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We consider a one-dimensional mesoscopic capacitor in the presence of strong electron interactions and
compute its admittance in order to probe the universal nature of the relaxation resistance. We use a combination
of perturbation theory, renormalization-group arguments, and quantum Monte Carlo calculation to treat the
whole parameter range of dot-lead coupling. The relaxation resistance is universal even in the presence of
strong Coulomb blockade when the interactions in the wire are sufficiently weak. We predict and observe a
quantum phase transition to an incoherent regime for a Luttinger parameter K�1 /2. Results could be tested
using a quantum dot coupled to an edge state in the fractional quantum Hall effect.
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The dynamical response of mesoscopic conductors consti-
tutes a mostly unexplored area of coherent quantum trans-
port, which has recently led to groundbreaking experiments.1

The mesoscopic capacitor2 is one of its elementary building
blocks: a quantum dot influenced by an ac gate voltage,
which is put in contact with an electron reservoir. It has been
studied so far at the single electron level with possible mean-
field generalizations.3 Both the capacitance C� and the relax-
ation resistance Rq, obtained from the low-frequency expan-
sion of the admittance G����−i�C�+�2C�

2 Rq, are
fundamentally affected by the quantum coherence of the de-
vice. At zero temperature, a single spin-polarized channel
yields a relaxation resistance Rq=h / �2e2�, which is indepen-
dent of the dot-reservoir connection. Reference 1 has con-
firmed this result for a quantum dot with weak charging en-
ergy.

However, quantum dots with reduced size exhibit strong
Coulomb blockade, and there is also a clear need to analyze
whether electron-electron interactions in the lead are rel-
evant. Here, taking rigorously these aspects into account, we
prove that there is quantum phase transition from a coherent
to an incoherent regime, where a relaxation resistance cannot
be defined. For weak interactions, the universal behavior is
recovered even in the presence of strong Coulomb blockade.

We consider a quantum dot �Fig. 1� connected to a reser-
voir modeled by a Luttinger-liquid lead, which allows to
account exactly for Coulomb-blockade effects. We discuss
separately the absence �Luttinger parameter K=1� or the
presence �K�1� of interaction in the adjacent lead. This
setup and the underlying physics is similar to that studied in
Ref. 4, where attention was solely focused on the static oc-
cupation of a resonant level. Here we show that below K
=1 /2, the Kosterlitz-Thouless �KT�-type phase transition
driven by the dot-lead tunneling strength triggers a transition
of dynamical transport from a coherent to an incoherent re-
gime, hence provoking a deviation from the universal Rq
=h / �2e2�. We use a combination of analytical �perturbation
theory, renormalization group �RG�� and numerical �quantum
Monte Carlo� approaches to monitor the capacitance and the
relaxation resistance over the whole range of dot-lead con-
nection. The present results can be applied to carbon-

nanotube quantum wires as well as dots defined in the frac-
tional quantum Hall effect �FQHE�.

The starting point is the Hamiltonian for a nonchiral,
semi-infinite Luttinger liquid5 where the dot region corre-
sponds to the interval �0,L�,

H = �
−�

L dx

2�
� vF

K2� ��

�x
	2

+ vF� ��

�x
	2
 − V cos�2��x = 0��

+
1

�2EC���x = 0� − ��CVg

�e�
+ kFL	
2

. �1�

The first part is the kinetic part, followed by the backscatter-
ing term at x=0 �strength V�, and finally the contribution
from the charging energy with EC�e2 / �2C� �C is the geo-
metrical capacitance�. The canonically conjugated fields �
and � satisfy the commutation relation ���x� ,��x���
= �i� /2�sgn�x−x��. The time-dependent gate voltage oscil-
lates around Vg. Using the Matsubara imaginary time path-
integral formulation, the quadratic degrees of freedom away
from x=0 can be integrated out. The kinetic part of the ef-
fective action then reads Skin= ��K��−1�n

��n� / �1
−e−2�K��n�/	���̃��n��2, where �̃��n� is the Fourier transform
of ��
� �now specified at x=0�, and 	��vF /L is the level
spacing. The same action can be derived alternatively start-
ing from a single chiral Luttinger-liquid “loop,” hence the
relevance for the FQHE regime.6 Within linear response in
the oscillating gate voltage, the �imaginary frequency� admit-
tance can be expressed as

FIG. 1. Left: schematic view of the mesoscopic capacitor: a
one-dimensional quantum dot, capacitively coupled to a gate with
time-dependent voltage Vg+�Vg�t�. Right: schematic phase diagram
in the degenerate case. Vc denotes the critical backscattering
strength for K=1 /3.
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The dynamical conductance is obtained by analytic continu-
ation G���=G�i�n→�+ i�� while the capacitance reads

C� =
e2

�2����̄2� − ��̄�2� ��̄ �
1

�
�

0

�

d
��
�
 . �3�

We start with a discussion of the weak barrier case, using
perturbation theory in V /D �bandwidth D�. The capacitance
and relaxation resistance are derived as an expansion in or-
ders of V, C�=C�

�0�+C�
�1�+C�

�2�+¯, and Rq=Rq
�0�+Rq

�1�+Rq
�2�

+¯. Introducing

an =
1

�K�
� ��n�

1 − e−2�K��n�/	 +
ECK

�
	 , �4�

one obtains to zeroth, first, and second order,
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e2

h

��n�
�

1

�an
, �5�
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where we defined

F��v� = exp�− 
n

�2

�2an
cos��nv�
 , �8�

I��n� = �
0

�/2

dv�cos�4�N�V+��n,v� + V−��n,v�� , �9�

V���n,v� = 1 − F��v��1 � cos��nv�� , �10�

N =
kFL

�
+

�e�Vg

2ET
with ET = EC +

	

2K2 . �11�

The n in F� is limited by D. From Eqs. �5�–�7�, the capaci-
tance at low temperature becomes

C�
�0� =

e2

h

�

ET
, �12�

C�
�1� = − C�

�0��
2

ET
2V�F+�0� cos�2�N� , �13�

C�
�2� = C�

�0��
2

ET
2V2F+�0�I��n → 0�cos�4�N� . �14�

It is clear from these expressions that the total capacitance
C� is a periodic function of N with period 1. Below we focus
on the interval 0N�1. The results for the relaxation resis-
tance, at low temperature, are simple since the computation

of the first- and second-order contribution shows that they
vanish,

Rq
�0� + Rq

�1� + Rq
�2� = Rq

�0� =
h

2e2

1

K
. �15�

The charging energy thus does not modify the value of re-
laxation resistance while electron interactions in the lead in-
troduce a trivial factor 1 /K. At zero temperature, the sums
and integration of Eqs. �5�–�7� can be done analytically in
certain cases. For example, when EC=0 and K=1, one has
F+�0�= �	 / �2�D��2 �D�	�, and one can show that the re-
sult for the capacitance is C�= �e2 /	��1−2r cos�2�N�
+2r2 cos�4�N��, with r=�V /D. This coincides with the de-
velopment of the noninteracting formula found in Ref. 1 in
powers of the reflection coefficient r, C�= �e2 /	��1−r2� / �1
−2r cos�2�N�+r2�. In the more general case of nonzero EC,
and K�1, one has F+�0���ETK / ��D��2K, and the integra-
tion of Eq. �7� has to be computed numerically.

The perturbation theory thus proves the universality of the
charge relaxation resistance in the weak barrier limit even in
the presence of interactions. To study the nonperturbative
regime, the path-integral Monte Carlo method is applied to
the action for the discretized path ��
= j� /J� �j=0,1 , . . . ,J
−1�. We estimate thermal average by generating discretized
paths using local update in the Fourier space and the cluster
update.7,8 The top �bottom� row of Fig. 2 shows the calcu-
lated capacitance C� as a function of V at T=0.04 and K
=1 �K=1 /3�. The left and right columns correspond to the
nondegenerate case �N=0� and the charge degenerate case
�N=1 /2�, respectively. With increasing V, the Coulomb stair-
case becomes sharper, which results in the decrease �in-
crease� in C����Q� /�Vg in the case of N=0 �N=1 /2�. The
second-order perturbation theory, shown as solid lines, dis-
plays an excellent agreement for small V. Especially, it is
remarkable that only for the case of K=1 /3 and N=1 /2 �the
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FIG. 2. �Color online� Capacitance C� as a function of the back-
scattering strength V, obtained at temperature T=0.04 with Monte
Carlo computations �dashed lines�. The solid lines show the predic-
tions of the perturbative calculations up to second order. We take
EC /�2 as the unit of energy and use the parameters D�2�J /�
=8� and 	 / �2K2�=�2. Temperature dependence is shown in the
bottom right panel, where the vertical axis is measured on a loga-
rithmic scale.
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right bottom panel of Fig. 2�, C� exhibits an abrupt increase
at a finite V, signaling a possible transition. One can see that
C� grows as �1 /T in the large barrier region.

To reveal the origin of the transition behavior, we next
examine the strong barrier limit using an instanton method
which was developed for the Kondo model.9 Near the degen-
eracy point N=1 /2, the configuration of the bosonic field �
can be represented in the dilute instanton gas approximation,

��
� � �
j=1

2n

sj��
 − 
 j� +
�

2
�1 − s� , �16�

where sj =s�−1� j−1 and s�1 denotes the separation between
the well minima �� is the step function�. Inserting Eq. �16�
in the full effective action, the partition function becomes

Z = 
n=0
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d
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2

d
1

� exp� 1
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 j − 
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c
− u

j

sj
 j
 , �17�

where t is the tunneling amplitude between the well minima
and 
c is the short-time cutoff. u= �2N−1�ET denotes the
deviation from the degeneracy point. Note the similarity be-
tween this partition function and that which was proposed in
the context of dissipative Josephson junctions.10 One can
therefore identify the scaling equations,11

dt

dl
= �1 −

s2

2K
	t,

ds2

dl
= − 4s2t2, �18�

dus

dl
= us�1 − 2t2� �19�

which are familiar in the context of a Kosterlitz-Thouless
transition in the two-dimensional XY model. No further ar-
guments are needed when one deviates from the degeneracy
point since t is small, starting from u�0, Eq. �19� predicts
that u will further increase, leading the system further away
from the degeneracy point. This means that � will be trapped
in an effective harmonic potential, and one thus recover the
result of Eq. �5�, which is therefore universal. For the charge
degenerate case N=1 /2, the transition corresponds to a
Kondo-type transition associated with the charge pseudospin
on the dot. Equation �18� determines the tendency of the
dot-lead transmission as temperature is lowered; �t ,s2� flows
along one of the hyperbolic curves B2−4t2=const, where B
�1−s2 / �2K�. For K�1 /2, the tunneling strength always
grows upon reducing the temperature, and the system
reaches the Kondo fixed point where the dot is strongly
coupled to the reservoir. An electron freely tunnels in and out
of the dot irrespective of the initial tunneling strength. In
particular, at K=1, this implies that the charge relaxation
resistance is universal, i.e., Rq=h / �2e2�, as a consequence of
the unitary limit of the underlying Kondo model. On the
other hand, for K�1 /2, there is the possibility that at a
critical, sufficiently weak transmission t �“large” V�, the RG
flow always drives the system into a weak-coupling configu-
ration with specified charge. Then the charge fluctuation re-

mains finite, i.e., ��̄2�− ��̄�2���s /2�2 so that the capaci-
tance diverges as �1 /T at low temperatures �see Eq. �3��.
This explains the transition observed for the capacitance in
the strongly interacting case.

We now describe the effect of the KT transition on the
dynamical properties. If ��1 /
RC holds �with RC time 
RC�,
the charge relaxation resistance can be defined in the low-
frequency expansion G���=−i�C�+�2C�

2 Rq+O��3�. How-
ever, the validity of this expansion is not obvious since the
KT transition may influence 
RC itself. Instead, we investi-
gate the low-frequency resistance using

R�i�n� �
1

G�i�n�
−

1

�nC�

, �20�

where G�i�n� and C� are defined in Eqs. �2� and �3�, respec-
tively. The extrapolation R�i�n→0� gives the real part of the
impedance in the low-frequency limit, hence 
RC=R�0�C�.
In Fig. 3, we plot R�0� for K=1, 1/3, and 1/5 as a function of
V at temperature T=0.04. For K=1, R�0� equals h / �2e2� ir-
respective of V, in agreement with the universal charge re-
laxation resistance.2,3 For K=1 /3 and 1/5, the universality is
observed in the weak barrier region whereas R�0� is abruptly
enhanced with increasing V, reflecting the RG flow to the
weak-coupling regime due to the KT transition. The tempera-
ture dependence of R�0� for K=1 /3 is shown in the inset of
Fig. 3, which indicates that R�0� diverges as T→0 in the
strong barrier region.

The KT transition plays a crucial role in the relevance of
the universal charge relaxation resistance. If 2t+B�0, the
system scales to the weak barrier limit, where 
RC is inde-
pendent of temperature. If 2t+B�0, on the other hand, the
scaling Eq. �18� predict s2→const and t�T−B so that 
RC
roughly scales as �T−1�T2B+const�, which grows faster than
the �thermal� coherence time 
coh�1 /T as temperature is
lowered. These observations suggest that if 2t+B�0 coher-
ent transport can be realized by lowering temperature to
guarantee 
RC�
coh while if 2t+B�0 electronic transport in
the dot decoheres before charge relaxation is achieved. In the
latter case, the quantum dot effectively acts as a reservoir
and consequently the dynamical property of the system is
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FIG. 3. �Color online� Extrapolated value R�i�n→0� as a func-
tion of V at temperature T=0.04 in the degenerate case. For D and
	 / �2K2�, we use the same parameters as in Fig. 2. Inset: R�i�n

→0� for K=1 /3 at T=0.01 ���, 0.04���, and 0.08 ��� in the
vicinity of the location where the crossing occurs.

BRIEF REPORTS PHYSICAL REVIEW B 81, 153305 �2010�

153305-3



governed by transport through the point contact between the
two “reservoirs.” Therefore the V-dependent low-frequency
resistance observed in the inset of Fig. 3 reflects the revival
of the Landauer-type transport. To see this behavior more
clearly, we plot in Fig. 4 the product G�i�n→0�R�i�n→0�
for K=1 /3 as a function of V. In the strong barrier region,
G�0� is finite and equal to �R�0��−1, which is a familiar prop-
erty of transport through a point contact. Upon decreasing V,
however, G�0�R�0� is suppressed since G�0� decays to zero
because of charging up, although R�0�→Rq is finite. More-
over, we see that the coherent region G�0�R�0�=0 extends to
larger V upon lowering temperature. Finally, we determine
the phase boundary of the coherent-incoherent transition by
tracing the temperature dependence of the ratio 
RC /
coh
=R�0�C�T. The above discussion suggests that there exists a
critical backscattering strength Vc, below which 
RC /
coh de-
cays to zero while it diverges otherwise �see the right panel
in Fig. 1�. From the inset of Fig. 4, the critical value is
estimated as Vc�7.

In conclusion, the study of the mesoscopic capacitor in
the presence of strong electron-electron interaction shows
that the relaxation resistance for a dot connected to Luttinger
liquid is universal Rq�h / �2e2K� as long as interactions are
sufficiently weak. Below K�1 /2, this resistance is governed
by the strength of the dot-lead coupling: at the charge degen-
eracy point, there is a critical coupling strength, governed by
a KT-type phase transition, below which the dot acts as an
incoherent reservoir and the low-frequency resistance ex-
ceeds the universal value. In this incoherent regime, the
charge relaxation resistance cannot be defined anymore due
to the divergence of the RC time.

Results could be probed experimentally using quantum
dots connected to an edge state in the FQHE regime. Another
experimental probe could use one dimensional quantum
wires �nonchiral Luttinger liquids� with the limitation that
the operating frequency would have to be larger than the
inverse time of flight within the wire, in order to avoid renor-
malization effects due to eventual Fermi liquid leads con-
nected to this wire.12

Note added. At this point, we would like to note that a
preprint13 discussing the same setup has recently appeared.
Similar results are obtained in the weak barrier regime, and
the universality of the charge relaxation resistance is empha-
sized. However, it does not address the quantum phase tran-
sition which drastically affects the nature of the resistance.
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FIG. 4. �Color online� Product G�i�n=0�R�i�n=0� for K=1 /3
as a function of the backscattering strength V, for different tempera-
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