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Nonlocal interference and Hong-Ou-Mandel collisions of single Bogoliubov quasiparticles
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We consider a device which allows one to create and probe single Majorana fermions, in the form of
Bogoliubov quasiparticles. It is composed of two counterpropagating edge channels, each put in proximity
with a superconducting region where Andreev reflection operates, and which thus converts electrons into
Bogoliubov quasiparticles. The edge channels then meet at a quantum point contact where collisions can be
achieved. A voltage-biased version of the setup was studied [C. W. J. Beenakker, Phys. Rev. Lett. 112, 070604
(2014)] and showed nonlocal interference phenomena and signatures of Bogoliubov quasiparticle collisions in
the high-frequency noise characteristics at the output, constituting an evidence of the Majorana fermion nature of
these excitations. Here, voltage-biased leads are replaced by single-electron sources in order to achieve collisions
of single Bogoliubov quasiparticles, with the major advantage that zero-frequency noise measurements are
sufficient to access the intimate nature of Bogoliubov wave packets. We compute the injection parameters of
the source, and go on to investigate the Hanbury-Brown and Twiss and Hong-Ou-Mandel signal at the output,
as a function of the mixing angle which controls the electron/hole component of the Bogoliubov wave packet.
In particular, information on the internal structure of the Bogoliubov quasiparticle can be recovered when such
a quasiparticle collides with a pure electron. Experimental feasibility with singlet or triplet superconductors is
discussed.
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I. INTRODUCTION

Electron quantum optics [1] offers the unique possibility
to apply longstanding concepts and ideas developed in the
framework of quantum optics to individual electronic wave
packets propagating in condensed-matter systems. Semi-
nal experiments such as the Hanbury-Brown-Twiss (HBT)
[2] and the Hong-Ou-Mandel (HOM) [3] interferometers
have been performed with periodic trains of electrons and
holes produced by means of single-electron sources based
on driven mesoscopic capacitors [4] or properly designed
Lorentzian voltage pulses [5]. These excitations interfere at
the electronic equivalent of a half-silvered mirror—a quantum
point contact (QPC)—and the outgoing current and noise
signals are measured [6,7]. The obvious differences between
electrons and photons related to the Pauli principle [8], the
presence of the Fermi sea [9], and the mutual interaction
between the electrons [10,11] have to be properly taken
into account in order to correctly interpret the experimental
observations.

Until now, experiments have been carried out in two-
dimensional electron gas either in the absence of magnetic
field [5] or by exploiting the ballistic propagation and
chirality of integer quantum Hall edge channels [1,9,10].
Proposals for electron quantum optics experiments have been
presented to also extend these ideas to other topological
states of matter such as two-dimensional topological insulators
[12–14], where new interesting features appear as a conse-
quence of helicity and spin-momentum locking [14]. While
experimental/theoretical efforts promise future realizations of
such quantum optics scenarios in these newly discovered states
of matter, more “conventional” condensed-matter systems
involving superconducting (SC) elements ought to be revisited
in view of electron quantum optics applications. This is the
goal of the present work.

Indeed, in a seminal work [15], a setup in the integer
quantum Hall regime was proposed, where continuous flows
of electrons are injected in the proximity of SC contacts of
finite length before reaching a QPC. Andreev reflection [16] by
the contacts converts electrons into Bogoliubov quasiparticles,
namely, coherent superpositions of electrons and holes with
opposite or equal spin depending on the singlet or triplet nature
of the SC coupling [15,17]. The outgoing cross-correlated
current fluctuations are measured at finite frequency and
show a remarkable nonlocal dependence on the difference in
the superconducting phases between two SC contacts as a
consequence of the collision of Bogoliubov quasiparticles. As
argued in Refs. [15,18], the fact that Bogoliubov quasiparticle
creation operators are related by a unitary transformation to
their annihilation counterpart justifies their qualification as
Majorana fermions. This constitutes an interesting alternative
proposal for Majorana fermion [19] detection compared to
those put forward in topological superconductor devices,
which are mainly focused on the investigation of Majorana
zero-energy modes [20,21]. In Ref. [15], the annihilation
property of Bogoliubov quasiparticle beams at a QPC showed
a periodic dependence on the phase difference between the
two superconductors: a clear manifestation of a nonlocal
interference effect.

Yet this work focused on electron “beams” in the vicinity of
SC, and therefore failed to address the single shot creation and
collision of two Bogoliubov quasiparticles. In this paper, we
investigate an analogous setup where voltage electrodes are
replaced by single-electron sources (see Fig. 1). This allows
us to analyze the properties of Bogoliubov excitations at the
single-quasiparticle level, shedding light on various aspects
which are not explicitly discussed in Ref. [15].

One of the experimental challenges implied by the diagno-
sis of Ref. [15] is the fact that collisions between Majorana
fermions need to be detected through high-frequency noise

1098-0121/2015/91(7)/075406(10) 075406-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.070604
http://dx.doi.org/10.1103/PhysRevLett.112.070604
http://dx.doi.org/10.1103/PhysRevLett.112.070604
http://dx.doi.org/10.1103/PhysRevLett.112.070604
http://dx.doi.org/10.1103/PhysRevB.91.075406


D. FERRARO, J. RECH, T. JONCKHEERE, AND T. MARTIN PHYSICAL REVIEW B 91, 075406 (2015)

SES

SC

W

FIG. 1. (Color online) Schematic view of a single-electron
source (SES) injecting electron and hole wave packets into a quantum
Hall edge state at filling factor ν = 2 coupled with a SC contact of
length W .

measurements, which currently require a greater experimental
effort to be carried out [22]. Unfortunately, the measurement
of the high-frequency noise characteristics of a normal-
metal–superconductor junction as needed here, and which
was computed more than a decade ago in Ref. [23], has
so far eluded experimental realization. On the contrary,
with single-particle/quasiparticle injection, the requirement
for measuring high-frequency noise is lifted: zero-frequency
noise measurements are sufficient to probe physically relevant
effects, and they have already been successfully implemented
with single-electron sources recently [6].

Our first aim is to provide information about the nature of
the excitations reaching the QPC. We will first characterize
the injection process in terms of current and noise, focusing
on the role played by the nonconservation of the charge and
the conservation of the excitation number, which identify the
SC. We then move to interferometric configurations with a
QPC. In the HBT case, only one of the sources of Bogoliubov
excitations is “on” and measurements return the partition noise
associated with the injected quasiparticles, while in the HOM
case both sources are “on” and measurements can access
the intimate structure of these peculiar quasiparticles. This is
particularly evident when one of the sources injects a reference
state, namely, an electron, while the other emits a more general
Bogoliubov excitation. In this case, the setup can be used
to carry out a true spectroscopy of the unknown incoming
state, with the sign of the outgoing noise depending on the
relative weight of the electron and hole component of the
superposition. Quite remarkable in this context is the case
of a zero charge Bogoliubov excitation. Here the outgoing
current as well as the HBT noise contribution are zero, but
the HOM noise is maximal as a consequence of the nontrivial
structure of the quasiparticle. Finally, it is worth noticing that
the considered setup shows no dependence on the SC phase at
the level of the averaged current (first-order coherence), while
oscillations dependent on the SC phase difference appear in
the noise (second-order coherence).

The paper is divided as follows. In Sec. II, we recover the
results of Ref. [15] about the action, in terms of a transfer
matrix, of a SC contact on an incoming electronic wave packet
originating from an integer quantum Hall system at filling
factor ν = 2, where spin-singlet SC coupling is expected.
Section III discusses the current and the excitation density
outgoing from the SC contact, with particular attention to
the role played by the nonconservation of the charge and
the conservation of the excitation number associated with the

Bogoliubov-De Gennes Hamiltonian describing the system.
The fluctuations of the current outgoing from the contact
are also investigated in comparison with the results obtained
for the conventional single-electron source. In Sec. IV, we
investigate the cross-correlation noise outgoing from the QPC,
described in terms of a scattering matrix. In particular, we con-
sider the HBT contribution (Sec. IV A) where only one source
is on. Next, we deal with the HOM noise (Sec. IV B) obtained
when the two sources are on. The limitations occurring in
extending the same analysis for an integer quantum Hall state
at ν = 1 with triplet SC coupling are discussed in Sec. V. The
Appendix contains analytical evaluations of the most relevant
quantities.

II. MODEL

Let us start by discussing the case of two quantum Hall
edge channels unresolved in spin, namely, the boundary of
a Hall bar at filling factor ν = 2, in which we neglect the
Zeeman splitting and the interchannel interaction [24]. These
edge states are coupled to a single-electron source (SES) and
to a SC contact of length W (see Fig. 1). The SES injects into
the channels an electron (hole) with well-defined wave packets
which can have an exponential [4] or Lorentzian [5] profile in
time, depending on the considered experimental setup. In the
following, we attempt to remain as general as possible in order
to derive expressions which are valid for all of the physically
relevant cases. As shown in Ref. [15], a spin-singlet coupling
between the Hall channel and the SC contact can be realized
in graphene and is favored by the small spin-orbit coupling
associated with this material [25,26].

The action of the SC on incoming electrons with energy
below the induced SC gap � can be described in terms of
an energy-dependent 4 × 4 transfer matrix M, constrained by
unitarity and particle-hole symmetry [15,17],

M(ξ ) = (τx ⊗ I )M∗(−ξ ) (τx ⊗ I ) . (1)

In the above expression, I is the identity in spin space, while
from now on we indicate with τi (i = x,y,z) the Pauli matrices
acting on the electron-hole space and with σi (i = x,y,z) the
ones related to the spin degree of freedom. According to this,
the transfer matrix M is applied to a four-component spinor
state [15],

c(ξ ) =

⎛
⎜⎝

ce,↑(ξ )
ce,↓(ξ )
ch,↑(ξ )
ch,↓(ξ )

⎞
⎟⎠ , (2)

where e (h) indicates the electron (hole) state and ↑ (↓)
indicates the up (down) spin direction. The particle-hole
symmetry in Eq. (1) leads to the constraint [21]

c(ξ ) = τx ⊗ I [c†(−ξ )]T . (3)

The explicit form of this transfer matrix can be deduced starting
from the Bogoliubov-De Gennes equation (see Refs. [15,17]
for the details of the derivation) and reads

M(ξ ) = eiξδeiγ τzU(α,φ,β)eiγ ′τz = eiξδM̃. (4)

This explicitly takes into account the effects of Andreev
reflection induced by the SC contacts. In the above expression,
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ξ is the energy of the incoming excitation, δ = W/v is the
time required for the excitation to cross the SC region (v is the
velocity of propagation along the quantum Hall edge channel),
α ≈ W/ls (ls = �v/� is the proximity-induced coherence
length), and β ≈ W/lm [lm = (�/eB)

1
2 is the magnetic length

of the Hall system, with B the applied perpendicular magnetic
field]. By comparing the expression for the upper critical
magnetic field in a type-II SC in terms of the coherence
length Bc = �0/(2πl2

s ) and the definition of magnetic length
B = �0/(2πl2

m) (where �0 is the elementary flux quantum),
one finds that in order not to destroy the SC, the condition
ls � lm and, consequently, α 	 β are required in this case.
The parameters γ,γ ′ take into account the relative phase shifts
of electrons and holes in the presence of the magnetic field
[15,17,27] and, with φ, we indicate the order-parameter phase
of the SC state.

The unitary matrix U which appears in Eq. (4) is given by
[15]

U(α,φ,β) = exp [iασy ⊗ (τx cos φ + τy sin φ) + iβτz]. (5)

In order to further simplify the expression for M, it is possible
to eliminate the τz term from U using the Baker-Hausdorff
relation. We then obtain

M(ξ ) = eiξδei�τzU(θ̃ ,φ,0)ei�′τz , (6)

where we introduced the angle θ̃ such that

sin θ̃ = α

θ
sin θ, (7)

cos θ̃ =
√

cos2 θ + β2

θ2
sin2 θ, (8)

with θ =
√

α2 + β2. The resulting phase shifts are given by

� = γ + �, (9)

�′ = γ ′ + �, (10)

with � = arctan( β

θ
tan θ ).

The unitary matrix U can then be rewritten in the simpler
form

U(θ̃ ,φ,0)

=

⎛
⎜⎜⎜⎜⎝

cos θ̃ 0 0 e−iφ sin θ̃

0 cos θ̃ −e−iφ sin θ̃ 0

0 eiφ sin θ̃ cos θ̃ 0

−eiφ sin θ̃ 0 0 cos θ̃

⎞
⎟⎟⎟⎟⎠ ,

(11)

in terms of the variable θ̃ .
We consider now a SES injecting a spin-up electron into

the SC region [4,28],

|ϕ〉 =
∫ +∞

−∞
dτϕe(τ )�†

↑(τ )|F 〉

= 1√
2π

∫ +∞

−∞
dξϕ̃e(ξ )c†e,↑(ξ )|F 〉, (12)

with ϕe(τ ) [ϕ̃e(ξ )] a normalized wave packet in the time
(energy) domain well localized above the Fermi sea |F 〉. The

chemical potential of the Fermi sea will be considered as
the reference for measuring the energy and we assume the
zero-temperature limit where the Fermi distribution is given
by fe(ξ ) = fh(ξ ) = �(−ξ ). Analogous expressions can be
considered for the other possible incoming states (spin-down
electrons, spin-up and spin-down holes).

Because of the action of the transfer matrix, the correspond-
ing state outgoing from the SC is a Bogoliubov quasiparticle
given by the coherent superposition of one electron and one
hole with opposite spin outgoing from the SC region,

|B〉 = We|e,↑〉 + Wh|h,↓〉
= cos θ̃ |e,↑〉 + sin θ̃e−i�|h,↓〉, (13)

with � = 2� − φ and |e,↑〉, |h,↓〉 a short notation for the
electron and hole outgoing states, respectively.

III. CURRENT AND PARTICLE DENSITY

We consider the expressions for the averaged total current
and particle density outgoing from the considered device. In
the following, we report only the results, with the detailed
derivation being developed in the Appendix. These quantities
are given by the sum of spin-up and spin-down contributions,

〈ϕ|I (t)|ϕ〉 = −ev〈ϕ| : �†(t)τz�(t) : |ϕ〉, (14)

〈ϕ|ρ(t)|ϕ〉 = v〈ϕ| : �†(t)�(t) : |ϕ〉, (15)

where the notation : · : corresponds to the usual normal
ordering with respect to the Fermi sea and where −e (e > 0)
is the electron charge. Note that in the above expressions, the
definition

�(t) = 1√
4π

∫ +∞

−∞
dξe−iξ tM(ξ )c(ξ ) (16)

for the field operator outgoing from the superconducting
region is required to avoid double counting associated with
the particle-hole symmetry [15].

Applying Wick’s theorem and considering well-localized
wave packets in the positive-energy domain, the current
reduces to

〈ϕ|I (t)|ϕ〉 = −eTr(PsM̃†τzM̃Ps)ϕ(t − δ)ϕ∗(t − δ)

= −e cos(2θ̃ )ϕ(t − δ)ϕ∗(t − δ), (17)

where we introduced the projector

Ps =
(

1 + τz

2

)
⊗

(
1 + σz

2

)
(18)

in order to properly take into account the injection of an
individual spin-up electron.

The physical meaning of this result clearly emerges
by recalling Eq. (13). The outgoing electronic current of
Eq. (17) differs from the incoming one [7,29], 〈ϕ|Iin(t)|ϕ〉 ≡
−eϕ(t)ϕ∗(t), by a time delay δ and by a factor cos(2θ̃ ), which
takes into account the effect of the SC region when converting
electrons into holes through Andreev reflections. This factor
is simply given by the difference between the probability
Pe = |We|2 = cos2 θ̃ for the incoming electron to emerge as
an electron and Ph = |Wh|2 = sin2 θ̃ to be converted into a
hole. For θ̃ = 0 (Pe = 1 and Ph = 0), the SC contact only
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induces a delay, while for θ̃ = π/2 (Pe = 0 and Ph = 1),
the incoming electron is completely converted into a hole
and a Cooper pair enters into the SC. More importantly, for
θ̃ = π/4 (Pe = Ph = 1/2), the electron and hole contributions
compensate and no averaged current flows out of the device.
As will be clear in the following, this zero-averaged current
still shows fluctuations which can be detected via noise
measurements.

According to the above discussion, the charge outgoing
from the SC contact,

Q =
∫ +∞

−∞
dt〈ϕ|I (t)|ϕ〉 = −e cos(2θ̃), (19)

is not conserved as a consequence of the creation/destruction of
Cooper pairs in the SC. Conversely, according to the unitarity
of the scattering matrix, the outgoing excitation density is
given by

〈ϕ|ρ(t)|ϕ〉 = ϕ(t − δ)ϕ∗(t − δ) = 〈ϕ|ρin(t − δ)|ϕ〉, (20)

which implies a mere time delay δ with respect to the incoming
one. In this case, the prefactor is given by Pe + Ph = 1 as a
consequence of the fact that the incoming electron can only
emerge from the device as an electron or as a hole and cannot
be absorbed by the SC. This illustrates the conservation of the
number of injected excitations,

N =
∫ +∞

−∞
dt〈ϕ|ρ(t)|ϕ〉 =

∫ +∞

−∞
dt〈ϕ|ρin(t − δ)|ϕ〉 = 1,

(21)

as expected. Note that both the nonconservation of the charge
and the conservation of the excitation number are encoded in
the Bogoliubov-De Gennes Hamiltonian, which is at the origin
of the transfer matrix of Eq. (4) (see Ref. [17]).

Proceeding along the same way, we consider the current
fluctuations at the output of the SC contact. In the zero-
frequency limit, they are given by [30]

Ssource =
∫ +∞

−∞
dtdt ′[〈ϕ|I (t)I (t ′)|ϕ〉c]

= e2{1 − [Tr(PsM̃†τzM̃Ps)]
2} (22)

= e2 sin2(2θ̃ ), (23)

where 〈ϕ|AB|ϕ〉c = 〈ϕ|AB|ϕ〉 − 〈ϕ|A|ϕ〉〈ϕ|B|ϕ〉 is the con-
nected two-point correlator of generic operators A and B.

It is worth noticing that the above quantity is proportional to
the product Pe × Ph. Therefore, it is zero in the absence of a SC
contact (θ̃ = 0), as expected [1,6], and also for θ̃ = π/2 when
the incoming electron is completely converted into a hole.
Even more interesting is the fact that it reaches its maximum
for θ̃ = π/4, when the outgoing averaged current is zero due
to the action of the SC contact.

IV. CROSS-CORRELATED NOISE IN A QPC GEOMETRY

Once the device is characterized as an emitter of individual
Bogoliubov quasiparticles, we need to investigate the outgoing
cross-correlated noise in a QPC geometry where one or two
SES (SES1 and SES2) inject electronic wave packets with
spin up in the vicinity of one or two SC regions (see Fig. 2).

Σ

SES1

SES

SC1

SC

c1 M1c1

c2M2c2

a1

a2

I1(t)

I2(t)

FIG. 2. (Color online) QPC geometry for Bogoliubov quasipar-
ticles. Two SES (SES1 and SES2) inject electrons, described by
the operators cj (j = 1,2), into two SC contacts (SC1 and SC2).
The outgoing excitations, described by Mj cj , reach the QPC and
are partitioned according to the scattering matrix �. The outgoing
currents Ij (t) (written in terms of the operators aj ) are then recollected
in order to access the cross-correlated noise.

The annihilation spinors outgoing from the QPC are related
to the ones emitted by the two SES through the equations

a1 = √
1 − RM1c1 −

√
RM2c2, (24)

a2 =
√

RM1c1 + √
1 − RM2c2, (25)

where the energy dependence has been omitted for notational
convenience.

The zero-frequency cross-correlated noise outgoing from
the QPC is given, in the wave-packet approximation, by

S =
∫ +∞

−∞
dtdt ′〈ϕ|I1(t)I2(t ′)|ϕ〉c. (26)

By properly taking into account the particle-hole symmetry in
Eq. (1), it is possible to recast the above expression in the form

S = e2v2
∫ +∞

0
dξdρ〈ϕ|a†

1(ξ )τza1(ξ )a†
2(ρ)τza2(ρ)|ϕ〉c, (27)

where the integrals run over positive energies only. This
will lead to important simplification in the following when
discussing the HBT and the HOM interferometers in detail.

A. Hanbury-Brown-Twiss contribution

When only one of the two SES (indicated for sake of
generality with j ) is “on,” we obtain the HBT contribution
to the noise. Here, in the zero-temperature limit, the injected
excitations crossing the SC contact are converted into Bogoli-
ubov quasiparticles, which reach the QPC and get partitioned
[9]. The expression for this contribution to the noise is

SHBT
j = −e2R(1 − R)[Tr(PsM̃†

j τzM̃jPs)]
2 (28)

= −e2R(1 − R) cos2(2θ̃j ). (29)

This represents the shot noise associated with a wave-packet
carrying charge Q [see Eq. (19)] and is therefore proportional
toQ2. In the absence of SC (θ̃ = 0), the transfer matrix reduces
to the identity [Mj (ξ ) = I ⊗ I ] and the above expression
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becomes

SHBT = −e2R(1 − R), (30)

as expected [1,29]. Note that for θ̃j = π/4, the state which
reaches the QPC, given by a balanced coherent superposition
of electrons and holes, generates no noise at all because it
can be seen as an individual excitation bearing zero charge.
For θ̃j = π/2, the electron is completely converted into a hole
when put in contact with the superconductor, and we again
recover the result of Eq. (30).

B. Hong-Ou-Mandel contribution

If both the SES are on, we obtain the HOM noise signal
[1,8,10],

SHOM = �SHOM + SHBT
1 + SHBT

2 , (31)

with

�SHOM/S0 = 2A(δ1 − δ2 − η)Tr[PsM̃†
1τzM̃2Ps]

× Tr[PsM̃†
2τzM̃1Ps]

= A(δ1 − δ2 − η)[1 + cos(2θ̃1) cos(2θ̃2)

− cos(�12) sin(2θ̃1) sin(2θ̃2)] (32)

being S0 = e2R(1 − R). This constitutes a central analytical
result of this work, as it addresses the HOM collision of two
arbitrary Bogoliubov quasiparticles. In the above expression,
η is the time delay in the emission between the two SES,
A(τ ) = |A(τ )|2, where

A(τ ) =
∫ +∞

−∞
dtϕ∗(t − τ )ϕ(t) (33)

is the overlap between identical wave packets emitted with a
delay τ , and

�jk = 2�j − 2�k − φj + φk (34)

is a phase which is reminiscent of the one appearing in Eq. (13).
When the two SC regions only differ in their order-

parameter phase and the two SES are properly synchronized
(η = 0), one obtains

SHOM
2SC = e2R(1 − R) sin2(2θ̃ ) [1 − cos(φ1 − φ2)] , (35)

which clearly shows a nonlocal dependence on the difference
of the SC order-parameter phases, as already pointed out in
Ref. [15], for the fixed bias case where a continuous current
flows. By comparing with Eq. (17), we observe that the
presented device shows no dependence on the SC phase at
the level of the averaged current (first-order coherence), but
presents an oscillatory modulation in the noise (second-order
coherence). This purely second-order correlation effect is in
analogy to what is observed in interferometric geometries
discussed in the framework of the quantum Hall effect such as
the Samuelsson-Sukhorukov-Büttiker interferometer [31,32]
or the revisitation of the Franson interferometer [33] proposed
by Splettstoesser et al. [34].

It is easy to note that once the SC phase difference in
Eq. (35) is different from zero (mod 2π ), the noise vanishes
only when two electrons or two holes reach the QPC at the
same time (θ̃ = 0 and θ̃ = π/2, respectively) as a consequence

of the Pauli principle [8]. Remarkably enough, the noise
reaches its maximum for θ̃ = π/4. This can be explained
in terms of electron/electron and hole/hole interferences
occurring at the QPC. In order to better understand this fact,
it is useful to take a closer look at the structure of the �SHOM

terms in Eq. (32). By considering two Bogoliubov excitations
of the form in Eq. (13) simultaneously reaching the QPC, it is
easy to note that this contribution to the noise is proportional
to ∣∣W1

eW2
e

∗ − W1
hW2

h

∗∣∣2

= | cos θ̃1 cos θ̃2 − sin θ̃1 sin θ̃2e
−i(�1−�2)|2. (36)

It corresponds to the difference between the product of electron
and hole probability amplitudes. In particular, for θ̃1 = θ̃2 =
π/4, the Bogoliubov quasiparticles carry zero charge and
zero shot noise, but are not, by far, trivial excitations with
a complex structure given by the coherent superposition of
electrons and holes which can be detected only at the level of
the two-quasiparticle interferometry. The peculiar structure
of the HOM noise contribution for two synchronized
Bogoliubov excitations directly reflects into the divergences
associated with the ratio

R2SC = SHOM
2SC

SHBT
1 + SHBT

2

= −1

2
tan2(2θ̃ ) [1 − cos(φ1 − φ2)] .

(37)

We can also achieve collisions between electrons and Bogoli-
ubov quasiparticles. Indeed, when one of the two SC regions
(SES2 in order to fix the notation) is removed, its transfer
matrix reduces to M2(ξ ) = I ⊗ I and an injected electron
propagates undisturbed along the edge channel until it reaches
the QPC. Starting from Eq. (32), one has

SHOM
1SC = e2R(1− R){[1+ cos(2θ̃ )]A(δ1− η) − cos2(2θ̃ ) −1}.

(38)

Here, when the delay is tuned in such a way to have a maximum
wave-packet overlap (δ1 = η and, consequently, A = 1), we
can have the reference electron interfering with (a) another
electron (θ̃ = 0) leading to a zero noise (consequence of the
Pauli principle), (b) with a hole (θ̃ = π/2) with a consequent
minimum of the noise [8], and (c) a more general Bogoliubov
quasiparticle. In the latter case, the cross-correlated noise
assumes positive values when the electron component of the
Bogoliubov excitation dominates over the hole one (Pe >

Ph and, consequently, for 0 < θ̃ < π/4). By decreasing the
wave-packet overlap, the �SHOM contribution to the noise is
progressively suppressed. However, even away from perfect
synchronization, it is possible to observe positive and negative
regions from which we can deduce the dominant contribution
to the Bogoliubov quasiparticle. The situation in the case of a
wave-packet exponential in time [4,29], where

A(τ ) = e−�|τ |, (39)

with �−1 the escape time of the wave packet [35], is illustrated
by the density plot in the upper panel of Fig. 3.

This represents an extremely useful tool in order to extract
information about the structure of the Bogoliubov excitations
through interferometric experiments with a known source
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FIG. 3. (Color online) Upper panel: Density plot of SHOM
1SC in

units of S0 = e2R(1 − R). Different shades of blue identify negative
regions where the hole contribution dominates over the electron one,
while the small red area represents the positive noise. Lower panel:
Density plot of R1SC as a function of δ1 − η and θ̃ . The blue area
corresponds to negative values of the ratio, which cannot be reached
in the standard electronic quantum optics experiments involving only
electrons and holes at zero temperature.

(electronic wave packet). These observations indicate that the
considered setup offers richer possibilities to implement a
tomographic protocol by means of HOM interferometry with
respect to what was proposed in the electronic case [36].

Another relevant quantity to explore is given by the ratio

R1SC = SHOM
1SC

/(
SHBT

1 + SHBT
2

)
= 1 − 1 + cos(2θ̃ )

1 + cos2(2θ̃ )
A(δ1 − η). (40)

This also contains negative regions (blue areas in the lower
panel of Fig. 3) which are forbidden in the standard electron
quantum optics case (θ̃ = 0) [8] due to the constraints imposed
by the charge conservation.

V. CONSIDERATIONS ABOUT POSSIBLE
SPIN-TRIPLET PAIRING

As recently discussed in Ref. [17], an ordinary spin-
singlet SC coupling, together with a strong Rashba spin-orbit
interaction in a single quantum Hall edge channel, can lead
to an effective spin-triplet coupling and to a consequently
small, but not negligible, effect of Andreev reflections at the
interface between the edge state and the SC region. This effect
is predicted to be present in heterostructures consisting of

SES

SC

W

FIG. 4. (Color online) Schematic view of a SES injecting elec-
tron and hole wave packets into a quantum Hall edge state at filling
factor ν = 1 coupled with a SC contact of length W .

InAs and InSb, where the measurement of magnetoresistance
for systems in the Hall regime and in the presence of SC has
been recently carried out [37,38]. In order to compare this case
with the previous one, we will consider a fully polarized chiral
quantum Hall edge channel (at filling factor ν = 1) coupled
to a SC contact (see Fig. 4). Under these conditions, the spin
degree of freedom can be neglected.

The action of the SC in this case can be described in terms of
a 2 × 2 transfer matrix [15,17], constrained again by unitarity
and particle-hole symmetry [39],

M(ξ ) = τxM∗(−ξ )τx. (41)

It naturally acts on the two-component spinor state

c(ξ ) =
(

ce(ξ )
ch(ξ )

)
, (42)

which, according to Eq. (41), satisfies [21]

c(ξ ) = τx[c†(−ξ )]T . (43)

The transfer matrix can be written formally as in Eq. (4), with

U(α,φ,β) =
(

cos θ + i
β

θ
sin θ i α

θ
e−iφ sin θ

i α
θ
eiφ sin θ cos θ − i

β

θ
sin θ

)
, (44)

which is rewritten in terms of the θ̃ angle,

U(θ̃ ,φ,0) =
(

cos θ̃ ei� ie−iφ sin θ̃

ieiφ sin θ̃ cos θ̃ e−i�

)
. (45)

Nevertheless, the microscopic derivation of the parameters
starting from the Bogoliubov-De Gennes equation is different
[17]. In order to better understand the analogies and differences
with respect to the spin-singlet case, it is useful to consider
two parameters, namely, the velocity of propagation along the
quantum Hall edge channel,

v ≈ ωclm, (46)

where ωc is the cyclotron frequency, and

v� ≈ v
d

lso
, (47)

with d the length characterizing the variations of the electro-
static potential at the interface between the SC and the Hall
channel, and

lso = �
2

ma
(48)

is the Rashba length (m is the effective mass of the electrons, a
is the Rashba spin-orbit coefficient). Typically, in experiments,

075406-6



NONLOCAL INTERFERENCE AND HONG-OU-MANDEL . . . PHYSICAL REVIEW B 91, 075406 (2015)

one has v 	 v�. According to Ref. [17], the time required to
cross the SC region is given by

δ = W
v

v2 − v2
�

≈ W

v
, (49)

in analogy to what is observed for the spin-singlet pairing case.
The same holds also for the parameter

β ≈ W

lm
. (50)

The important difference concerns the parameter α, which is
energy dependent and is given by

α(ξ ) = ξW
v�

v2 − v2
�

≈ ξW
v�

v2
≈ W

ξ

v

d

lso
. (51)

The above relation clearly shows that α(ξ ) = −α(−ξ ). This
requires some additional comments about the nature of the
experimentally realizable electronic wave packet. On one
hand, the so-called levitons, i.e., electronic wave packets
obtained by applying a properly quantized Lorentzian voltage
in time [5,40], are intrinsically emitted near the Fermi level
[29,41] (close to zero energy), where α ≈ 0 and therefore the
SC device has no effect. On the other hand, the SES described
in Ref. [4] emits, in the optimal regime, a wave packet with a
well-defined energy (frequency) ω0 above the Fermi sea. Here,
we can safely approximate α as a constant given by α(ω0). In
this case, one finds that

β

α(ω0)
≈ ωc

ω0

lso

d
	 1, (52)

where �ω0 is constrained by the induced SC gap � (few
Kelvin) and �ωc is the energy gap of the Hall fluid (around ten
Kelvin in the integer regime).

We are, therefore, in the opposite regime with respect to
what we discussed for the spin-singlet case. Although in the
present case we can introduce a projector,

Pt =
(

1 + τz

2

)
, (53)

which represents the injection of a purely electronic wave
packet in order to obtain exactly the same formulas as before
for all of the transport properties (current, noise, HBT, and
HOM correlators), one realizes that the condition in Eq. (52)
associated with the definition in Eq. (7) forces

sin θ̃ � 1, (54)

leading only to small SC corrections to the physics of the SES.
This suggests that the spin-triplet coupling is not optimal

in order to realize interferometric experiments involving
individual Bogoliubov quasiparticles.

VI. CONCLUSIONS

This paper was devoted to the study of HBT and HOM
interferometry of single Bogoliubov quasiparticles, which
are potential candidates for Majorana fermions. We started
with the description of the single-quasiparticle source. The
setup is composed of a quantum Hall edge channel coupled
with a SES and a SC contact. This device behaves as an
emitter of individual Bogoliubov excitations, namely, coherent

superpositions of electrons and holes. The current outgoing
from it is given by the incoming one—albeit delayed in time
and multiplied by a prefactor reminiscent of the action of
the Andreev reflection—while the excitation density is simply
delayed due to the conservation of the excitation number. The
zero-frequency noise associated with the source depends on
the mixing angle which controls the electron and hole content
of the quasiparticle wave packet. In particular, we obtain a
generalization of the results for zero-frequency noise observed
for the SES in the absence of SC contact.

The controlled emission of Bogoliubov excitations can be
used to realize electron quantum optics experiments such as
HBT and HOM interferometry. In the former (HBT) case, we
obtain the shot noise associated with the (noninteger) charge
of the Bogoliubov excitation. It vanishes when the electron
component of this object corresponds to its hole counterpart.
In the latter (HOM), it is possible to investigate two-particle
interference properties of these peculiar excitations showing
that quasiparticles bearing zero charge and thus zero partition
noise have maximal HOM contribution as a consequence
of interference between the electron/electron and hole/hole
amplitudes. This is explicit in our zero time delay predictions.

We finally proposed a source injecting purely electronic
wave packets as a way to realize the HOM spectroscopy of the
Bogoliubov excitations. Plots of the HOM noise revealed that
this quantity can either be positive or negative, depending on
the weight of the electron or hole component of the Bogoliubov
quasiparticle. This result has no equivalent in current electron
optics experiments.

For completeness, we also considered the triplet pairing
case for a single edge state, where our formalism can be
translated straightforwardly from the ν = 2 case. However,
our estimates for experimental investigations in this former
case suggest that the mixing angle is confined to low values,
which does not constitute an optimal setup for the observation
of nonlocal interference phenomena of single Bogoliubov
quasiparticles. Our analysis clearly showed that the singlet-
spin coupling at filling factor ν = 2 is more suitable in that
respect.

Extensions of this work could include the discussion
of finite-temperature effects, as can be readily achieved in
scattering matrix approaches to electronic quantum optics cal-
culations [8]. More demanding would be to include the effect
of Coulomb interaction between edges, as the phenomenon of
electron fractionalization, which is known to occur at ν = 2
in the absence of superconductivity and which gives rise to
a charged and a neutral mode, would modify the nature of
Bogoliubov quasiparticles.

Concerning the experimental feasibility, we point out
that on demand electron sources are currently available
[4,5], and that the conditions for placing a superconductor
in contact with quantum Hall edge channels have been
discussed previously [15]. Single-particle sources typically
operate with periodic trains of electrons and holes, implying
many collisions between the injected objects, which allow
for data acquisition, because a single shot experiment with
two particles (quasiparticles) has not be achieved so far. In
addition to the spectroscopy experiment proposed in this work
with electrons and Bogoliubov quasiparticles, we can envision
collisions between holes and Bogoliubov quasiparticles, which
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constitutes a straightforward extension of our present results.
An important experimental advantage with the present single-
particle sources proposal is that it allows one to probe the
description of the annihilation of Bogoliubov particles (thus
Majorana fermions) at the single excitation level, and this
protocol calls “only” for zero-frequency noise measurements,
as opposed to the voltage-biased/“quasiparticle beam” experi-
ments suggested in Ref. [15]. Thus the experiments proposed
here are, in principle, easier to be realized and lead to a
simpler way to achieve the diagnosis of nonlocal interference
and (in particular) the annihilation of single Bogoliubov
quasiparticles.
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the project Equip@Meso (Grant No. ANR-10-EQPX-29-01)
and has been carried out in the framework of the Labex
ARCHIMEDE (Grant No. ANR-11-LABX-0033), and of the
AMIDEX project (Grant No. ANR-11-IDEX-0001-02), all
funded by the “investissements d’avenir” French Government
program managed by the French National Research Agency
(ANR).

APPENDIX: CURRENT AND NOISE OF THE SOURCE

In this Appendix, we explicitly evaluate the main quantities
needed in order to fully characterize the behavior of the source
described in Fig. 1. As achieved in the main text, we consider
the injection of a purely electronic wave packet by the SES.

1. Averaged current

According to Eq. (14), the averaged outgoing current is
given by

〈ϕ|I (t)|ϕ〉 = −ev〈ϕ|:�†(t)τz�(t):|ϕ〉. (A1)

By properly considering an incoming spin-up electron in the
energy domain [see Eq. (12)],

|ϕ〉 = 1√
2π

∫ +∞

−∞
dξϕ̃e(ξ )c†e,↑(ξ )|F 〉, (A2)

and the field operator outgoing from the SC region,

�(t) = 1√
4π

∫ +∞

−∞
dξe−iξ tM(ξ )c(ξ ), (A3)

the expression for the current becomes

〈ϕ|I (t)|ϕ〉 = − ev

4π

∫ +∞

−∞
dξdηeiηt e−iξ t

×〈ϕ|:c†(η)M†(η)τzM(ξ )c(ξ ):|ϕ〉. (A4)

Due to the fact that we are dealing with noninteracting
electrons, we can safely apply Wick’s theorem in order to
evaluate the correlation functions. Moreover, it is useful to
exploit the particle-hole symmetry of the system in such a
way as to constraint the integrals only in the positive-energy
interval and to avoid problems related to double counting. Once

considered the incoming wave packet, the above expression
reduces to

〈ϕ|I (t)|ϕ〉 = − e

(2π )2
Tr(PsM̃†τzM̃Ps)

×
∫ +∞

0
dξdηeiη(t−δ)e−iξ (t−δ)ϕ̃∗(η)ϕ̃(ξ ), (A5)

where we have considered the definition in Eq. (4) and the
projector over the the electronic state with spin-up Ps [see
Eq. (18)].

For electronic wave packets with energy components only
above the Fermi level, we can safely extend again the domain
of integration in the interval (−∞, +∞) in order to deal with
the complete Fourier transform of the wave packets, obtaining

〈ϕ|I (t)|ϕ〉 = −eTr(PsM̃†τzM̃Ps)ϕ
∗(t − δ)ϕ(t − δ) (A6)

= −e cos(2θ̃ )ϕ∗(t − δ)ϕ(t − δ), (A7)

where, in the last line, we have considered the explicit form of
the transfer matrix from Eq. (6).

2. Particle density

For the particle density introduced in Eq. (15),

〈ϕ|ρ(t)|ϕ〉 = v〈ϕ|:�†(t)�(t):|ϕ〉, (A8)

one can proceed along the same lines and obtain

〈ϕ|ρ(t)|ϕ〉 = Tr(PsM̃†IM̃Ps)ϕ
∗(t − δ)ϕ(t − δ)

= ϕ∗(t − δ)ϕ(t − δ), (A9)

where, in this case, the trace reduces to one due to the
unitarity of the transfer matrix M, ultimately leading to a
result compatible with the particle-number conservation.

3. Noise

The noise outgoing from the source is defined, in the wave-
packet limit, as [see Eq. (23)]

Ssource

=
∫ +∞

−∞
dtdt ′[〈ϕ|I (t)I (t ′)|ϕ〉 − 〈ϕ|I (t)|ϕ〉〈ϕ|I (t ′)|ϕ〉]

= e2v2
∫ +∞

−∞
dtdt ′[〈ϕ|�†(t)τz�(t)�†(t ′)τz�(t ′)|ϕ〉

− 〈ϕ|�†(t)τz�(t)|ϕ〉〈ϕ|�†(t ′)τz�(t ′)|ϕ〉]. (A10)

By replacing the expressions for the field operator in Eq. (A3)
and the incoming wave packet in Eq. (A2), it is possible to
develop the calculation in full analogy with what was done
before. The first contribution to the noise is given by

e2v2
∫ +∞

−∞
dtdt ′〈ϕ|�†(t)τz�(t)�†(t ′)τz�(t ′)|ϕ〉

= e2Tr(PsM̃†τzM̃M̃†τzM̃Ps) = e2Tr (Ps) = e2,

(A11)

where we have considered the unitarity of the transfer matrix
M̃ and of the Pauli matrix τz.
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The second contribution reads

e2v2
∫ +∞

−∞
dtdt ′〈ϕ|�†(t)τz�(t)|ϕ〉〈ϕ|�†(t ′)τz�(t ′)|ϕ〉

= e2[Tr(PsM̃†τzM̃Ps)]
2 = e2 cos2(2θ̃ ), (A12)

in full agreement with what was obtained for the current.

Recollecting all of the above results, we finally obtain

Ssource = e2[1 − cos2(2θ̃ )] = e2 sin2(2θ̃ ). (A13)

4. HBT and HOM signal

Proceeding in the same way as before, the cross correlation
of the currents outgoing from the QPC in the geometry of
Fig. 2 is given by

S = e2v2
∫ +∞

0
dξdρ[〈φ|a†

1(ξ )τza1(ξ )a†
2(ρ)τza2(ρ)|φ〉 − 〈φ|a†

1(ξ )τza1(ξ )|φ〉〈φ|a†
2(ρ)τza2(ρ)|φ〉]

= e2v2R(1 − R)
∫ +∞

0
dξdρ[〈φ|c†1(ξ )M†

1(ξ )τzM1(ξ )c1(ξ )c†1(ρ)M†
1(ρ)τzM1(ρ)c1(ρ)

−〈φ|c†1(ξ )M†
1(ξ )τzM2(ξ )c2(ξ )c†2(ρ)M†

2(ρ)τzM1(ρ)c1(ρ) − 〈φ|c†2(ξ )M†
2(ξ )τzM1(ξ )c1(ξ )c†1(ρ)M†

1(ρ)τzM2(ρ)c2(ρ)

+〈φ|c†2(ξ )M†
2(ξ )τzM2(ξ )c2(ξ )c†2(ρ)M†

2(ρ)τzM2(ρ)c2(ρ) − 〈φ|c†1(ξ )M†
1(ξ )τzM1(ξ )c1(ξ )|φ〉

× 〈φ|c†1(ρ)M†
1(ρ)τzM1(ρ)c1(ρ) − 〈φ|c†2(ξ )M†

2(ξ )τzM2(ξ )c2(ξ )|φ〉〈φ|c†2(ρ)M†
2(ρ)τzM2(ρ)c2(ρ)]. (A14)

According to this, the HOM contribution to the noise can be written as

SHOM = e2R(1 − R){2Tr[PsM̃†
1τzM̃2Ps]Tr[PsM̃†

2τzM̃1Ps]A(δ1 − δ2 − τ1 + τ2) − Tr2[PsM̃†
1τzM̃1Ps]

− Tr2[PsM̃†
2τzM̃2Ps]}

= e2R(1 − R){[1 + cos(2θ̃1) cos(2θ̃2) − cos(�12) sin(2θ̃1) sin(2θ̃2)]A(δ1 − δ2 − τ1 + τ2) − cos2 (2θ̃1) − cos2 (2θ̃2)},
(A15)

while the HBT contribution is simply obtained imposing the condition Mj = I ⊗ I onto one of the two transfer matrices in the
above expression.
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[4] G. Féve, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, D. C.
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