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Abstract. The equilibrium current-phase structure of a tri-terminal superconducting Josephson junction
(bijunction) is analyzed as a function of the two relevant phases. The bijunction is made of two noninter-
acting quantum dots, each one carrying a single level. Nonlocal processes coupling the three terminals are
described in terms of quartet tunneling and pair cotunneling. These couplings are due to nonlocal Andreev
and cotunneling processes through the central superconductor S0, as well as direct interdot coupling. In
some cases, two degenerate midgap Andreev states appear, symmetric with respect to the (π, π) point.
The lifting of this degeneracy by interdot couplings induces a strong non-local inductance at low enough
temperatures. This effect is compared to the mutual inductance of a two-loop circuit.

1 Introduction

Josephson junctions couple two superconductors by an in-
sulator or normal metal bridge N [1]. In the latter case,
the Josephson effect in a two-terminal SNS junction re-
lies on the coherence of the Andreev reflections at each
NS interface, which results at equilibrium in the Andreev
bound states (ABS). Two Andreev reflections, one at each
interface, allow one Cooper pair to cross the SNS junc-
tion. The ABS dispersion with the phase difference at the
junction essentially controls the current-phase (CPR) re-
lationship of the junction. The CPR can be experimentally
probed by SQUID interferometry [2], and, more recently,
the ABS structure has been directly investigated by mi-
crowave spectroscopy [3,4]. Dot and double-dot set-ups
can also be investigated by resonant coupling to a mi-
crowave cavity [5].

The present work focuses on the ABS structure at equi-
librium of a tri-terminal Josephson [6–14]. It elucidates its
current-phase relation as a function of the two phase vari-
ables, hence the name “bijunction”. It clarifies the nature
of several nonlocal processes occurring in such a structure.
This current-phase relation could be probed by methods
inspired by those used in the framework of two-terminal
junctions. For instance, a two-loop biSQUID geometry has
been recently proposed by us [15]. On the other hand, for
transparent enough contacts, the Andreev bound states
formed within the bijunction could be probed by spec-
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troscopy tools [3,4], or, as recently suggested, using a
closeby NS junction [16].

More specifically, we consider here the case of a bi-
junction (Fig. 1) where each arm is formed by a single
level quantum dot [13], made for instance from a single
carbon nanotube or nanowire. This structure is closely
related to hybrid bijunctions made of two quantum dots
and normal (instead of superconducting) reservoirs Na,b,
which have been fabricated either with carbon nanotubes
or with semiconducting nanowires, in a (NaDaS0DbNb)
structure [17–21]. Indeed, nonlocal processes in double
(NaS0Nb) hybrid structures connecting one supercon-
ductor S0 to two normal metals Na,b have been pre-
dicted [22–30] and explored in experiments [18–21,31–33],
with the prospect of producing entangled pairs of elec-
trons. In the language of quasiparticle scattering, either
an electron (hole) impinging on S0 from Na is normally
transmitted as an electron (hole) towards Sb, or it is
Andreev-transmitted as a hole (electron). The first chan-
nel corresponds to tunneling of a quasiparticle through the
superconducting gap (so-called “elastic cotunneling” EC),
while the second one involves the creation (annihilation)
of a Cooper pair in S0 and is a nonlocal (crossed) Andreev
process (CAR). The latter amounts to split Cooper pairs
into entangled singlets [26–29,34], and is responsible for
nonlocal and spin-dependent conductance, while the proof
of spin entanglement remains elusive. The experimental
results clearly show the existence of nonlocal processes
leading to splitting Cooper pairs from S0 into pairs of
quasiparticles in Na, Nb.
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Fig. 1. Bijunction considered in this paper, made of two quan-
tum dots Da, Db. The interdot (tdd = t0) and superconductor-
dot (tsd = t) hopping parameters are indicated.

In an all-superconducting bijunction, CAR and EC re-
sult in new coherent multipair transport channels, that
must occur between the three terminals [6–9,13]. At
equilibrium, in a bijunction, the combination of crossed
Andreev process at S0 and local Andreev reflection at
Sa,b builds ABS, which depend on two phase variables,
say ϕa−ϕ0, ϕb−ϕ0. Those states can in particular medi-
ate the simultaneous passage of two Cooper pairs from S0

towards Sa, Sb, achieving so-called quartet transport.
In the present case of an all-superconducting tri-

terminal set-up, these new processes introduce a micro-
scopic coupling between the two junctions [9]. At equilib-
rium, the general picture is that of Andreev bound states
coherently formed on both junctions a, b simultaneously.
As a result, the total energy of the bijunction is a 2π-
periodic function EBJ = E(ϕ0a, ϕ0b) of the phase differ-
ences ϕ0a = ϕa − ϕ0 and ϕ0b = ϕb − ϕ0, and the currents

Ia =
2e
�

∂EBJ
∂ϕ0a

, Ib =
2e
�

∂EBJ
∂ϕ0b

(1)

are both functions of ϕ0a and of ϕ0b. In this work we derive
the exact current-phase relationship (CPR) in a two-dot
bijunction. Due to the tri-terminal geometry, nontrivial
midgap states may appear, symmetric with respect to the
central (π, π) point. The importance of such states has
been recently underlined in reference [35]. We show how
the underlying degeneracy is lifted by interdot couplings,
directly or through the central superconductor. This un-
derstanding of the CPR should clarify the nature of the
nonequilibrium transport, which offers new coherent dc
channels in presence of applied voltages, provided the
latter are commensurate [6,9,13], and also nonlocal mul-
tiple Andreev incoherent channels [7,8]. Subgap anoma-
lies in a diffusive Al-Cu bijunction have indeed been re-
cently observed and interpreted in terms of quartets (see
Fig. 8b) [14]. Notice that a related set-up has been pro-
posed in the context of Majorana fermion physics [36].

Section 2 defines the model and the exact solution for
the ABS, that becomes analytic in the low energy limit.
Section 3 discusses the structure of the ABS states of the
bijunction, first in the analytic limit. Section 4 provides
a discussion of the currents and the resulting nonlocal in-
ductance in the general case, and also considers the role
of the circuit inductances when the phases are imposed by
a two-loop set-up.

2 Bijunction with two quantum dots:
the model

Each junction Sa(b)−S0 is formed by a quantum dot Da(b)

with a single noninteracting level, with energies Ea(b) re-
spectively, and a direct coupling between the single levels
in Da(b) in the electron-electron channel (Fig. 1). Such a
coupling is a simplified way to modelize the connectivity
of the nanotube [20,34]. The Hamiltonian of the system
is written in the Nambu notation H = HS +HDD +HT ,
and performing a gauge transformation to incorporate the
superconducting phases ϕj in the tunneling term HT :

HS =
∑

j=a,b,0

∑

k

Ψ †
jk(ξkσz+Δjσx)Ψjk, Ψjk=

(
ψjk,↑

ψ†
j(−k),↓

)

(2)

HDD =
∑

α=a,b

Eαd
†
ασzdα + tdd [d†bσzda + h.c.] (3)

HT =
∑

jkα

Ψ †
jkTjαdα + h.c., dα =

(
d

α↑
d†α↓

)
, (4)

with Tjα = tjασze
iσzϕj/2 and tjα is the tunnelling ampli-

tude between the lead j and dot α.
The vector connecting the (point) junctions a−S0 and

S0 − b is denoted as R, and kF is the Fermi vector in S0.
The procedure to obtain the Andreev bound states and the
current-phase relationships by writing an effective action
for the two dots is found in reference [37]. One expresses
the partition function as

Z =
∫

D [
ψ̄, ψ, d̄, d

]
e−S[ψ̄,ψ,d̄,d], (5)

e.g. as a functional integral over Grassmann fields for the
electronic degrees of freedom (Ψ, Ψ̄ , d, d̄). The Euclidean
action reads:

SA = SD +
∫ β

0

dτ

×
⎡

⎣
∑

jk

Ψ̄jk(τ)(∂τ + ξkσz +Δjσx)Ψjk(τ) +HT (τ)

⎤

⎦ .

(6)

β is the inverse temperature, and HT (τ) =∑
jk Ψ̄jkα(τ)Tjαdα(τ) + h.c. while

SD=
∫ β

0

dτ

[
∑

α

d̄α(∂τ+εασz)dα+tdd (d†bσzda+h.c.)

]
.

(7)
After integrating out the leads we get Z =

∫D[dαd̄α]e−Seff

with

Seff = SD −
∫ β

0

dτdτ ′
∑

αδ

d̄α(τ)Σ̌αδ(τ − τ ′)dδ(τ ′) (8)
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where

Σ̌αδ(τ) =
∑

j=a,b,0

T †
jαGj,αδ(τ)Tjδ (9)

Gj,αα(τ) =
∑

k

(∂τ + ξkσz +Δjσx)−1δ(τ) (10)

G0,ab(τ) =
∑

k

eikR(∂τ + ξkσz +Δ0σx)−1δ(τ). (11)

We perform a Fourier transform on the Matsubara fre-
quencies (with ωn = (2n + 1)π/β): δ(τ) = 1

β

∑
ωn
e−iωnτ

and G(τ) = 1
β

∑
ωn
e−iωnτG(iωn), which gives for the

Green’s function Gj in terminal Sj :

Gj(iωn) =
∫
dξ ν(ξ)(−iωn + ξkσz +Δjσx)−1

� πν(0)√
Δ2
j − (iωn)2

(iωn +Δjσx) (12)

and the nonlocal Green’s functions connecting the junc-
tions a, b on the distance R in a one-dimensional channel
within terminal S0,

Gab(ωn) � e−R/ξ(iωn)πν(0)

×
[
iωn +Δ0σx√
Δ2

0 − (iωn)2
cos(kFR) + σz sin(kFR)

]
.

(13)

Here ξ(iωn) = ξ0√
Δ2

0−(iωn)2
and ν(ξ) =

∑
k δ(ξ − ξk) is

approximated by a constant ν(0), the density of states at
the Fermi level in the normal leads. Let us set the phase
ϕ0 to zero, and assume for sake of simplicity all gaps to be
equal, Δj = Δ, and the two junctions equivalent, taa =
t0a = t0b = tbb = tsd. This yields the self-energy as a
matrix in the Nambu-dots four-dimensional space:

Σ̌αα(iωn) =
Γ

2
√
Δ2 − (iωn)2

[
iωn − Δ

2
(1 + eiϕα)σx

]

(14)

Σ̌ab(iωn) = e−R/ξ(iωn)

× Γ

4

[
iωn +Δσx√
Δ2−(iωn)2

cos(kFR) + σz sin(kFR)

]

(15)

with Γ = 2πν(0)t2sd. Introducing dα(τ) = 1√
β

∑
ωn
e−iωnτ

dα(iωn) and d̄ = (d̄a, d̄b), we finally obtain the effective
action

Seff =
∑

ωn

d̄(iωn)M̌(iωn)d(iωn)

M̌(iωn) = (−iωn + εασz)Ǐdot − Σ̌iωn , (16)

where M̌(iωn) is described by a 4× 4 matrix, whose coef-
ficients are given by

M11 = iωn

(
1 +

Γ

2
√
Δ2 − (iωn)2

)
− Ea,

M22 = iωn

(
1 +

Γ

2
√
Δ2 − (iωn)2

)
+ Ea,

M33 = iωn

(
1 +

Γ

2
√
Δ2 − (iωn)2

)
− Eb,

M44 = iωn

(
1 +

Γ

2
√
Δ2 − (iωn)2

)
+ Eb,

M12 = − ΓΔ

4
√
Δ2 − (iωn)2

(1 + e−iϕa),

M13 =
Γ

4
e−R/ξ(iωn)

×
[

iωn√
Δ2 − (iωn)2

cos(kFR) + sin(kFR)

]
+ tdd,

M14 = M23 = −Γ
4
e−R/ξ(iωn)

[
Δ√

Δ2 − (iωn)2
cos(kFR)

]
,

M24 =
Γ

4
e−R/ξ(iωn)

×
[

iωn√
Δ2 − (iωn)2

cos(kFR) − sin(kFR)

]
− tdd,

M34 = − ΓΔ

4
√
Δ2 − (iωn)2

(1 + e−iϕb), (17)

M̌ being an hermitian matrix once iωn is replaced by the
real number z. Notice the normal and anomalous couplings
between dots, featured by the matrix elements Mij with
i = 1, 2 and j = 3, 4. The dispersion relation for the ABS
is given by the eigenvalues of the effective action, replacing
iωn by z.

After integrating out the {dα, d̄α} variables, the parti-
tion function is given by

Z =
∫

D [
dαd̄α

]
e−Seff(dα,d̄α) =

∏

iωn

det M̌(ωn). (18)

The free energy reads:

F = − 1
β

∑

ωn

ln(detM̌(iωn)). (19)

The Josephson current in Sa is expressed as:

IJa,b =
2e
�

∂F

∂ϕa,b
= − 2

β

∂

∂ϕa,b

∑

ωn

ln(detM̌(iωn)). (20)

One can further define an intrinsic inductance matrix L
such as the elements of the inverse inductance matrix Λ =
L−1 are given by:

Λaa =
∂IJa
∂ϕa

, Λbb =
∂IJb
∂ϕb

, Λab =
∂IJa
∂ϕb

, Λba =
∂IJb
∂ϕa

.

(21)
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M̌(iωn) =

⎛

⎜⎜⎝

iωn − Ea −Γ
4
(1 + e−iϕa) t t̄

−Γ
4
(1 + eiϕa) iωn + Ea t̄ −t

t t̄ iωn − Eb −Γ
4
(1 + e−iϕb)

t̄ −t −Γ
4
(1 + eiϕb) iωn + Eb

⎞

⎟⎟⎠ (23)

3 Analytical solution in the large gap limit

In most cases, the contribution to the Josephson current
of the continuum states (|ω| > Δ) is small, therefore one
can easily infer the current-phase characteristics from the
phase derivatives of the ABS energies. This becomes exact
in the so-called large gap limit. One can indeed obtain
an analytical solution in the limit |Ea,b|, Γ, tdd � Δ. This
amounts to drop in M̌ (Eq. (17)) the frequencies iωn in the
denominators

√
Δ2 − (iωn)2, the factor iωn in M̌13, M̌24

as well as the renormalization factor 1+ Γ
2Δ in the diagonal

elements. Defining

t =
Γ

4
e−R/ξ sin(kFR) + tdd, t̄ = −Γ

4
e−R/ξ cos(kFR),

(22)
one obtains:

see equation (23) above

and solving the secular equation Det(M̌) = 0 yields the
phase dispersion of the ABS cooperatively formed on the
two dots, En = ±√

z (n = 1, 2, 3, 4) with

z =
1
2
(
E2
a + E2

b

)
+ t2 + t̄2 +

Γ 2

8

(
cos2

ϕa
2

+ cos2
ϕb
2

)

±
{[

E2
a − E2

b +
Γ 2

8
(cosϕa − cosϕb)

]2

+ 2Γ 2t̄2

(
cos2

ϕa
2

+ cos2
ϕb
2

)

+ Γ 2

[
t2 sin2

(
ϕa − ϕb

2

)
− t̄2 sin2

(
ϕa + ϕb

2

)]

+ 8tt̄Γ
(
Ea cos2

ϕb
2

+ Eb cos2
ϕa
2

)

+ 4t2(Ea + Eb)2 + 4t̄2(Ea − Eb)2
} 1

2

. (24)

The parameter t reflects the interdot couplings in the nor-
mal channel, both through S0 and by direct tunneling (re-
spectively first and second terms in Eq. (22)), and the pa-
rameter t̄ represents the anomalous channel through S0.
The S0 channels have a dependence in R, both oscillating
at the Fermi wavevector and exponentially damped over
the coherence length ξ. Notice that even in the case where
R � ξ such that nonlocal effects (CAR and EC) are negli-
gible, the interdot coupling plays an essential role, making
the bijunction different from two junctions in series. This
situation may happen for instance with carbon nanotubes
when the central superconducting finger is wide enough

but weakly perturbs the nanotube. Let us now discuss the
main features of the ABS spectrum within the large gap
analytical solution, postponing the general discussion to
the next section.

3.1 The nonresonant regime

In the case of uncoupled junctions (S0Sa), (S0Sb), e.g. for
t = t̄ = 0, the ABS dispersion for each of the junctions is:

Ea(b),± = ±
√
E2
a(b) +

Γ 2

4
cos2

ϕa(b)

2
. (25)

In the nonresonant regime Γ � |Ea(b)| it yields a si-
nusöıdal current-phase relationship

Ea,b,± � ±
[
Ea(b) +

Γ 2

16|Ea(b)|
(1 + cosϕa,b)

]
. (26)

If Eb = ±Ea, the ABS in junctions a, b are degenerate.
Switching on the nonlocal couplings EC and CAR as well
as a possible direct interdot coupling tdd hybridizes the
two ABS doublets, yielding a set of four ABS (n = 1−4)
with E1,2 < 0 and E3 = −E1, E4 = −E2, coherently delo-
calized over the two dots. It is illustrative to perform a
perturbative expansion in Γ and the interdot couplings t,
t̄ of expression (24), which reduces at T = 0 to the fol-
lowing approximate expression for the total energy of the
bijunction (up to an irrelevant constant):

EBJ = − E0[cosϕa + cosϕb] − E′
0[cos 2ϕa + cos 2ϕb]

− EQ cos(ϕa + ϕb) − EPC cos(ϕa − ϕb).
(27)

The first term reflects the “local” tunnel terms of single
junctions a, b (E0 > 0). The second term is the next har-
monic, featuring two pairs passing through a, or through
b (E′

0 < 0). The third and the fourth terms respectively
describe quartet tunneling (from S0 towards Sa, Sb) and
pair cotunneling from Sa to Sb. The quartet term is a novel
contribution that does not appear in Josephson networks.
Expression (27) yields the inverse inductance Λab

Λab =
2e
�

[EQ cos(ϕa + ϕb) − EPC cos(ϕa − ϕb)]. (28)

On the lines ϕa = ±ϕb = ϕ in the (ϕa, ϕb) plane, Λab
oscillates with period π with one of the phases (say ϕb).
One obtains

EQ ≈ − Γ 2t̄2

64E4
0

, EPC ≈ Γ 2t2

64E4
0

(29)

(assuming Ea = Eb = E0). One sees that EPC is posi-
tive, just as an effective Josephson junction connecting Sa

http://www.epj.org
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and Sb, but on the contrary EQ is negative. This means
that in terms of quartet tunneling, which depends on the
phase combination ϕa + ϕb, the weakly transparent bi-
junction is a π junction, which here means that the lowest
energy is obtained for ϕa + ϕb = π.

This minus sign was discovered in reference [13] for
the biased bijunction, close to equilibrium, and it comes
from the antisymmetry of the Cooper pair wavefunction.
Indeed, the quartet mechanism consists in forming two
entangled singlet pairs in the dots a, b by a double CAR
process. The result of this process is the production of
two identical split pairs. Fermion exchange and recombi-
nation of these two split pairs into one pair in Sa and one
pair in Sb introduces a minus sign. These current compo-
nents can be probed by applying small voltages Va,b to
reservoirs Sa, Sb (V0 = 0) [9,13]. Then the phases become
time-dependent, ϕa = ϕ0a + 2e

�
Vat and ϕb = ϕ0b + 2e

�
Vbt.

In the adiabatic approximation, those time-dependent
phases are simply substituted into equation (27). With
Va = −Vb = V , one obtains the π-shifted d.c. quartet cur-
rent IQ = −IQ0 sin(ϕa0 +ϕb0), which is time-independent.
If one instead fixes Va = Vb = V , one obtains the coherent
pair transfer term IPC = IPC0 sin(ϕa0 − ϕb0), resembling
a standard d.c. Josephson term.

Notice that in a strongly nonresonant regime, t, t̄, Γ �
Ea,b, the ABS dispersion becomes independent on the rel-
ative signs of Ea and Eb. This means that, contrarily to
the hybrid splitter (NaDaS0DbNb), tuning the levels to
Ea = ±Eb does not help filtering any or the other of EC
and CAR processes. This is due to the Andreev reflection
which mixes electrons at energyE and holes at energy−E.

3.2 The resonant regime

Let us now turn to the resonant case, Ea = Eb = 0. Then
the ABS dispersion in each junction a(b) alone crosses zero
energy at ϕa(b) = π. The resulting four-fold degeneracy is
lifted by the interdot coupling, in a nonperturbative way.
Let us focus on the diagonal directions in the phase plane.
First, if ϕa = ϕb = ϕ, one finds (one defines t̃ =

√
t2 + t̄2)

E = ±
√

t̃2 +
(
Γ 2

4
± Γ t̄

)
cos2

ϕ

2
(30)

showing a structure similar to that of a single dot junction,
where t̃ plays the role of an effective level energy and with

an effective coupling Γ
√

1 ± 4t̄
Γ if 4t̄ < Γ which is satis-

fied from equation (17). In the case of no direct interdot
coupling, t̃ = Γ

4 e
−R/ξ0 does not depend on the geometri-

cal phase βR = kFR, contrarily to the couplings t and t̄
separately. Equation (30) can be interpreted in terms of
“molecular states” formed on the double dot, due to the
interdot couplings t and t̄ (direct and through CAR and
EC) with a degeneracy lifted by the local couplings to the
superconductors, represented by Γ (Fig. 2, left panels).
The scale of the splitting is given by t̃.

Π 2 Π

�0.2

0.2

t � 0.05, t
�
� 0, �a � �b

Π 2 Π

�0.2

0.2

t � 0.1, t
�
� 0, �a � ��b

Π 2 Π

�0.2

0.2

t � 0, t
�
� 0.05, �a � �b

Π 2 Π
�0.2

0.2

t � 0, t
�
� 0.1, �a � ��b

Π 2 Π

�0.2

0.2

t � 0.05, t
�
� 0.03, �a � �b

Π 2 Π
�0.2

0.2

t � 0.1, t
�
� 0.06, �a � ��b

Fig. 2. Andreev bound state dispersion E(ϕ) for the bijunction
in the resonant case Ea = Eb = 0, in the large gap approxi-
mation, showing the lifting of the degeneracy by the interdot
couplings, either at ϕ = π along the line ϕa = ϕb = ϕ, or at
ϕ �= π on the line ϕa = −ϕb = ϕ. Γ = 0.6Δ.

On the other hand, in the case ϕa = −ϕb = ϕ, one
obtains:

E = ±
√
t̃2 +

Γ 2

4
cos2

ϕ

2
± Γ

∣∣∣cos
ϕ

2

∣∣∣
(
t̄2 + t2 sin2 ϕ

2

)1/2

.

(31)
In the peculiar case t = 0, which can be achieved if tdd = 0
and βR = nπ, the dots are coupled only in the electron-
hole channel, and the solution presents two twofold degen-
erate crossing points E = 0, at ϕ = π±2 arcsin

(
2t̄
Γ

)
. Cou-

pling in the electron-electron channel by the parameter t
lifts this degeneracy, leaving a two-gap structure (Fig. 2,
right panels). This kind of degeneracy lifting is qualita-
tively different from that encountered along the other di-
agonal ϕa = ϕb, where the E = 0 crossing instead occurs
at (π, π). Indeed the scale of the phase splitting of the
crossing points is given by t̃/Γ . Yet the energy splitting
at those crossing points is of the order of 2 t

Γ t̃, thus these
minigaps are much smaller than the one formed at ϕ = π
in the case ϕa = ϕb. To complete this picture, a case close
to resonance is represented in Figure 3.

Several remarks must be made in the resonant regime.
First, it is no more possible to distinguish between quartet
and pair cotunneling processes. Just as in a single trans-
parent SNS junction couples two superconductors by a
strongly nonperturbative proximity effect in the N region,
the bijunction ensures a coupling between three supercon-
ductors by proximity effect in the double dot. Second, due
to lifting of the four-fold degeneracy, the sharp qualitative
change between the individual ABS and the full bijunction
structure holds at T = 0 for any, whatever weak, interdot
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Fig. 3. Same parameters as in Figure 2 but in a slightly non-
resonant case, Ea = −Eb = 0.1Δ.

coupling, including the case of a wide (R � ξ) central
superconductor.

4 General discussion

4.1 Current-phase relationships and the nonlocal
inductance

Let us now discuss the numerical results from equa-
tions (20) and (21), without the large gap approximation.
The current-phase relationships Ia(ϕa, ϕb), Ib(ϕa, ϕb) and
the inverse inductance matrix Λij can be exactly obtained,
both at zero and at finite temperature. Compared to un-
coupled junctions (SSa), (SSb), the cuts of the I(ϕa, ϕb)
along the directions ϕa = ϕb (resp. ϕa = −ϕb) are domi-
nated by the quartet (resp. pair cotunneling) contributions
and their harmonics.

The results depend on the values of the dot couplings
t, t̄, e.g. of the phase βR, when there is no direct coupling
tdd. For instance, fixing βR = π

7 , both CAR and EC pro-
cesses contribute. On the other hand, fixing βR = π

2 , EC
dominates, and fixing βR = π, CAR dominates.

In the nonresonant regime, Figure 4 shows the exact
result for the inverse nonlocal inductance, approaching the
− cos(2ϕ) regime for large dot energies. Comparing to the
perturbative expression equation (28), it is clear from this
figure that EPC > 0 but EQ < 0, generalizing the analyt-
ical large gap result of Section 3.

The resonant regime displays a strong anharmonicity.
Figure 5 shows Ia(ϕa = ϕ,ϕb = ϕ), Ia(ϕa = ϕ,ϕb = −ϕ)
and Λab(ϕa = ϕ,ϕb = ϕ), Λab(ϕa = ϕ,ϕb = −ϕ). The
effect of the interdot coupling is apparent in the Ia(ϕb)

Π 2 Π

�2

�1

�a � �b, E � 0.5
Π 2 Π

�2

�1

�a � ��b, E � 0.5

Π 2 Π
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�0.01

�a � �b, E � 1
Π 2 Π

�0.02

�0.01

�a � ��b, E � 1

Π 2 Π

�0.02

�0.01

�a � �b, E � 2
Π 2 Π

�0.02

�0.01

�a � ��b, E � 2

Fig. 4. Exact solution: nonlocal inverse inductance Λab(ϕb)
(×103) in the nonresonant regime, for Γ = Δ, T = 0.05Δ,
R = ξ, βR = π

7
and Ea = ±Eb = E.

plots for ϕb = ±ϕa. One takes as a reference the cur-
rent Ia0(ϕb) = ±Ia0(ϕa) in absence of interdot coupling
and nonlocal effects. For ϕa = ϕb the nonlocal processes
opening a gap at phase π (Fig. 2) smoothen the current
jump, and are dominated by a quartet π-component. For
ϕa = −ϕb the splitting of the crossing points give rise to a
double jump, showing the nonperturbative nature of CAR
and EC couplings.

Similarly, the inductance features shown in Figure 5
can be understood qualitatively from the “large gap” ABS
spectra calculated in Section 3 (Fig. 2). The negative peak
in Λab(ϕb) along the line ϕa = ϕb comes from the splitting
of the individual ABS by the interdot coupling (Fig. 2, left
panels). It has a modified Lorentzian shape, and at zero
temperature and for t̃ � Γ its width scales as t̃/Γ and
its height scales as Γ 2/t̃. On the other hand, along the
line ϕa = −ϕb, the two positive and very sharp symmet-
ric peaks originate from the splitting of the ABS crossing
along the phase axis (Fig. 2, right panels). The splitting
scales as t̃/Γ . The divergence of the nonlocal inductance
when the interdot coupling goes to zero is an effect of a
degeneracy lifting. It disappears at nonzero temperature,
which smoothens all the above structures when βt̃ < 1.
Once more, notice that the results for Ea = Eb and
Ea = −Eb are not very different. In particular, taking
Ea = Eb does not filter out the CAR processes, just as
taking Ea = −Eb does not filter out the EC processes.

4.2 Effect of the circuit inductance

In a circuit where the bijunction is closed by two adja-
cent loops (Fig. 6), the geometrical inductance matrix
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Fig. 5. Current Ia as a function of ϕb (left panels) and nonlocal
inverse inductance Λab = ∂IJa

∂ϕb
(right panels) in the resonant

dot case, for ϕb = ±ϕa, for strong (R = 0) and intermedi-
ate (R = ξ) interdot coupling through S0. The local resonant
current (with a sharp drop at π) is plotted as a reference.
Temperature is zero, Ea = Eb = 0 and the geometrical phase
is βR = π

7
. Notice the sharpening of the structures in Λab as

the interdot coupling weakens.

of the circuit should be taken into account, L0 =
L0aa, L0bb, L0ab = L0ba = M0. In particular, the mutual
inductance M0 couples the pair currents in junctions a
and b, and it could interfere with the detection of the
quartet and pair cotunneling processes.

Let us consider the double loop circuit pictured in Fig-
ure 6. The convention of currents flowing from the central
superconductor to the side ones amounts to change the
sign of ϕb and Ib, therefore the phase differences ϕa and
ϕb are related to the external fluxes Φea and Φeb in loops
(a, b) by (Φ0 = hc

2e ):

ϕa =
2π
Φ0

(Φea + L0aaIa −M0Ib),

ϕb = −2π
Φ0

(Φeb − L0bbIb +M0Ia). (32)

We define the full inverse nonlocal inductance as Λeij =
2e
�

∂Ii

∂Φej
, (i, j = a, b). Figure 7 compares this quantity to

the one due only to nonlocal couplings, and shows it for
several cases. With the self L0aa, L0bb and with nonlocal

a b

a b

Fig. 6. Scheme of a double dot bijunction inserted into a two-
loop and tri-terminal circuit.

Π 2 Π

�5

�b � �a, R � Ξ

Π 2 Π

�5

�b � ��a, R � Ξ

Π 2 Π
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�b � �a, R � Ξ

Π 2 Π
�2

4

�b � ��a, R � Ξ

Π 2 Π

�1.5

�0.5

�a � �b, R � 10 Ξ
Π 2 Π

�1.5

�0.5

�a � ��b, R � 10 Ξ

Π 2 Π

0.2

0.5

�b � �a, R � 2 Ξ

Π 2 Π

�0.4

0.4
�b � ��a, R � 2 Ξ

Fig. 7. Effect of self and mutual inductances on the nonlocal
inverse inductance (scale ×102) for Ea = Eb = 0, T = 0.02Δ.
Top line panels: reference curves with nonlocal couplings and
no inductance, plotting Λab(ϕb); second line panels: with non-
local couplings and self, L0aa = L0bb = 0.2, plotting Λeab(Φb);
third line panels: with self L0aa = L0bb = 0.2 and mutual
M0 = −0.1, without nonlocal couplings, plotting Λeab(Φb);
fourth line panels: with self L0aa = L0bb = 0.2 and mutual
M0 = −0.06, with nonlocal couplings, plotting Λeab(Φb).

coupling, the patterns Λeab(Φb) are qualitatively similar
to the patterns Λab(ϕb), but inverted owing to the phase
and flux sign convention. With the mutual inductance M0

in addition, but without nonlocal coupling, the pattern is
inverted compared to the previous one. This is due to the
fact that the mutual inductance is negative, e.g. it tends to
make the currents flowing in loops a, b cancel in the com-
mon branch, while the quartet process favours the same
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Fig. 8. (a) Scheme of a bijunction made of three supercon-
ductors coupling S0 to Sa and to Sb through normal regions
Na, Nb. Coupling between Sa and Sb is mediated by nonlocal
processes through S0. (b) Bijunction with S0, Sa, Sb all mutu-
ally coupled through a normal region N . (c) Pictorial circuit
element scheme for a bijunction.

sign for the currents. Finally, with both nonlocal coupling
and mutual inductance, the former is distincly visible,
with a dip in the left panel. The marked difference between
the two lowest panels of Figure 7 shows that for a realistic
circuit the nonlocal processes can be distinguished from
the geometric inductances. An alternative to filter out the
purely geometric effects is to modulate one or the other
of the couplings and operate a synchronous detection.

5 Conclusion

We have calculated the (two current)-(two phase) charac-
teristics of a double dot bijunction, unveiling the anhar-
monicities occurring in the resonant and degenerate dot
level case. The approximate and exact calculations pre-
sented in this work enlighten the nature of the proximity
effect induced by three superconductors on a double dot
forming a Josephson bijunction. We have emphasized the
role of the interdot coupling even when the central super-
conductor is too wide to mediate nonlocal effects. Even a
weak coupling between the two junctions, mediated by the
central superconductor or by direct interdot tunneling, has
strong effects, inducing a measurable nonlocal inductance
of purely microscopic origin. In case of a two-loop circuit,
it has the opposite sign compared to a geometrical mutual
inductance. Alternatively, the current-phase structure can
be directly investigated through recently introduced spec-
troscopy techniques. The Andreev bound state structure
is also a necessary basis for understanding the more com-
plicated nonequilibrium behaviour, as investigated in ref-
erence [13]. One has to keep in mind nevertheless that
the usual adiabatic approximation fails unless the volt-
ages are small enough, and at any voltage in the resonant
regime. The phenomenology revealed in a double dot bi-
junction can be generalized to bijunctions formed with
normal metal regions, that can be disconnected (Fig. 8a)
or connected (Fig. 8b).
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