieqgts

Canx™(2,p) = | 2 Jo-ax(K(1 +b))J(2Ka(1 +b))
S

G . .
X sin 2p5b sings— > 3o x(K)I(2Ka) CEM(2,p) = =~ Assin o — Azsin 2pgh + Asin 4pob.
S

(3.10
Xsin pgb sings— > I, (K(1 - b))
S

The Bessel sum can easily be evaluated: for example, for
; T K=14,a=1/2, b=0.005, we findA;=0.13 so the sipyb
*J(2Ka(l ~b)sinpebsings|. (3.7 term is weighted by a coefficiesz}G)A1:4.3, whichrp\;\(;ill
later be compared to numerical values.
To go beyond the form valid only at short times, we must
A similar equation is obtained for thi€a sin 2x part of the  weight each term byp(N,bK,n), whereN is the number of
ratchet potential kicks andN=t. Hence,
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K2 11000
CEIMD(2,p) = =~ [ A|P(N, bK, 1)sin pgb e
A -
- A,P(N,bK, 2)sin 2pyb f 10000 —
; V9500
+A,®(N,bK,4)sin 4ppb].  (3.11) o] )
The leading term is the time-behavior function i -4.71N [sin(pb) - 0.43 sin(2pb) + 0.15sin(4pb)|

®(N,bK, 1), which can be shown to take the forfsee the
Appendi®

31 -[Jo(bK)Jo(2abK) N2 z
d(N,bK,1)=— 3.12 s
( ) N 1-[Jo(bK)Jo(2abK)]? (3.12 <
[to obtain the form ford(N,bK, 2) we would simply double m% 400

the arguments of the Bessel functions above and for ]
®(N,bK, 4) we would quadruple them 07
For smallb and smallN,®(N,bK,n)=1, which leads to E
the linear correction to the energy: in this regime we could )
write ((p—pg)?/2)=Dt=Dgt+C(2,p)t as in Eq.(3.1). We 22000 -1000 0 1000 2000
recall thatC(2,p)=C@Y™M(2 p)+CE™M(2 p) and only the Py
clasymm(2 n) term represents diffusion asymmetric abgut
=0 and hence the ratchet effect.

s v\ A A (C)

FIG. 3. (a) Average classical kinetic enerdy(py, N=100 plot-

ted as a function of initial momentupy, calculated numerically for
However, for largeiN, eventually®(N,bK)~1/N so the an ensemble of foparticles withK=14, a=1/2, b=0.005 timet

contribution  of ~the two-kick ~correction CE¥™  _, o0 In(b) and(c) we have removed the momentum-independent
X (2,p)®(N,bK)t tends to saturate to a constant value. The,q symmetrical cospb contributions by plOtingE symn{Po,N)
saturation time for the leading terd(N,bK,1) (which is =%[E(po,N)—E(—po,N)]- The energy spread after 20 kicks is
the most long livedlis the ratchet time. shown in(b) and after 100 kicks inc). The dashed curves, are

The ratchet time can be estimated by finding the time abbtained by Fourier analysis of the numerical results. For clarity,
which ®(N,bK,n=1)t reaches 95% of its value &=, these curves have been shifted vertically.

This is found to be, foa=1/2:
the relative amplitudes for each of the three terms that appear

t(sinpb) — 21n(20) ~ 6 _ (3.13 in our analytical formula (3.9); sinpgb,sin 2pgb, and

' (Kb (Kb)? sin 4pgb. The Fourier coefficients are indicated in the figure.
One can clearly see that for the example given, the relative
amplitudes of the terms vary with time: at 20 kicks there is a
strong contribution from the sindb term, whereas after 100
kicks the sin b contribution is an order of magnitude
smaller and the curve is almost a pure gim The sinpb
weighting coefficients estimated from the graphs, 4.7 and 3.8

compare favorably with the estimate of £§.10), where we
Note that for largeN, ®(N)t saturates to the value of calculate(K2/6)A,= 4.3,

~1/[(_bK)2]' The energy growth is no longer affected by the  gig re 4 shows the dependence of the amplitudes of each
two-kick correlations and contains no asymmetric diffusiongs the sine terms on kick strengtk after 20, 40, and 100

component. This results in a progressive dilution of theyicks Also shown is the analytical form for each term as
asymmetry in the classical cagdeut not the quantum case predicted in Eq(3.9). It can be clearly seen that the sib
One also notes that the ratchet effect is clearly dominated by, ntribution persists beyond 100 kicks for all valueskof
the time scale corresponding to the pimterm (the two  The sin b contribution is still significant at 40 kicks for all
othe_r ratchet times are, respectively, 1/4 and 1/16 smaller, 5|,es ofK, but has been significantly damped by 100 kicks
Figure 3a) plots ((p—po)?)=E(po,N=100, the average for K> 10, The time scale over which the sipcontribu-
kinetic energy, afteN=100 kicks, of an ensemble of 10 tjon is appreciable is shorter still. Fér> 6 the amplitude at
particles(which all hadp=p, at N=0). These numerics en- 100 kicks is virtually negligible while at 20 and 40 kicks it is
able us to obtain numerical estimates of the coefficientfeavily damped.
(K?/6)A,. Now at short timesE(pg,N) =Dot+C(2,p)t and In Fig. 5 the ratchet time is plotted against the parameters
includes both the symmetric and asymmetric terms in thg andK. Each point on the graph corresponds to a measure-
diffusion coefficient. In Figs. @) and 3c) we have removed ment oft, for a given parameter set. The value tpfwas
the symmetric contributioiand Dot) by plotting E(N)asymm  estimated by taking a running average over 50 kicks and
:%[E(pO,N)—E(—pO,N)]. Figure 3b) shows Easymn{Po,N measuring the standard deviation(jp) of the ensemble of
=20), whereas Fig. @) showsE,gmn{Po,N=100. We can 400000 trajectories. When the deviation fell to below 5% of
now fit a Fourier series in sipyb to each curve and obtain the maximum the value df was assigned. In Fig.(& the

The heuristic arguments in Rgf7] gave a time scalg
~2x/(Kb)? which is not too different. The same analysis
can now be repeated to obtain the separatertej time
scales corresponding to the sipl® sin 4pb corrections. It is

straightforward to show that trﬁi” b tﬁSi” D and
16t(sin 2pb) __ t(sin pb)
r r '
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2000
------- 100 Kicks b=0.005 i o 10000 '
1500 | ---- 40 Kicks b=0.005 ] B - 2
— 1000| 20 Kicks b=0.005 ] S 5000 2r/(KD)
< — Analytical Prediction B
500 / 2
B ! 4«,1’\ \i// | : //‘ = o
- sin (pb 4 S F A
soofe MY s 10 o/ s 0 0.2
400 _ - (@) b
200 [ ¢ N 1000
0 0 feemen NN - 2
< 200 \é‘/ 7 s E
C 3 T 500
400 = E 5
-600 |~ sin (2pb) ] &
0
- . 0
100 -
N Y NN, - AU, (b)
+ T G NN
< ‘;gg L 3 10 i FIG. 5. Classical ratchet saturation time, measured in kicks, ver-
L i (4pb) K sus system parametebs(a) and K2 (b). (a) The classical ratchet
-300 - P B time is measured when the deviation of a 100 kick running average
-400

falls below 2% of its maximum value. A very good numerical
agreementsolid line) is shown to a fit of 2r/K2b? (dashed ling

The value ofK was fixed at 1.6(b) using the same measurement
technique for(a) the ratchet time is plotted again&? for a fixed
é)zo.l. Again a nonlinear curve fit of72K?b?, (dashed ling is
compared to the numerical resu(solid line). Each point on each
graph is a result of a classical calculation of 500 000 trajectories run
over 10 000 kicks.

FIG. 4. Contributions to classical asymmetric energy diffusion
that arise from sitnpb) terms in the first order correction to the
diffusion constant are shown as a functionkaf Analytically pre-
dicted amplitudes are compared with numerical results for varyin
numbers of kicks to highlight the time scales involved. The
amplitudes are scaled to 100 kicks for comparison, &,
=A,(K?/6)(100/N). One can see ifa) that the numerical results for
the sir(pb) term show excellent agreement with the analytical pre-
diction for allK, suggesting that this term continues to influence the
final current past 100 kicks. Ifib) one sees good agreement for both
20 kicks and 40 kicks up to fairly higK, whereas after approxi-
mately K=10 the 100 kick curve begins to depart markedly from
the analytical prediction. This suggests that for high kick strength
the contribution to the final current from the &pb) term has been It is easily shown that, similar to the asymmetric energy
damped by 100 kicks. This effect is even more noticeable fordiffusion, the momentum current increases witrand then
sin(4pb) as shown in(c). Good agreement between numerics andsaturates after a time scaje- 1/(Kb)2. This is unsurprising,
analytics exists only up to approximatel=5 with the 100 kick  since the two share a common physical origin.
curve becoming heavily damped soon after. One can clearly see the \ye evaluate the saturated curref(N— =)). The lead-

40 kick curve departing from the analytical result more quickly anding order term for the average saturated current obtained us-

completely than the 20 kick result. These plots show that for in- o the modified Rechester and White approach is then
creasing kick strength, the time scale over which each term contrib-

utes to the final current changes.

(p(N)) = f Q(Xn, P N|Xo, Po, 0) P(Xo, Po, 0) (P — Po) dXndpy.
(4.1)

J;(bK)Jo(2abK)
1 —[Jo(bK)Jo(2abK)

(P(N — =) =K
value ofb is varied across a wide range while the kicking
strengthK is kept constant. The plot shows clear numerical
evidence of the 1% proportionality of the ratchet time. A fit
of t,=27/(Kb)? is plotted against the numerical results and
very good agreement can be seen. In the lower pHfigl
5(b)] the parameters are exchanged &Ads varied against a -2
constantb. Once again the numerical results bear out an
excellent correspondence to the expedied6/(Kb)? rela-
tionship obtained from the sipb term above.

XD sin( Pob — 7—275)‘]2_%(K)JS(2aK)

Jo(2bK)J,(4abK)
1 -[Jo(2bK)Jo(4abK)T3

xS sin( Pob — 7—275)J4_%(2K)JS(4aK), (4.2

where the approximation I3=1 has been made. The first
term in Eq.(4.2) arises from the& sinx part of the potential,
and the second term is the contribution fréga sin 2x.

It is possible to obtain an analytical form for the classical We note that the momentum current tends to a constant
ratchet current shown in Fig. 7, using a very similar methodvalue ast— . However the width of the momentum distri-
to that used to obtain the diffusion coefficient. In this case weébution continues to grow adqt. Hence the momentum cur-
define the average current at a given time to be rent, normalized to the width of the momentum distribution,

IV. THE RATCHET CURRENT
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20 i 5 tions, we must now examine the correspondipgintumbe-
- T ved \ 7 havior. The implementation of this type of ratchet is best
A 0 H—T—— ¢ done using cold atoms in optical lattices, a system far from
\4 . 4 6 ) the classical limit. Here we review in brief the quantum re-
201 ~ ] sults obtained in Ref.7] and extend those calculations to test
20E — @) - a wider parameter range.
L T e ] In the quantum case, in addition to the dynamical param-
A O R R eterskK,a,b we must considef (note that in the experiment,
\'C/" 4 6 \%ag’/ 8 a rescaling of coordinates introduces an effective valuk. of
-20 . In a typical experimenti ~0.25-2. A conclusion of Ref.
0 () - [7] was that the key to achieving the most distinctive experi-
I | mental asymmetry lies in approximately equalizing the two
A O 2T i D ccad VAT EE time scales of the system: the classical ratchet tinaed the
g L At 4 6 \\g{ quantum break time.. Wg recall that for the standard quan-
201 K - tum kicked rotoQKR), t* ~D/#2. In our case we still have
- {c) A a time-periodic systenthough with a time period in effect

three times longer than the QKRo its time evolution can be

FIG. 6. Comparison of numerical and analytical average currentietermined by an expansion over the underlying Floquet
as a function of kicking strengtk. In (a) the leading order analyti-  states: in the long-time limit its behavior is quasiperiodic and
cal term(dashed linggiven by Eq.(4.2) is shown with the numeri-  diffusion is suppressed as in the QKR.
cal result(circles for b=0.01 anda=1/2. Notethat the current A numerical study in Ref[7] found that dynamical local-
reversals are accurately predicted, as is the general trend of thegtion proceeds in a similar way to the QKR. For each par-
numerical curve. Pangb) shows the contribution from the first icy1ar set of dynamical parametefs a, b, and#, the time
term in Eq.(4.2), due to the six part of the potential. The final = o\6ytion of a minimal uncertainty wave packet was calcu-
panel (c) shows the contribution from the second term, due 0)ated in a plane-wave basis. A quantum probability distribu-
sin 2. Both curves are plotted with the numerical result. tion for the momentunN(p,t) was obtained as a function of

will tend to zero in the classical case, but—as discussed iime. From this it is simple to compute the expectation val-
the next section—will tend to a constant in the quantum caséles of the momentungp), the energy(p?) as well as the
The top panel of Fig. 6 shows a comparison of this resulsaturation time for the energy. In our system, unlike the
with numerical simulation fob=0.01a=0.5, and zero ini- QKR, we have a localin momentum diffusion rate D(p)
tial momentum. The individual contributions from each termwhich oscillates with momentuigwith period 27/b, see Fig.
in Eq. (4.2) are shown in the lower two panels of the figure. 3) about the uncorrelated vaIlIeo:KgﬁM. For the param-
The shape of the curve is clearly dominated by kheinx  eters considered here, the amplitude of these oscillations is
part of the potential, but one can easily see where th@ot large compared witlD,. In that case, we found from
Ka sin 2 part competes, for example, to create the dips benumerics in Ref[7] that the break time corresponds closely
tweenK=3—6. While the current reversals are accuratelyto the averaged valué ~20(Dy/%?) [13].
predicted and the general trend of the curve is in keeping It is interesting to contrast this with the rocking lattice
with the numerical results, there are some features which argystem and experiment in Re{8,9] which corresponded to
not in keeping with expectation. In the regios=&K <2 the  the opposite limit: if the amplitude oscillations in the two-
numerical current appears to decrease much more rapidlick correlations are large relative to the uncorrelated rate
than the analytical prediction. This is possibly due to theD, andb~0.01 is small, the typical width dfi(p) is small
increasing regularity of the system inhibiting the build up ofrelative to 2+/b. For a narrow momentum distribution
asymmetry. Once beyond the current reversdfa®.6, the  N(p,—p), strongly peaked about a momentyssp,, one
magnitude of the current never reaches that of the analyticaleeds to consider a local break-tidp,)” ~ D(po) /%2 which
curve. In this region the ratchet time is short, and the asymcan vary by a factor of-100 as one varies the initial drift
metry in the system is washed out by the expansion of thenomentump, of the atoms relative to the optical latti¢8].
classical momentum distribution. Also, E@.2) is the lead-  However, this is not the situation here. For this system we
ing order term for the current, resulting from the secondfind that t" =20(K%;/#2) represents a good approximation,
order correlations. One would expect that including highekg, all values ofb.
order terms might well affect the predicted current, and im-  |f the quantum diffusion persists as long tasthe quan-
prove the accuracy of the result. Furthermore, the analytical;m system acquires the full classical asymmetry. Hence the
form is valid in the regime of smab, and one would antici- ~ conditiont” ~t, ensures that the maximal classical asymme-
pate that the numerical curve will tend to the theoretical preyry is frozen in and that the asymmetry is not diluted by the
diction asb—0. A fuller numerical investigation of the de- continual spread of the classical momentum distribution.
pendence o anda is given in Ref.[13)]. Evidence for this criterion is shown in Fig. 7, where the
V. COMPETITION BETWEEN t, AND t classical and quantum cur.rer(tasfter saturatiopare shoyvn
for various parameter choices. For the quantum casks,
Having considered exclusively thelassical diffusion  decreased fromh=1/2 to%=1/8 while keepingb, the per-
mechanism underpinning this ratchet in the previous secturbation to the period, constant bt=0.1. For the lower
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By decreasing the parametbr(and therefore increasing
t,) the classical current for higk once again approaches the
quantum current. In broad terms however, we conclude that

A while the basic ratchet mechanism is a classical one, the best
é experimental results will be obtained with~t,. The best
2 guantum-classical agreement will be obtained in the param-
g eter ranges where neithérnort, are too small.
g
& v
g ALY S quantam (173 VI. CONCLUSION
< A i o 33?[2;”1?8;3; i We have derived analytical expressions for the energy dif-
NallFaY — 1, b=0.01 fusion rates, the classical ratchet currents, and the ratchet
R — classical b=0.1 : time. We have shown that we can fully characterize the be-
5 ‘ 4 havior of the only chaotic Hamiltonian ratchet mechanism
Kick strength, K proposed to date. This new type of Hamiltonian ratchet is in

o . fact a momentum-diffusion ratchet. The current is generated
FIG. 7. Variation of average classical and quantum currents as By differential acquisition of kinetic energy by particles mov-
function of kick strengthK. Numerical values in brackets indicate ing right or left, rather than an asymmetry in the global num-
the value off. In the quantum case, whebe=0.1 for each curve, pers of particles moving right or left. Finally we have ana-
one notes that there is an improving fit with the classizaD.1 lyzed the corresponding quantum behavior. We have
curve for decreasing. At low K the break time fon=0.5, 0.25 is demonstrated the importance of an appropriate choice of

too short, and the system localizes before the maximum amount cffatchet time and quantum break time in obtaining the best
classical asymmetry has been reached.KAs increasedt” in- e@erimental momentum asymmetries
2 .

creases and the classical and quantum plots show good agreeme
oncet” ~t,. While both the quantum and classical curves share the

same crossing, the classical curve for0.1 does not show the ACKNOWLEDGMENTS

positive peak that features in both quantum graphs. This is due to

the fact that the ratchet time is now too short to allow any appre- 1he authors acknowledge support from the EPSRC.
ciable build up of classical asymmetfghown by the scaled ratchet
time curveg. The classical peak is recovered at smalernot

shown), and therefore increasirtg for a given value oK. APPENDIX: DERIVATION OF CORRECTION TERMS

In order to obtain the diffusion coefficient for the ratchet

values of the kicking strengtk ~2.5 or less, one can see we begin by defining the generalized map

that the quantum current approaches the classical current f
b=0.1 ast is decreased. Recalling thét: 1/ we see the Xiaq =X + Prag(tiog — 1) (A1)
effect of the changing break times: in the rage2-2.5 all e

the curves(A=1/2,1/4,1/8, anctlassical are roughly in _ ,

agreement. In this range all valuesfoéllow time for asym- Pi+1= P~ V' (%), (A2)
metry to accumulate. However, fo¢=1.5-2, for2=1/2  wheret,,~t; is the time between successive kigks1 and

and 1/4, in this range;, <t; so the quantum current falls j For the standard map, these intervals are the same for all
below the classical value. The quantum momentum distribugicks, However, this is not true for our chirped sequence. As
tion localizes before the full asymmetry is achieved. How-gypiained in the text, we consider explicitly a cycle of three

ever,7i=1/8 follows quite closely the classical behavior in yigtarant intervals(1+b), 1 and(1-b), with b a small pa-
this range since it has a break time 16 times longer than fof ' '

5=1/2. ameter. From the map we have

As the kick strength is increased beyond the cros&ipg N-1
proximately K=2.6) one notes that there is once again a py=py=V'(Xo) = V' (X)) = V' (Xn-1) = Po— > V' (X))
large discrepancy between the classical and quantum results. 1=0
The ratchet time decreases with increasihgas shown by
the scaled, curve shown in the figupeand when the ratchet
time is too short, the calculated classical asymmetry is neg- j
ligible. Perhaps surprisingly though, the corresponding quan- §=- > V'(x). (A3)
tum system still exhibits significant asymmetry. In fact the 1=0
quantum behavior corresponds more closely to the classical
current for somewhat smaller values o 0.1: whent, is
very small we get poor agreement between classical and <(p—po)2> Dt

and so we define

We use the standard definition of the diffusion coefficient

quantal results, even with smdil It is clear that some de- > (A4)
tails of the quantum classical correspondence here will only

be understood from a detailed study of the properties of th@and assume that the systems staris=4t, at timet=0. If we
Floquet states of this quantum system, which is currentlconsider the diffusion in terms of the conditional probability

underway. density Q that the system evolves from the sta(z

036205-8



CHAOTIC HAMILTONIAN RATCHETS FOR PULSED... PHYSICAL REVIEW E 70, 036205(2004)

e[0,27],p=py) at timet=0 to the stategx=xy,p=py) at 1 = © N
time t=ty we find D:ﬁ > 211

my=—% mp=— i=0 J 0

o7 dx
2m)

¥

_1 N
Dity) = 2ty J QU Prtyl, P, 0P (.0 Xex 2 {imj[Xj ~Xj-1~ (tj - tj—l)(po + %—1)]}) .

=1

X (py = p)’dxydpydxdp, (A5) ALD)
where the initial probability distribution is given to be The term wherem =0 for all | corresponds to the quasi-
P(x,p,0) = (2m)8(p - po) linear diffusion
and Q obeys the recursion property 1N o dx,
ol ], S

Q(XvaNvtN|XOvavO):fQ(XvaNvtN|Xivpivti) LN g
=TT KTV ) =V (xg) = V() P

X Q(;, Pi, i X0, Po, 0)dxdp; . 2Niso Jo (2m)
(AB) 1 N K2
o . . = K- = (A12)
Inserting this property successively for each kick betwien 2N "2 4
and 0 in Eq.(A6), and using R
where we recall thak ;=K1 +4a°.
i All the other terms, where some of timg are nonzero,
Q0% Pro InXn-1 Pa-n ) = 2 8Py~ Pno1+ KV (Xy-1)  give corrections to this result. As noted in the text, the main
N==° corrections to the diffusion coefficient for the ratchet arise

X 8y = Xno1 = (b = the) [ Pr-1 from correlations of the forn€(2,p)=(2V'(x;)V'(X;+,)), ob-
tained from Eq.(Al1l) by evaluating the contribution of
2V' (X)V'(Xj4) in the terms,i. The leading part of this con-
where the sum ovary occurs because of the periodic bound- tribution is obtained by settingn.,=+1 and mj,;=-mj,,

ary condition forxy (0=<xy=<2), we obtain (all other m are zerg for the K sinx part of the potential
V(x), and m;,,=*2 andm;,;=—-m;,, (all otherm are zerg

—KV'(xy-1)] + 27mny) (A7)

B 2w dx, for the Ka sin 2 part of the potentiaV(x) [12]. These cor-
Qlxy, PrtalXo 0, 0) = 2 -+ X 2—6(p— Po) rections have to be summed over all kigksl,...,N. Since
mE=e  m==e o ST there are three different time intervals between ki¢Ks
2m 2m =1+b,T,=1,T3=1-b), there are three different contribu-
Xfo dxg -+ fo dxy-18(Pn — Po tions to calculate. We now address individually each of these

three contributions.
= Su-1) 00Xy~ Xn-1 — (=t — 1)

XL(Pn-1 = KV (Xn-1))] 1. Correlation between kicksi,i+2
+2amny) -+ 8P = Po— S) (X1 — Xg We choose the following map for this section:
= (1= to)[p1 = KV'(X0)] + 27y) . X =Xi_1+p(1l+b),
(A8)
Inserting the above equation into E@\5) and taking into Xis1 =X+ Dir1s
account thes-function restraint orpy, we find
+00 +o N 2 X2 =X ¥ pi+2(1 - b) ’ (A13)
1 7 dx
D=—-2> - X 1[I 00— Xn-1
Npes  m==iz0Jo 27 P =Xi-1 = V' (Xi-1),
= (tn=ty = D(po+ Sy-2) + 27Ny -+ 3% = %o Vi)
i1 =X — "(x: ,
= (ty = to) (Po + S) + 2. (A9) Prea 25
By making use of the Poisson summation formula Piio=Xii1 = V' (Xisq). (A14)

4o +0oo
1 . We consider first the correction that arises as a result of the
nzz_m &y +2mn) = ngw explimy] (A10) K sinx part of the potential. Settingy,,=-1 andm,;;=+1
in Eq. (A11), and keeping the\? (x;,,)V'(x;) term of § we
we can write Eq(A9) as obtain

036205-9



HUTCHINGS et al. PHYSICAL REVIEW E 70, 036205(2004)

N rom Jo(Kb)Jo(Kb2a)]'. A21
ot - H e V0 [30(Kb)Jg(Kb2a)] (A21)
=1 i+2 . .
M2~ 2NJ -0 27 SinceKb<1, Jy(Kb)=1, and one can neglect this term for

short timegwhen the exponeritis not too largeé We show,

—|(x- —Xi+1~(1-0)(Pg+S +1) : ;
e o however, at the end of the Appendix that the longer time

><e+'(xi+1‘xi‘pf>‘3) behavior(and so the ratchet timean be obtained from this
N o term. Finally, we are left with the integration ovgr, andx;.
— —H dx A (3, )V ()& 052 2501%) For thex; part, it is easy to show that the term éx{HhS) can
27 2 be neglected for smalh. The exponentials eXxpix;.,—ix;)
must be combined with the produet(x;,,)V'(x;) to give a
bai (1-D)S11-S) AT .
e P S, (A15) nonzero result. We expand the product in the following way:
Now we use the fact that V' (Xip)V' (%) = (K COSX;sp + 2Ka COS i)
S(1-b)+S=-(1-b)V'(Xxi,1) —bS. (Al6) X (K cosx; + 2Ka cos %)
Therefore the correction becomes = K2c08X;,,C08X; + 2K?a C0SX;,,C0S X
LN g + 2K%a coS X;,,COSX;
X.
C2,pPm %, NH ZTLV,(XHz)V,(Xi) + 4(Ka)?cos X,,C0S X. (A22)
j=0J0

o , The first term, which arises from th€ sinx part of the po-
X €712~ Pis1) g IPobgl (Z(L7DIV (140)=bS) tential, is here the appropriate one to use:
(A17) K2
K2COSX:,,COSX; = _{ei(Xi+2'Xi) + @ 10i+27%) 4 @ (%i42%)
One can further simplify this equation by using the identity 4
[Jn(x) is the standard Bessel functipn n e—i(xi+2+xi)}_ (A23)

exd+iz cosd] = >, i*"J(2)exd+ind] (A18)  The integrations are now trivial, and we get

K2
i l+2 — % ipgb -2+s
to obtain CPI -1 4™ §| Jp-((1 ~D)K)

2 gy, xJ((1 -b)2Ka). (A24)
2 V (X|+2)V (Xl)e—l(x,+2—2x|+1+x)
T

x@a |pobe i{(1-b)[K codxj1)+2Ka cog2x;,1)]+bS}

C(2 iii+2 ) .
CH I My o= H The same calculation for the casg,,=1,m,;=-1 simply

gives the complex conjugate of this expression.
Combining these results, we get

2m
= % fo SV (V' (x)e v 2 Cpit2, = Z—S% J5-((1 - b)K)I((1 - b)2Ka)
e PP iTM,((1 - b)K)e ™ X {i2*5gTIPob 4 j2-5giPob}
n
% S iS1((1 ~ b)2Ka)e 291e S (A19) == %g Jo-2((1 =b)K)I((1 - b)2Ka)
The integration ovek;,; gives ><co< pob — 7—273) . (A25)
TMXep = 29Xy + 2, =00 N=2- 2. Since we havéN/3 terms of this kindonly for 1/3 of theN

kicks do we have the map chosen in this section, E&$3)

So, we finally obtain : ) > ;
y and(A14)], we obtain the final form of the:i+2 correction

1 2m dx _ to the quasilinear diffusion resulting from tikesinx part of
C2,p); '|+§_ NH J > V' (X5 V' (%) €7 Xiv2") the potential as
i Jo ™ 5
K
X e P x> 723, (1 -b)K) C(2,p) snx ="~ gE Jo-2((1 = b)K)J((1 - b)2Ka)
S S
xJJ((1 -b)2Ka)e ™S, (A20)

(cospob coszs+ sinpgb sin—s ) (A26)
The integrations ovex; with j>i+2 give simply 1. The

integrations ovex; with j<i are all identical. They give a Taking nowm;,,=+2 andm;,;=-m;,, and following the

contribution same analysis we pick out the correction to the diffusion
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coefficient due to th&a sin 2x part of the potential, which is Pico = Xis1 = V' (Xis1), (A39)
ii+2 (2Ka)2 '
C2Piasnx= "5~ Ja-a(2(1 ~)K)I(4(1 - b)Ka) Pies= X2~ V' (%i42), (A40)
S

Pi+a=Xi+3~ V' (Xis3). (A41)

The analysis then follows precisely the same procedure
(A27) given above, resulting in thi sinx correction

X (cos Db cosgs+ sin 2pgb sin%s) .

i K?
C2,pRaHt=-—> 3, x(K)J{(2Ka
2. Correlation between kicksi+1,i+3 (2:P)icsinx 6 ES: 2-2(KN{(2K)
The analysis for the correlation between kigksl andi
+3 of our cycle follows the same pattern as that given above,

X (cospob cos§s+ sinpgb sin%s)
starting from the following three-kick map:

(A42)

A =X +D:
X1 =X P, (A28) and theKa sin 2x correction
Xis2=Xis1 + Pisa(1=b), A29 o 2Ka)?
i+2 i+1 p|+2( ) ( ) C(Z,p)'g;;fz(: ( . ) E J4_$(2K)JS(4Ka)
S
Xi+3= Xis2 T Pira(1 +b), (A30)
ar a
X (cos 2ob coszs+ sin 2pgb sin—s) .
Pie1=% = V' (%), (A31) 2 2
(A43)
Pi+2 = Xis1 — V' (Xis1), (A32)
Pira =Xz = V' (Xis2). (A33) 4. Total correction from the two-kick correlation

One therefore obtains the diffusion correction dudtsinx

for Kicksi+1:1+3 to be Combining these contributions together one obtains

C2,p) = l{KZE Jo-2((1 = D)K)I((1 - b)2Ka)

2
C2.P == "3 3y a1+ DKL +b)2Ka) 6

w . LT
X > —
X (cos 2ob cosgs— sin 2p¢b sin7—275> (COSpOb cOS, S+ Sinpgb sin S)
(A34) +(2Ka)?X J4-2(2(1 - D)K) I(4(1 - b)Ka)
S
with the Ka sin 2x correction being

i+1i+3  _ (2Ka)2

X (cos b cosgs+ sin 2pgb sin7—275>
C(Zap)Ka sin 2~ 6

> J4-s(2(1 +D)K)IL(4(1 +b)Ka)
s - K2, J,_5((1 +b)K)I((1 +b)2Ka)

X (cos b cosgs— sin 4pgb sin%s) .
o aa
X (cos Zgb coszs— sin 2pgb sinEs>
(A35)

Note that in this case we obtain correction terms that are +(2Ka)2Y, J,-5(2(1 +b)K)I(4(1 + b)Ka)
dependent on singb and sin $b, rather than sipb and s
sin 2pb obtained from the:i+2 correlation. - -
X (cos b cosEs— sin 4pgb sinEs>
3. Correlation between kicksi+2,i+4

. . - 2 T
Once again, we begin by defining the map - K22, J,_5(K)JI{(2Ka)| cospob cosEs
S
Xi+2=Xi+1 ¥ Pisa(1 D), (A36) -
+sinpgb sinzs) +(2Ka)2Y, J4_04(2K)Io(4Ka)
Xi+3= Xi+2+ Pisg(1 + D), (A37) s
o . LT
Xi+4= X437+ Pisa, (A38) X (COS ob cos S+ sin 2ngb smgSﬂ :
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As the build up of asymmetry in the system is a short-When calculating the corrections coming from ttiei +2)

time effect, we can neglect any terms that are symmetri¢orrelations, we have neglected terms such as
with respect to momentum over this period. We therefore

attribute the onset of transport solely to the gindependent [Jo(Kb)Jo(Kb2a) K. (A46)
terms in the diffusion coefficient. We therefore simplify Eq.
(3.6 to In Eq. (A25) if we included these terms we would have

2

K
ce, >asmm:—(— Jo (1 =D)L -b)2Ka) .
Prom 5|~ s ) CP == 35S a1~ DKL - B)2Ka)

X sinpgb sings +(28)2 J,(2(1 - b)K) e
s X cos< Pob — —s) >, (Jo(Kb)Jp(Kb2a))k.
) T k=1
X J{(4(1 —b)Ka)sin 2pyb sin s+ ES Joa((1 (A47)
+b)K)J,((1 +b)2Ka) In the previous sections we assumigKb) = J,(Kb2a) =1

. so the sum ovek simply yielded a factor oN/3. Although
X sin 2pgh sin=s— (22)2Y, J,_»(2(1 + b)K) Jo(Kb)=1-(Kb)?/4 is very close to 1, when the number of
2 s kicks (and so,i) increases, this term becomes eventually
- much smaller than 1. The sum cannot then simply be equated
X Js(4(1 +b)Ka)sin 4pgb sin— to N/3. We must sum between kickéand kick 1(with only
2 1 kick over 3 contributing to this correctipn

. LT
- g JZ_ZS(K)JS(ZKa)sm pOb SII"IES [JO(Kb)JO(KbZa)]N + [JO(Kb)JO(KbZa)]N'3

- +[Jo(Kb)Jo(Kb2a) N6 + - -, (A48)
+(22)2, J4_5(2K)I(4Ka)sin 2p,b sin—s) .

s 2 This is just a geometrical series, summing up to
(A44)
1 —[Jo(Kb)Jo(Kb2a) N
1 -[Jo(Kb)Jo(Kb2a)]?

These formulas can now be rearranged to give the total cor-
rection to the diffusion coefficient as a function of the three
sinnpb presentnote that we use’'=2-2s ands’=4-2s for
clarity):

(A49)

As a function of the kick numbeN, this increases linearly
K2 for small N (and thus gives a correction to the diffusion
c2, -~ | sinob 1. (K)J(2Ka coefficieny, but saturates for largeN at the value {1
(2:P)asymm 6 [ Po {Es:[ 5 (K)J4(2Ka) -[Jo(Kb)Jo(Kb2a) 3}~ (where the diffusion coefficient is
not affected by these correlations anynmjoidote that for the

*+Jy(K(1-b)) sin 2pb and sin $b terms the Bessel functions have argu-

o ments two or four times larger respectively. Hence in the
X Js(2Ka(1 —b))]smEs main paper we introduce the time dependence function
_ 31 -[Jo(nbK)Jo(2nabk) N1
- sin 20gbq (22)? >, [J¢(2K)JI(4Ka ®(N,bK,n) = = (A50)
209 {( ) §[ 4(2K)Jy(4Ka) N L= oK)y ZnabK T
+Jg(K(1 +b))Jy(2Ka(1 +b)) This multiplies the diffusion rate€(2,p) which were ob-
o tained with the approximatiofly(Kb)Jy(Kb2a)]<=1.
+(28)%J(2K(1 - b)) Jy(4Ka(1 —b))]smEs We define the ratchet timg as the time needed for the
function ®(N,b,n)N to attain 95% of its saturated value as

N— oo, This gives
+sin 4pob{(2a)22 Jo(2K(1 +b)) J
S

In(5/100
- = b el (A51)
XI(4Ka(1 +b)sin st |. (A45) n[Jo(bK)Jo(2abK)]
Keeping only the lowest order ib, we get
5. Derivation of ratchet time t,
. 4 In(20)
We now come back to the time dependence of the correc- t=——>5 (A52)
tions to the diffusion coefficient, to calculate the ratchet time. b Ko
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where we recalkZ;=K?(1+4a%). Note that this is the ratchet (sin 2pby _ 2 1n(20)
time for the dominant sipb contribution to the diffusion t = (2Kb)? ' (A54)
coefficient. One can calculate in the same way the ratchet
times for the sin @b and sin b contributions. Fora=1/2
we get
- 21n(20 - 21n(20)
(sin pb) _ (sin 4pb) _
t; = KD2 (A53) t; (4Kb)? (A55)
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