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We compute the interference pattern of a Mach-Zehnder interferometer operating in the fractional quantum
Hall effect. Our theoretical proposal is inspired by a remarkable experimental realization of such an interfer-
ometer with edge states in the Integer Quantum Hall effect �IQHE�. The Luttinger liquid model is solved via
two independent methods: refermionization at �=1/2 and the Bethe ansatz solution available for Laughlin
fractions. The current differs strongly from that of single electrons in the strong backscattering regime. The
Fano factor is periodic in the flux, and at �=1/2 it exhibits a sharp transition from sub-Poissonian �charge e /2�
to Poissonian �charge e� in the neighborhood of destructive interferences. Implications for Laughlin fractions
are discussed.
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A fascinating aspect of mesoscopic physics is to build
analogs of optical devices with the help of nanostructures. In
many situations both phenomena can be understood with the
same language.1 However, photons propagate in vacuum and
therefore interact weakly, except during their generation/
detection processes. On the opposite, interactions between
electrons are manifest in one-dimensional systems as well as
in quantum dots. Here we want to inquire how electronic
interactions affect the interference pattern of a classic optical
device analog, a Mach-Zehnder �MZ� interferometer.2

Recently, such an analog was achieved with edge states of
the integral quantum Hall effect �IQHE�.3 Interference vis-
ibilities as high as �60% were observed. Edge states of the
IQHE can be understood in principle at the single electron
level, but at higher magnetic fields electronic interactions are
explicit in the fractional quantum Hall effect �FQHE�. The
latter offers the opportunity to investigate fractional charge4,5

and fractional statistics6 in one dimension. Interferometry in
the FQHE was previously studied with regard to fractional
charge detection7 using perturbation theory. Here we report
on MZ interferometry using exact models: refermionization
at �=1/2 �Ref. 8� and the Bethe ansatz solution.9 In the
strong backscattering regime, the interference pattern dis-
plays a dramatic effect of the interactions; the signal is not
sinusoidal, and its amplitude at the output departs from the
single electron expectations.

The MZ setup3 is depicted in Fig. 1�a�; an edge state is
injected at voltage V0, and meets a quantum point contact
�QPC� where it is scattered. The two resultant states recom-
bine at a second QPC, giving two outgoing edge states 1 and
2. A magnetic field B threads the surface S enclosed by the 2
edges between the 2 QPCs, leading to an Aharonov-Bohm
�AB� flux and to a corresponding phase �=SB /�0

*, where
�0

*=hc /e* is the flux quantum for excitations with fractional
charge e*=�e �� is the filling factor�. This setup is topologi-
cally equivalent to the one of Fig. 1�b�, 2 chiral states propa-
gating in the same direction meeting successively two QPCs.
This geometry is thus different from the simple Hall bar
described in Ref. 7.

We wish to calculate the outgoing current in edge 1 and 2

for arbitrary tunneling amplitudes �a, �b—thus nonper-
turbatively—as a function of the AB phase �, the applied
voltage V0=��0 /e*, the mean distance � between the two
QPCs and the path difference �. The AB phase is a key
ingredient to the problem, as it modulates the interferences
between the two paths from the first to the second QPC. As
this phase is present only for cross terms with one tunneling
event at QPC 1 and another at QPC 2, this amounts to mul-
tiplying the �a�b

* terms by the phase ei�. The bosonized
Hamiltonian reads �as in Ref. 8, �=e=vF=1, except in im-
portant results�,

FIG. 1. �a� Mach-Zehnder geometry in the quantum Hall effect:
counterpropagating edge states at a QPC are made to meet again at
a second QPC. �b� Edge state configuration equivalent to �a�.
�a ��b� is the tunneling amplitude at the first �second� QPC, at x
=xa1 and x=xa2 �x=xb1 and x=xb2� for edge state 1 �2�. The mean
distance between the two QPCs is � and the path difference is �. �
is the AB phase due to the magnetic flux.
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H = H	1

0 + H	2

0 + �
q=a,b

��qe−i�0tei���	1�xq,t�−	2�xq,t�� + H.c.� .

�1�

The first two terms in H are the free edge Hamiltonians, the
next describe the tunneling of charge �e through the two
QPCs. We consider the case of equal distances between the
two QPCs: the first �second� QPC is located at xa �xb� for
both edge states; unequal distances tend to reduce the inter-
ferences, but do not change the results qualitatively. Note
that, as our calculations will be nonperturbative, the tunnel-
ing Hamiltonian is able to describe also electron tunneling at
strong coupling, see Ref. 8.

At �=1/2, it is natural to introduce new bosonic fields
	±�x�= �1/�2��	1�x�±	2�x��. The tunneling operators in Eq.
�1� can be represented by a fermionic field 
�x�=ei	−�x�. The
Hamiltonian contains a trivial free part for 	+, and a non-
trivial part for 	−. It is then possible to obtain a Hamiltonian
which is quadratic in fermionic variables, provided that new
fermionics fields are introduced such that ��x , t�=
�x , t�f ,
where f is a Majorana fermion �f =C+C† and �C ,C†	=1�:

H− =
 dx��†�x��− i�x − �0���x� + �
q=a,b

�2���x − xq�


��q��x�f + �q
*f�†�x��� . �2�

��x� is propagating in ballistically, except at x=xa ,xb. The
Heisenberg equations for ��x , t� are solved by introducing
plane wave solutions: ��x , t�=��u�ei�0xei��x−t�, with coeffi-
cients u�=A� �C�� for the incoming �outgoing� field at the
left �right� of the two QPCs. The boundary conditions at the
QPCs give

C� = D−1��i� − 4��̃a�̃b
*2i sin�����A�

− 4����̃a
*�2 + ��̃b

*�2 + 2�̃a
*�̃b

* cos�����A−�
† 	 , �3�

with D= i�−4��
�a
2+ 
�b
2+ ��̃a�̃b
*+ �̃a

*�̃b�ei��� and the tun-

neling amplitudes are redefined as �̃a,b=�a,bei�0xa,be±i�/2.
Equation �3� can be seen as the solution of a scattering prob-
lem. Writing C�=r�A�+ t�A−�

† , with reflection �r�� and
transmission �t�� coefficients, one can check that the flux is
conserved �
r�
2+ 
t�
2=1�.

From the solution Eq. �3�, we can proceed to the calcula-
tion of the current I2 outgoing in edge state 2,

I2 =
e

4�



−�0

�0

d� 
t�
2. �4�

The outgoing current in edge state 1 is simply I1
=e�0 / �2��− I2, where e�0 / �2��=�e2V0 /h is the incoming
Hall current. It is convenient to introduce the geometric
mean modulus amplitude �=�
�a

�b
. The deviation from
equal amplitudes is described with the parameter �(
�a

=�� , 
�b
= �1/���). The transmission becomes


t�
2 = N�u�/D�u�, u = �/�4��2� ,

N�u� = ���2 + �−2�cos��0� + �� + 2 cos�4��2u���2

+ ���2 − �−2�sin��0� + ���2,

D�u� = �u − 2 cos��0� + ��sin�4��2u���2

+ ���2 + �−2� + 2 cos��0� + ��cos�4��2u���2.

�5�

The relevant regimes for observing interference fringes are
either weak pinchoff ��→0� or when ��0� /vF��1 at strong
pinchoff. At strong pinchoff and for ��0� /vF��1, the above
integral gives e�0 / �4��, and thus I1= I2=e�0 / �4��, where
all interferences are lost. For ��0� /vF��1, the integral gives

I2 � �2�2�
1
2 ��2 + 1/�2� + cos��0� + ��

1
2 − 4��2� cos��0� + ��


 tan−1��0

1
2 − 4��2� cos��0� + ��

4��2� 1
2 ��2 + 1/�2� + cos��0� + ���� .

�6�

Comparing this to the transmitted current for one QPC only,
with tunneling amplitude �,


I2
1QPC = 2�2 tan−1� �0

4��2� , �7�

we see that the current in Eq. �6� can be expressed as the
current for a single QPC, with an effective tunneling ampli-
tude �eff,

4��eff
2 =

4�� 1
2 �
�a
2 + 
�b
2� + 
�a

�b
cos ��

1
2 − 4�
�a

�b
� cos �

. �8�

This is a central result: as far as the current is concerned, the
MZ setup behaves, for fractionaly charged excitations, as a
single QPC with an effective amplitude �eff which is modu-
lated by the AB phase. As, in this setup which is composed
of several edges, excitations are injected from one edge and
are collected from another edge, we expect that the fractional
statistics of these excitations play an important role in this
result �see Ref. 10�. Technically speaking, the difference be-
tween this behavior and the one of noninteracting electrons
�as observed experimentally in the IQHE �Ref. 3�� can be
traced back to the Hamiltonian. In the FQHE, the fermionic
Hamiltonian of Eq. �2� couples ��x , t� to the auxiliary fer-
mion f for both scattering events at xa and at xb: these two
scatterings are thus strongly linked. On the other hand, in the
IQHE, the tunneling part of the Hamiltonian HT
=�dx�q=a,b��x−xq���q�1�x��2

†�x�+H.c.� couples �1�x , t� to
�2�x , t� at the same location, and each QPC is described in-
dependently by a scattering matrix. This different behavior
leads to dramatically different results for the interferences in
the transmitted current I2 as a function of the AB phase �.
Consider for simplicity the case where 
�a
= 
�b
=�. Indeed,
�=1 merely ensures a maximum visibility for the interfer-
ences. In the IQHE, one has
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I2
IQHE = �0T�1 − T��1 + cos��0� + ��� , �9�

where T=�2 / �1+�2 /4�2 is the transmission of each QPC,
and � is here SB /�0 ��0=hc /e�. It shows that the maxi-
mum transmitted current in edge 2 is obtained for T=1/2,
while it goes to 0 for T→0 ��→0� or T→1 ��→2, which is
the strong coupling limit in this case�. For all values of T, I2
shows sinusoidal oscillations as a function of �. Considering
now the results for fractionaly charged excitations, Eqs. �6�
and �8�, one can distinguish two different regimes. First, the
tunneling regime, corresponding to �→0. We have then
�eff

2 =2�2�1+cos��0�+����1, and we recover results simi-
lar to the noninteracting case in the tunneling limit: sinu-
soidal oscillations of the current I2 as a function of the AB
phase �, with I2��2�1. This is easily understood: when
one keeps only the lowest order in �, the coupling between
the two scattering events disappears and the results obtained
for noninteracting electrons are recovered. The opposite limit
is obtained when �→�. As shown in Fig. 2, the current I2 is
nearly constant, with the value e�0 / �2��, except near �
= �2n+1�� where it shows narrow dips going to zero. For
very large �, the width of the dips scales as ��0� /vF�1.
This means that for large �, all the incoming current gets
transmitted to edge 2, except for special values of the AB
phase � where destructive interference happens. Note that
this is totally different from the non interacting electron case
where the incoming current in edge 1 gets scattered to edge 2
at the first QPC, then gets mostly scattered back in edge 1 at
the second QPC. Because of electronic correlations, this pic-
ture is not valid in the FQHE, and the two QPCs must be
considered as a whole.

The noise also has unique features. Its analytic expression
is identical to that of noninteracting electrons:

S2 =
e2

2�



−�0

�0

d� 
t�
2�1 − 
t�
2� , �10�

a mere consequence of the fact that the transmission in edge
2 is described by a scattering process for the refermionized
field. Here, however, the energy dependence of 
t�
2 reflects
the electronic correlations. The Fano factor F�S2 / �2eI2� is
shown on the lower part of Fig. 2 for the two regimes dis-
cussed above. In the tunneling regime, F�1/2=�: the small
current outgoing in edge 2 is carried by quasiparticles of
charge �e, and these can either tunnel at the first of at the
second QPC. For arbitrary coupling, F is a periodic function
of flux: in the regime of strong coupling, the lowering of the
Fano factor is due to the factor 1− 
t�
2 in Eq. �10�, when the
current is close to its maximal value. When destructive inter-
ference occurs �near �= �2p+1��, p integer�, I2 is sup-
pressed and a peculiar behavior appears. The global shape of
the Fano factor suggests a value of 1 /2 �sub-Poissonian� in
this region, although backscattering is strong. In the close
vicinity of �= �2p+1�� there is a sharp peak, and the Fano
factor reaches 1 �Fig. 2�. For AB phases corresponding to
this narrow peak, the noise is Poissonian, and the current is
carried by pairs of quasiparticles of charge �e, here electrons.
This peak is in fact present for any value of �, but its width
decreases with � which makes it invisible in the small �
limit. For the large � regime, and with �0� /vF�0.3, this
peak could be seen if currents of a few percent of the incom-
ing Hall current can be measured experimentally. All of the
above results are robust up to �0� /vF�1; beyond this value,
the visibility of the current oscillations decreases rapidly and
the “Poissonian” peak of the Fano factor is reduced.

The chiral Luttinger liquid description is valid only for
simple Laughlin fractions �=1/ �2p+1�, not �=1/2. We thus
have to check that our results can be observed with the ex-
perimentally accessible filling factors such as �=1/3. To this
aim, we start with an imaginary time action formalism and
for simplicity we consider the case �a=�b=�. Following
Ref. 11, we introduce the fields 	̄��� , 	̃���= �	−�xa ,��
±	−�xb ,��� /�2. These fields are the only degrees of freedom
which are left after integration of the quadratic part of the
action associated with the Hamiltonian of Eq. �1�. Assuming
�0� /vF�1, the effective action reads

S =
1

2����� vF

�

	̃���
2 +


�

2


	̄���
2�
+ 4�


0

��

d� cos���	̄��� + �/2�cos���	̃��� − �/2� ,

�11�

where �=1/ �kBT�. Note that in Eq. �11�, the field 	̃��� is
massive. For ���vF /� we can neglect its fluctuations, so
that the field 	̃��� is pinned to zero. The leading corrections
to this approximation are computed elsewhere.12 One is then
left with the field 	̄ only. Shifting this field by � /2, we get
a new action,

FIG. 2. Upper part: transmitted current I2 as a function of the
AB phase �, for 2 QPCs with �=1/2 and equal tunneling ampli-
tudes �, with �0� /vF=0.3, and 8��2 /�0=0.01 �dashed curve,
right y axis�, 1 �dotted curve, left axis�, 100 �full curve, left axis�.
Lower part: Fano factor F=S2 / �2eI2� as a function of � for the
same parameters, 8��2 /�0=100 �full curve�, 0.01 �dashed curve,
extremely narrow peaks have been removed for the sake of clarity�.
Inset: zoom on one of the narrow peaks of F for 8��2 /�0=100.
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S =
1

4���
�
�


�

	���
2 + 4� cos��/2�

0

��

d� cos���	���� .

�12�

This action is identical to the zero-mass limit of the Sine-
Gordon model and the problem can be solved exactly.9 The
transmitted current I2 follows the scaling,

I2 =
�

2�
�c0� cos��

2
��1/�1−��

F� �0

��c0� cos��

2
��1/�1−��� ,

�13�

with c0=4�2�. F is the scaling function, with F�x��x2�−1

for x�1 and F�x�=x for x�1. This proves that the 2
QPCs behave as 1 QPC with an effective coupling
��4�2�� cos�� /2�� which is modulated by the AB phase.
The results previously obtained for �=1/2 can therefore be
extended to describe Laughlin fractions, such as �=1/3. For
�=1/2, F�x� is simply tan−1�x�, and the effective coupling is
�eff

2 =8��2�1+cos ��. This is in agreement with Eq. �8�,
since by neglecting the massive field 	̃ we have supposed
that �→0. The results for the current I2 when �=1/3 �not
shown� are in precise correspondence with those obtained for
�=1/2 in the limit of �→0.

Unusual features in the Fano factor �peaks near �
=� ,3� , . . .� also need to be justified for the filling factors
�=1/ �2p+1�. To this aim, we need to go beyond the infinite
mass approximation: the scattering term in Eq. �12� is pro-
portional to cos�� /2� and is thus zero when �=� ,3� , . . ..

As the transmission is very small in this region, we perform
a perturbative development to get corrections,

S2 �
�2�

�vF
sin2��/2�


0

��

d� cos�2��	���� . �14�

Although this term is not relevant for ��1/4, it gives the
main contribution to I2 and S2 near the Fano factor peaks
where it is maximum. Because of the cos�2��	����, it im-
plies the scattering of two excitations of charge �e at once,
and lead to an increase of the Fano factor from the expected
� value. Narrow peaks in the Fano factor, near �=� ,
3� , . . . are thus to be expected for filling factors �=1/ �2p
+1�, as observed in the calculations at �=1/2.

To conclude, we have provided the first nonperturbative
treatment of the electronic analog of an optical interferom-
eter operating with strongly correlated fermions. The most
dramatic effect occurs when both QPCs are close to pinchoff
�large ��, where the whole current exits in edge 2 �except at
special values of the AB flux�, contrary to the case of the
IQHE and classical optics. The Fano factor is periodic in the
AB phase. At strong pinchoff, at �=1/2, the noise switches
from sub-Poissonian to Poissonian near the destructive AB
interferences. Our predictions could be tested experimentally
with the same “air bridge” setup as in Ref. 3. With vF�3

105 m/s,13 the important condition �0� /vF�1 could be
reached with state of the art techniques: temperature of a few
tens of mK, � a few �m, and V0 a few �V.

Recently, a perturbative calculation on the same setup was
presented in Ref. 14. There, Klein factors are inserted in the
tunneling operators, which leads to different results.
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