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We present analytical derivations of the diffusion rates, ratchet currents, and time scales of a new ratchet in
a fully chaotic Hamiltonian system, introduced in Phys. Rev. Lett.89, 194102 (2002), with a proposed
implementation using atoms in pulsed standing waves of light. The origin of this type of ratchet current is in
asymmetric momentum diffusion rates which result when a “double-well” lattice is pulsed with unequal “kick”
periods. The form of the new short-time correlations which modify the diffusion rates are derived. The
resulting formulas for the classical energy diffusion rates are shown to give good agreement with numerical
simulations. A closed analytical formula for the ratchet current is also obtained, which predicts correctly the
current magnitudes and current reversals. The characteristic “ratchet time,” a classical time scale associated
with the momentum-diffusion ratchet is derived analytically. The competition between the ratchet timetr, and
the quantum break timet* is investigated further.
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I. INTRODUCTION

Recent advances in cold atom physics, such as techniques
for manipulating atoms in optical lattices, have led to experi-
mental implementation of a rich variety of quantum dynami-
cal phenomena. One particular example is the successful
demonstration of dynamical localization[1–3], the so-called
quantum suppression of classical chaotic diffusion.

The current interest in coherent atomic dynamics in peri-
odic potentials has been paralleled by burgeoning activity in
the area of ratchet dynamics. However, most ratchet studies
were motivated by interest in biophysical or mesoscopic sys-
tems and involved some form of Brownian motion combined
with dissipation[4]. There was little work, in comparison, on
Hamiltonian ratchets; the latter are of special significance in
cold atom physics since they alone can preserve quantum
coherence over longer time scales.

Two exceptions are recent proposals for mixed-phase
space ratchets[5,6]. In Ref. [5], the spatiotemporal symme-
tries which must be broken to generate directed motion were
considered. Directed motion was attributed to the desymme-
trization of Levy flights. In Ref.[6] a sum rule was obtained
for the currents carried by different invariant manifolds in a
mixed phase space. From this it was deduced that directed
transport in a Hamiltonian system must originate from an
inbalance between currents in stable regions(e.g., islands)
and currents in the chaotic regions. The fully averaged cur-
rent for a uniform phase space density of a Hamiltonian sys-
tem must be zero; this, one can argue, may exclude directed
transport in a fully chaotic system[4,6].

In Ref. [7] it was demonstrated that a type of fully cha-
otic, Hamiltonian directed transport is possible. The pro-
posed system involves broken spatiotemporal symmetries as
stipulated in Ref.[5] and does not violate the sum rule since
it is unbounded in momentum and therefore does not attain a
uniform phase-space distribution. An implementation was
proposed using cold atoms in double-well lattices pulsed

with unequal periods. The characteristic of this system is an
asymmetric diffusion in momentum: in other words, equal
numbers of particles would diffuse right or left, say, but one
direction would do so with larger momenta, hence generating
a net current. Hence we term this a momentum-diffusion
ratchet.

A key result of our previous work[7] was to show that
there is a distinctive time scale associated with this process:
starting from an ensemble of particles with, initially, zero
average momentum currentkpst=0dl, we found the current
grows with time. However, eventually, a finite classical cur-
rent was obtained, with a maximum value reached after a
characteristic time scale, the “ratchet time,”tr.

In this system, asymmetry in the momentum distribution
accumulates until a finite nonzero value is reached attr.
While the value of the current saturates to a constant value,
the average kinetic energy of the classical ensemble grows
without limit. Hence practical implementation of the classi-
cal version of the chaotic Hamiltonian ratchet is less inter-
esting. However, for the corresponding quantum system, the
phenomenon of dynamical localization “freezes in” this mo-
mentum asymmetry, ensuring that the current is not diluted
by continual expansion of the momentum distribution. For
the maximal quantum current, one must ensure that the quan-
tum break timet* at which dynamical localization occurs, is
approximately the same as the ratchet timetr, in order to
suppress momentum diffusion at the point where the asym-
metry is largest.

A related system, an optical lattice with a rocking linear
potential, with a similar directed motion mechanism was
later investigated by us in Ref.[8]. An experimental version
of the latter was demonstrated using cesium atoms in an
optical lattice[9]. The double-well ratchet presented here has
not yet been investigated experimentally, but is in principle
amenable to existing techniques in cold atom physics.

In Ref. [7], only a heuristic derivation of the time scaletr
was presented. While it was explained that the asymmetric
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diffusion originates in neglected corrections to the diffusion
rate which are obtained when one considers correlations be-
tween short sequences of kicks, no expressions were pre-
sented. Here we provide formal derivations fortr and the
analytical form to the asymmetric diffusion rate. We also
derive a closed analytical expression for the current itself and
show that we can predict current reversals without resorting
to a numerical study of the dynamics. These are the main
new results in this paper.

We show below that the current-generating diffusive cor-
relations of the double-well ratchet are significantly more
complicated than for the rocking ratchet in Ref.[8]. For in-
stance, we find that there are in fact several significant time
scales corresponding to the different important correction
terms. The observed saturation point corresponds simply to
the longest one among these.

In Sec. II, we outline the basic features of the physical
system. In Sec. III we derive corrections to the diffusion
coefficient which give rise to momentum-dependent diffu-
sion rates. We obtain an analytical form for the diffusion
coefficient [Eq. (3.9)] that yields close agreement with nu-
merical simulations. We also investigate the time scales in-
volved in the system, and derive the form fortr [Eqs.(3.12)
and (3.13)]. In Sec. IV we obtain a closed formula for the
momentum current[Eq. (4.2)] which yields good results and
enables us to analyze features of the numerical results such
as current reversals. Hence, Eqs.(3.9)–(3.11) and Eq.(4.2)
represent the main new equations. In Sec. V we briefly re-
view the quantum behavior of this system and present a few
additional results showing the competition between dynami-
cal localization and the classical asymmetric diffusion pro-
cess. Finally, in Sec. VI, we conclude.

II. THE CHAOTIC HAMILTONIAN RATCHET WITH
PULSED DOUBLE-WELLS

The ratchet system introduced in Ref.[7] is based on a
modified form of the well-studied Kicked Rotor system,
where we have replaced the sinusoidal motion of the rotor
with a double well potential

Vsxd = sinx + a sins2x + fd s2.1d

and introduced unequally spaced kicks, such that the Hamil-
tonian for the system becomes

H =
p2

2
+ Kfsinx + a sins2x + fdg

3o
s=0

`

o
M=1

ncyc

dXt − SsTtot + o
i=1

M

TiDC . s2.2d

In effect, we have a kicked rotor(the QKR in the quantum
case), with a spatially asymmetric potential, kicked with a
repeating cycle of unequally spaced “kicks.” TheTi are the
time intervals between successive kicks, which form a cycle
of length ncyc, with Ttot=oi=1

ncycTi. This “kicked ratchet” is
associated with an effective kicking strengthKeff
=KÎ1+4a2. In the lowest order of approximation, the energy
of an ensemble of classical particles grows linearly with time
as kp2/2l=sKeff

2 /4dt.

The introduction of unequally spaced kicks breaks the
time reversal symmetry, which is necessary to generate a
nonzero current in the system[7]. In this paper, we focus(as
in Ref. [7]) on a cycle of three kickssncyc=3d such that the
spacings areT1=s1+bd , T2=1 and T3=s1−bd, with b a
small parameter.

For low values of the kicking strengthK, the classical
phase space demonstrates the momentum asymmetry in the
dynamics, with islands and tori having no partners at corre-
sponding negative momenta. A key feature of our system is
that it works in the regime of global chaos and does not
depend on the presence of regular structures in phase space.
A typical Poincaré surface of section from the parameter
space we have studied is shown in Fig. 1, showing the ab-
sence of visible islands or KAM tori.

The observed build up, with time, of asymmetry in the
momentum distribution is due to differing classical momen-
tum diffusion rates for particles with positive momenta rela-
tive to those with negative momenta. For physical insight
(and before we derive a more rigorous treatment of the dif-
fusion process in the next section), we show in Fig. 2 the
energy absorbed by an ensemble of particles for a typical set
of parameters. Att=0 all the particles hadp=0. We plot
separately the total energy of the particles with negative mo-
menta and those with positive momenta, as a function of
time. The figure shows clearly that forb=0.05, and time
t,2000 or so, particles with positive momenta absorb ki-
netic energy significantly more slowly than particles with
negative momenta. But the average is close to the well
known “quasilinear” ratekEl=Dqlt=sKeff

2 /4dt, associated
with a random walk in momentum space. These rates appear
to equalize after a certain time and to revert toD.Dql.

From Fig. 2 one can clearly see that the energy splitting is
not only momentum dependent, but that the corresponding
ratchet time is dependent onb, the perturbation to the kick-
ing period. In Ref.[7] we attributed the cause of these dif-

FIG. 1. Poincaré surfaces of section for the chaotic Hamiltonian
ratchet.(a) At low kicking strengthsK=0.1d the asymmetry in the
system is already apparent.(b) At K=2 the system is in the globally
chaotic regime; note the absence of any islands/tori. It is in this
regime that our numerical simulations are performed. Each plot was
calculated by starting 400 initial trajectories evenly spaced over a
range ofx: f0,2pg andp: f−10,10g then kicking each trajectory 200
times.
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fering diffusion rates to correlations between short sequences
of kicks in the evolution sequence, yielding corrections to
overall diffusion rate. In effect, the diffusion rate for this
system becomes local in momentumD;Dsp,td. It is also
not linear in time — as seen below, except for very short
times and for very long times. In the next section we derive
in detail these corrections, investigate the time scales in-
volved and hence can analyze the general behavior seen in
Fig. 2.

III. THE MOMENTUM DIFFUSION COEFFICIENT

At the lowest level of approximation in ratchet and rotor
systems, the growth of the average energy, in the absence of
phase space barriers, can be approximated by the quasilinear
formula Dql<K2/4 [10]. However, this approximation ne-
glects the effect of correlations between consecutive kicks
which can significantly modify the diffusion coefficient. In
the case of the standard map[corresponding, in Eq.(2.2) to
a=0,b=0], the energy growth for an ensemble of classical
particles with initial momentump0 is given by

Ksp − p0d2

2
L = Dt ; D0t + to

l=1

`

Csl,pd, s3.1d

where theCsld terms are corrections to the quasilinear diffu-
sion resulting from correlations between successive kicks.

These corrections have been studied extensively for the
standard map, resulting in an adjusted diffusion coefficient
[10,11]:

D =
K2

4
h1 − 2fJ1sKdg2 − 2J2sKd ¯ j. s3.2d

Here, for example, the −J2sKd term arises from the two-kick
correlation which has the formCs2,pd=kV8sxidV8sxi+2dl.
Here xi is the x coordinate after kicki and the average is
carried out over all phase-space coordinates. One can clearly
see that for the standard map, the diffusion coefficient is
momentum independent. As the results below show, in our
case, the diffusion coefficient becomes momentum depen-
dent. The calculation, outlined below, is an extension of the
method of Rechester and White[12], and is detailed in full in
the Appendix.

Starting with an initial momentump0, the diffusion coef-
ficient can be written in terms of the conditional probability
densityQ that the system evolves to a statesxN,pNd at time
t=N (that is, afterN kicks):

DsNd =
1

2N
E QsxN,pN,Nux,p,0dPsx,p,0d

3spN − pd2dxNdpNdxdp, s3.3d

where the initial probability distribution is given by

Psx,p,0d = s2pd−1dsp − p0d.

Using the recursion property of the conditional probability
Q, and the 2p periodicity in thex variable, we can write the
diffusion coefficient as(see the Appendix):

D = lim
N→`

1

2N o
mN=−`

`

¯ o
m1=−`

`

p
i=0

N E
0

2p dxi

s2pd
SN

2

3 expSo
j=1

N

himjfxj − xj−1 − stj − tj−1dsp0 + Sj−1dgjD ,

s3.4d

where we define

Sj = − o
l=0

j

V8sxld. s3.5d

By setting mj =0 for all j in the above formula, one simply
recovers the quasilinear diffusion. In order to examine the
contribution of various correlations one must look at the
product of terms where the mj are set to an appropriate non-
zero value.

The main corrections to the diffusion rate for the ratchet
are found by considering the two-kick correlationsCs2,pd,
i.e., choosing the term 2V8sxidV8sxi+2d in the productSN

2

=SNSN. For smallb, the leading contribution to this correc-
tion comes by takingmi+2= ±1 andmi+1=−mi+2 (all othermj
zero; this gives the contribution of theK sinx part of the
potential), or mi+2= ±2 andmi+1=−mi+2 (contribution of the
sin 2x part of the potential). Since there are three different
time intervals possible between kicksi and i +2 (T1+T2, or
T2+T3, or T3+T1), one has to calculate three different con-
tributions for these three cases. Summing the results for all

FIG. 2. Figure illustrates differential energy absorption for par-
ticles with positive and negative momenta. An ensemble of particles
(all with p=0 at initial time,K=1.6, a=0.5) is evolved, andkp2l is
calculated separately, at each time, for particles with positive and
negative momenta. The two upper curves[near thes−d sign] show
kp2l as a function of time for particles with negative momentum and
two different values ofb, the two lower curves[near thes+d sign]
show the corresponding curves for particles with positive momen-
tum. We see that particles with negative momenta, for a certain time
period absorb energy faster than those with negative momenta. Note
also that the behavior becomes linear after a certain time.
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kicks i between 1 andN, we get a contribution from the sinx
part of the potential(the full derivation is contained in the
Appendix):

Csin xs2,pd = −
K2

6 Fo
−`

`

J2−2s„Ks1 + bd…Js„2Kas1 + bd…

3cosS2p0b +
p

2
sD + o

−`

`

J2−2ssKdJss2Kad

3cosSp0b −
p

2
sD + o

−`

`

J2−2s„Ks1 − bd…

3Js„2Kas1 − bd…cosSp0b −
p

2
sDG . s3.6d

The sum overs formally spans the ranges= ±`, but for
typical K values converges forusu,20. This result is valid
for short times. For longer times(that is, larger kick value
N), the correction to the average energy growth is no longer
linear in time, and eventually saturates to a given value. This
is discussed later, together with the ratchet time.

The cosines in Eq.(3.6) can be expanded; for example,
the first term in Eq.(3.6) becomes

Csin x
s1d =

K2

6 o
s

J2−2s„Ks1 + bd…Js„2Kas1 + bd…

3Scos 2p0b cos
p

2
s− sin 2p0b sin

p

2
sD .

If we wish to consider only the build up of asymmetry in the
system aboutp=0, we can neglect the even terms. The asym-
metry which drives the directed transport is due solely to the
sinnp0b (n=1, 2, 4) dependent terms in the diffusion coeffi-
cient (those which are odd with respect to reflection about
p=0). We therefore simplify Eq.(3.6) to

Csin x
sasymmds2,pd =

K2

6 Fo
s

J2−2s„Ks1 + bd…Js„2Kas1 + bd…

3sin 2p0b sin
p

2
s− o

s

J2−2ssKdJss2Kad

3sinp0b sin
p

2
s− o

s

J2−2s„Ks1 − bd…

3Js„2Kas1 − bd…sinp0b sin
p

2
sG . s3.7d

A similar equation is obtained for theKa sin 2x part of the
ratchet potential

Csin 2x
sasymmds2,pd =

s2Kad2

6 F− o
s

J4−2s„2Ks1 + bd…Js„4Kas1 + bd…

3sin 4p0b sin
p

2
s+ o

s

J4−2ss2KdJss4Kad

3sin 2p0b sin
p

2
s+ o

s

J4−2s„2Ks1 − bd…

3Js„4Kas1 − bd…sin 2p0b sin
p

2
sG . s3.8d

These formulas can now be rearranged to give the total
correction to the diffusion coefficient as a function of the
three sinnpb present(note that we uses8=2−2s and s9=4
−2s for clarity):

Csasymmds2,pd = −
K2

6 Fsinp0bHo
s

fJs8sKdJss2Kad

+ Js8„Ks1 − bd…Js„2Kas1 − bd…gsin
p

2
sJ

− sin 2p0bHs2ad2o
s

fJs9s2KdJss4Kad

+ Js8„Ks1 + bd…Js„2Kas1 + bd… + s2ad2

3Js9„2Ks1 − bd…Js„4Kas1 − bd…gsin
p

2
sJ

+ sin 4p0bHs2ad2o
s

Js9„2Ks1 + bd…

3Js„4Kas1 + bd…sin
p

2
sJG . s3.9d

The form above does not incude the time dependence or
information on the ratchet time scales. An analytical form for
these time scales is obtained by taking the full time depen-
dence into account in the calculations(see the Appendix).
For each sinnp0b term, there is a time-dependent function
FsN,bK,nd. We rewrite Eq.(3.9) as a Fourier series, with
the Bessel function products replaced by coefficientsAn:

Csasymmds2,pd = −
K2

6
fA1sinp0b − A2sin 2p0b + A4sin 4p0bg .

s3.10d

The Bessel sum can easily be evaluated: for example, for
K=14, a=1/2, b=0.005, we findA1=0.13 so the sinp0b
term is weighted by a coefficientsK2/6dA1=4.3, which will
later be compared to numerical values.

To go beyond the form valid only at short times, we must
weight each term byFsN,bK,nd, whereN is the number of
kicks andN= t. Hence,
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Csasymmds2,pd = −
K2

6
fA1FsN,bK,1dsinp0b

− A2FsN,bK,2dsin 2p0b

+ A4FsN,bK,4dsin 4p0bg . s3.11d

The leading term is the time-behavior function
FsN,bK,1d, which can be shown to take the form(see the
Appendix)

FsN,bK,1d =
3

N

1 − fJ0sbKdJ0s2abKdgN−1

1 − fJ0sbKdJ0s2abKdg3 s3.12d

[to obtain the form forFsN,bK,2d we would simply double
the arguments of the Bessel functions above and for
FsN,bK,4d we would quadruple them].

For smallb and smallN,FsN,bK,nd.1, which leads to
the linear correction to the energy: in this regime we could
write ksp−p0d2/2l.Dt;D0t+Cs2,pdt as in Eq.(3.1). We
recall thatCs2,pd=Csasymmds2,pd+Cssymmds2,pd and only the
Csasymmds2,pd term represents diffusion asymmetric aboutp
=0 and hence the ratchet effect.

However, for largerN, eventuallyFsN,bKd,1/N so the
contribution of the two-kick correction Csasymmd

3s2,pdFsN,bKdt tends to saturate to a constant value. The
saturation time for the leading termFsN,bK,1d (which is
the most long lived) is the ratchet time.

The ratchet time can be estimated by finding the time at
which FsN,bK,n=1dt reaches 95% of its value atN=`.
This is found to be, fora=1/2:

tr
ssin pbd =

2 lns20d
sKbd2 <

6

sKbd2 . s3.13d

The heuristic arguments in Ref.[7] gave a time scaletr
,2p / sKbd2 which is not too different. The same analysis
can now be repeated to obtain the separate(shorter) time
scales corresponding to the sin 2pb,sin 4pb corrections. It is
straightforward to show that 4tr

ssin 2pbd. tr
ssin pbd and

16tr
ssin 2pbd. tr

ssin pbd.
Note that for largeN, FsNdt saturates to the value of

,1/fsbKd2g. The energy growth is no longer affected by the
two-kick correlations and contains no asymmetric diffusion
component. This results in a progressive dilution of the
asymmetry in the classical case(but not the quantum case).
One also notes that the ratchet effect is clearly dominated by
the time scale corresponding to the sinpb term (the two
other ratchet times are, respectively, 1/4 and 1/16 smaller).

Figure 3(a) plots ksp−p0d2l=Esp0,N=100d, the average
kinetic energy, afterN=100 kicks, of an ensemble of 106

particles(which all hadp=p0 at N=0). These numerics en-
able us to obtain numerical estimates of the coefficients
sK2/6dAn. Now at short times,Esp0,Nd.D0t+Cs2,pdt and
includes both the symmetric and asymmetric terms in the
diffusion coefficient. In Figs. 3(b) and 3(c) we have removed
the symmetric contribution(and D0t) by plotting EsNdasymm

= 1
2fEsp0,Nd−Es−p0,Ndg. Figure 3(b) shows Easymmsp0,N

=20d, whereas Fig. 3(c) showsEasymmsp0,N=100d. We can
now fit a Fourier series in sinp0b to each curve and obtain

the relative amplitudes for each of the three terms that appear
in our analytical formula (3.9); sinp0b,sin 2p0b, and
sin 4p0b. The Fourier coefficients are indicated in the figure.
One can clearly see that for the example given, the relative
amplitudes of the terms vary with time: at 20 kicks there is a
strong contribution from the sin 2pb term, whereas after 100
kicks the sin 2pb contribution is an order of magnitude
smaller and the curve is almost a pure sinpb. The sinpb
weighting coefficients estimated from the graphs, 4.7 and 3.8
compare favorably with the estimate of Eq.(3.10), where we
calculatesK2/6dA1=4.3.

Figure 4 shows the dependence of the amplitudes of each
of the sine terms on kick strengthK after 20, 40, and 100
kicks. Also shown is the analytical form for each term as
predicted in Eq.(3.9). It can be clearly seen that the sinpb
contribution persists beyond 100 kicks for all values ofK.
The sin 2pb contribution is still significant at 40 kicks for all
values ofK, but has been significantly damped by 100 kicks
for K.10. The time scale over which the sin 4pb contribu-
tion is appreciable is shorter still. ForK.6 the amplitude at
100 kicks is virtually negligible while at 20 and 40 kicks it is
heavily damped.

In Fig. 5 the ratchet time is plotted against the parameters
b andK. Each point on the graph corresponds to a measure-
ment of tr for a given parameter set. The value oftr was
estimated by taking a running average over 50 kicks and
measuring the standard deviation inkpl of the ensemble of
400000 trajectories. When the deviation fell to below 5% of
the maximum the value oftr was assigned. In Fig. 5(a) the

FIG. 3. (a) Average classical kinetic energyEsp0,N=100d plot-
ted as a function of initial momentump0, calculated numerically for
an ensemble of 106 particles withK=14, a=1/2, b=0.005 timet
=100. In(b) and(c) we have removed the momentum-independent
and symmetrical cosnpb contributions by plottingEasymmsP0,Nd
= 1

2fEsp0,Nd−Es−p0,Ndg. The energy spread after 20 kicks is
shown in (b) and after 100 kicks in(c). The dashed curves, are
obtained by Fourier analysis of the numerical results. For clarity,
these curves have been shifted vertically.
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value of b is varied across a wide range while the kicking
strengthK is kept constant. The plot shows clear numerical
evidence of the 1/b2 proportionality of the ratchet time. A fit
of tr =2p / sKbd2 is plotted against the numerical results and
very good agreement can be seen. In the lower panel[Fig.
5(b)] the parameters are exchanged andK2 is varied against a
constantb. Once again the numerical results bear out an
excellent correspondence to the expectedtr .6/sKbd2 rela-
tionship obtained from the sinpb term above.

IV. THE RATCHET CURRENT

It is possible to obtain an analytical form for the classical
ratchet current shown in Fig. 7, using a very similar method
to that used to obtain the diffusion coefficient. In this case we
define the average current at a given time to be

kpsNdl =E QsxN,pN,Nux0,p0,0dPsx0,p0,0dspN − p0ddxNdpN.

s4.1d

It is easily shown that, similar to the asymmetric energy
diffusion, the momentum current increases withN and then
saturates after a time scaletr ,1/sKbd2. This is unsurprising,
since the two share a common physical origin.

We evaluate the saturated current,kpsN→`dl. The lead-
ing order term for the average saturated current obtained us-
ing the modified Rechester and White approach is then

kpsN → `dl = K
J1sbKdJ0s2abKd

1 − fJ0sbKdJ0s2abKdg3

3o
s

sinSp0b −
p

2
sDJ2−2ssKdJss2aKd

− 2Ka
J0s2bKdJ1s4abKd

1 − fJ0s2bKdJ0s4abKdg3

3o
s

sinSp0b −
p

2
sDJ4−2ss2KdJss4aKd, s4.2d

where the approximation 1−b<1 has been made. The first
term in Eq.(4.2) arises from theK sinx part of the potential,
and the second term is the contribution fromKa sin 2x.

We note that the momentum current tends to a constant
value ast→`. However the width of the momentum distri-
bution continues to grow asD0t. Hence the momentum cur-
rent, normalized to the width of the momentum distribution,

FIG. 4. Contributions to classical asymmetric energy diffusion
that arise from sinsnpbd terms in the first order correction to the
diffusion constant are shown as a function ofK. Analytically pre-
dicted amplitudes are compared with numerical results for varying
numbers of kicks to highlight the time scales involved. The
amplitudes are scaled to 100 kicks for comparison, i.e.,An8
=AnsK2/6ds100/Nd. One can see in(a) that the numerical results for
the sinspbd term show excellent agreement with the analytical pre-
diction for all K, suggesting that this term continues to influence the
final current past 100 kicks. In(b) one sees good agreement for both
20 kicks and 40 kicks up to fairly highK, whereas after approxi-
mately K=10 the 100 kick curve begins to depart markedly from
the analytical prediction. This suggests that for high kick strength
the contribution to the final current from the sins2pbd term has been
damped by 100 kicks. This effect is even more noticeable for
sins4pbd as shown in(c). Good agreement between numerics and
analytics exists only up to approximatelyK=5 with the 100 kick
curve becoming heavily damped soon after. One can clearly see the
40 kick curve departing from the analytical result more quickly and
completely than the 20 kick result. These plots show that for in-
creasing kick strength, the time scale over which each term contrib-
utes to the final current changes.

FIG. 5. Classical ratchet saturation time, measured in kicks, ver-
sus system parametersb (a) and K2 (b). (a) The classical ratchet
time is measured when the deviation of a 100 kick running average
falls below 2% of its maximum value. A very good numerical
agreement(solid line) is shown to a fit of 2p /K2b2 (dashed line).
The value ofK was fixed at 1.6.(b) using the same measurement
technique for(a) the ratchet time is plotted againstK2 for a fixed
b=0.1. Again a nonlinear curve fit of 2p /K2b2, (dashed line) is
compared to the numerical results(solid line). Each point on each
graph is a result of a classical calculation of 500 000 trajectories run
over 10 000 kicks.
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will tend to zero in the classical case, but—as discussed in
the next section—will tend to a constant in the quantum case.

The top panel of Fig. 6 shows a comparison of this result
with numerical simulation forb=0.01,a=0.5, and zero ini-
tial momentum. The individual contributions from each term
in Eq. (4.2) are shown in the lower two panels of the figure.
The shape of the curve is clearly dominated by theK sinx
part of the potential, but one can easily see where the
Ka sin 2x part competes, for example, to create the dips be-
tweenK=3→6. While the current reversals are accurately
predicted and the general trend of the curve is in keeping
with the numerical results, there are some features which are
not in keeping with expectation. In the region 0øKø2 the
numerical current appears to decrease much more rapidly
than the analytical prediction. This is possibly due to the
increasing regularity of the system inhibiting the build up of
asymmetry. Once beyond the current reversal atK=2.6, the
magnitude of the current never reaches that of the analytical
curve. In this region the ratchet time is short, and the asym-
metry in the system is washed out by the expansion of the
classical momentum distribution. Also, Eq.(4.2) is the lead-
ing order term for the current, resulting from the second
order correlations. One would expect that including higher
order terms might well affect the predicted current, and im-
prove the accuracy of the result. Furthermore, the analytical
form is valid in the regime of smallb, and one would antici-
pate that the numerical curve will tend to the theoretical pre-
diction asb→0. A fuller numerical investigation of the de-
pendence onb anda is given in Ref.[13].

V. COMPETITION BETWEEN tr AND t*

Having considered exclusively theclassical diffusion
mechanism underpinning this ratchet in the previous sec-

tions, we must now examine the correspondingquantumbe-
havior. The implementation of this type of ratchet is best
done using cold atoms in optical lattices, a system far from
the classical limit. Here we review in brief the quantum re-
sults obtained in Ref.[7] and extend those calculations to test
a wider parameter range.

In the quantum case, in addition to the dynamical param-
etersK ,a,b we must consider" (note that in the experiment,
a rescaling of coordinates introduces an effective value of".
In a typical experiment",0.25−2). A conclusion of Ref.
[7] was that the key to achieving the most distinctive experi-
mental asymmetry lies in approximately equalizing the two
time scales of the system: the classical ratchet timetr and the
quantum break timet* . We recall that for the standard quan-
tum kicked rotor(QKR), t* ,D /"2. In our case we still have
a time-periodic system(though with a time period in effect
three times longer than the QKR) so its time evolution can be
determined by an expansion over the underlying Floquet
states: in the long-time limit its behavior is quasiperiodic and
diffusion is suppressed as in the QKR.

A numerical study in Ref.[7] found that dynamical local-
ization proceeds in a similar way to the QKR. For each par-
ticular set of dynamical parametersK , a, b, and", the time
evolution of a minimal uncertainty wave packet was calcu-
lated in a plane-wave basis. A quantum probability distribu-
tion for the momentumNsp,td was obtained as a function of
time. From this it is simple to compute the expectation val-
ues of the momentumkpl, the energykp2l as well as the
saturation time for the energyt* . In our system, unlike the
QKR, we have a local(in momentum) diffusion rateDspd
which oscillates with momentum(with period 2p /b, see Fig.
3) about the uncorrelated valueD0=Keff

2 /4. For the param-
eters considered here, the amplitude of these oscillations is
not large compared withD0. In that case, we found from
numerics in Ref.[7] that the break time corresponds closely
to the averaged valuet* ,20sD0/"2d [13].

It is interesting to contrast this with the rocking lattice
system and experiment in Refs.[8,9] which corresponded to
the opposite limit: if the amplitude oscillations in the two-
kick correlations are large relative to the uncorrelated rate
D0, andb,0.01 is small, the typical width ofNspd is small
relative to 2p /b. For a narrow momentum distribution
Nsp0−pd, strongly peaked about a momentump=p0, one
needs to consider a local break-timetsp0d* ,Dsp0d /"2 which
can vary by a factor of,100 as one varies the initial drift
momentump0 of the atoms relative to the optical lattice[8].
However, this is not the situation here. For this system we
find that t* .20sKeff

2 /"2d represents a good approximation,
for all values ofb.

If the quantum diffusion persists as long astr, the quan-
tum system acquires the full classical asymmetry. Hence the
condition t* , tr ensures that the maximal classical asymme-
try is frozen in and that the asymmetry is not diluted by the
continual spread of the classical momentum distribution.
Evidence for this criterion is shown in Fig. 7, where the
classical and quantum currents(after saturation) are shown
for various parameter choices. For the quantum case," is
decreased from"=1/2 to "=1/8 while keepingb, the per-
turbation to the period, constant atb=0.1. For the lower

FIG. 6. Comparison of numerical and analytical average current
as a function of kicking strengthK. In (a) the leading order analyti-
cal term(dashed line) given by Eq.(4.2) is shown with the numeri-
cal result (circles) for b=0.01 anda=1/2. Note that the current
reversals are accurately predicted, as is the general trend of the
numerical curve. Panel(b) shows the contribution from the first
term in Eq.(4.2), due to the sinx part of the potential. The final
panel (c) shows the contribution from the second term, due to
sin 2x. Both curves are plotted with the numerical result.
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values of the kicking strengthK,2.5 or less, one can see
that the quantum current approaches the classical current for
b=0.1 as" is decreased. Recalling thatt* ~1/"2 we see the
effect of the changing break times: in the rangeK=2−2.5 all
the curves("=1/2,1/4,1/8, andclassical) are roughly in
agreement. In this range all values of" allow time for asym-
metry to accumulate. However, forK=1.5−2, for "=1/2
and 1/4, in this range,t* , tr so the quantum current falls
below the classical value. The quantum momentum distribu-
tion localizes before the full asymmetry is achieved. How-
ever, "=1/8 follows quite closely the classical behavior in
this range since it has a break time 16 times longer than for
"=1/2.

As the kick strength is increased beyond the crossing(ap-
proximately K<2.6) one notes that there is once again a
large discrepancy between the classical and quantum results.
The ratchet time decreases with increasingK (as shown by
the scaledtr curve shown in the figure), and when the ratchet
time is too short, the calculated classical asymmetry is neg-
ligible. Perhaps surprisingly though, the corresponding quan-
tum system still exhibits significant asymmetry. In fact the
quantum behavior corresponds more closely to the classical
current for somewhat smaller values ofb,0.1: whentr is
very small we get poor agreement between classical and
quantal results, even with small". It is clear that some de-
tails of the quantum classical correspondence here will only
be understood from a detailed study of the properties of the
Floquet states of this quantum system, which is currently
underway.

By decreasing the parameterb (and therefore increasing
tr) the classical current for highK once again approaches the
quantum current. In broad terms however, we conclude that
while the basic ratchet mechanism is a classical one, the best
experimental results will be obtained witht* , tr. The best
quantum-classical agreement will be obtained in the param-
eter ranges where neithert* nor tr are too small.

VI. CONCLUSION

We have derived analytical expressions for the energy dif-
fusion rates, the classical ratchet currents, and the ratchet
time. We have shown that we can fully characterize the be-
havior of the only chaotic Hamiltonian ratchet mechanism
proposed to date. This new type of Hamiltonian ratchet is in
fact a momentum-diffusion ratchet. The current is generated
by differential acquisition of kinetic energy by particles mov-
ing right or left, rather than an asymmetry in the global num-
bers of particles moving right or left. Finally we have ana-
lyzed the corresponding quantum behavior. We have
demonstrated the importance of an appropriate choice of
ratchet time and quantum break time in obtaining the best
experimental momentum asymmetries.
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APPENDIX: DERIVATION OF CORRECTION TERMS

In order to obtain the diffusion coefficient for the ratchet
we begin by defining the generalized map

xj+1 = xj + pj+1stj+1 − tjd, sA1d

pj+1 = pj − V8sxjd, sA2d

wheretj+1− tj is the time between successive kicksj +1 and
j . For the standard map, these intervals are the same for all
kicks. However, this is not true for our chirped sequence. As
explained in the text, we consider explicitly a cycle of three
different intervalss1+bd, 1 and s1−bd, with b a small pa-
rameter. From the map we have

pN = p0 − V8sx0d − V8sx1d ¯ − V8sxN−1d = p0 − o
l=0

N−1

V8sxld

and so we define

Sj = − o
l=0

j

V8sxld. sA3d

We use the standard definition of the diffusion coefficient

Ksp − p0d2

2
L = Dstdt sA4d

and assume that the systems starts atp=p0 at timet=0. If we
consider the diffusion in terms of the conditional probability
density Q that the system evolves from the statesx

FIG. 7. Variation of average classical and quantum currents as a
function of kick strengthK. Numerical values in brackets indicate
the value of". In the quantum case, whereb=0.1 for each curve,
one notes that there is an improving fit with the classicalb=0.1
curve for decreasing". At low K the break time for"=0.5, 0.25 is
too short, and the system localizes before the maximum amount of
classical asymmetry has been reached. AsK is increased,t* in-
creases and the classical and quantum plots show good agreement
oncet* < tr. While both the quantum and classical curves share the
same crossing, the classical curve forb=0.1 does not show the
positive peak that features in both quantum graphs. This is due to
the fact that the ratchet time is now too short to allow any appre-
ciable build up of classical asymmetry(shown by the scaled ratchet
time curve). The classical peak is recovered at smallerb (not
shown), and therefore increasingtr for a given value ofK.
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P f0,2pg ,p=p0d at time t=0 to the statesx=xN,p=pNd at
time t= tN we find

DstNd =
1

2tN
E QsxN,pN,tNux,p,0dPsx,p,0d

3spN − pd2dxNdpNdxdp, sA5d

where the initial probability distribution is given to be

Psx,p,0d = s2pd−1dsp − p0d

andQ obeys the recursion property

QsxN,pN,tNux0,p0,0d =E QsxN,pN,tNuxi,pi,tid

3Qsxi,pi,tiux0,p0,0ddxidpi .

sA6d

Inserting this property successively for each kick betweenN
and 0 in Eq.(A6), and using

QsxN,pN,tNuxN−1,pN−1,tN−1d = o
nN=−`

+`

d„pN − pN−1 + KV8sxN−1d…

3d„xN − xN−1 − stN − tN−1dfpN−1

− KV8sxN−1dg + 2pnN… sA7d

where the sum overnN occurs because of the periodic bound-
ary condition forxN s0øxNø2pd, we obtain

QsxN,pN,tNux0,p0,0d = o
nN=−`

+`

¯ o
n1=−`

+` E
0

2p dx0

2p
dsp − p0d

3E
0

2p

dx1 ¯ E
0

2p

dxN−1dspN − p0

− SN−1dd„xN − xN−1 − stN − tN − 1d

3fspN−1 − KV8sxN−1ddg

+ 2pnN… ¯ dsp1 − p0 − S0dd„x1 − x0

− st1 − t0dfp1 − KV8sx0dg + 2pn1….

sA8d

Inserting the above equation into Eq.(A5) and taking into
account thed-function restraint onpN, we find

D =
1

2N
o

nN=−`

+`

¯ o
n1=−`

+`

p
i=0

N E
0

2p dxi

2p
SN

2d„xN − xN−1

− stN − tN − 1dsp0 + SN−1d + 2pnN… ¯ d„x1 − x0

− st1 − t0dsp0 + S0d + 2pn1…. sA9d

By making use of the Poisson summation formula

o
n=−`

+`

dsy + 2pnd =
1

2p
o

m=−`

+`

expfimyg sA10d

we can write Eq.(A9) as

D =
1

2N
o

mN=−`

`

¯ o
m1=−`

`

p
i=0

N E
0

2p dxi

s2pd
SN

2

3expSo
j=1

N

himjfxj − xj−1 − stj − tj−1dsp0 + Sj−1dgjD .

sA11d

The term wheremj =0 for all j corresponds to the quasi-
linear diffusion

D =
1

2N
p
i=0

N E
0

2p dxi

s2pd
SN

2

=
1

2N
p
i=0

N E
0

2p dxi

s2pd
K2f− V8sx0d − V8sx1d − ¯ V8sxN−1dg2

=
1

2N
Keff

2 N

2
=

Keff
2

4
, sA12d

where we recall thatKeff=KÎ1+4a2.
All the other terms, where some of themj are nonzero,

give corrections to this result. As noted in the text, the main
corrections to the diffusion coefficient for the ratchet arise
from correlations of the formCs2,pd=k2V8sxjdV8sxj+2dl, ob-
tained from Eq.(A11) by evaluating the contribution of
2V8sxjdV8sxj+2d in the termSN

2. The leading part of this con-
tribution is obtained by settingmj+2= ±1 and mj+1=−mj+2
(all other m are zero) for the K sinx part of the potential
Vsxd, and mj+2= ±2 andmj+1=−mj+2 (all other m are zero)
for the Ka sin 2x part of the potentialVsxd [12]. These cor-
rections have to be summed over all kicksj =1,… ,N. Since
there are three different time intervals between kickssT1

=1+b,T2=1,T3=1−bd, there are three different contribu-
tions to calculate. We now address individually each of these
three contributions.

1. Correlation between kicks i , i +2

We choose the following map for this section:

xi = xi−1 + pis1 + bd,

xi+1 = xi + pi+1,

xi+2 = xi+1 + pi+2s1 − bd, sA13d

pi = xi−1 − V8sxi−1d,

pi+1 = xi − V8sxid,

pi+2 = xi+1 − V8sxi+1d. sA14d

We consider first the correction that arises as a result of the
K sinx part of the potential. Settingmi+2=−1 andmi+1= +1
in Eq. (A11), and keeping the 2V8sxi+2dV8sxid term of SN

2 we
obtain
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Cs2,pdmi+2=−1
i:i+2 =

1

2N
p
j=0

N E
0

2p dxj

2p
2V8sxi+2dV8sxid

3e−i„xi+2−xi+1−s1−bdsp0+Si+1d…

3e+isxi+1−xi−p0−Sid

=
1

N
p
j=0

N E
0

2p dxj

2p
V8sxi+2dV8sxide−isxi+2−2xi+1+xid

3e−ip0bei„s1−bdSi+1−Si…. sA15d

Now we use the fact that

Si+1s1 − bd + Si = − s1 − bdV8sxi+1d − bSi . sA16d

Therefore the correction becomes

Cs2,pdmi+2=−1
i:i+2 =

1

N
p
j=0

N E
0

2p dxj

2p
V8sxi+2dV8sxid

3e−isxi+2−2xi+1+xide−ip0bei„−s1−bdV8sxi+1d−bSi….

sA17d

One can further simplify this equation by using the identity
[Jnsxd is the standard Bessel function]:

expf± iz cosug = o
n

i±nJnszdexpf± inug sA18d

to obtain

Cs2,pdmi+2=−1
i:i+2 =

1

N
p
j=0

N E
0

2p dxj

2p
V8sxi+2dV8sxide−isxi+2−2xi+1+xid

3e−ip0be−ihs1−bdfK cossxi+1d+2Ka coss2xi+1dg+bSij

=
1

N
E

0

2p dxj

2p
V8sxi+2dV8sxide−isxi+2−2xi+1+xid

3e−ip0bo
n

i−nJn„s1 − bdK…e−inxi+1

3o
s

i−sJs„s1 − bd2Ka…e−i2sxi+1e−ibSi . sA19d

The integration overxi+1 gives

− nxi+1 − 2sxi+1 + 2xi+1 = 0 ⇒ n = 2 − 2s.

So, we finally obtain

Cs2,pdmi+2=−1
i:i+2 =

1

N
p

j
E

0

2p dxj

2p
V8sxi+2dV8sxide−isxi+2+xid

3e−ip0b 3 o
s

i−2+sJ2−2s„s1 − bdK…

3Js„s1 − bd2Ka…e−ibSi . sA20d

The integrations overxj with j . i +2 give simply 1. The
integrations overxj with j , i are all identical. They give a
contribution

fJ0sKbdJ0sKb2adgi . sA21d

SinceKb!1, J0sKbd.1, and one can neglect this term for
short times(when the exponenti is not too large). We show,
however, at the end of the Appendix that the longer time
behavior(and so the ratchet time) can be obtained from this
term. Finally, we are left with the integration overxi+2 andxi.
For thexi part, it is easy to show that the term exps−ibSid can
be neglected for smallb. The exponentials exps−ixi+2− ixid
must be combined with the productV8sxi+2dV8sxid to give a
nonzero result. We expand the product in the following way:

V8sxi+2dV8sxid ; sK cosxi+2 + 2Ka cos 2xi+2d

3sK cosxi + 2Ka cos 2xid

= K2cosxi+2cosxi + 2K2a cosxi+2cos 2xi

+ 2K2a cos 2xi+2cosxi

+ 4sKad2cos 2xi+2cos 2xi . sA22d

The first term, which arises from theK sinx part of the po-
tential, is here the appropriate one to use:

K2cosxi+2cosxi =
K2

4
heisxi+2−xid + e−isxi+2−xid + eisxi+2+xid

+ e−isxi+2+xidj . sA23d

The integrations are now trivial, and we get

Cs2,pdmi+2=−1
i:i+2 =

K2

4N
e−ip0bo

s

i−2+sJ2−2s„s1 − bdK…

3J2„s1 − bd2Ka…. sA24d

The same calculation for the casemi+2=1,mi+1=−1 simply
gives the complex conjugate of this expression.

Combining these results, we get

Cs2,pdK sin x
i:i+2 =

K2

4N
o

s

J2−2s„s1 − bdK…Js„s1 − bd2Ka…

3hi−2+se−ip0b + i2−seip0bj

= −
1

2N
o

s

J2−2s„s1 − bdK…Js„s1 − bd2Ka…

3cosSp0b −
p

2
sD . sA25d

Since we haveN/3 terms of this kind[only for 1/3 of theN
kicks do we have the map chosen in this section, Eqs.(A13)
and(A14)], we obtain the final form of thei : i +2 correction
to the quasilinear diffusion resulting from theK sinx part of
the potential as

Cs2,pdK sin x
i:i+2 = −

K2

6 o
s

J2−2s„s1 − bdK…Js„s1 − bd2Ka…

3Scosp0b cos
p

2
s+ sinp0b sin

p

2
sD .sA26d

Taking nowmi+2= ±2 andmi+1=−mi+2 and following the
same analysis we pick out the correction to the diffusion
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coefficient due to theKa sin 2x part of the potential, which is

Cs2,pdKa sin 2x
i:i+2 =

s2Kad2

6 o
s

J4−2s„2s1 − bdK…Js„4s1 − bdKa…

3Scos 2p0b cos
p

2
s+ sin 2p0b sin

p

2
sD .

sA27d

2. Correlation between kicks i +1,i +3

The analysis for the correlation between kicksi +1 andi
+3 of our cycle follows the same pattern as that given above,
starting from the following three-kick map:

xi+1 = xi + pi+1, sA28d

xi+2 = xi+1 + pi+2s1 − bd, sA29d

xi+3 = xi+2 + pi+3s1 + bd, sA30d

pi+1 = xi − V8sxid, sA31d

pi+2 = xi+1 − V8sxi+1d, sA32d

pi+3 = xi+2 − V8sxi+2d. sA33d

One therefore obtains the diffusion correction due toK sinx
for kicks i +1:i +3 to be

Cs2,pdK sin x
i+1:i+3 = −

K2

6 o
s

J2−2s„s1 + bdK…Js„s1 + bd2Ka…

3Scos 2p0b cos
p

2
s− sin 2p0b sin

p

2
sD
sA34d

with the Ka sin 2x correction being

Cs2,pdKa sin 2x
i+1:i+3 =

s2Kad2

6 o
s

J4−2s„2s1 + bdK…Js„4s1 + bdKa…

3Scos 4p0b cos
p

2
s− sin 4p0b sin

p

2
sD .

sA35d
Note that in this case we obtain correction terms that are

dependent on sin 2pb and sin 4pb, rather than sinpb and
sin 2pb obtained from thei : i +2 correlation.

3. Correlation between kicks i +2,i +4

Once again, we begin by defining the map

xi+2 = xi+1 + pi+2s1 − bd, sA36d

xi+3 = xi+2 + pi+3s1 + bd, sA37d

xi+4 = xi+3 + pi+4, sA38d

pi+2 = xi+1 − V8sxi+1d, sA39d

pi+3 = xi+2 − V8sxi+2d, sA40d

pi+4 = xi+3 − V8sxi+3d. sA41d

The analysis then follows precisely the same procedure
given above, resulting in theK sinx correction

Cs2,pdK sin x
i+2:i+4 = −

K2

6 o
s

J2−2ssKdJss2Kad

3Scosp0b cos
p

2
s+ sinp0b sin

p

2
sD

sA42d

and theKa sin 2x correction

Cs2,pdKa sin 2x
i+2:i+4 =

s2Kad2

6 o
s

J4−2ss2KdJss4Kad

3Scos 2p0b cos
p

2
s+ sin 2p0b sin

p

2
sD .

sA43d

4. Total correction from the two-kick correlation

Combining these contributions together one obtains

Cs2,pd =
1

6FK2o
s

J2−2s„s1 − bdK…Js„s1 − bd2Ka…

3Scosp0b cos
p

2
s+ sinp0b sin

p

2
sD

+ s2Kad2o
s

J4−2s„2s1 − bdK…Js„4s1 − bdKa…

3Scos 2p0b cos
p

2
s+ sin 2p0b sin

p

2
sD

− K2o
s

J2−2s„s1 + bdK…Js„s1 + bd2Ka…

3Scos 2p0b cos
p

2
s− sin 2p0b sin

p

2
sD

+ s2Kad2o
s

J4−2s„2s1 + bdK…Js„4s1 + bdKa…

3Scos 4p0b cos
p

2
s− sin 4p0b sin

p

2
sD

− K2o
s

J2−2ssKdJss2KadScosp0b cos
p

2
s

+ sinp0b sin
p

2
sD + s2Kad2o

s

J4−2ss2KdJss4Kad

3Scos 2p0b cos
p

2
s+ sin 2p0b sin

p

2
sDG .
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As the build up of asymmetry in the system is a short-
time effect, we can neglect any terms that are symmetric
with respect to momentum over this period. We therefore
attribute the onset of transport solely to the sinpb dependent
terms in the diffusion coefficient. We therefore simplify Eq.
(3.6) to

Cs2,pdasymm=
K2

6 S− o
s

J2−2s„s1 − bdK…Js„s1 − bd2Ka…

3sinp0b sin
p

2
s+ s2ad2o

s

J4−2s„2s1 − bdK…

3Js„4s1 − bdKa…sin 2p0b sin
p

2
s+ o

s

J2−2s„s1

+ bdK…Js„s1 + bd2Ka…

3sin 2p0b sin
p

2
s− s2ad2o

s

J4−2s„2s1 + bdK…

3Js„4s1 + bdKa…sin 4p0b sin
p

2

− o
s

J2−2ssKdJss2Kadsinp0b sin
p

2
s

+ s2ad2o
s

J4−2ss2KdJss4Kadsin 2p0b sin
p

2
sD .

sA44d

These formulas can now be rearranged to give the total cor-
rection to the diffusion coefficient as a function of the three
sinnpbpresent(note that we uses8=2−2s ands9=4−2s for
clarity):

Cs2,pdasymm= −
K2

6 Fsinp0bHo
s

fJs8sKdJss2Kad

+ Js8„Ks1 − bd…

3Js„2Kas1 − bd…gsin
p

2
sJ

− sin 2p0bHs2ad2o
s

fJs9s2KdJss4Kad

+ Js8„Ks1 + bd…Js„2Kas1 + bd…

+ s2ad2Js9„2Ks1 − bd…Js„4Kas1 − bd…gsin
p

2
sJ

+ sin 4p0bHs2ad2o
s

Js9„2Ks1 + bd…

3Js„4Kas1 + bd…sin
p

2
sJG . sA45d

5. Derivation of ratchet time tr

We now come back to the time dependence of the correc-
tions to the diffusion coefficient, to calculate the ratchet time.

When calculating the corrections coming from thesi , i +2d
correlations, we have neglected terms such as

fJ0sKbdJ0sKb2adgk. sA46d

In Eq. (A25) if we included these terms we would have

Cs2,pdK sin x
i:i+2 = −

1

4N
o

s

J2−2s„s1 − bdK…Js„s1 − bd2Ka…

3cosSp0b −
p

2
sD o

k=1

k=N/3

„J0sKbdJ0sKb2ad…k.

sA47d

In the previous sections we assumedJ0sKbd.J0sKb2ad.1
so the sum overk simply yielded a factor ofN/3. Although
J0sKbd.1−sKbd2/4 is very close to 1, when the number of
kicks (and so, i) increases, this term becomes eventually
much smaller than 1. The sum cannot then simply be equated
to N/3. We must sum between kicksN and kick 1(with only
1 kick over 3 contributing to this correction)

fJ0sKbdJ0sKb2adgN + fJ0sKbdJ0sKb2adgN−3

+ fJ0sKbdJ0sKb2adgN−6 + ¯ . sA48d

This is just a geometrical series, summing up to

1 − fJ0sKbdJ0sKb2adgN

1 − fJ0sKbdJ0sKb2adg3 . sA49d

As a function of the kick numberN, this increases linearly
for small N (and thus gives a correction to the diffusion
coefficient), but saturates for largeN at the value h1
−fJ0sKbdJ0sKb2adg3j−1 (where the diffusion coefficient is
not affected by these correlations anymore). Note that for the
sin 2pb and sin 4pb terms the Bessel functions have argu-
ments two or four times larger respectively. Hence in the
main paper we introduce the time dependence function

FsN,bK,nd =
3

N

1 − fJ0snbKdJ0s2nabKdgN−1

1 − fJ0sbKdJ0s2nabKdg3 . sA50d

This multiplies the diffusion ratesCs2,pd which were ob-
tained with the approximationfJ0sKbdJ0sKb2adgk.1.

We define the ratchet timetr as the time needed for the
function FsN,b,ndN to attain 95% of its saturated value as
N→`. This gives

tr .
lns5/100d

lnfJ0sbKdJ0s2abKdg
. sA51d

Keeping only the lowest order inb, we get

tr =
4 lns20d
b2Keff

2 , sA52d
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where we recallKeff
2 =K2s1+4a2d. Note that this is the ratchet

time for the dominant sinpb contribution to the diffusion
coefficient. One can calculate in the same way the ratchet
times for the sin 2pb and sin 4pb contributions. Fora=1/2
we get

tr
ssin pbd =

2 lns20d
sKbd2 , sA53d

tr
ssin 2pbd =

2 lns20d
s2Kbd2 , sA54d

tr
ssin 4pbd =

2 lns20d
s4Kbd2 . sA55d
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