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Colored delta-T noise in fractional quantum Hall liquids
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Photons are emitted or absorbed by a nanocircuit under both equilibrium and nonequilibrium situations. Here,
we focus on the nonequilibrium situation arising due to a temperature difference between the leads of a quantum
point contact and study the finite-frequency (colored) noise. We explore this delta-T noise in the finite-frequency
regime for two systems: conventional conductors described by Fermi liquid scattering theory and the fractional
quantum Hall system at Laughlin filling fractions, described by the chiral Luttinger liquid formalism. We study
the emission noise, its expansion in the temperature difference (focusing on the quadratic component), as well as
the excess emission noise defined with respect to a properly chosen equilibrium situation. The behavior of these
quantities is markedly different for the fractional quantum Hall system compared to Fermi liquids, signaling the
role of strong correlations of the fractional quantum Hall effect and the importance of the nature of the charge
carriers tunneling across the junction.
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I. INTRODUCTION

The study of nonequilibrium noise in mesoscopic devices
has generated new investigations, both on the experimental
and on the theoretical side. Instead of using the standard
method to impose a nonequilibrium situation by connecting
the device to leads with different voltages and generating
so-called quantum shot noise, experimentalists have opened
the field of “delta-T noise” by choosing instead to apply a
thermal gradient and zero voltage drop to the device. In this
situation, provided that electron-hole symmetry is respected,
a finite zero-frequency nonequilibrium noise can be measured
while the current flowing through the device remains zero.

Voltage-bias-induced quantum noise [1–4] has always been
considered as a crucial diagnosis of quantum transport, pro-
viding complementary information about the charge of the
current carriers or their statistics. Early theoretical works on
delta-T noise suggest that it is also relevant to character-
ize nanoscopic devices [5,6]. In particular, delta-T noise in
one-dimensional correlated systems depends on the scaling
dimension of the operators which describe the elementary
excitations of the system.

On the experimental side delta-T noise has been studied in
atomic break junctions representing quantum point contacts
[5], tunnel junctions [7], and integer quantum Hall effect edge
channels [8], under a weak or a strong temperature bias. Also,
it has recently been employed to study heat transport along the
edges [9]. On the theoretical side, a pioneering contribution
[10,11] examined the transport properties of Luttinger liquids
in the exactly solvable model of a multiterminal “star graph,”
where each Luttinger liquid is characterized by a different
voltage and temperature. Delta-T charge noise (and in some
instances heat noise [12,13]) has also been already studied
in a vast variety of systems, such as quantum point contacts
and tunnel junctions [6,14,15], resonant levels or quantum
dots in the Kondo regime [16], fractional Quantum Hall
systems [17–19], bosonic systems and quantum spin Hall sys-
tems [20], and normal metal–superconductor junctions [21].

All of these studies have focused uniquely on zero-frequency
noise, the experimental regime where the “white noise” has
a weak dependence on the frequency because this frequency
scale is sufficiently high so that 1/ f noise can be neglected,
but also sufficiently low to avoid specific features associated
with the nonequilibrium conditions imposed on the device.

Voltage-induced nonequilibrium noise at high frequency,
dubbed colored noise [22,23], was discussed theoretically
about a quarter of a century ago [24,25]. It was pointed out
that its measurement requires a quantum treatment of both
the noise detector and the nanoscopic device under study.
It is therefore considered a subtle quantity because of the
necessity to distinguish emission noise, where the nanoscopic
device emits microwave photons to the quantum detector,
from absorption noise, where the detector (which in prac-
tice has photon occupations specified by the Bose-Einstein
distribution, for instance) emits photons which are absorbed
by the nanoscopic device. Voltage-induced finite-frequency
(colored) noise in normal metal junctions is characterized by
cusps in the emission and absorption noise located at frequen-
cies corresponding to the Josephson frequency associated with
the electron charge. Experimentalists have for a long time
shied away from the measurement of colored noise because
of the inherent difficulties of the measurement scheme, but
some successes have been won in superconducting hybrid
junctions [26,27] and with the refinement of experimental
detection techniques, recently the Josephson frequency [28]
of fractional quasiparticles of the fractional quantum Hall
effect (FQHE) was measured [29–31], constituting the first
finite-frequency measurement of noise in a correlated electron
system, and an alternative diagnosis of the fractional charge
(as compared to the measurement of the Fano factor).

The questions that we want to address in the present work
are simple, but the answer may not be so obvious: What
is the frequency spectrum of photons emitted or absorbed
from a nanoscopic device when the nonequilibrium condition
is imposed solely by a temperature gradient? In particular,
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FIG. 1. Schematic description of the device for the two distinct
formalisms employed in this work: (a) device corresponding to
the Landauer-Büttiker formalism and (b) device corresponding to the
edge state formalism for the FQHE. The precise location where the
noise is computed in each case is explained in the main text.

for the strongly correlated state of the FQHE, does finite-
frequency delta-T noise have specific features which depart
from a single-electron picture? Can these features be tied to
the scaling dimension of the operators describing the quasi-
particles which tunnel from one edge to the other? Similar
questions have been addressed in recent works [13,32] for nor-
mal metal leads connected directly or through a quantum dot.
As a starting point, we explore the physics of finite-frequency
delta-T noise in a (normal metal) Fermi liquid system. This
will subsequently be used as a benchmark to study finite-
frequency delta-T noise in the fractional quantum Hall effect,
the focus of this article.

The paper is organized as follows: In Sec. II the device
geometry is discussed for the two formalisms; in Sec. III we
introduce the emission and absorption noise, as well as the
excess emission noise and the thermal-like contribution of
finite-frequency noise; in Sec. IV we discuss finite-frequency
noise for Fermi liquids; in Sec. V we focus on the frac-
tional quantum Hall effect regime; and we conclude in
Sec. VI.

II. DEVICE DESCRIPTION

We wish to address the finite-frequency spectrum due
to a temperature gradient using two distinct approaches,
Landauer-Büttiker scattering theory for describing electrons,
and chiral Luttinger liquid theory for edge states of the
FQHE. We show here the two experimental geometries, and
explain where the currents should be measured to access the
temperature-driven noise.

In the Landauer-Büttiker picture of Fig. 1, electrons em-
anating from the left hot contact (red) and the right cold
contact (blue) are impinging on and emanating from the
scattering region (central grey circle) via ideal leads. Due

to electron-hole symmetry (which is assumed here) no net
current flows from right to left, but a nonequilibrium current
noise is measured at an arbitrary location within the right or
left lead. The advantage of the scattering theory approach is
that within the single-electron picture, it constitutes an exact
model.

In the fractional quantum Hall effect geometry [Fig. 1(b)]
two edge states that are connected to a cold (hot) ohmic con-
tact counterpropagate on the top (bottom) side of a Hall bar
(the yellow region is a uniform FQHE fluid at filling fraction
ν). These are put in proximity at the location of a quantum
point contact (QPC) (central region) where quasiparticles can
tunnel between the edges. The nonequilibrium noise in this
setup is computed within the chiral Luttinger liquid approach,
and is associated with quasiparticle tunneling events. We fo-
cus mainly on the tunneling current at the position of the
QPC, and more specifically on its fluctuations in time. The
corresponding tunneling noise can be readily related to the
current noise measured from the contacts L or R.

Note that for the trivial Laughlin fraction ν = 1, there is
a correspondence between the two setups. Indeed at filling
ν = 1 (integer quantum Hall regime), electrons, rather than
Laughlin quasiparticles, tunnel both ways between the top and
bottom edges. In this sense, the (Poissonian) noise measured
(for the tunneling regime) in the ideal leads of Fig. 1(a) is
identical to the tunneling noise of electrons being transferred
between the top and bottom edges of Fig. 1(b).

III. EMISSION, ABSORPTION, AND EXCESS NOISE

When considering finite-frequency noise, the quantum na-
ture of the noise detector needs to be described on the same
footing as the device under study [2]. There exist typically
two coupling schemes between the two circuits: an induc-
tive coupling scheme [24,25], where microwave photons are
exchanged between the device and a resonant (LC) circuit,
or a capacitive coupling scheme [33], where photons emitted
and/or absorbed by the device trigger inelastic transitions in
a nearby measuring circuit where current is measured. As a
result, in full generality, two distinct correlators need to be
defined in order to define the physically measured noise. The
emission noise describes the spectrum of microwave photons
emitted to the (quantum) noise detection device:

S+(ω) =
∫ +∞

−∞
dτ 〈δI (0)δI (τ )〉 eiωτ , (1)

where δI (τ ) = I (τ ) − 〈I (τ )〉 describes the deviation of the
current operator from the stationary current 〈I (τ )〉 = 〈I〉. The
absorption noise describes the absorption of microwave pho-
tons emitted from the detector:

S−(ω) =
∫ +∞

−∞
dτ 〈δI (τ )δI (0)〉 eiωτ . (2)

They are related by the equation S+(ω) = S−(−ω), which
allows us to consider only the emission noise from this
point onward. We focus on a situation where the two lead
reservoirs have the same chemical potential, while the left
(right) reservoir is at temperature TL (TR). In this situa-
tion, and in the presence of electron-hole symmetry, no net
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current flows (〈I〉 = 0), but the (nonequilibrium) emission
noise S+(ω, TR, TL ) �= 0 depends on both temperatures.

We now introduce the “thermal-like” contribution to the
noise:

Sth
+ (ω, TR, TL ) = 1

2 S+(ω, TR, TR) + 1
2 S+(ω, TL, TL ), (3)

which reduces exactly to the finite-frequency Johnson-
Nyquist thermal equilibrium emission noise when TR = TL.
Following Ref. [16], it is then convenient to define the excess
emission noise according to

�S+(ω, TR, TL ) = S+(ω, TR, TL ) − Sth
+ (ω, TR, TL ), (4)

where we have subtracted the thermal contributions of both
the leads from the emission noise. This quantity is measurable
experimentally, and reduces to the sole out-of-equilibrium
contribution in the noninteracting regime, even when the
transmission probability is energy dependent.

IV. FERMI LIQUIDS

We start by analyzing the general nonequilibrium noise in
a system of noninteracting fermions. Consider a two-terminal
phase-coherent system composed of fermionic reservoirs sep-
arated by a scattering region specified by a scattering matrix
S [which contains the amplitudes for a particle from reser-
voir L (R) to be transmitted or reflected in reservoir R or L;
for simplicity, we choose both leads to bear only a single
channel]. Each reservoir is described by a Fermi distribution
function:

fp(ω) = 1

e
h̄ω

kBTp + 1
, (5)

where p is the lead index.
Noise in such fermionic systems is caused by the trans-

mission of electrons from the left or right lead to the right
or left lead, accompanied by the absorption or emission of
photons, as depicted in Fig. 2. When considering emission
noise, an electron (top left panel) from the tail of the left
(high-temperature) Fermi function can lose energy and end
up in the vicinity of the Fermi level because there are free
states available. This can also happen in reverse (top right
panel), but to a lower extent, due to the thermal broadening of
the Fermi functions. We emphasize that the latter channel for
emission noise is specific to temperature-biased junctions. It
is absent for zero-temperature, voltage-biased junctions since
there are no states available below the Fermi level. The two
lower panels refer to absorption noise processes and both
electron transfer processes due to photon absorption are also
present for pure voltage-biased junctions.

Our starting point is the general formula for finite-
frequency emission noise [2]:

S+(ω) = 4e2

h

∫
dE

∑
pp′

[δLpδLp′ − s∗
Lp(E )sLp′ (E − h̄ω)]

× [
δLp′δLp − s∗

Lp′ (E − h̄ω)sLp(E )
]

× fp(E )[1 − fp′ (E − h̄ω)], (6)

where p and p′ are lead indices. Equation (6) corresponds to
the expression of the autocorrelation noise computed in the

TTRR TTLL TTRR
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εεεFF εεFF
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TTLL

hhωω hhωω

hhωωhhωω
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FIG. 2. The processes giving rise to the emission and absorption
noise, that is, the transmission of electrons from the right Fermi lead
to the left lead (or vice versa) accompanied by the [(a), (b)] emission
or [(c), (d)] absorption of photons of energy h̄ω. TR/L denote the
temperatures of the Fermi leads, where we assume TL > TR, and εF

denotes the chemical potential which is the same for both leads.

left lead. A few remarks are in order. Within the standard
assumptions of scattering theory for finite-frequency noise
derivations [34], physical requirements indicate that the finite-
frequency noise does not depend on where along the left
lead the noise is computed (see Fig. 1). Moreover, Eq. (6)
still seems to lack right-left symmetry (in principle, the la-
bel L should be replaced by R in this equation in order to
compute the noise in the right lead). However, within the as-
sumptions mentioned below concerning the scattering matrix
energy dependence, it is straightforward to show that right-left
symmetry is restored, which justifies the lack of lead label
for S+(ω). This right-left symmetry is indeed explicit in the
expressions for the thermal and excess noise of Eqs. (8) and
(9) below, where the L and R lead labels in the Fermi functions
can be interchanged.

The scattering matrix is described by the minimal
parametrization

S =
(

sLL sRL

sLR sRR

)
=

(
i
√

1 − T
√
T

√
T i

√
1 − T

)
, (7)

where T (E ) is the energy-dependent transmission probability.
In the context of scattering theory, assuming that the mea-

surement frequency ω can be neglected in the scattering
matrix elements [spp′ (E − h̄ω) ≈ spp′ (E )] the emission noise
can be split into thermal (equilibrium) and nonequilibrium
(excess) contributions. The thermal-like contribution of the
emission noise, given by Eq. (3), reads, in the context of
scattering theory,

Sth
+ (ω, TR, TL ) = 2e2

h

∫
dE T (E ){ fL(E )[1 − fL(E − h̄ω)]

+ fR(E )[1 − fR(E − h̄ω)]}, (8)
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while the excess emission noise given by Eq. (4) reads

�S+(ω, TR, TL )

= 2e2

h

∫
dE T (E )[1 − T (E )][ fR(E ) − fL(E )]

× [ fR(E − h̄ω) − fL(E − h̄ω)], (9)

which naturally implies that it describes a purely
off-equilibrium quantity as �S+(ω, T, T ) = 0. Assuming
particle-hole symmetry, and using the basic properties of the
Fermi distribution, one can prove the following identities:

�S+(ω, TR, TL ) = �S+(−ω, TR, TL ), (10)∫ +∞

−∞
dω �S+(ω, TR, TL ) = 0. (11)

The result of Eq. (10) suggests that the excess emission noise
is symmetric with respect to frequency (parity rule) so that
it does not distinguish between emission and absorption pro-
cesses. This symmetry property then allows us to obtain the
result of Eq. (11) that the excess emission noise also satisfies
a sum rule, where the noise integrated over all frequencies is
zero. These features of the excess emission noise will be later
examined for fractional quantum Hall liquids.

In the remainder of this section, we assume the transmis-
sion coefficient to be constant, T (E ) = T , as the scattering
theory result will be compared to the (Fermi) filling fraction
ν = 1 of the quantum Hall effect, where in the wide-band
limit, Ohm’s law is satisfied and a constant transmission co-
efficient is implicit. Note that in this situation, at equilibrium
(TL = TR = T ), the thermal contribution of the emission noise
has the analytical expression

Sth
+ (ω, T, T ) = 4e2

h
T h̄ω

exp(h̄ω/kBT ) − 1
, (12)

which, by definition of Eq. (3), yields the usual zero-
frequency Johnson-Nyquist thermal noise as ω → 0.

Small temperature gradient

We define the temperature difference �T = TR − TL and
the average temperature Tavg = (TR + TL )/2. Working up to
lowest order in the transmission amplitude, we ignore the T 2

term in the nonequilibrium part of the noise for later com-
parison with the weak-backscattering regime of the fractional
quantum Hall effect.

The full emission noise (S+) is plotted in Fig. 3, for a fixed
gradient (�T = 10 mK) and several average temperatures.
We note that in the small �T regime, S+(ω, TR, TL ) is almost
equal to Sth

+ (ω, Tavg, Tavg), given by Eq. (12), the difference
between the two being only O( �T

Tavg
). Going from the left to the

right of the plot, S+ corresponding to different Tavg are equal
for large, negative ω and decrease linearly. As we get closer to
ω = 0, S+ still keeps decreasing, but the curves corresponding
to different Tavg branch off, and the curves with higher Tavg

decay at a slower rate. The temperature-dependent decay con-
tinues for ω > 0 and eventually, for large, positive ω, all the
curves vanish. These features can be understood as a conse-
quence of the thermal broadening of the Fermi distributions,
by looking at Fig. 2, where ω > 0 corresponds to Figs. 2(a)

FIG. 3. Emission noise at different Tavg, for the regime �T �
Tavg, for fixed �T = 10 mK (�T = 0 for Tavg = 0 mK). The noise
is computed for a transmission T = 0.01, and expressed in units of
S(0)

+ = e2T /(2h̄). The decay rate of the spectrum as ω increases is
related to the average temperature of the leads. Higher Tavg leads to
a slower decay which is a consequence of the Fermi distributions
broadening. In the inset, we subtracted the zero-temperature emis-
sion noise from the finite-temperature one.

and 2(b) (emission processes) and ω < 0 to Figs. 2(c) and 2(d)
(absorption processes.) A greater number of higher energy
states are occupied as Tavg is increased; hence, for ω > 0, S+
decays slower as a function of frequency until it ultimately
vanishes, corresponding to energies where the state occupa-
tion is negligible. Likewise, for ω < 0, the slower decay of
S+ for higher Tavg can be understood in a similar fashion.
For large negative frequency, the distinction between Fermi
distributions corresponding to different Tavg is negligible, and
the noise is essentially the same, caused by absorption of
high-frequency photons by the low energy states. This picture
is better understood from the inset of Fig. 3, which shows the
difference between the emission noise at a given temperature
and the same quantity evaluated at zero temperature. This
reflects precisely the change in the occupation of the levels
due to a nonzero Tavg.

As pointed out earlier, the nonequilibrium consequences
of the temperature difference are completely masked by the
equilibrium thermal noise for �T � Tavg. This can also be
checked by plotting the emission noise for a fixed Tavg and
different �T where one finds that the curves almost all col-
lapse with the pure equilibrium thermal noise.

This motivates us to look at the excess emission noise
(�S+) given by Eq. (9), which has been designed specifically
to get rid of the thermal contributions in the noninteracting
regime and isolate the nonequilibrium contributions to the
noise arising from the temperature difference [16]. �S+ is
displayed in Fig. 4, the top panel showing the excess emission
noise for a fixed temperature gradient and several average
temperatures, while the bottom panel corresponds to a fixed
average temperature but several values of the temperature
gradient. In all cases, �S+ is characterized by a central peak at
ω = 0, where the noise is positive. Indeed, for small frequen-
cies, the �T -biased system is noisier than the corresponding
equilibrium system averaged over the two temperatures. �S+
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(a)

(b)

FIG. 4. (a) Excess emission noise at a fixed �T = 20 mK and
different Tavg and (b) excess emission noise at the same Tavg =
100 mK but different �T , both for �T � Tavg. The noise is com-
puted for a transmission T = 0.01, and expressed in units of S(0)

+ =
e2T /(2h̄). The spread of the excess noise spectrum scales linearly
with the average temperature of the leads, whereas the magnitude
of the excess noise increases quadratically with the temperature
difference.

then decreases gradually, bearing negative values for interme-
diate positive and negative frequencies, reaching a minimum
whose position scales with the average temperature. Negative
noise in the intermediate frequency regime suggests that there
is less noise in the �T nonequilibrium scenario compared to
an equilibrium situation of equal temperatures on both the
leads. Finally, for large positive or negative frequencies, the
excess noise vanishes, meaning that the temperature differ-
ence does not modify the noise substantially compared to the
equilibrium noise in this regime. The change in the sign of
�S+ for different frequency regimes can again be understood
as a consequence of the difference in the occupation of the
left and right Fermi leads. In the delta-T -biased regime, for
small frequencies, there is a higher number of processes con-
tributing to the noise compared to an equilibrium situation,
making the excess noise positive. On the contrary, for inter-
mediate frequencies, a negative excess noise is indicative of
fewer processes contributing to the noise compared to the
equilibrium scenario. As explained in Ref. [32], this can be
mathematically understood as a consequence of the difference
between frequency-shifted Fermi functions of Eq. (4) becom-
ing negative in some frequency windows while the difference

between the other Fermi functions of Eq. (4) remain positive
(or vice versa).

As predicted by the parity rule of Eq. (10), �S+ is an
even function of frequency, and the sum rule in Eq. (11)
has been checked numerically to be satisfied. We note that
for a fixed �T , the peak and minima are more pronounced
when the average temperature is small. This goes together
with an overall spread in frequency which increases linearly
as Tavg increases. However, for a fixed Tavg and increasing
�T , while the spread of the spectrum remains the same, the
size of the peak in �S+ increases quadratically. It follows
that the spread in frequency of the �S+ spectrum seems to
be governed by the average temperature, Tavg, of the system,
while the magnitude of the excess noise, which reflects the
degree of nonequilibriumness of the noise, seems to be largely
dictated by the temperature difference, �T . We express this
quantitatively as �S+(ω, TR, TL ) ∼ �T 2/TavgS (ω/Tavg).

A nonequilibrium scenario where TR � TL, such that we
can essentially consider TR ∼ 0, is of interest due to its
relatively easy experimental accessibility [7]. Such a tem-
perature bias gives results similar to the ones obtained for
a small temperature gradient, and has been dealt with in
Appendix A.

V. FRACTIONAL QUANTUM HALL EFFECT

A. Preliminary remarks

The origin of nonequilibrium noise in quantum transport is
a consequence of the stochastic nature of quantum transport.
In the single-electron picture this stochasticity has two distinct
origins: first, it specifies the probability that electron states
emanating from the contact and incident on the device are
occupied or not (distribution function). Second, an occupied
electron state can be transmitted to other contacts or reflected
back (transmission probability). In the FQHE regime, which
is treated here with a Hamiltonian formalism, these concepts
have a parallel as the temperature of the contacts naturally
appears as a parameter of the correlation functions describing
the edge excitations and the tunnel coupling between dif-
ferent edges is associated with the transmission properties.
We believe here that both sources of stochasticity need to be
included in the discussion of delta-T noise for quasiparticles
in the FQHE, in the same spirit as the shot-noise calculation
of Ref. [35].

To our knowledge, Ref. [10] seems to be the first paper
to examine anyonic transport in multiterminal systems in
the presence of a temperature gradient for the exactly solv-
able model of a “star graph.” In this model, which follows
closely the treatment of Ref. [36], an effective S matrix relates
the incoming and outgoing bosonic fields of the different
channels at the junction. A further work by the authors of
Ref. [10] considers a two-terminal system in the absence
of backscattering and examines the nonequilibrium finite-
frequency noise in the presence of a temperature gradient [11],
employing the same exact model. While these pioneering
works provide useful answers for this class of exactly solv-
able anyonic models—by construction—they are not able to
address the weak-backscattering limit where fractional quasi-
particles tunnel from one chiral edge of the FQHE to another
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independently, as the quasiparticle tunneling operator is not
relevant anymore [37].

Our motivation here is precisely to compute delta-T noise
in the weak-backscattering regime where the tunneling of
Laughlin quasiparticles is described by a Poissonian process,
as was done for the zero-frequency noise in Ref. [17]. Here
we adopt the same philosophy as Ref. [17], except that we ex-
tend our study to the finite-frequency emission and absorption
noise.

B. Luttinger liquid model

We consider a Hall bar in the fractional quantum Hall
(FQH) regime, with a Laughlin filling factor, i.e., ν =
1/(2n + 1) (n ∈ N ). We want to analyze the behavior of delta-
T noise in these systems, which constitutes the central part of
this work. FQH systems host edge states that can be described
by a chiral Luttinger liquid Hamiltonian given by [2,38]

H0 = vF

4π

∫
dx[(∂xφR)2 + (∂xφL )2], (13)

where φR/L are chiral bosonic fields that describe the right-
and left-moving modes, propagating with velocity vF . The
bosonic fields are quantized by the commutation relation
[φR/L(x), φR/L(y)] = ±iπsgn(x − y) and are related to the
quasiparticle operators on the edge through the identity

ψR/L(x, t ) = UR/L√
2πa

e±ikF xe−i
√

νφR/L (x,t ), (14)

where a is a short-distance cutoff, UR/L are the Klein factors,
and kF the Fermi momentum. We further equip the Hall bar
with a QPC, placed at position x = 0, allowing tunneling
between the counterpropagating edges. Working in the weak-
backscattering regime, where quasiparticles are allowed to
tunnel between the edges, we need to add a tunneling term
to the Hamiltonian,

HWB(t ) = �0ψ
†
R(0, t )ψL(0, t ) + H.c., (15)

where �0 is the tunneling amplitude. With this, the tunneling
current operator can be calculated to be

IT (t ) = ie∗�0ψ
†
R(0, t )ψL(0, t ) + H.c., (16)

where e∗ = νe is the quasiparticle charge.
We compute the delta-T emission noise associated with the

backscattering current at the QPC using the Keldysh formal-
ism, to lowest order (�2

0) in the tunneling amplitude [2]:

S+(ω, TR, TL ) =
(

e∗�0

h̄πa

)2 ∫
dτ eiωτ eνGR (−τ )+νGL (−τ ), (17)

where TR, TL are the temperatures at the right- and left-moving
edges, respectively, ω is the frequency at which the noise is
measured, and GR/L are the finite-temperature bosonic Green’s
functions of the bosonic fields φR/L, typical of the chiral Lut-
tinger liquids modeling the FQHE:

GR/L(τ ) = ln

[
sinh

(
iπ kB

h̄ TR/Lτ0
)

sinh
(
π kB

h̄ TR/L(iτ0 − τ )
)
]
, (18)

with τ0 = a/vF being a short time cutoff. For TR = TL = Tavg

in Eq. (17), the thermal equilibrium emission noise can be

(a)

(b)

FIG. 5. (a) Emission and (b) excess noise (rescaled) at a QPC
comprising two FQH edges in the weak-backscattering regime,
held at a 10-mK temperature difference, at an average tempera-
ture of 100 mK. The noise is here expressed in units of S̃(0)

+ =
( e∗�0

π h̄vF
)2(2π

kB
h̄ )2ν−1 τ2ν

0
�(2ν ) and computed for a small time cutoff τ0 such

that kBτ0/h̄ = 10−5 K−1. Note that the emission noise looks the same
as the equilibrium noise since the consequences of the temperature
difference are 103 times smaller than the equilibrium contributions.

evaluated analytically and is given by

Sth
+ (ω, Tavg, Tavg) =

(
e∗�0

h̄πa

)2

τ0

(
2πkBTavg

h̄
τ0

)2ν−1

× e− h̄ω
2kBTavg

∣∣∣�(
ν + ih̄ω

2πkBTavg

)∣∣∣2

�(2ν)
. (19)

C. Small temperature gradient

We now discuss the properties of delta-T noise in the
strongly correlated regime of the Laughlin fractional quantum
Hall effect. The delta-T emission and excess noise, for the
weak-backscattering regime where anyons tunnel across the
QPC, are plotted in Fig. 5, for several values of the fractional
filling factors ν = 1/3, 1/5, 1/7. For the sake of comparison
with the Fermi liquid results of the previous section, we use
here the same convention of excess emission noise, which was
defined in Eq. (4). Note that, although this definition ensures
that, in the noninteracting regime, all thermal contributions
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are filtered out, leaving only the purely nonequilibrium con-
tributions to the noise, such a cancellation is not guaranteed in
the FQH regime and may only be partial.

In the FQH regime, similarly to the Fermi liquid case, the
full emission noise (S+) is almost equal to the equilibrium
thermal noise (Sth

+), given in Eq. (19). However, the general
behavior is quite different from that of the Fermi liquid case,
as the emission noise now shows a central asymmetric peak at
small negative frequencies, then decreases for large positive
and negative frequencies. The sharp decrease for positive fre-
quencies is reminiscent of the Pauli blocking which restricts
the emission of photons due to the presence of a Fermi sea.
On the other hand, the slow decrease of S+ for negative
frequencies has no Fermi liquid equivalent. This behavior
at high frequency can be readily understood by considering
the asymptotics of Eq. (19). For large, positive frequencies,
one has Sth

+ (ω → ∞, Tavg, Tavg) ∼ ω2ν−1exp(− h̄ω
2kBTavg

), thus
explaining the rapid exponential decay with frequency. How-
ever, in the limit of large negative frequency, it reduces to a
simple power law in ω given by Sth

+ (ω → −∞, Tavg, Tavg) ∼
ω2ν−1. This power-law behavior is directly related to the scal-
ing dimension of the tunneling operator. It has been checked
numerically.

Interestingly, the noise spectrum always satisfies the in-
equality S+(−ω, TR, TL ) � S+(ω, TR, TL ), independently of
the temperatures of the incoming edge states. This property
can be proven exactly in the case of Fermi liquid leads and
holds irrespective of the details of the junction or the temper-
ature difference. It amounts to stating that the rate at which
the system absorbs energy from the electromagnetic field is
always greater than or equal to the rate at which it transfers
energy to the field [32]. This is typically interpreted in terms
of processes involving electrons and holes being scattered
in the conductor before recombining to emit or absorb the
energy of a photon [39]. It is quite striking to observe that this
generalizes to the case of FQH devices, suggesting a similar
interpretation based on quasiparticle-quasihole pairs.

Contrary to the Fermi liquid case, the excess emission
noise �S+ is asymmetric in frequency for nontrivial Laughlin
fractions, which constitutes another example of the role of
electronic correlations in the FQH regime. This breaks the
parity rule of Eq. (10), departing from the Fermi liquid picture.
However, and quite importantly, the excess emission noise
still satisfies the sum rule of Eq. (11), despite its asymmetry
in frequency. This can be readily understood upon integrating
the expression of Eq. (17) over the whole frequency range,
noticing from Eq. (18) that GR/L (τ = 0) = 0, so that the inte-
grated emission noise reduces to a constant, independently of
the temperature of the leads. This result for the sum rule has
also been checked numerically.

We now look at the behavior of �S+ focusing on the
filling factor ν = 1/3 FQH, first as a function of the average
temperature (Tavg) for a fixed temperature difference (�T ),
and then as a function of �T for a fixed Tavg. The results
are displayed in Fig. 6. First, we find that the (�T, Tavg)
dependence of �S+ for ν = 1/3 FQH is largely similar to
that of the Fermi liquid regime. Indeed, even in this strongly
correlated system of the FQHE, we find that the spread in
frequency of the noise spectrum is a function of the average

(a)

(b)

FIG. 6. (a) Excess emission noise at a fixed �T = 20 mK and
different Tavg for FQH ν = 1/3 edges and (b) excess emission noise
at the same Tavg = 100 mK but different �T for FQH ν = 1/3
edges, both for �T � Tavg. The noise is here expressed in units of

S̃(0)
+ = ( e∗�0

π h̄vF
)2(2π

kB
h̄ )2ν−1 τ2ν

0
�(2ν ) and computed for a small time cutoff

τ0 such that kBτ0/h̄ = 10−5 K−1. Similar to the Fermi liquid regime,
the spread of the excess noise spectrum is dictated by the average
temperature of the leads, whereas the magnitude of the excess noise
is fixed largely by the temperature difference.

temperature of the entire system, whereas the magnitude of
the excess noise depends primarily on the temperature dif-
ference between the two FQH edges. Other filling fractions
display the same behavior (not shown). This behavior can
be described quantitatively by an expression of the form
�S+(ω, TR, TL )) ∼ T 2ν−3

avg �T 2S (ω/Tavg), for small �T . As
�T increases, the higher-order contributions become more
important and we observe deviations from this behavior.

Comparing the results of Fig. 4 to those of Fig. 6, one first
notices an overall sign flip of the excess emission noise with a
similar-looking structure involving three extrema. The central
zero-frequency peak of the Fermi liquid case is now shifted
toward negative frequency, signaling a strong reduction of the
absorption. While the side peaks are also present, they differ
from the Fermi liquid case in that they are no longer symmet-
ric, occurring at frequencies that are seemingly unrelated, with
a bigger amplitude at positive frequencies, corresponding to
a stronger enhancement of the emission. The corresponding
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energy scales obviously depend on the average temperature,
but more importantly, they show a nontrivial dependence on
the scaling dimension, set by ν in this regime. The asymmetric
behavior is qualitatively reminiscent of the one observed for a
resonant level asymmetrically coupled to Fermi liquids [32],
and as such could be related to the nontrivial energy depen-
dence of the scattering at the QPC, which, in our case, directly
arises from the nontrivial scaling dimension of the tunneling
operator in the weak-backscattering regime.

For completeness, we now consider the strong-
backscattering regime of the FQHE, where electrons, instead
of anyons, tunnel across the QPC. This regime can be
accessed by invoking the standard duality properties of the
chiral Luttinger liquid description of the edge states, which
amounts to simply replacing ν → 1/ν and e∗ → e in Eq. (17),
giving us

S+(ω, TR, TL ) =
(

e∗�0

h̄πa

)2 ∫
dτ eiωτ e

1
ν
GR (−τ )+ 1

ν
GL (−τ ). (20)

The emission noise S+ in the strong-backscattering regime
is closer to the one of Fermi liquids than that of the FQH
weak-backscattering regime, rapidly decaying for ω > 0 and
growing for ω < 0, without any significant features. For neg-
ative frequencies, the emission noise now grows as a power
law of |ω|2/ν−1, as opposed to the simple linear-in-frequency
behavior observed in the Fermi liquid case. A simple inter-
pretation of this behavior of the emission noise is hard to
come by, but one may point out that this is associated with
the scaling dimension of the tunneling operator, which now
involves electrons rather than anyons.

The excess noise �S+ in the strong-backscattering regime
also satisfies the sum rule which can be readily checked by
integrating Eq. (20) over all frequencies. However, to see
this explicitly, careful examination of the excess noise at
extremely high frequencies is required. This is actually an
artifact of the calculation as it happens for frequencies beyond
the scale set by the cutoff of the theory, namely, ω � vF /a.
These results are unphysical and only signal a breakdown of
the chiral Luttinger liquid description at such high energies.

Lastly, we note that the Luttinger liquid results map back
exactly to the Fermi liquid ones when setting ν = 1, as ex-
pected. This has been dealt with analytically in Appendix B.

D. Temperature gradient expansion

Unfortunately, Eq. (17) is not analytically tractable in
its full form, motivating us to treat it perturbatively in
the small-temperature-gradient limit. Following the zero-
frequency delta-T noise analysis of Ref. [17], starting from
TR/L = Tavg ± �T

2 where �T � Tavg, we expand the exponen-
tiated Green’s function perturbatively up to second order in
�T/2, giving us (we assume h̄ = kB = 1 in this section to
declutter the equations)

S+(ω, TR, TL ) = S0(ω, Tavg)

[
1 +

(
�T

2Tavg

)2

C2(ω, Tavg)

]
,

(21)

where

S0(ω, Tavg) =
(

e∗�0

πa

)2 ∫
dτeiωτ

×
[

sinh(iπTavgτ0)

sinh(πTavg(iτ0 + τ ))

]2ν

, (22)

and

C2(ω, Tavg) = 1

S0(Tavg, ω)

(
e∗�0

πa

)2

×
∫

dτ eiωτ

[
sinh(iπTavgτ0)

sinh(πTavg(iτ0 + τ ))

]2ν

×
[

ν(π (iτ0 + τ ))2

sinh(πTavg(iτ0 + τ ))
− ν(iπτ0)2

sinh(iπτ0Tavg)

]
.

(23)

Here, S0(ω, Tavg) ≡ Sth
+ (ω, Tavg, Tavg) is just the equilibrium

thermal noise, already evaluated in Eq. (19). Both the integrals
of Eq. (23) can also be evaluated analytically. The details of
the calculation are summarized in Appendix C. The result for
C2 then reads

C2

(
ω

2πTavg

)
= ν

⎡
⎣−1 +

∣∣ν + iω
2πTavg

∣∣2

2ν(2ν + 1)

(
π2 + 4π Im

[
ψ

(
ν + 1 + iω

2πTavg

)]

+ 4

{
Im

[
ψ

(
ν + 1 + iω

2πTavg

)]}2

− 2Re

[
ψ ′

(
ν + 1 + iω

2πTavg

)])]
, (24)

where ψ is the digamma function and prime indicates a
derivative. The C2 coefficient in Eq. (24) is obtained directly
from an expansion of the emission noise, following in that
respect the convention adopted in earlier works [17,20]. This
corresponds to a slightly different definition of the excess
noise compared to the one used so far and defined in Eq. (4).
It corresponds to an excess noise where the reference noise is

chosen to be the equilibrium noise at the average temperature,
i.e., C2 = [S+(ω, TR, TL ) − S+(ω, Tavg)]/S+(ω, Tavg). While
one could equally introduce an equivalent coefficient by ex-
panding in �T the excess noise �S+ defined in Eq. (4),
this is merely a matter of convention, and ultimately al-
lows to highlight different properties. Here, we resort to the
present choice since it readily distinguishes the weak- and
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FIG. 7. The C2 coefficient for FQH edges, plotted with respect
to the dimensionless quantity θ = h̄ω

2πkBTavg
, with the QPC operating

in the weak-backscattering regime. The coefficient displays dips to
negative values for Laughlin fractions.

strong-backscattering regimes [17], which is not so clear with
other conventions.

Interestingly, it turns out that C2(ω, Tavg) actually does not
depend separately on frequency and temperature, but rather
in a combined way, being a function of the ratio ω/Tavg. The
behavior of this C2 coefficient, which encodes the relevant
“nonequilibrium” information, is plotted in Fig. 7 as a func-
tion of θ = h̄ω/(2πkBTavg) in the case of weak backscattering
at the QPC. There is a clear distinction between the behavior
for the Laughlin fractions and the one for the trivial integer
case. While for ν = 1, the C2 coefficient increases mono-
tonically, it displays a dip, crossing into negative values for
frequencies close to zero for the Laughlin fractions. The value
of the minimum is only marginally affected by the filling
factor (within the Laughlin sequence); however, the range of
frequency over which C2 < 0 is ν dependent and shrinks with
the filling factor. In all cases, the C2 coefficient grows as a
power law at high frequency; nevertheless, the contribution to
the emission noise is washed out by the exponential decay of
the equilibrium thermal noise.

In the strong-backscattering regime, which is accessed by
making use of the duality properties and simply replacing
ν → 1/ν in Eq. (24), we find that the curves for Laughlin
FQH show a strong resemblance to the ν = 1 curve, mono-
tonically increasing as a function of ω/Tavg with no dips to
negative values as shown in Fig. 8.

VI. CONCLUSIONS

This work dealt with the finite-frequency spectrum of
photons emitted from a thermal-gradient-generated nonequi-
librium transport in both Fermi and quantum Hall junctions.
The finite-frequency noise was characterized here by the emis-
sion noise as well as by the excess emission noise, which has
solely nonequilibrium origins in the Fermi picture as ther-
mal noises of each reservoir are subtracted. For electron-hole
symmetric Fermi junctions, the Landauer-Büttiker formalism
can be employed, and the excess noise does not distinguish

FIG. 8. The C2 coefficient for FQH edges, plotted with respect
to the dimensionless quantity θ = h̄ω

2πkBTavg
, with the QPC operating

in the strong-backscattering regime. Here, the coefficient remains
positive throughout.

between emission and absorption processes as it is an even
function of frequency. The excess emission noise of Fermi
liquid thus has a central positive peak, and changes sign at
moderate frequencies, acquires a minimum, and then vanishes
to zero. The height of the peak is controlled by the temperature
difference and its width is determined by the average temper-
ature.

For a QPC in the fractional quantum Hall regime, we
employed the chiral Luttinger liquid theory to compute in
the weak-backscattering regime the emission and excess noise
when both edges have different temperatures. We started
with the weak-backscattering regime which is dominated by
quasiparticle tunneling where new physics is expected. While
the emission noise vanishes for positive frequencies, it also
decays as a power law for negative frequencies, departing
strongly from the Fermi liquid picture. The power-law ex-
ponent is inherited from the FQHE bulk filling fraction,
but could be modified by nonuniversal effects at the QPC
[40,41]. The emission noise has a central, asymmetric peak
for small negative frequencies. The excess noise contains a
minimum for small negative frequencies, in sharp contrast
with the Fermi liquid case. The excess noise can be explored
by varying both the average temperature and the temperature
gradient.

The emission noise in the strong-backscattering regime,
where only electrons can tunnel between the two semi-infinite
Hall fluids, resembles strongly the Fermi liquid case (it decays
for positive frequencies and grows for negative frequencies)
but it follows a Luttinger liquid power law (rather than the
linear behavior predicted by Fermi liquid theory) at negative
frequencies.

It seemed judicious to follow Ref. [17] and explicitly per-
form a thermal gradient expansion of the emission noise (in
the weak-backscattering regime) to characterize the coeffi-
cient C2 of the quadratic term in the gradient, which was
obtained analytically as a function of the ratio between the
frequency and the average temperature. C2 is negative and
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has a minimum for small negative frequencies (in accor-
dance with the zero-frequency result). It grows for positive
frequencies and decays to zero for negative frequencies. C2

plotted as a function of frequency allows us to further point
out the differences with Fermi liquid theory. In the strong-
backscattering regime C2 behaves roughly as in the Fermi
liquid case, monotonically increasing, with no minima of neg-
ative contributions.

C2 is able to distinguish the scenarios of quasiparticle trans-
mission across the QPC in the weak-backscattering regime
(where the scaling dimension of the tunneling operator is
less than 1), and electron transmission across the QPC in the
strong-backscattering regime (where the scaling dimension of
the tunneling operator is greater than 1). The distinguishing
factor is the dip to negative values in the weak-backscattering
regime, as such a feature is absent in the strong-backscattering
case. C2 being negative across a range of frequencies is
hence a robust signature of scaling dimensions being less
than 1, which is related to anyonic statistics in some sce-
narios. Note that a negative dip in the finite-frequency C2

is not a feature of a generic strongly correlated system. For
example, in a nonchiral Luttinger liquid, where the scaling
dimension is greater than 1, we see a behavior closer to the
strong-backscattering regime of the QPC (not shown here).
We emphasize that C2 is strictly positive whenever the scaling
dimension is greater than or equal to one, while it is negative
over a range of frequencies for any scaling dimension less than
one.

This work does open the path to the investigation of
finite-frequency noise in mesoscopic systems driven out of
equilibrium by a thermal gradient. While the regime of Fermi
liquids was used here primarily as a benchmark and a point of
comparison, we believe that our study of the strongly corre-
lated regime of the fractional Hall effect deserves attention, as
on many instances, departures from the Fermi liquid picture
are observed.
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APPENDIX A: SCATTERING THEORY: LARGE
TEMPERATURE GRADIENT

Even for a large temperature gradient we find that the
decay rate of the emission noise is controlled strongly by the
average temperature of the system (see Fig. 9). The higher
the average temperature, the slower the decay. The excess
emission noise in this large-temperature-difference regime
displays a behavior analogous to the small-�T case. The
spread of the excess noise spectrum depends strongly on the
average temperature while the magnitude of the noise is fixed
by the temperature difference, as can be seen in Fig. 10. How-
ever, in contrast with the small-�T case, S+ may substantially

FIG. 9. Emission noise at different Tavg, for the regime TR � TL

or �T ∼ Tavg. The noise is computed for a transmission T = 0.01,
and expressed in units of S(0)

+ = e2T /(2h̄). Like in the small-�T
regime, we find that the noise spectrum decays slower with higher
average temperature.

differ from Sth
+ in this regime since, for large enough �T , the

magnitude of �S+ may be comparable to that of Sth
+ .

APPENDIX B: CONNECTION BETWEEN
SCATTERING THEORY AND THE INTEGER

QUANTUM HALL EFFECT

In this Appendix, we show that the emission noise of a
QPC between two integer quantum Hall (IQH) edges ex-
pressed in the language of Luttinger liquids is equivalent to the
noise in the transmission of electrons between Fermi liquids
described by scattering theory. We start from the emission
noise of Luttinger liquids with ν = 1:

S+(ω, TR, TL )

=
(

e∗�0

πa

)2 ∫
dτ eiωτ exp[GR(−τ ) + GL(−τ )], (B1)

where the Green’s function GR/L (τ ) is given by

GR/L (τ ) = −ln

[
sinh[iπTR/Lτ0]

sinh[πTR/L(iτ0 + τ )]

]
. (B2)

To proceed, we define

DR/L(ε) =
∫

dτeiετ DR/L(τ ), (B3)

where

DR/L(τ ) = 1

2πa

sinh[iπTR/Lτ0]

sinh[πTR/L(iτ0 + τ )]
. (B4)

Now

S+(ω, TR, TL ) = (2e�0)2
∫

dτ eiωτ DR(τ ) DL(τ ). (B5)
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FIG. 10. Left: Excess emission noise for a fixed �T = 60 mK and different Tavg. Right: Excess emission noise at the same Tavg = 100 mK
but different �T . The noise is computed for a transmission T = 0.01, and expressed in units of S(0)

+ = e2T /(2h̄). For both the plots we
consider TL, TR or �T ∼ Tavg. This regime gives a behavior of the noise spectra quite similar to the small-temperature-difference regime.

Inverting the Fourier transform relation in Eq. (B3),

S+(ω, TR, TL ) = (2e�0)2
∫

dτ eiωτ

∫
dωR

2π
e−iωRτ DR(ωR)

∫
dωL

2π
e−iωLτ DL(ωL )

= (2e�0)2
∫

dτ
dωR

2π

dωL

2π
2πδ(ω − ωR − ωL ) DR(ωR) DL(ωL ). (B6)

We now want to calculate DR/L(ωR/L ):

DR/L(ε) = 1

2πa

∫
dτ eiετ

[
sinh(iπTR/Lτ0)

sinh[πTR/L(iτ0 + τ )]

]
. (B7)

Setting πTR/Lτ0 ≡ α and πTR/Lτ ≡ u, we can coax this integrand into the following expression:

DR/L(ε) = 1

πTR/L

1

2πa
eεα/πTR/L

∫
du e

− iε(u−iα)
TR/L

sinh(iα)

sinh(iα − u)

= 1

πTR/L

1

2πa
eεα/πTR/L A1/2

(
ε

TR/L

)
, (B8)

where

Aν (z) = 1

2
(sinα)2νe− π

2 z |�(ν + iz/2)|2
�(2ν)

, (B9)

giving us

DR/L(ε) = 1

πTR/L

1

2πa
eεα/πTR/L sinα e− π

2 z

∣∣∣∣�
(

1

2
+ i

z

2

)∣∣∣∣
2

. (B10)

Using the identities |�( 1
2 + i z

2 )| =
√

π
cosh(πz) , and then τ0 = a/vF and taking the limit a → 0, we end up with

DR/L(ε) = π

2vF

1

1 + eπε/TR/L

≡ π

2vF
fR/L(πε). (B11)

Plugging this back into Eq. (B6), we have

S+(ω, TR, TL ) = 1

2

(
e�0

vF

)2 ∫
dE fR(E ) fL(ω − E ). (B12)

Playing around with this result, we end up with the following expression for the noise:

S+(ω, TR, TL ) = e2

(
�0

2vF

)2 ∫
dE { fL(E )[1 − fL(E − ω)] + fR(E )[1 − fR(E − ω)]

+ [ fR(E − ω) − fL(E − ω)][ fR(E ) − fL(E )]}, (B13)

which is equal to the scattering theory noise expression if we make the identification π ( �0
2vF

)2 ≡ T .
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APPENDIX C: C2 ANALYTICS

Here, we briefly go over the evaluation of the integrals in Eqs. (22) and (23). The perturbatively expanded noise is given by

S+(ω, TR, TL ) =
(

e∗�0

πa

)2 ∫
dτ eiωτ

[
sinh(iπTavgτ0)

sinh(πTavg(iτ0 + τ ))

]2ν
{

1 +
(

�T

2Tavg

)2[
ν(π (iτ0 + τ ))2

sinh(πTavg(iτ0 + τ ))
− ν(iπτ0)2

sinh(iπτ0Tavg)

]}
.

(C1)

Absorbing the constants into the variables, the key integral to be evaluated takes the following generic form:

Aν (z) =
∫

du e−iz(u−iα)

[
sinh(iα)

sinh(iα − u)

]2ν

. (C2)

Rewriting the hyperbolic sine in terms of exponentials, the integral can be recast as

Aν (z) = (1 − e−2iα )2νe−zα
∫

du
e−(2ν+iz)u

[e−2u + ei(π−2α)]2ν
. (C3)

This integral can be evaluated using Eq. (3.314) of Ref. [42], which gives us∫
dx

e−μ̃x

[e−x/γ̃ + eβ̃/γ̃ ]ν̃
= γ̃ exp

[
β̃

(
μ̃ − ν̃

γ̃

)]
�(ν̃ − γ̃ μ̃)�(γ̃ μ̃)

�(ν̃)
, (C4)

provided the conditions Re( ν̃
γ̃

) > Re μ̃ > 0 and |Im β̃| < π Re γ̃ are satisfied. Here, �(x) is the Euler gamma function. For the

integral in Eq. (C3), we can identify β̃ = i(π/2 − α), γ̃ = 1/2, ν̃ = 2ν, and μ̃ = 2ν + iz, which satisfies all the conditions. We
then finally have

Aν (z) = 1

2
(2 sin α)2νe− π

2 z

∣∣�(
ν + i z

2

)∣∣2

�(2ν)
. (C5)

The first integral in Eq. (C1) can be evaluated, after trivial manipulations, directly using Eq. (C5). The second term in the second
integral can be evaluated similarly. The first term in the second integral of Eq. (C5) is a bit more involved and is related to the
second derivative of Eq. (C5) with respect to z. This can be seen from Eq. (C2), where a z derivative will bring down a factor
(u − iα). The second derivative of Eq. (C5) can be expressed as

∂2
z Aν (z) = 1

2

(2 sin α)2ν

�(2ν)
e− π

2 z
∣∣∣�(

ν + i
z

2

)∣∣∣2 1

4

{
π2 −

[
ψ

(
ν + i

z

2

)
− ψ

(
ν − i

z

2

)]2

− 2iπ
[
ψ

(
ν + i

z

2

)
− ψ

(
ν − i

z

2

)]
−

[
ψ ′

(
ν + i

z

2

)
+ ψ ′

(
ν − i

z

2

)]}
, (C6)

where ψ (z) is the digamma function and ψ ′(z) its z derivative. Finally, using Eqs. (C5) and (C6), we can express the full noise,
in the limit τ0 → 0, as

S+(ω, TR, TL ) =
(

e∗�0

πa

)2

τ0[2πτ0Tavg]2ν−1e− ω
2Tavg

∣∣∣�(
ν + iω

2πTavg

)∣∣∣2

�(2ν)

×
⎧⎨
⎩1 +

(
�T

2Tavg

)2

ν

⎡
⎣−1 +

∣∣ν + iω
2πTavg

∣∣2

2ν(2ν + 1)

(
π2 + 4π Im

[
ψ

(
ν + 1 + iω

2πTavg

)]

+ 4

{
Im

[
ψ

(
ν + 1 + iω

2πTavg

)]}2

− 2Re

[
ψ ′

(
ν + 1 + iω

2πTavg

)])]}
. (C7)

From this, we can extract the coefficient C2 which isolates the nonequilibrium contributions in second order of the temperature
difference:

C2

(
ω

2πTavg

)
= ν

⎡
⎣−1 +

∣∣ν + iω
2πTavg

∣∣2

2ν(2ν + 1)

(
π2 + 4π Im

[
ψ

(
ν + 1 + iω

2πTavg

)]

+ 4

{
Im

[
ψ

(
ν + 1 + iω

2πTavg

)]}2

− 2Re

[
ψ ′

(
ν + 1 + iω

2πTavg

)])]
. (C8)
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