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Quasiparticle Andreev reflection in the Laughlin fractions of the fractional
quantum Hall effect
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Andreev reflection occurs in a normal metal-superconductor junction, when an electron on the normal side
can only be transmitted as a Cooper pair in the superconductor, with the reflection of a hole on the normal
side. A similar phenomenon can occur in strongly correlated systems, in particular in the fractional quantum
Hall effect (FQHE), as the system quasiparticles have a charge e/m different from the electron charge. We study
theoretically a setup involving two quantum point contacts (QPC) in the FQHE where Andreev reflection occurs,
as charges e/m impinging on the second QPC can only be transmitted as charges e, with the reflection of holes
of charge e(1 − m)/m. Using the bosonization formalism, and out-of-equilibrium Keldysh Green’s function
techniques, we provide a full analytical calculation of the current correlations at the outputs of the QPC, both at
zero and finite temperature. The ratio between the auto- and cross-correlations of the output currents is a direct
manifestation of Andreev reflection. Our results agree with recent experimental observations, and give precious
information on the temperature dependence of this ratio.
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I. INTRODUCTION

Andreev reflection [1] is usually understood as a paradigm,
which is proper to superconducting devices. In a normal
metal/superconductor junction biased in the subgap regime,
while a single electron impinging from the normal metal side
cannot be transferred to the superconductor, a Cooper pair
can be transmitted into the latter provided that a counter-
propagating hole is reflected back in the normal metal. This
fundamental process of superconducting devices has had huge
applications in electronic transport, such as multiple Andreev
reflection in two [2] (and three [3]) lead superconducting
junction, crossed Andreev reflection [4–10], etc.

Strikingly, a phenomenon akin to Andreev reflection has
been also proposed in a totally different context of the strongly
correlated state of matter of the fractional quantum Hall effect
[11,12] (FQHE), in quantum Hall bars where two Laughlin
filling fractions of the quantum Hall effect coexist [13]. This
FQHE Andreev reflection was recently demonstrated exper-
imentally in heterostructures where half of the Hall bar has
filling fraction ν = 1 and the other half has ν = 1/3 [13–15].
There, the basic signature of Andreev reflection is the en-
hancement of the conductance when two incoming charges
e/3 quasiparticles are scattered into a transmitted electron
with charge e and a reflected quasihole with charge −e/3.
Such phenomena have also been proposed in the context of
interacting one-dimensional wires [16–18].

A different kind of Andreev reflection in the FQHE has
been proposed in a single Laughlin quantum Hall bar [19]
with filling fraction ν = 1/m (m odd), endowed with two
quantum point contacts (QPCs) as depicted in Fig. 1. The first

*kishore.iyer@cpt.univ-mrs.fr

QPC is tuned to be transparent, and as a result, the backscat-
tering current consists of a dilute beam of e/m quasiparticles,
which then propagates on the opposite edge. On the other
hand, the second QPC placed downstream of this dilute beam
is opaque, effectively breaking the quantum Hall liquid into
two, and hence transmits only electrons. Such a geometry
was first studied experimentally by Ref. [20], who found
the charge transmitted across the second QPC to vary as a
function of the dilution of the incoming quasiparticle current.
Surprisingly, for a highly dilute beam, they found that frac-
tional charges—contrary to electrons—could go across the
second QPC, which only electrons are expected to traverse.
Later studies [21,22] attributed this unexpected result to finite-
temperature effects, and possibly to the long propagation path
of the quasiparticle beam.

Quasiparticle Andreev reflection in the two QPC geometry
in the ν = 1/3 FQHE was recently demonstrated [22], where
the ratio of cross- and auto-correlations was measured to be
−2/3. The experiment managed to achieve this feat by work-
ing at very low temperatures and having a short propagation
length between the two QPCs. These features ensure that the
quasiparticles traveling on the edge do not interact strongly
with the surrounding environment, or with each other signifi-
cantly, before impinging on the second QPC. Their result of a
negative cross-correlation noise was distinguished from any-
onic braiding effects arising in similar geometries (with both
QPCs transmitting e/3 quasiparticles) [23–26] by measuring
cross-correlations as a function of the asymmetry of the input
current, which remained constant.

Reference [19] were the first to theoretically address the
transmission of dilute Laughlin quasiparticles in the two QPC
geometry of Fig. 1. They find that although e/m quasiparticles
impinge on the second QPC, the latter transmits electrons.
Charge conservation imposes that this process is accompanied
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FIG. 1. ν = 1/3 fractional quantum Hall bar endowed with two
QPCs. QPCL is placed in the weak-backscattering regime, emitting
a dilute beam of e/3 quasiparticles on the edge 2. These impinge on
QPCR, which is placed in the strong-backscattering regime, trans-
mitting only electrons. The arrival of a e/3 quasiparticle on QPCR

triggers the emission of an electron on edge 3, and charge conserva-
tion implies that there must be a reflection of two −e/3 quasiholes
on edge 2.

by the reflection of m − 1 quasiholes with a total charge
e/m − e = e(1 − m)/m. Reference [19] uses nonperturbative
analytic calculations based on refermionization in the ficti-
tious ν = 1/2 system as well as a mixture of perturbative
analytics and numerics for a generic ν = 1/m system to mo-
tivate their results. However, this study is restricted to the
evaluation of tunnel observables and lacks a complete ana-
lytic evaluation of the auto- and cross-correlation (or even the
tunneling noise) for ν = 1/m, whose ratio explicitly demon-
strates quasiparticle Andreev reflection. In the present paper,
we aim at bridging the gap between theory and experiment—
using the chiral Luttinger liquid theory of the FQHE within
the Keldysh formalism—by providing a detailed analytic de-
scription of the latter phenomenon.

Analytical approaches, which use perturbation theory in
tunneling operators of the chiral Luttinger model typically
represent a daunting task when dealing with more than one
QPC—see for instance Refs. [27–30] where this is achieved.
Previous studies dealing with more than one QPC, such as
Fabry-Perot setups [31], either resort to second-order pertur-
bation theory (which is irrelevant for the present problem),
or have to use different techniques, such as nonequilibrium
bosonization [32] for the anyonic statistics detection sce-
narios [33]. Here, we present a fully analytical fourth-order
perturbative calculation, leading to explicit formulas for the
current-current correlations at the outputs.

The structure of the paper is as follows. We start in Sec. II
with a description of the system and a short discussion of the
quantum point contact geometries in FQHE. In Sec. III, we
present our theoretical model of the quantum Hall edges and
the two QPCs. In Secs. IV, V, and VI we calculate the cross-
correlations, the auto-correlations, and the tunneling current
of the setup, respectively. We generalize our results to finite
temperature in Sec. VII. We discuss the results of our theory
in light of the recent experiment in Sec. VIII and conclude in
Sec. IX.

II. SYSTEM DESCRIPTION

Our setup is shown schematically in Fig. 1. A Hall bar is
placed in the FQHE with a filling factor in the Laughlin series
ν = 1/m (the most practical case being ν = 1/3). The device

is endowed with two distinct QPCs, which can be individually
controlled by voltages applied on corresponding split gates.

Let us first recall the two different regimes of a QPC,
which are both used in this Andreev setup. In the weak-
backscattering regime, the QPC brings the two edge states
closer, allowing for the tunneling of fractional quasiparticles
of charge e∗ = e/m, across the Hall fluid, from one edge to
the other. This is the configuration of QPCL in Fig. 1. In this
regime, the voltage dependence of the tunneling current and
the tunneling noise (i.e., zero-frequency fluctuations of the
tunneling current) can be calculated theoretically using the
perturbation theory of chiral Luttinger liquids. In the zero-
temperature limit these are given by [34]

〈IT 〉 = e∗ �2
L

v2ν
F �(2ν)

sgn(V )

(
e∗V
2π

)2ν−1

, (1)

ST = 2e∗2 �2
L

v2ν
F �(2ν)

(
e∗V
2π

)2ν−1

, (2)

where �L is the (small) tunneling amplitude at QPCL and vF

is the Fermi velocity along the edge. The current and noise
yield the relation

ST = 2e∗|〈IT 〉|, (3)

which allows a diagnosis of the tunneling charge e∗.
The opposite regime of a QPC is the strong-coupling

regime, where the effect of the QPC is strong enough to break
the Hall fluid in two parts. It can be described perturbatively
by the tunneling of electrons through the vacuum between the
two distinct parts. It is the configuration of the right QPC on
Fig. 1, giving tunneling current and noise similar to Eq. (2),
with 2ν replaced by 2/ν, and e∗ by e, yielding a relation

ST = 2e|〈IT 〉|. (4)

In the setup of Fig. 1, the application of a positive voltage
V on the lower arm of QPCL leads to the emission of a dilute
stream of e∗ quasiparticles on the edge 2. It hence functions
as a source of e∗ quasiparticles, which impinge on the QPCR,
which is tuned to be in the strong-backscattering regime and
hence transmits only electrons. It is the mismatch between
the charge e∗ of the incoming excitations, and the charge
e, which can tunnel at QPCR, which leads to quasiparticle
Andreev reflection. When the arrival of the e∗ quasiparticle
triggers an electron tunneling, charge conservation implies
that two quasiholes (of charge −e∗ each) are reflected at
QPCR (see Fig. 1). Therefore, the transmitted current I3 mea-
sured on contact 3, and the reflected current I2, measured on
contact 2, contain precious information about the quasiparti-
cle Andreev reflection processes. Of primary interest are the
cross-correlations between currents on contacts 2 and 3, 〈I2I3〉,
the auto-correlations of the current at contact 3, 〈I3I3〉, and the
average output current on contact 3, 〈I3〉. In the Poissonian
limit, these are expected to bear the following relations at zero
temperature

〈I3I3〉 = 2e|〈I3〉|, (5)

〈I2I3〉 = − 4
3 e|〈I3〉|. (6)

The first of these relations simply expresses that only electron
tunneling contributes to 〈I3〉. The second relation expresses
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that for each electron tunneling contributing to 〈I3〉, there is
necessarily a charge −2e/3, which is reflected and which
contributes to 〈I2〉, leading to a Fano factor of (−2/3)×1 for
the cross-correlation.

It is important to stress the difference between this setup,
and a similar setup where both QPCs are placed in the weak-
backscattering regime, for example in the anyon collider [24].
When QPCR is also in the weak-coupling regime, and thus
transmits e∗ quasiparticles, it was shown that anyonic statistics
plays an essential role in the tunneling current. The dominant
contribution comes from interference between the process
where the incoming e∗ reaches the QPC before a thermal
quasiparticle/quasihole pair is excited, and the process where
the order of these events is reversed. Because of the non-
trivial anyonic statistics between two e∗ quasiparticles, these
interference effects have a finite contribution, which depends
nonperturbatively on the statistical properties of the incoming
stream of e∗ quasiparticles [30,35,36].

In the setup we are considering, since it is electrons that
tunnel at QPCR, the exchange phase between the incoming e∗
quasiparticle and an electron (or a hole) is trivially a multiple
of π , and there is no contribution related to anyonic statistics.
The physics of Andreev reflection is thus fundamentally dif-
ferent from that of anyonic braiding.

III. THEORETICAL MODEL

We consider a fractional quantum Hall (FQH) bar in the
Laughlin filling fraction. The quantum Hall bar is equipped
with two quantum point contacts (QPC), denoted QPCL and
QPCR, as shown in Fig. 1. The quantum Hall edges are mod-
eled by chiral Luttinger liquids φ j (x), j = 1, 2, 3. The free
Hamiltonian of this system is given by [34,37]

H0 = vF

4π

3∑
j=1

∫
dx[∂xφ j (x)]2, (7)

where vF is the Fermi velocity along the edges. Each edge
carries a coordinate system x. QPCL operates in the weak-
backscattering regime, allowing e/m quasiparticles to tunnel
across it. We apply a constant voltage V on the edge 1, causing
e/m quasiparticles to tunnel across QPCL, from edge 1 to edge
2. This process is modeled by the tunneling Hamiltonian

HL(t ) = �L

(2πa)ν
∑
ε=±

Oε
L(t )e−iεe∗V t , (8)

where

O±
L (t ) = FLe±i

√
ν[φ1(0,t )−φ2(0,t )], (9)

a is a short cutoff parameter, e∗ = e/m, and FL is a Klein
factor. The e/m quasiparticles then travel along edge 2 and
are incident on QPCR. We assume e∗V � kBT , allowing us
to work in the zero-temperature limit (the finite-temperature
generalization is given in Sec. VII). QPCR operates in the
strong-backscattering regime, allowing only electrons to tun-
nel between the two FQHE fluids. The tunneling of electrons
across QPCR is given by

HR(t ) = �R

(2πa)1/ν

∑
ε=±

Oε
R(t ), (10)

where

O±
R (t ) = FR e± i√

ν
[φ2(L,t )−φ3(L,t )]

. (11)

The tunneling current operator across QPCR is readily ob-
tained from the tunneling Hamiltonian and reads

IR(t ) = ie
�R

(2πa)1/ν

∑
ε=±

ε Oε
R(t ). (12)

The Klein factors FL, FR ensure that the tunneling operators
HL and HR commute, with FiF

†
i = F †

i Fi = 1 (i = L, R) and
FLF †

R = −F †
R FL.

The full Hamiltonian of the system is then given by

H (t ) = H0 + HT (t ), (13)

where HT (t ) = HL(t ) + HR(t ). Finally, the current operators
on the edges are given by

I j (x, t ) =
√

νevF

2π
∂xφ j (x, t ) ≡ evF

2π i
∂x∂γ eiγ

√
νφ j (x,t )

∣∣∣
γ=0

,

(14)

where we introduced a dummy variable γ , allowing us to
express the current as exponentials of the bosonic fields.

As explained in the previous section, there is a fundamen-
tal difference between the system that we are considering
here, and a similar system where the second QPC is also in
the weak-backscattering regime, used to probe the anyonic
statistics of the quasiparticles [23,33,36]. In the latter case,
the two tunneling operators at the two QPCs have the same
coefficient

√
ν in the exponent [see Eq. (9)], which implies

that the exchange of two quasiparticles emitted at the two
QPCs is accompanied by an anyonic phase πν. In the system
that we consider here, the coefficient in the exponent of the
left and right QPC are respectively

√
ν and 1/

√
ν [as can be

seen from Eqs. (9) and (11)], which implies that the exchange
of two quasiparticles emitted at the two QPC is accompanied
by a trivial phase π . For the case of the nontrivial anyonic
exchange phase, the perturbative calculation breaks down, and
other techniques, like nonequilibrium bosonization or resum-
mation have to be used [33,36]. Here, thanks to the trivial
exchange phase, the perturbative approach that we are using
is valid, as the higher orders terms in �L, �R can be neglected
in the limit of small �L, �R.

IV. CROSS-CORRELATIONS

To capture the physics of quasiparticle Andreev reflection,
we start by computing the cross-correlation noise of edges 2
and 3. This can be expressed using the Keldysh formalism as

S23 = 2
∫

dt
〈
TK
{
δI2(x, t−)δI3(y, 0+)e−i

∫
K dtHT (t )

}〉
C
, (15)

where δI j = I j − 〈I j〉 and we only keep the “connected” con-
tributions (denoted by the subscript C). Here TK denotes
Keldysh time ordering. We perform an expansion in the tun-
neling Hamiltonian up to the lowest nontrivial order �2

L�2
R
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yielding

S23 = 2�2
L�2

R

(2πa)2ν+ 2
ν

∫
dtdt1 . . . dt4

∑
{ηk}

η1 . . . η4 eie∗V (t3−t4 )

〈
TK

{
e2v2

F

(2π i)2
∂x∂γ1 eiγ1

√
νφ2(x,t− )∂y∂γ2 eiγ2

√
νφ3(y,0+ )

× e
i√
ν

[φ2(L,t
η1
1 )−φ3(L,t

η1
1 )]e− i√

ν
[φ2(L,t

η2
2 )−φ3(L,t

η2
2 )]e−i

√
ν[φ1(0,t

η3
3 )−φ2(0,t

η3
3 )]ei

√
ν[φ1(0,t

η4
4 )−φ2(0,t

η4
4 )]

}〉
C

∣∣∣∣∣
γ1,γ2=0

, (16)

where ηk = ± indicates the Keldysh contour label, for the kth time variable. Here, we do not write explicitly the Klein factors
in the expression for the noise, as we consider a regime where they play no role in the end, see the discussion below Eq. (22) for
a proper justification.

Correlation functions of multiple tunneling operators can be evaluated using the following identity:〈
TK

{
N∏

j=1

eiα jφμ(x j ,t
η j
j )

}〉
= exp

⎡
⎣ N∑

j=1

N∑
k= j+1

α jαk Gη jηk (x j − xk, t j − tk )

⎤
⎦, (17)

which is nonzero only when
∑

j α j = 0, allowing us to express S23 as

S23 = 2e2v2
F

(2π i)2

�2
L�2

R

(2πa)2ν+2/ν

∫
dtdt1 . . . dt4

∑
{ηk}

η1 . . . η4 eie∗V t34 e2νGη3η4 (0,t34 )e
2
ν
Gη1η2 (0,t12 )

× ∂x∂γ1

[
e−γ1G−η1 (x−L,t−t1 )eγ1G−η2 (x−L,t−t2 )e−γ1νG−η3 (x,t−t3 )eγ1νG−η4 (x,t−t4 )

]
γ1=0

× ∂y∂γ2

[
eγ2G+η1 (y−L,−t1 )e−γ2G+η2 (y−L,−t2 )

]
γ2=0

[
e−Gη1η3 (L,t13 )eG

η1η4 (L,t14 )eG
η2η3 (L,t23 )e−Gη2η4 (L,t24 ) − 1

]
. (18)

The final term in the last line of Eq. (18) is conveniently
rewritten as K1234 − 1. The −1 contribution removes all the
disconnected diagrams up to order �2

L�2
R, while the term K1234

involves two-point correlators of bosonic fields, with each of
the two bosonic fields coming from the tunneling operators at
different QPCs. This term is given by

K1234 = exp [Gη1η4 (L, t14) + Gη2η3 (L, t23)]

exp [Gη1η3 (L, t13) + Gη2η4 (L, t24)]
. (19)

The fact that here, the prefactor of each Green’s function in
the exponential is equal to 1 is because of the coefficients

√
ν

and 1/
√

ν of the tunneling operators of the left and right QPC
respectively, whose product is 1. It is thus a consequence of
the trivial exchange phase between the excitations of the two
QPC, which allows a simpler analytic treatment.

Here Gηiη j (x, τ ) is the chiral Luttinger liquid Green’s func-
tion with the superscripts corresponding to the Keldysh time
ordering, and we used the shorthand notation ti j = ti − t j . At
zero temperature, the Green’s function is given by

Gη1η2 (x, τ ) = log

(
τ0

τ0 + i(τ − x/vF )χ12(τ )

)
, (20)

where τ0 = a/vF and

χ12(τ ) = 1
2 [(η2 − η1) + sgn(τ )(η1 + η2)]. (21)

In the following, we consider the limit of a large separation
L between the two QPCs, effectively taking L → ∞. Hence,
the tunneling times t1/2 at the right QPC are always much
greater than the tunneling times t3/4 at the left QPC. This
allows us to simplify Eq. (21) and directly write χ13(t13) =
χ23(t23) = η3 and χ14(t14) = χ24(t24) = η4. This in turn en-
ables to greatly simplify the term K1234, which becomes, at

zero temperature

K1234 =
[
t1 − t3 − L

vF
− iη3τ0

][
t2 − t4 − L

vF
− iη4τ0

]
[
t1 − t4 − L

vF
− iη4τ0

][
t2 − t3 − L

vF
− iη3τ0

] . (22)

Note that it is this same assumption L → ∞, which allows us
to ignore the Klein factors in the calculation. Indeed t1,2 � t3,4

implies that the two tunneling operators at the right QPC (with
times t1 and t2), are always well separated from those at the
left QPC (with times t3 and t4) on the Keldysh contour, so
that the contribution from the Klein factors always reduces to
FLF †

L × FRF †
R = 1.

From Eq. (20), one readily sees that the derivative of the
Green’s function at zero temperature can be expressed as a
delta function in the limit of vanishingly small cutoff,

∂xGη1η2 (x − y, t1 − t2)

=
{+ iπ

vF
η2δ

(
t1 − t2 − x−y

vF

)
, x − y > 0

− iπ
vF

η1δ
(
t1 − t2 − x−y

vF

)
, x − y < 0.

(23)

After making the transformation t1/2 → t1/2 + L, and taking
the limit L → ∞, one can further simplify the expression for
the cross-correlations using the above relation, Eq. (23). This
enables us to evaluate the integrals over t and t1, and to get rid
of the delta functions to obtain

S23 = e2�2
L�2

R

2(2πa)2ν+ 2
ν

∫
dt2dt3dt4

∑
{ηk}

η1 . . . η4eie∗V t34

× [(η2 − η1) + ν(η4 − η3)]e2νGη3η4 (0,t34 )e
2
ν
Gη1η2 (0,−t2 )

× (η1 − η2)

{
[−t3 − iη3τ0][t2 − t4 − iη4τ0]

[−t4 − iη4τ0][t2 − t3 − iη3τ0]
− 1

}
.

(24)
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Further manipulations and the coordinate transformation t3 − t4 = τ , (t3 + t4)/2 = T allow us to express the cross-correlation
as

S23 = e2�2
L�2

R

(2πa)2ν+ 2
ν

∫
dt2dτeie∗V τ

∑
{ηk}

e
2
ν
Gη1η2 (0,−t2 )

[
η3η4(1 − η1η2) + ν

η1 − η2

2
(η4 − η3)

]
e2νGη3η4 (0,τ )

×
∫

dT
−t2[τ + i(η3 − η4)τ0][−T + τ

2 − iη4τ0
][

t2 − T − τ
2 − iη3τ0

] . (25)

The T integral has been evaluated in Appendix A using Cauchy’s residue theorem. Using this result and subsequently
summing over the Keldysh indices η2 and η4, this leads to

S23 = 4iπe2�2
L�2

R

(2πa)2ν+ 2
ν

∫
dt2dτeie∗V τ

∑
η3

e2νGη3 ,−η3 (0,τ )
∑
η1

(η3 + νη1)

(
τ0

τ0 + iη1t2

)2/ν t2(τ + 2iη3τ0)

−t2 + τ + 2iη3τ0
. (26)

The t2 integrals have been evaluated in Appendix A. Subsequent trivial manipulations give us, to leading order in the cutoff,

S23 =− 4e2�2
L�2

R

v2
F (2πa)2ν+ 2

ν
−2

(1 − ν)
∫

dτ cos (e∗V τ )

(
τ0

τ0 − iτ

)2ν+2/ν−2

. (27)

Finally, the τ integral can be evaluated using known results [38] to give

S23 = −(1 − ν)
2e2�2

L�2
R

v3
F �
(
2ν + 2

ν
− 2

) ∣∣∣∣ e∗V
2πvF

∣∣∣∣
2ν+ 2

ν
−3

, (28)

where the function �(x) in the denominator denotes the Euler-Gamma function.

V. AUTO-CORRELATIONS

Now we go on to compute the auto-correlation noise on edge 3, which is expressed using the Keldysh formalism as

S33 = 2
∫

dt
〈
TK
{
δI3(x, t−)δI3(y, 0+)e−i

∫
K dtHT (t )

}〉
C . (29)

Performing again an expansion in the tunneling Hamiltonian up to order �2
L�2

R yields

S33 = 2e2v2
F �2

L�2
R

(2πa)2ν+ 2
ν

∫
dtdt1 . . . dt4

∑
{ηk}

η1 . . . η4 eie∗V t34

〈
TK

{
1

(2π i)2
∂x∂γ1 eiγ1

√
νφ3(x,t− )∂y∂γ2 eiγ2

√
νφ3(y,0+ )

× e−i
√

ν[φ1(0,t
η3
3 )−φ2(0,t

η3
3 )]e− i√

ν
[φ2(L,t

η2
2 )−φ3(L,t

η2
2 )]e

i√
ν

[φ2(L,t
η1
1 )−φ3(L,t

η1
1 )]ei

√
ν[φ1(0,t

η4
4 )−φ2(0,t

η4
4 )]

}〉
C

∣∣∣∣∣
γ1,γ2=0

, (30)

where we are only interested in the zero-temperature regime at this stage, thus allowing us to discard lower-order terms
corresponding to purely thermal contributions to the noise.

Proceeding along the same lines as the derivation of the cross-correlations, and employing then Eqs. (17) and (23) one obtains

S33 = e2�2
L�2

R

2(2πa)2ν+ 2
ν

∫
dt2dt3dt4

∑
{ηk}

η1 . . . η4(η1 − η2)2eie∗V t34 e2νGη3η4 (0,t34 )e
2
ν
Gη1η2 (0,−t2 )

{
[−t3 − iη3τ0][t2 − t4 − iη4τ0]

[−t4 − iη4τ0][t2 − t3 − iη3τ0]
− 1

}
.

(31)

Comparing Eq. (31) with Eq. (24), one finds that the expression for the auto-correlations is the same as the first piece of the
cross-correlations, up to a minus sign. Hence, the calculations of the cross-correlations follow through for auto-correlations as
well, giving us finally

S33 = 2e2�2
L�2

R

v3
F �
(
2ν + 2

ν
− 2

) ∣∣∣∣ e∗V
2πvF

∣∣∣∣
2ν+ 2

ν
−3

. (32)

VI. TUNNELING CURRENT

Now we calculate the average tunneling current across QPCR, which is expressed in the Keldysh formalism as

〈I3(x, t )〉 =
〈

TK

{
1

2

∑
η1

IR
(
tη1
1

)
e−i

∫
K dtHT (t )

}〉
, (33)
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where t1 = t − x−L
vF

and the tunneling current operator IR was defined in Eq. (12). Expanding in the tunneling Hamiltonian up to
third order and retaining only the relevant, nonzero, order �2

L�2
R terms, one is left with

〈I3(x, t )〉 = − e�2
L�2

R

4(2πa)2ν+ 2
ν
−2

∫
dt2dt3dt4

∑
{ηk ,εk}

ε1η2η3η4e−ie∗V (ε3t3+ε4t4 )
〈
TK
{
Oε1

R

(
tη1
1

)
Oε2

R

(
tη2
2

)
Oε3

L

(
tη3
3

)
Oε4

L

(
tη4
4

)}〉
C . (34)

The εk indices are then summed over, and the resulting Keldysh correlators are subsequently evaluated using Wicks theorem [see
Eq. (17)] giving us

〈I3〉 = i
e�2

R�2
L

(2πa)2ν+2/ν

∑
{ηk}

η2η3η4

∫
dt2dτ sin(e∗V τ )e2νGη3η4 (τ )e

2
ν
Gη1η2 (−t2 )

∫
dT

−t2[τ + i(η3 − η4)τ0][−T + τ
2 − iη4τ0

][
t2 − T − τ

2 − iη3τ0
] . (35)

Noting that a proper rescaling of the integrated variables t2 → t2 + t1 and T → T + t1 allows us to get rid of the external variable
t1, we argue that the tunneling current is constant and does not depend on x, t .

Performing the summation over Keldysh indices η1 and η2,
the integrals over T and t2 are then carried out similarly to
the previous sections, relying on the results of Appendix A
yielding

〈I3〉 = −2i(2π )2 e�2
R�2

L

(2πa)2ν+2/ν
τ 2

0

×
∫

dτ sin(e∗V τ )

(
τ0

τ0 − iτ

)2ν+2/ν−2

. (36)

Performing the final τ integral, one is left with

〈I3〉 = e�2
R�2

L

v3
F �
(
2ν + 2

ν
− 2

) ∣∣∣∣ e∗V
2πvF

∣∣∣∣
2ν+2/ν−3

Sgn(V ). (37)

VII. FINITE TEMPERATURE

In this section, we generalize the results presented in the
last three sections to finite temperatures. We start by noting
that the expression of cross-correlations in Eq. (18), along
with the one for the tunneling current in Eq. (34), both apply
to a general temperature, provided that one uses the finite-
temperature Green’s function. Similarly, the expression of
Eq. (30) for the auto-correlations is also valid at finite temper-
ature but it now only describes the “excess” auto-correlations
Sexc

33 = S33(V ) − S33(V = 0), as we are not interested in the
purely thermal contribution.

Substituting then, instead of the zero-temperature Green’s
function, the finite-temperature one

Gη1η2 (x, τ ) = log

(
sinh(iπθτ0)

sinh [πθ (iτ0 − χ12(τ )(τ − x/vF ))]

)
,

(38)

gives us the corresponding generalization to finite temperature
θ . It is important to stress out that, while these can be general-
ized, all the calculations presented in the appendices, and used
in the previous sections, are valid only at zero temperature.

While the finite-temperature extension does not present
any formal difficulties, it is still a long and rather tedious cal-
culation. For clarity sake, we choose to present only the final
results here, the main steps of the derivation being presented
in Appendix B. The tunneling current at finite temperature θ

is given by

〈I3〉 = e�2
R�2

L

πv3
F �
(
2ν + 2

ν
− 2

)( θ

vF

)2ν+2/ν−3

× sinh

(
e∗V
2θ

)∣∣∣∣�
(

ν + 1

ν
− 1 + i

e∗V
2πθ

)∣∣∣∣
2

. (39)

For ν = 1/3, we obtain for the excess auto-correlations

Sexc
33 = 4e2�2

L�2
R

π2v3
F

(
θ

vF

)11/3

sinh

(
eV

6θ

)∣∣�( 7
3 + i eV

6πθ

)∣∣2
�
(

14
3

)
× Im

[
ψ

(
7

3
+ i

eV

6πθ

)]
, (40)

while the cross-correlation can also be calculated similarly
yielding

S23 = −2

3

4e2�2
L�2

R

π2v3
F

(
θ

vF

)11/3
{

sinh

(
eV

6θ

)∣∣�( 7
3 + i eV

6πθ

)∣∣2
�
(

14
3

)
× Im

[
ψ

(
7

3
+ i

eV

6πθ

)]
− 1

8

∣∣�( 1
3 + i eV

6πθ

)∣∣2
�
(

5
3

) eV

6πθ

× sinh

(
eV

6θ

)[
23

120
+ 9

160

(
eV

3πθ

)2
]}

, (41)

where ψ is the digamma function. One can readily check that
in the limit θ −→ 0, these results reproduce the ones obtained
in Eqs. (32) and (28).

VIII. DISCUSSION

Consolidating the calculations of auto-correlations, cross-
correlations, and the tunneling current at zero temperature, we
can see that they satisfy the following relations for ν = 1/3:

S33 = 2e|〈I3〉|, (42)

S23 = − 4
3 e|〈I3〉|, (43)

which matches the experimental results of Ref. [22]. Equa-
tions (42) and (43) have been plotted as the gray straight lines
in Fig. 2.

The (–4/3) coefficient of the cross-correlation noise gen-
eralizes to −2(m − 1)/m for an arbitrary Laughlin fraction
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FIG. 2. Auto-correlation noise Sexc
33 (full lines) and cross-

correlation noise S23 (dashed lines) plotted as a function of the
tunneling current 〈I3〉, for different values of the temperature kBθ = 0
(gray), 0.1 (red), 0.5 (green), 1 (blue) (arbitrary energy units), with
eV varying from –32 to +32 in the same units. The zero-temperature
case (gray lines) correspond to Eqs (28), (32), and (37), while the
finite-temperature case correspond to Eqs. (39)–(41). The current is

normalized by I0 = e�2
R�2

L
πv3

F
, the noise by S0 = 4e2�2

R�2
L

π2v3
F

.

ν = 1/m. The ratio between the cross- and auto-correlations,
equal to −2/3 (or more generally (m − 1)/m) is thus a di-
rect manifestation of the Andreev reflection process, where
the transmission of a charge e × m/m (i.e., an electron) is
always accompanied of the reflection of a negative charge
e × (1 − m)/m [i.e., (m − 1) holes of charge −e/m].

The analytical results at finite temperature allows us to see
how the current and noise are modified when the ratio kBθ/eV
is nonzero. This is first illustrated on Fig. 2, which in addition
to the zero-temperature results shows the auto-correlations
and cross-correlations noises as a function of the tunneling
current 〈I3〉 for different values of the temperature θ . One can
see that the finite temperature leads to a rounding of the noise
as function of the current and thus for a lower slope for the
noise as function of the current until eV � kBθ where the
zero-temperature slope is recovered.

Figure 2 can be compared with the experimental results
of Ref. [22], in particular with Fig. 9 of that paper. The
ratios of eV/(kBθ ) that we have used in Fig. 2 (with kBθ =
0, 0.1, 0.5, or 1 and eV up to 32 in the same units) are of
the same order as the experimental ones, with T = 15 mK,

35 mK, and 60 mK and V ranging from 0 to ∼50 µV . The
finite-temperature rounding that we observe for the noise as a
function of the current is similar to that observed in the exper-
iment, albeit a bit more pronounced in our case. A detailed
quantitative comparison between the theoretical predictions
and the experimental results might require using a modified
scaling dimension of the tunneling operators, which may be

FIG. 3. Ratio of cross-correlations to auto-correlations as a func-
tion of the voltage eV (in arbitrary energy unit) for different values
of kBθ (in the same unit). The ratio asymptotically reaches down to
−2/3 for eV � kBθ , in agreement with the zero-temperature result.
For smaller values of eV/kBθ , the ratio increases, and becomes posi-
tive for small values of eV/kBθ .

different from the theoretical one due to nonuniversal effects
at the location of the QPC [24,39,40]. This will be the subject
of a future work.

To examine in more details the impact of temperature on
the ratio S23/Sexc

33 , Fig. 3 shows this ratio as a function of
voltage at different temperatures. One can see that for large
eV � kBθ , the noise ratio always converge towards the zero-
temperature value S23/Sexc

33 = −2/3. As eV/kBθ decreases.
the ratio increases, and changes sign close to eV/kBθ = 4. It
reaches a value ∼1.8 at eV/kBθ = 0.

It is also possible to reverse the configuration of the QPCs
such that QPCL emits electrons and QPCR transmit e/3 quasi-
particles. In this case, we expect a similar process where
a quasiparticle is transmitted across QPCR and two quasi-
particles are Andreev reflected (with here Andreev reflected
charges of the same sign as the transmitted charge). This
results in the relation S23 = 2S33.

IX. CONCLUSIONS

Motivated by recent experiments, which demonstrate
Andreev-like reflection in the ν = 1/3 FQHE, we have
presented an analytical calculation of the output tunneling
current, cross-correlation noise, and the auto-correlation noise
that follows exactly the measurement protocol of Ref. [22].
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We have performed an exact perturbative calculation at order
four in the tunneling amplitudes of the two QPCs, beyond
the usual second order calculations for the current and noise
at a QPC. We have obtained explicit analytical expressions
for the current and noises, both at zero temperature and at
finite temperature. Our results match that of the experiment,
in particular for the ratio of the crossed- and auto-correlation
noises, which is a direct manifestation of the Andreev reflec-
tion process. Our results also show how finite temperature will
modify the noise ratio, which can even become positive when
V/θ becomes small.

A natural extension of the present paper would be to study
Andreev reflection in non-Laughlin filling fractions of the
FQHE. For a ν = 2/5 filling fraction for instance, a consider-
able challenge would be to include the fact that depending on
the operating regimes, several types of copropagating bosonic
excitations can coexist at the location of the two QPCs [41],
necessitating some choice for the proper theoretical model.
Recent experimental results on anyon collisions in ν = 2/5
[24–26], allow us to exploit experimental knowledge of the
different operating regimes, and one should therefore be able
to specify the types of quasiparticles, which tunnel at the
location of the two QPCs. Of interest is also ν = 2/3, which
is known to involve two counterpropagating edge excitations,
ultimately giving rise to neutral modes where energy—rather
than charge—can propagate upstream from the quasiparticle
charge current.
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APPENDIX A: USEFUL CONTOUR INTEGRALS

First, we need to evaluate the following integral

Jη3η4
1 (t2, τ ) =

∫
dT

1[
T − τ

2 + iη4τ0
][

T − t2 + τ
2 + iη3τ0

] .
(A1)

We will use the residue theorem to go about this. J1 has
two single poles located at T = τ

2 − iη4τ0 and T = t2 − τ
2 −

iη3τ0. Firstly, we note that if η3 = η4, then both poles lie on
the same side of the real axis. This means that we can close
the contour over the opposite half-plane, which encloses no
poles and hence gives zero, that is, Jηη

1 (t2, τ ) = 0.
We then focus on the only nonzero case, namely η4 = −η3.

We choose to always close the contour over the half-plane
enclosing the pole at T = τ

2 − iη4τ0, thus picking an overall
sign η3, ultimately yielding

Jη3η4
1 (t2, τ ) = 2iπη3

τ − t2 + 2iη3τ0
δη3,−η4 . (A2)

The second integral of interest reads

Jη1η3
2 (τ ) =

∫
dt2

t2

(t2 − iη1τ0)
2
ν (t2 − τ − 2iη3τ0)

. (A3)

The integrand of J2 has a relatively complicated 2
ν
-order pole

at t2 = iη1τ0, and a simple first-order pole at t2 = τ + 2iη3τ0.
As for J1, the resulting integral vanished if both poles lie on
the same half-plane, i.e., if η1 = η3. We thus focus again on
the only nonzero case, namely η1 = −η3. We choose to close
the contour over the half-plane enclosing the single pole, thus
picking up an overall sign η3, ultimately yielding

Jη1η3
2 (τ ) = 2iπη3

τ + 2iη3τ0

(τ + 3iη3τ0)2/ν
δη3,−η1 . (A4)

APPENDIX B: FINITE-TEMPERATURE CALCULATION

Several elements of the derivation are common between
auto- and cross-correlations and we try to present the two
together as much as possible.

Our starting point is given by the auto- and cross-
correlations expressed in terms of the bosonic Green’s
function, and obtained from Eqs. (18) and (30),

S23 = 2e2v2
F

(2π i)2

�2
L�2

R

(2πa)2ν+2/ν

∫
dtdt1 . . . dt4

∑
{ηk}

η1 . . . η4 eie∗V t34 e2νGη3η4 (0,t34 )e
2
ν
Gη1η2 (0,t12 )

× ∂x[−G−η1 (x − L, t − t1) + G−η2 (x − L, t − t2) − νG−η3 (x, t − t3) + νG−η4 (x, t − t4)]

× ∂y[G+η1 (y − L,−t1) − G+η2 (y − L,−t2)]
[
e−Gη1η3 (L,t13 )eG

η1η4 (L,t14 )eG
η2η3 (L,t23 )e−Gη2η4 (L,t24 ) − 1

]
, (B1)

Sexc
33 = 2e2v2

F

(2π i)2

�2
L�2

R

(2πa)2ν+2/ν

∫
dtdt1 . . . dt4

∑
{ηk}

η1 . . . η4 eie∗V t34 e2νGη3η4 (0,t34 )e
2
ν
Gη1η2 (0,t12 )

× ∂x[G−η1 (x − L, t − t1) − G−η2 (x − L, t − t2)]∂y[G+η1 (y − L,−t1) − G+η2 (y − L,−t2)]

× [
e−Gη1η3 (L,t13 )eG

η1η4 (L,t14 )eG
η2η3 (L,t23 )e−Gη2η4 (L,t24 ) − 1

]
. (B2)
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1. t and t1 integrals

The first complication arising at finite temperature comes from the the t and t1 integrals as the Green’s function derivative no
longer reduces to a simple delta function. Instead of Eq. (23), one has at finite temperature

∂xGη1η2 (x, τ ) = − πχ12(τ )θ/vF

tanh [πθ (iτ0 − χ12(τ )(τ − x/vF ))]
, (B3)

allowing us to write the general integrated form as (assuming here x > 0)

∫
dt∂x[Gηη1 (x, t − t1) − Gηη2 (x, t − t2)] = i

π (1 − 2θτ0)

vF
(η1 − η2) − 2πθ

vF
(t1 − t2). (B4)

This, in turn, enables us to write (up to leading order in the cutoff)

S23 = e2�2
L�2

R

2(2πa)2ν+2/ν

∫
dt2dT dτ

∑
{ηk}

η1 . . . η4 eie∗V τ e2νGη3η4 (0,τ )e
2
ν
Gη1η2 (0,t2 )[i(η1 − η2) − 2θt2]

× [i(η1 − η2) − 2θt2 + iν(η3 − η4) − 2νθτ ]

[
eG

η1η4 (L,−T +τ/2)eG
η2η3 (L,−t2−T −τ/2)

eGη1η3 (L,−T −τ/2)eGη2η4 (L,−t2−T +τ/2)
− 1

]
, (B5)

Sexc
33 = − e2�2

L�2
R

2(2πa)2ν+2/ν

∫
dt2dT dτ

∑
{ηk}

η1 . . . η4 eie∗V τ e2νGη3η4 (0,τ )e
2
ν
Gη1η2 (0,t2 )[i(η1 − η2) − 2θt2]2

×
[

eG
η1η4 (L,−T +τ/2)eG

η2η3 (L,−t2−T −τ/2)

eGη1η3 (L,−T −τ/2)eGη2η4 (L,−t2−T +τ/2)
− 1

]
, (B6)

where we flipped the sign of t2 and, following the same steps as the zero-temperature calculation, we changed variables from
t3, t4 to T = (t3 + t4)/2 and τ = t3 − t4.

2. T integral

At this point, one notices that the variable T is only present in the final term, allowing us to perform the corresponding integral
yielding

Fη3,η4 (t2, τ ) =
∫

dT

[
eG

η1η4 (L,−T +τ/2)eG
η2η3 (L,−t2−T −τ/2)

eGη1η3 (L,−T −τ/2)eGη2η4 (L,−t2−T +τ/2)
− 1

]

= − 2

πθ

sinh (πθt2) sinh (πθτ + iα(η3 − η4))

sinh (πθ (t2 + τ ) + iα(η3 − η4))

[
πθ (t2 + τ ) + iα(η3 − η4) − i

π

2
(η3 − η4)

]
, (B7)

with the shorthand notation α = πθa
vF

.
This then leaves us with the following expressions for the current correlations:

S23 = e2�2
L�2

R

2(2πa)2ν+2/ν

∫
dt2dτ

∑
{ηk}

η1 . . . η4 eie∗V τ e2νGη3η4 (0,τ )e
2
ν
Gη1η2 (0,t2 )[i(η1 − η2) − 2θt2]

× [i(η1 − η2) − 2θt2 + iν(η3 − η4) − 2νθτ ]Fη3,η4 (t2, τ ), (B8)

Sexc
33 = − e2�2

L�2
R

2(2πa)2ν+2/ν

∫
dt2dτ

∑
{ηk}

η1 . . . η4 eie∗V τ e2νGη3η4 (0,τ )e
2
ν
Gη1η2 (0,t2 )[i(η1 − η2) − 2θt2]2Fη3,η4 (t2, τ ). (B9)
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3. t2 integral

Performing explicitly the summations over ηi, and making use of the symmetries in t2 and τ , one is left with

S23 = −Sexc
33 + ν

4e2�2
L�2

R

(2πa)2ν+2/ν

∫
dτ cos(e∗V τ )e2νG(−τ )

∫
dt2
(
e

2
ν
G(t2 ) − e

2
ν
G(−t2 )){F+1(t2, τ ) − iθτ [F0(t2, τ ) − F+1(t2, τ )]},

(B10)

Sexc
33 = − 4e2�2

L�2
R

(2πa)2ν+2/ν

∫
dτ cos(e∗V τ )e2νG(−τ )

∫
dt2
[(

e
2
ν
G(t2 ) + e

2
ν
G(−t2 )

)− 2iθt2
(
e

2
ν
G(t2 ) − e

2
ν
G(−t2 )

)]
[F0(t2, τ ) − F+1(t2, τ )],

(B11)

where we introduced the shorter notation G(t ) = G−+(0, t ) along with Fη3−η4
2

(t2, τ ) = Fη3,η4 (t2, τ ).
Carrying out the integration over t2, one can show, after rather lengthy but straightforward derivations, that

S23 = − Sexc
33 + ν

8π

(πθ )2

e2�2
R�2

L

(2πa)2ν+2/ν

∫
dτ cos (e∗V τ )e2νG(−τ )[iH0(τ ) − (1 + iθτ )M0(τ )], (B12)

Sexc
33 = − 8π

(πθ )2

e2�2
R�2

L

(2πa)2ν+2/ν

∫
dτ cos (e∗V τ )e2νG(−τ )(1 + 2iθτ )M0(τ ), (B13)

where

M0(τ ) = Re

{
α2/ν2π (−1)1/ν sinh2 (πθτ )

[sinh (πθτ + 3iα)]2/ν

}
, (B14)

H0(τ ) = (2α)2/νe−πθτ sinh (πθτ )
�
(
1 + 1

ν

)
�
(

1
ν

)
�
(
1 + 2

ν

) 2F1

(
1,

1

ν
,

2

ν
, 1 − e−2πθτ

)
. (B15)

4. Final τ integral

We are now left with a set of three integrals remaining. Two of those can be carried out for generic values of the filling factor.
Indeed, using known results [38], one can readily compute the intermediate function

κ0(z) =
∫

dveizv

(
sinh(iα)

sinh(v + iα)

)2ν 1

[sinh(v + 3iα)]2/ν−2

= − 22/ν+2ν−3α2ν (−1)1/νe−πz/2

∣∣�( 1
ν

+ ν − 1 + i z
2

)∣∣2
�
(

2
ν

+ 2ν − 2
) , (B16)

and from this obtain ∫
dτ cos (e∗V τ )e2νG(−τ )M0(τ ) = (−1)1/να2/ν

θ

[
κ0

(
e∗V
πθ

)
+ κ0

(
−e∗V

πθ

)]
, (B17)

as well as ∫
dτ cos (e∗V τ )e2νG(−τ )θτM0(τ ) = (−1)1/να2/ν

πθ

[
1

i
∂zκ0(z)|z= e∗V

πθ

+ 1

i
∂zκ0(z)|z=− e∗V

πθ

]
. (B18)

The final integral remaining involves the function H0(τ ) defined in Eq. (B15). While it cannot be performed formally, one
can make progress by noticing that the hypergeometric function only involves integer coefficients thus enabling a finite-order
expansion. The resulting coefficients, however, depend on the inverse filling factor 1/ν in a nontrivial way. While the expansion
can be carried out for any Laughlin filling factor, we choose to show only the results at ν = 1/3. One then has

2F1(1, 3, 6, 1 − e−2πθτ ) = −30

12(e−2πθτ − 1)

[
24πθτe−4πθτ

(e−2πθτ − 1)4 + 12

(e−2πθτ − 1)3 + 18

(e−2πθτ − 1)2 + 4

(e−2πθτ − 1)
− 1

]
. (B19)

Substituting this back into Eq. (B15), one is able to carry out the only remaining integral, namely∫
dτ cos (e∗V τ )e

2
3 G(−τ )H0(τ ) = i

(2α)20/3

8πθ

(∣∣�( 7
3 + i eV

6πθ

)∣∣2
�
(

14
3

) {
π cosh

(
eV

6θ

)
− 2 sinh

(
eV

6θ

)
Im

[
ψ

(
7

3
+ i

eV

6πθ

)]}

−
∣∣�( 1

3 + i eV
6πθ

)∣∣2
�
(

5
3

) eV

6πθ
sinh

(
eV

6θ

)[
23

120
+ 9

160

(
eV

3πθ

)2
])

. (B20)
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Combining all these results, this finally leaves us with the final expressions for the current correlations at finite temperature
and filling factor ν = 1/3,

S23 = − 2

3

4e2�2
L�2

R

π2v3
F

(
θ

vF

)11/3
{

sinh

(
eV

6θ

)∣∣�( 7
3 + i eV

6πθ

)∣∣2
�
(

14
3

) Im

[
ψ

(
7

3
+ i

eV

6πθ

)]

− 1

8

∣∣�( 1
3 + i eV

6πθ

)∣∣2
�
(

5
3

) eV

6πθ
sinh

(
eV

6θ

)[
23

120
+ 9

160

(
eV

3πθ

)2
]}

, (B21)

Sexc
33 = 4e2�2

L�2
R

π2v3
F

(
θ

vF

)11/3

sinh

(
eV

6θ

)∣∣�( 7
3 + i eV

6πθ

)∣∣2
�
(

14
3

) Im

[
ψ

(
7

3
+ i

eV

6πθ

)]
. (B22)
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