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We consider the injection of a controlled charge from a normal metal into an edge state of the fractional
quantum Hall effect �FQHE�, with a time-dependent voltage V�t�. Using perturbative calculations in the
tunneling limit, and a chiral Luttinger liquid model for the edge state, we show that the electronic correlations
prevent the charge fluctuations from being divergent for a generic voltage pulse V�t�. This is in strong contrast
with the case of charge injection in a normal metal, where this divergence is present. We show that explicit
formulas for the mean injected charge and its fluctuations can be obtained using an adiabatic approximation,
and that nonperturbative results can be obtained for injection in an edge state of the FQHE with filling factor
�=1/3. Generalization to other correlated systems which can be described with the Luttinger liquid model, like
metallic carbon nanotube, is given.
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I. INTRODUCTION

It is now well known that the fluctuations of electric cur-
rent contain valuable information both on the discreteness of
the charge and on the quantum properties of transport.1–4

Many studies of these fluctuations, both experimental and
theoretical, have been done on systems in a stationary re-
gime, with constant or time-periodic voltage biases. We con-
sider here a nonstationary problem, where a voltage pulse is
used to inject a given charge in a conductor, and call this
process “time-controlled charge injection.” Such a real-time
transfer of charge might prove of great interest for applica-
tions, for example, as a tool for the transfer of information.
The current fluctuations also play an important role in the
problem of time-controlled charge injection, as these fluctua-
tions should be made as low as possible to transfer the
charge as precisely as possible.

An interesting area to study time-controlled charge injec-
tion consists of conductors with strongly correlated elec-
trons. Indeed, in these systems, the elementary excitations
are collective electronic excitations, and may have a charge
e* which is only a fraction of the “elementary” charge e. We
will be particularly interested in edge states of the fractional
quantum Hall effect �FQHE� for Laughlin fractions, where
elementary excitations have a charge e*=e / �2n+1�, with n
an integer �the most accessible charge being e*=e /3�.5–7 This
problem is interesting on its own from a theoretical perspec-
tive, as it allows one to see how a system with strongly
correlated electrons behaves in a nonstationary setup. It is
also interesting for potential experimental applications, as
the injection of a well-controlled charge, e.g., a unique elec-
tron, in an edge state of the FQHE is an important experi-
mental challenge, which could prove a useful tool in the
quantum information domain for example.

In the case where electrons are uncorrelated
�normal metal conductors�, this problem has been studied by
Levitov and co-workers.8 Defining the Faraday flux
�=e /��−�

� dtV�t�, they have shown that the mean transmitted
charge �Q� is simply proportional to the flux �Ohm’s law�,
�Q���, but that the charge fluctuations �Q2� are in general

logarithmically divergent, except for “integer” values of the
flux �=2�n �with n an integer� where these fluctuations are
finite. They have related this behavior to the Anderson or-
thogonality catastrophe.9 The goal of this report is to study
this problem in the case where the charge is transferred into
an edge state of the FQHE, or more generally in a chiral
Luttinger liquid.

The setup of this paper is as follows. The system is de-
scribed in Sec. II. In Sec. III, we consider the case of the
perturbative regime, where the tunneling between the normal
metal and the edge state is low. The convergence of the mean
charge and of its fluctuations is studied, and explicit formulas
are given within the adiabatic approximation, whose validity
is confirmed by numerical calculations. In Sec. IV, we give
nonperturbative results for the special case of electron tun-
neling in an edge state of the FQHE with filling factor
�=1/3. Finally, in Sec. V, some perspectives are discussed,
such as the relevance of our results for other systems, and
conclusions are given.

II. DESCRIPTION OF THE SYSTEM

The system we consider is composed of a normal metal
�noninteracting electrons, with Fermi liquid behavior� close
to an edge state of a 2D electron gas in the FQHE regime. A
voltage pulse V�t� is applied between the two conductors,
which leads to the tunneling of electrons. The FQHE regime
is characterized by the filling factor �=1/m, where m is an
odd integer. Note that the case m=1 corresponds to the inte-
ger quantum Hall effect, where there are no correlations be-
tween electrons and the edge state describes a Fermi liquid.
We expect thus to recover, when we take �=1, the results of
Levitov et al.8

We call �1 ��2� the electron annihilation operator at the
tunneling point in conductor 1 �conductor 2, the edge
state�—see Fig. 1. Using Peierls’ substitution to have the
voltage pulse as a vector potential only, we have the follow-
ing tunneling Hamiltonian between the two conductors:
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HT�t� = �vF	ei��t��1
†�t��2�t� + H.c., �1�

where 	 is the tunneling amplitude and ��t�
=e /��−�

t dt�V�t�� is the time-dependent Faraday flux. Simi-
larly, the tunneling current is given by

IT�t� = ievF�	ei��t��1
†�t��2�t� − H.c.� . �2�

The quantities we need to calculate are the mean transmitted
charge �Q�

�Q� = �
−�

�

d
 �IT�
�� , �3�

and its fluctuations ��Q2�= �Q2− �Q�2�

��Q2� =��
−�

+�

dt I�t��
−�

+�

dt� I�t��	 − �Q�2

= �
−�

+�

dt d
 ��I�t�I�t + 
�� − �I�t���I�t + 
���

= �
−�

+�

dt d
 S�t,t + 
� . �4�

The system being out of equilibrium, we use the Keldysh
formalism, introducing a time contour going first from −� to
+� �upper branch, �= +1� and then going back from +� to
−� �lower branch, �=−1�, and using the time-ordering op-
erator TK along this contour.10

III. PERTURBATIVE RESULTS

A. Formalism

In this section, we will calculate the mean transmitted
charge and its fluctuations in the tunneling regime, where
	→0. This allows us to get the results by calculating
only the lowest order in the tunneling amplitude 	. Note that
	→0 ensures the system is in the tunneling regime for any
finite value of V�t�. Indeed, for electron tunneling from
a normal metal to an edge state of the FQHE with filling
factor �=1/ �2p+1�, one has in the tunneling limit the tun-
neling current I�	2
0
2/�−1, where 0 is proportional
to the applied voltage V. As 2/�−1�0, it is clear that when

V�t�→0 the tunneling current goes to 0 and can thus be
calculated perturbatively. Note that the situation would be
different for tunneling of fractionally charged excitations
between two edge states of the same FQHE fluid, where
V→0 brings the system out of the tunneling regime.

As we are considering the system in the tunneling regime,
we can restrict ourselves to the lowest order contribution in
the tunneling amplitude 	. At order 	2, we have for the mean
transmitted charge

�Q� =
− i

2�
�

−�

+�

d
 �
��1=±1

�1�
−�

+�

dt1 �TKIT�
��HT�t1
�1�� . �5�

Using Eqs. �1� and �2�, with standard properties of the
Keldysh Green functions, and parity properties, we can write
this expression as

�Q� = − 2evF
2	2�

−�

+�

dt�
−�

+�

d
 Im�G1�t�G2�t�

�sin���
 + t/2� − ��
 − t/2� , �6�

where Gi�t� is the standard Green function for conductor i
�i=1,2�: Gi�t�= �T�i

†�0��i�t��. Similarly, we get for the
charge fluctuations �Eq. �4�

��Q2� = 2e2vF
2	2�

−�

�

dt �
−�

�

d
 Re�G1�t�G2�t��

��cos���
 + t/2� − ��
 − t/2� − 1 . �7�

Note that the term “−1” next to the cosine has been intro-
duced to regularize the expression. This regularizing term is
needed because we have permuted the order of the t and 

integrals; it is not needed if the t integral is performed before
the 
 integral, as �dt Re�G1�t�G2�t�=0.

B. Convergence of the integrals

Equations �6� and �7� will allow us to study the properties
of the charge injection. In these formulas, we see that both
the injected charge and its fluctuations are obtained with two
elements: the Green functions product G1�t�G2�t�, which
contains all the information about the two conductors, and a
kernel obtained by integrating over 
 a function of the Fara-
day flux ��t�, which contains all the information about the
voltage pulse V�t�. To study the convergence-divergence of
the time integrals for the charge and its fluctuations, we need
the time behavior of these two elements. Note that as we
consider tunneling through a single point contact, the normal
metal can be mapped12 to a chiral Luttinger liquid with pa-
rameter �=1. The Green functions at zero temperature are
simply10

G1�t� =
1

2�a
�1 + ivFt/a�−1, G2�t� =

1

2�a
�1 + ivFt/a�−1/�,

�8�

where a is a short length cutoff, and �=1/m the filling factor
of the FQHE conductor. Introducing K= �1/2��1+1/��, with
K an integer, we see that the large time behavior of the real
and imaginary part of G1�t�G2�t� is

FIG. 1. The setup: electron tunneling between a usual conductor
and an edge state of a 2D electron gas in the fractional quantum
Hall effect �FQHE� regime, induced by a time-dependent voltage
V�t�.
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Im�G1�t�G2�t� � t−�2K+1�, Re�G1�t�G2�t� � t−2K �9�

�the imaginary part does not contain a t−2K term as this term
includes a sin��K� factor which is zero. We now turn to the
large time behavior of the kernels involving the flux ��t�.
For the mean charge, it is given by B1�t�=�−�

� d
 sin���

+ t /2�−��
− t /2�. By hypothesis, the voltage pulse V�t� is
important only in a finite time domain, of width �t. This
means that for t��t, and for a 
 interval of the order of t, we
have

��
 + t/2� − ��
 − t/2� =
e

�
�


−t/2


+t/2

V�t�� �
e

�
�

−�

�

V�t�� = � .

�10�

We have thus B1�t��sin���t+C1 for t→�, where C1 is a
constant. Similarly, we have for the kernel of the charge
fluctuations, B2�t�=�−�

� d
�cos���
+ t /2�−��
− t /2�−1�,
B2�t���cos���−1t+C2. Both the kernels B1�t� and B2�t�
have thus a linear dependence in t for large t, except for the
special values of the flux �=2�n �with n�N� where they
are constant for large t.

Combining the large time behavior of the Green functions
and of the kernels, we see that the integrand for the mean
charge �Eq. �6� behaves for large t as

B1�t�Im�G1�t�G2�t� � sin���t−2K + C1t−�2K+1�, �11�

while for the charge fluctuations �Eq. �7� we have

B2�t�Re�G1�t�G2�t� � �cos��� − 1t−2K+1 + C2t−2K. �12�

Let us first check that this is compatible with the known
results for noninteracting electrons. In this case, one has �
=1 and thus K=1. We see then that the mean charge integral
is always converging, while the charge fluctuations integral
has a logarithmic divergence, except for �=2�n, and we
recover thus the results of Levitov et al.8 Turning now to
interacting electrons, one has �=1/m, with m�1 an odd
integer, and thus K is an integer with K�1. In this case, we
see that the mean charge integral is as before always con-
verging, and that the charge fluctuations integral is also al-
ways converging, independently of the value of the flux �!
This means that, because of the electronic correlations, the
divergence of the charge fluctuations is removed.

C. Explicit formulas and the adiabatic approximation

It is possible to go further and to get explicit formulas for
the integrals of the mean injected charge and its fluctuations.
For simplicity, we will restrict ourselves to the case �=1/3,
but the results shown here can be extended to any value of
�=1/ �2n+1�. For �=1/3, the Green function product is

Re�G1�t�G2�t� =
1

4�2a2

1 − 6�vFt/a�2 + �vFt/a�4

�1 + �vFt/a�24 ,

Im�G1�t�G2�t� =
1

4�2a2

4�vFt/a��1 − �vFt/a�2�
�1 + �vFt/a�24 . �13�

Let us first consider the integral for the mean transmitted
charge �Eq. �6�, which involves the imaginary part of the

Green function product. In Eq. �13�, we see that this part is
important in a time domain of the order of a /vF, and then
quickly decreases to 0 for t�a /vF as t−5. For the t integral
giving the mean transmitted charge, we can thus consider
that times up to t�a /vF only contribute importantly to the
integral. In the kernel B1�t�, time t appears in the bounds

± t /2 of the V�t�� integral in the sinus. As the short time
cutoff a /vF is much smaller that the typical time of variation
of V�t��, the function V�t�� can be considered as constant in
this integral, giving sin�e /�V�
�t. The mean charge is then

�Q� = �− 1�2evF
2	2�

−�

+�

d
 �
−�

+�

dt sin� e

�
V�
�t�

�Im�G1�t�G2�t� . �14�

The t integral in �14� is simply the formula for the mean
tunneling current when a constant voltage V�
� �with a given

� is applied. We have thus performed an adiabatic approxi-
mation, valid because of the rapid decrease of the Green
function product. Performing the time integral, using Eq.
�13�, we get the result

�Q� =
e	2a2

2�3!vF
2�

−�

+�

d
 � e

�
V�
��3

. �15�

We see that the mean transmitted charge is not proportional
to the total flux �, but rather to the integral of the cube of the
voltage pulse V�t�. This means that, for a voltage pulse of
given shape whose flux is varied by an overall scale factor
only, the mean transmitted charge varies as the cube of the
flux �. This behavior is a consequence of the nonlinear re-
lation between voltage and current for tunneling in a Lut-
tinger liquid. The presence of the cutoff a in the formula is
typical of electron tunneling in a Luttinger liquid. Note that,
for another filling factor �=1/m, the result would be propor-
tional to the integral of �V�
�m.

Turning now to the charge fluctuations, one could expect
to obtain similar results: from Eq. �13�, we see that the real
part of the product of the Green functions is important for
t�a /vF only, and decreases rapidly to 0 as t−4. However,
when V�
� is not large enough the adiabatic approximation
breaks down, because �−�

+�dt Re�G1�t�G2�t�=0, which means
that the contribution of the time interval up to t�a /vF may
vanish. We have thus to distinguish between two regimes,
small flux ��1 and large flux �.

For the small-� regime let us consider a voltage pulse
V�t�=�V1�t�, where V1�t� is of fixed shape and unit flux,
and ��1. The cosine in the kernel of the charge fluctuations
B2�t� can then be developed at second order, giving
��−1� /2�2��
−t/2


+t/2dt�V1�t��2. When we vary the flux � corre-
sponding to the voltage pulse V�t�, we see that the kernel
B2�t�, and thus the charge fluctuations, varies as �2. The
charge fluctuations are thus proportional to �2 for small �,
contrarily to the mean transmitted charge which varies as �3.

In the other regime, with a larger flux �, we can use the
same adiabatic approximation as for the mean charge. We get
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��Q2� = 2e2vF
2	2�

−�

+�

dt Re�G1�t�G2�t�

���
−�

+�

d
 �cos� e

�
V�
�t� − 1�� . �16�

Permuting the t and 
 integrals �the “−1” term does not con-
tribute then�, we see that for V�t� large enough the variations
of the cosine are rapid enough to get a nonzero integral on
the domain where the Green functions are important �t�a�.
Performing the t integral, we get for the charge fluctuations,
for large �

��Q2� =
e2	2a2

2�3!vF
2�

−�

+�

d
 � e

�
V�t��3

. �17�

In this regime, we recover for the charge fluctuations a be-
havior similar to the one of the mean charge, with a depen-
dence as �3 for a voltage pulse of given shape. Comparing
Eqs. �15� and �17�, we see that the charge fluctuations are
simply e times the mean charge. This means that for larger
flux, although the system is nonstationary, the charge fluc-
tuations have a Poissonian character, as is common in time-
independent problems.

To confirm the results obtained with the adiabatic ap-
proximation, we have performed a numerical integration of
Eqs. �6� and �7�. The results for the case of a Lorentzian
voltage pulse, V�t�=��1/���1+ t2�−1, are shown in Fig. 2. In
this figure, it is clear that the mean transmitted charge be-
haves as �3 for all �, while the charge fluctuations behave as
�3 for large �, but as �2 for small �. The inset of Fig. 2
shows the ratio between the numerical integrations and the
results of the adiabatic approximation, Eqs. �15� and �17�; we
see that the adiabatic approximation gives excellent results
for �Q� for all fluxes �, while it gives excellent results for

��Q2� when ��2�. Numerical integration with other
shapes of voltage pulses �not shown� gives similar results.

IV. NONPERTURBATIVE RESULTS

In the previous section, we have shown that, except for
the charge fluctuations at small �, we obtain a very good
approximation of the exact results by using an adiabatic ap-
proximation, where the transmitted charge due to the voltage
pulse V�t� is computed by integrating over t the stationary
current Ist due to V=V�t�. As the adiabatic approximation is
related to the rapid decrease of the Green function product
G1�t�G2�t�, and as higher orders of the tunneling current im-
ply higher powers of this product, we expect the adiabatic
approximation to be valid in the nonperturbative regime. We
will thus compute nonperturbative results for the mean
charge and its fluctuations starting from nonperturbative re-
sults for the stationary tunneling current and noise. Because
this method implies the calculation of stationary current only,
it is much simpler than the full calculations.

Nonperturbative results for the stationnary current are
known in the case of tunneling of electrons from a normal
metal to an edge state of the FQHE with filling factor
�=1/3. Indeed, for tunneling properties, this system
is equivalent to the tunneling of electrons between two
edges states of the same quantum Hall fluid with �=1/2,
as shown in Ref. 11. This equivalence can be guessed from
Eq. �8�: the Green function product is G1�t�G2�t�
= �2�a�−2�1+ ivFt /a�−�1+1/v�, which for �=1/3 is the same

as �2�a�−2�1+ ivFt /a�−1/v��1+ ivFt /a�−1/v� with v�=1/2. In
Ref. 11, nonperturbative results for the tunneling current and
noise are obtained for this system, as it is linked by the
duality symmetry to the tunneling of fractionally charged
excitations �with e*=e /2� between two �=1/2 edge states,
which can be treated nonperturbatively by refermionization.

Using results of Ref. 11, we have for the stationary tun-
neling current, Ist, corresponding to voltage V

Ist =
e2

4��
V −

evF

4�	a
arctan� eV

�vF
	a� . �18�

This expression shows that there are two extreme regimes for
the current. For V or 	→�, the tunneling is made through a
barrier of large transparency, and the current goes to the
maximal value, e2V / �2h�. On the contrary, for V or 	→0,
the barrier transparency goes to 0, and we recover the per-
turbative results with I�	2V3. To get the mean charge trans-
mitted with a voltage pulse pulse V�t�, we now simply inte-
grate over t the current Ist corresponding to V�t�. This gives

�Q� =
e

4�
� − �

−�

�

dt
evF

4�	a
arctan� eV�t�

�vF
	a� . �19�

In the tunneling regime, 	→0, we recover the expression
�15� obtained perturbatively, where the mean charge varies as
�3. Note that we obtain the same expression for the limit of
very small voltage V�t� for any given 	 if 	V�t��1 for all t.
On the contrary, in the limit of a large 	 or large V�t�, the
charge becomes simply proportional to the flux �. The sys-

FIG. 2. Results of the numerical integration of Eqs. �6� and �7�,
for a pulse of Lorentzian shape �V�t�=��1/���1+ t2�−1. Mean
transmitted charge �dashed curve� and its fluctuations �full curve� as
a function of �, on a log-log plot. The mean charge has a slope 3,
while the charge fluctuations has a slope 2 for small � and a slope
3 for large �. Inset: ratio between the results of the adiabatic ap-
proximation �Eqs. �15� and �17� and numerical integration of Eqs.
�6� and �7�, for the mean charge �dashed line� and its fluctuations
�full line�. The adiabatic approximation is clearly valid for the mean
charge, while it is valid for the charge fluctations when ��2�.
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tems shows thus a crossover between �Q���3 at low � and
�Q��� at large �, the position of the crossover being a
monotonic decreasing function of 	.

We now turn to the charge fluctuations. Using again the
results of Ref. 11, we get the following expression for the
nonperturbative stationary current noise Sst due to voltage V,
with x= �eV /�vF�	a:

Sst =
e2vF

4�	a
�arctan�x� −

x

1 + x2� . �20�

For V or 	→0, we recover the tunneling regime, with
S=eI�	2V3. As for the current, we obtain the charge fluc-
tuations ��Q2� due to a voltage pulse V�t� by inte-
grating over t the noise Sst corresponding to V=V�t�. Defin-
ing x�t�= �eV�t� /�vF�	a, we get

��Q2� =
e2vF

4�	a
�

−�

�

dt �arctan�x�t�� −
x�t�

1 + x�t�2� . �21�

There is also a crossover in the behavior of ��Q2� as a func-
tion of �: when � is small, we recover the results of Eq. �17�
with �Q2���3. As we know from the previous section, the
adiabatic approximation does not reproduce in this case the
correct �2 behavior for �→0. When � is large it is more
difficult to get analytically the behavior of ��Q2����; nu-
merical integration for different types of V�t� shows that
��Q2���1/n when V�t�� t−n for t→�. This dependence on
the asymptotic properties of V�t� comes from the fact that,
for large �, noise comes mainly from the t regions where
	V�t� is small �otherwise the barrier has a high transparency
and noise is small�, which are simply the tails of the voltage
pulse.

V. PERSPECTIVES AND CONCLUSIONS

The results we have obtained so far are valid for electron
injection in any chiral Luttinger liquid, and can be applied to
systems other than edge states of the fractional quantum Hall
effect. In particular, the conduction electrons in a single-wall
metallic carbon nanotube can be described in terms of differ-
ent modes of chiral Luttinger liquids. The electronic Green
function in such a nanotube can be shown to be13,14

G2�t� = �2�a�−1�1 + ivFt/a�−�, with � =
3

4
+

1

8
�g + g−1� ,

�22�

where g is the parameter characterizing the interactions in
the nanotube �typical experimental values are in the range
�0.2, 0.3�. Note that ��1, but � is not an integer. We can
then repeat, mutatis mutandis, the same reasoning as in Sec.
III to study the mean charge and its fluctuations. We define
K= �1/2��1+��, with K�1. As K is not an integer, the large
time behaviors of the real and imaginary part of G1�t�G2�t�
are here the same

Im�G1�t�G2�t� � t−2K, Re�G1�t�G2�t� � t−2K. �23�

Repeating the reasoning that leads to Eqs. �11� and �12�, we
see that because K�1, both the mean charge and its fluctua-
tions are finite, independently of the value of the flux � �and
thus of V�t�. As for an edge state of the FQHE, the electrons
correlations in a nanotube prevent the divergence of the
charge fluctuations for nonstationary injection.

Our results can also be of interest for the very general
case of nonstationary electron tunneling between two normal
metals, when an ohmic impedance is present in the system.
Indeed, it is known that a mapping exists between a coherent
one-channel conductor coupled to an ohmic environment
�the dynamical Coulomb blockade problem15� and a Lut-
tinger liquid with an impurity.16 Our results suggest then that
the divergence of charge fluctuations as predicted by Levitov
and co-workers8 are suppressed by the coupling to an ohmic
environment, as this coupling can be mapped to electron in-
teraction leading to Luttinger liquid behavior.

To conclude, we have shown that, for the nonstationary
charge injection from a normal metal into a chiral Luttinger
liquid, using a voltage pulse V�t�, the electronic correlations
in the Luttinger liquid prevent the charge fluctuations from
being divergent for a generic voltage pulse. In the perturba-
tive regime, with respect to the tunneling amplitude, we have
shown that explicit formulas for the mean injected charge
and its fluctuations can be obtained using an adiabatic ap-
proximation. We have identified when this adiabatic approxi-
mation breaks down, and shown that, when it is valid, it
leads to a Schottky-type relation bewteen the charge and its
fluctuations. Finally, we have obtained nonperturbative re-
sults for the special case of charge injection in an edge state
of the FQHE with filling factor �=1/3.
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