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We study electronic transport through a magnetic molecule with an intrinsic spin S coupled to two magnetic
electrodes in the incoherent regime. The molecule is modeled as a single resonant level with large Coulomb
repulsion �no double occupancy�. The molecular spin is isotropic and it interacts with the electronic spin
through an exchange interaction. Using an alternative method to the usual master-equation approach, we are
able to obtain analytical formulas for various physical quantities of interest, such as the mean current and the
current fluctuations, and also the mean value of Jz—the z component of the total spin on the molecule—and its
fluctuations. This allows us to understand how the electronic current between the magnetized electrodes can
control the polarization of the molecular spin. We observe in particular that the fluctuations of Jz reach
unexpectedly high values.
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I. INTRODUCTION

Molecular spintronics is at the convergence of two recent
and rapidly developing fields. On the one hand, molecular
electronics,1 where individual molecules are connected to
electrodes of different nature, and the effect of the various
molecular degrees of freedom on the electronic transport can
be studied and possibly engineered.2 On the other hand, spin-
tronics, where the focus is placed on the electronic spin as a
new useful degree of freedom. Magnetic molecules—
molecules having an intrinsic spin, possibly large3—play, of
course, an important role in molecular spintronics. Several
transport experiments have been performed in the past years
on such magnetic molecules—especially on molecular mag-
nets such as Mn12 derivatives, which are molecules with a
large spin anisotropy, tending to align the spin along an easy
axis.4 Theoretical calculations on transport in the incoherent
regime for these molecules have been done, especially in the
case where the electrodes have magnetic properties.5 Other
magnetic molecules are spin isotropic, and some work has
been done already to study electronic transport with such
spin-isotropic magnetic molecule.6 In Ref. 7, the full count-
ing statistics �FCS� for such a molecule placed between non-
magnetic electrodes has been obtained. However, to the best
of our knowledge, no work has been devoted to the elec-
tronic transport between ferromagnetic electrodes through a
spin-isotropic magnetic molecule; one of the aims of this
paper is to study this problem. Experimentally, transport
through such a spin-isotropic magnetic molecule can be ob-
tained, for example, with a magnetic atom trapped inside a
C60 molecule, which is placed between two electrodes �see
Fig. 1�.8

This paper focuses on the transport through a spin-
isotropic magnetic molecule in the regime of weak coupling
to the leads. The primary goal is to compute the current, its
zero-frequency fluctuations, and more importantly to analyze
the fluctuations of the total spin on the molecule. This is an
important issue because of the mutual influence between the
electronic current passing through the molecule and the mo-

lecular spin. We consider ferromagnetic electrodes with col-
linear alignments of electrodes �parallel or antiparallel, or
situation with only one polarized electrode�.9 The system dis-
plays a rich variety of behaviors: on the one hand the sup-
pression of the current by spin blockade and, on the other
hand, unusually large fluctuations of the molecular spin.

We are considering the temperature regime in which suc-
cessive tunneling events through the dot are all incoherent
�incoherent tunneling regime� and describe them as a Mar-
kovian process. Such a situation is realized at a temperature
� which is much higher than the typical energy scale deter-
mined by the tunneling rate to the leads �, i.e., ���kB�.
We model the molecule as a quantum dot with a single reso-
nant level, with infinite Coulomb repulsion �no double occu-
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FIG. 1. �Color online� Energy diagram of the system: because of
the exchange interaction between the molecular spin S and the elec-
tron spin, the occupied dot level is split between the J=S− 1

2 levels
�with Jz ranging from −�S− 1

2 � to �S− 1
2 �� and the J=S+ 1

2 levels
�with Jz ranging from −S− 1

2 to S+ 1
2 �, with a splitting �JexS. We

chose the chemical potential of the electrodes such that the
J=S+ 1

2 levels only are in the bias window. The inset shows a sche-
matic view of a possible experimental realization: a magnetic atom
with spin S trapped inside a C60 molecule, which is placed between
two electrodes.
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pancy�. The molecular spin S� and the electronic spin on the
dot level �� interact through an exchange interaction,

−JexS� ·�� . The dot level is, therefore, split into two levels,
corresponding to two eigenvalues of the total angular mo-
mentum, J=S�1 /2. For simplicity, we will work at tem-
peratures much smaller than the applied bias voltage, at
which electron transport happens only in one direction, and
the bias window is infinitely sharp.10 We also choose the
chemical potentials of the electrodes such that only the J
=S+1 /2 spin sector is in the bias window, and only states in
this energy level take part in the transport �see Fig. 1�.

The basic mechanism at work here is the exchange of spin
between the itinerant electrons and the molecule: an incident
spin-up electron, for example, can be collected as a spin-
down electron �spin flip�, if the molecular spin has its polar-
ization along the reference axis increased by one. Magnetic
electrodes, with different densities of states for spin-up
and/or down electrons, leading to spin-dependent tunneling
rates, �L,R

↑ =�L,R�1+ pL,R� /2, �L,R
↓ =�L,R�1− pL,R� /2, can thus

induce polarization of the molecular spin �pL,R� �−1,1� is
the polarization of the L /R electrode, and �L,R is the tunnel-
ing rate to the L /R electrode�.

The standard method in the incoherent tunneling regime is
to use master equations. Many works have been devoted to
the incoherent transport through a simple quantum dot be-
tween two or more magnetic electrodes, for example, in
Refs. 11–13. This approach has also been successfully imple-
mented to compute numerically the current and the noise
through magnetic molecular systems.5,6 Recently, analytical
results were obtained for the full counting statistics for a
magnetic molecule in the case of nonmagnetic electrodes.7

We use here an alternative method which allows us to obtain
analytical formulas for the case of magnetic electrodes, for
the current I, the charge Q, the total spin Jz, and the fluctua-
tions of these quantities. This method has been introduced by
Korotkov14 for computing numerically fluctuations in the
single-electron transistor. It uses a Langevin approach, where
the transport process is seen as random sequential jumps be-
tween neighboring system states. We have extended this
method in order to obtain analytical results for the present
problem.

The paper is organized as follows. In Sec. II we present a
concise but self-contained explanation of the method. Sec-
tion III presents and discusses the results we have obtained in
the case of a molecular spin S=1 /2 for the mean current and
its fluctuations and for the z component of the total spin Jz
and its fluctuations. Section IV discusses how the results are
modified in the case of higher spins. Another method of cal-
culation which can be used to obtain the same analytical
results is shortly explained in Sec. V, and Sec. VI gives the
conclusion. Appendixes A and B contain some lengthy for-
mulas and analytical results for molecular spin S=1.

II. SEGMENT PICTURE

We give a short self-contained derivation of the method,
only stressing the points which are different from the original
work.14

A. General formulation

The time evolution is divided in terms of segments: a
segment 	 is defined as a series of random processes which
begins with a reference state and finishes with the same state.
This reference state is arbitrary, and all the physical quanti-
ties are of course independent of the choice of this state. As
the time evolution is given by a Markovian series of random
transitions, two different segments are totally independent,
and any time integral used to compute average or fluctua-
tions can be written in terms of average over the segments. In
our model, a state �
� can be characterized by the occupation
number of the dot level Q, the total angular momentum J,
and its z-component Jz, i.e., �
�= �Q ,J ,Jz�. A segment of
length M, starting and finishing with state 
0, is thus defined
by the sequence 
0→
1→
2→¯→
M−1→
0 and by the
duration of each step. The total duration of the segment is
��	�=�m=0

M−1�m, where �m is the time of the system stays in the
state 
m.

Considering a random variable X�t�, we will compute its

average X̄ over the measurement time, i.e.,

X̄ 	
1

T
�0

T

dtX�t�� , �1�

and its fluctuations SXX:

SXX 	
2

T
�0

T

dt�X�t� − X̄��2� . �2�

Here �¯� represents a statistical average over random Mar-
kovian process, and we take the measurement time T suffi-
ciently larger than all other time scales of the system. For
each physical quantity X, we define a function X�	� which
gives the time integral of this quantity over a given segment
	, e.g., for Jz, we define,

Jz�	� = �
m=0

M−1

Jz,m�m, �3�

where Jz,m is the value of Jz in the state 
m. We have similar
expressions for all the other physical quantities which have a
fixed value in a given state 
m. For the current operator I, as
its time integration gives the transferred charge, we need to
define the function k�	� which is the number of electrons
transferred from the left to the right electrode during segment
	. With these functions, the time integral of X�t� in Eq. �1�
over the measurement time T can be decomposed into con-
tributions from N successive segments, �	1 ,	2 , ¯ ,	N�,

�
0

T

dtX�t� → �
n=1

N

X�	n� . �4�

Taking it also into account that the different segments are
independent, one can thus replace the statistical average with
an average over the segments,
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X̄ =
1

T
�
n=1

N

�X�	n�� =
�X�
���

, �5�

where ���=T /N is the mean duration of a segment. A seg-
ment 	 occurs with a probability P�	�, giving �X�
=�	X�	�P�	�.

For the fluctuations of X one first notices that

�
0

T

dt�X�t� − X̄�2 = �
n=1

N

�
n�=1

N

�X�	n�

− X̄��	n���X�	n�� − X̄��	n��� . �6�

We note that 	n and 	n� are different segments of the same
measurement, i.e., the set �	�= �	1 ,	2 , ¯ ,	N� is common for
the sum over n and n�, and the average is an average over the
different segment sets �	�. As different segments are indepen-
dent, the terms with n�n� can be written as a product of two

averages, which clearly vanish, i.e., �X�	n�− X̄��	n��=0. As a
result, one finds,

SXX =
2

T
�0

T

dt�X�t� − X̄��2�
=

2

T
�
n=1

N 
�X�	n� −
�X�
���

��	n��2�
=

2

���
��X2� + ��2�� �X�

���
�2

− 2�X��
�X�
���

� . �7�

We can thus express the fluctuations SXX in terms of the
averages over the segments, such as, ���, �X�, �X��, etc. We
note that these are averages over either linear �such as, ���,
�Jz�� or quadratic �such as, �Jz

2�, �Jz��� functions. Note that
centered moments of higher order �for example, the third

centered moment �1 /T���0
Tdt�X�t�− X̄��3�� cannot be easily

obtained with this segment technique. Indeed, the equivalent
of Eq. �7� for a higher moment has terms involving averages
over the last, incomplete, segment of the time interval �0,T�.
The contribution from this incomplete segment is negligible
��1 /T� for the first and second moments but is important for
higher moments. As this last segment is incomplete, its sta-
tistics are different from the statistics of standard segments
and cannot be easily computed.

As is emphasized in Ref. 14, the average over the seg-
ments can be done into two steps,

�X� = �X�1,2 = �
	

�X�	��1P2�	� . �8�

The first average is carried out over the durations
�0 , . . . ,�M−1 of an arbitrary sequence of states 
0→
1
→¯→
M−1→
0. This first average, which we denoted in
Eq. �8� as �·�1, is easy to perform, as �m is given by a Pois-
sonian process, with a rate �m, and we leave further details to
Appendix A. The second step is an average over all the pos-
sible sequences of states, with the correct probability P2�	�
for each sequence. As we will show below, it is possible in
our case to describe the whole set of sequences, and this
second average can also be performed analytically.

B. Construction of all possible segments: Case of molecular
quantum dot magnet

In order to perform the second average, we must identify
the whole set of possible sequences for the magnetic mol-
ecule system. As we work in the limit of strong Coulomb
blockade, the dot level can be occupied at most by one elec-
tron, so we have Q=0 or Q=1. For the empty dot, the total
spin is simply given by the molecular spin, and specifying
the z component of the spin determines the state completely
�Sz� �−S ,S��, so an empty dot state is given by �0,Sz�. For
the occupied dot �Q=1�, the total spin is obtained by the
addition of the molecular spin and the spin of the electron
occupying the dot, which gives J=S�1 /2. These two values
of the total spin correspond to two levels of the system,
separated by an energy of order Jex �the value of the ex-
change coupling between the spins�. As explained before, we
decide here to work in the ferromagnetic case, where the
lower level is the one with J=S+1 /2, and with the chemical
potentials of the electrodes placed so that only this lower
level is in the bias window; then the level J=S−1 /2 plays no
role in transport �it cannot be populated� and can be forgot-
ten. The occupied dot has thus a total spin J=S+1 /2, and
specifying the z component again determines the state com-
pletely �Jz� �−�S+1 /2� ,S+1 /2��, so an occupied dot state is
given by �1,Jz�.

For the reference state �which is the initial and final states
of each segment�, we choose an empty dot with spin maxi-
mally polarized along the z axis: �0,Sz= +S�. From this state,
there are two basic sequences where a single electron is
transferred from the left to the right electrode,

�A� �0,Sz = + S� → �1,Jz = S + 1/2� → �0,Sz = + S� ,

�B� �0,Sz = + S� → �1,Jz = S − 1/2� → �0,Sz = + S� .

The two sequences �A and B� are the two simplest ones.
Clearly, sequence A cannot be extended further, as the spin
of the intermediate state is maximal. On the contrary, se-
quence B, which we will call basic sequence B, can be ex-
tended by adding a subsequence starting and finishing at the
intermediate state �1,Jz=S−1 /2� and going only to lower
values of Sz. One can add the following:

�i� i1 times the subsequence v1

�1,Jz = S − 1/2� → �0,Sz = S − 1� → �1,Jz = S − 1/2� ,

�ii� i2 times the subsequence v2

�0,Sz = S − 1� → �1,Jz = S − 3/2� → �0,Sz = S − 1� ,

etc.

�iii� i4s times the subsequence v4s

�0,Sz = − S� → �1,Jz = − S − 1/2� → �0,Sz = − S� .

Combining the 4S subsequences to the basic segment B, with
arbitrary repetition of each subsequence, one can construct
all the possible sequences of type B �see also Fig. 2�. We use
the notation B��i1 , i2 , . . . , i4S� to represent the type-B se-
quence composed of the basic sequence B combined with i1
times the subsequence v1, i2 times the subsequence v2, etc.
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The basic sequence B is then simply B��0,0 , . . . ,0�. The
whole set of type-B sequences, plus the simple sequence A,
give all the possible sequences.

The probability with which a given sequence occurs is
given by the product of the probabilities of the transitions
forming that sequence. The probability of a transition is
given by the transition rate divided by the total transition rate
of the initial state. One must here distinguish between tran-
sitions starting from an empty dot �Q=0� and transition start-
ing from an occupied dot �Q=1�. An empty dot �Q=0� with
a molecular spin Sz is subject to two types of transitions:
tunnel in of an electron from the left electrode with either up
or down spin, which brings the dot to the state Jz=Sz+1 /2 or
Jz=Sz−1 /2. The transition rates �Q=0

+ �Sz� and �Q=0
− �Sz� for

the above two processes can be calculated using Fermi’s
golden rule and Clebsh–Gordan coefficients,

�Q=0
� �Sz� = �L

1 � pL

2

S + 1 � Sz

2S + 1
. �9�

Using the tunneling rates �Q=0
� �Sz�, one can express the prob-

ability PQ=0
� �Sz� with which the system jumps onto either of

the two final states,

PQ=0
� �Sz� =

�Q=0
� �Sz�

�Q=0
+ �Sz� + �Q=0

− �Sz�
. �10�

For an occupied dot �Q=1�, with the molecular spin state Jz,
tunnel out of an electron with either spin down or spin up
brings the dot to the state Sz=Jz+1 /2 or Sz=Jz−1 /2, with
the rates

�Q=1
� �Jz� = �R

1 � pR

2

S + 1/2 � Jz

2S + 1
, �11�

giving the probability

PQ=1
� �Jz� =

�Q=1
� �Jz�

�Q=1
+ �Jz� + �Q=1

− �Jz�
. �12�

Using Eqs. �10� and �12�, one can express the probabilities of
sequences A and B:

P2�A� = PQ=0
+ �Sz = S�PQ=1

− �Jz = S + 1/2� ,

P2�B� = PQ=0
− �Sz = S�PQ=1

+ �Jz = S − 1/2� . �13�

Subscript 2 is to recall that these probabilities are associated
with the second average �average over different sequences�.
Similarly, extensions starting from an occupied dot or an
empty dot occur with the following probabilities,

Po�Jz� = PQ=1
− �Jz�PQ=0

+ �Sz = Jz − 1/2� ,

Pe�Sz� = PQ=0
− �Sz�PQ=1

+ �Jz = Sz − 1/2� , �14�

where the subscript o and e stand for occupied and empty.
The probability of the sequence B��i1 , i2 , . . . , i4S� is then

P2�B��i1,i2, . . . ,i4S��

= Ci1+i2−1
i2 . . . Ci4S−1+i4S−1

i4S p1
i1p2

i2
¯ p4S

i4SP2�B� , �15�

where p2l−1	 Po�Jz=S− �2l−1� /2� and p2l	 Pe�Sz=S− l�. In
this expression, the combinatorial factors Ci

j = i ! / �j ! �i− j� ! �
count the number of different sequences corresponding to the
set �i1 , i2 , . . . , i4S� because of the possible permutations of the
subsequences. There are Cin−1+in−1

in different possibilities to
“attach” the il subsequences at level l to one of the interme-
diate states of the il−1 subsequences at level l−1. The second
part of the expression is simply the product of the probabili-
ties of all the subsequences.

Together with some explicit formulas for the first average
�see Appendix A�, Eqs. �13� and �15� allow us to evaluate the
averages over different segments 	 appearing in Eq. �8�.
Evaluating all such averages, one finally finds the explicit

formulas for X̄ and SXX, formally written as Eqs. �5� and �7�.
Analytic results for such quantities are listed in Tables I and
II as a function the polarization p of the electrodes. Some of
such examples are also shown in Appendix B, along with
some intermediate steps in a specific case of S=1 /2. Note
that we are able to obtain such analytical formulas owing to
identities involving summation on the binomial factors such
as

�
j=0



Ci+j−1
j xj =

x

�1 − x��i+1� ,

�
j=0



Ci+j−1
j jxj =

x�1 + ix�
�1 − x��i+2� , �16�

In practice, the calculations are quite lengthy, but results are
easily obtained using a symbolic computation software. In
Appendix B, it is also shown that our analytic results are
consistent with the cumulant generating function, obtained in
Ref. 7, in the limit of nonmagnetic electrodes: p→0.

Sz=S

Jz=S+1/2

Jz=S-1/2

Sz=S-2

Jz=S-3/2

Sz=S-1

Q=0 Q=1 Q=0 Q=1 Q=0

A

B

{extensions

FIG. 2. Construction of all the possible sequences—type A and
type B+extensions. A sequence starts and ends in the reference
state, Q=0, Sz=S. Sequence A �solid line� corresponds to the tun-
neling of a spin-up electron from the left to the right lead. Sequence
B �dashed line� to the tunneling of a spin-down electron from left to
right lead. Sequence B can be extended by attaching subsequences
starting and ending from the state Q=1,Jz=S−1 /2 �thin dashed
lines�, forming longer sequences where several electrons are trans-
mitted and where the molecular spin goes through intermediate
states with Sz�S and Jz�S−1 /2.
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TABLE I. The analytic formulas for the case of a molecular spin S=1 /2, when only the triplet state of the
occupied dot �with a spin S=1� lies in the bias window. The first column shows the type of polarizations in
the leads: P for parallel �PL= PR= p�, AP for antiparallel �PL=−PR= p�, LP �PL= p, PR=0� for left lead
polarized only, and RP �PR= p, PL=0� for right-lead polarized only. The second column shows the quantity
whose analytical formula is given in the third column.

P Ī 3/10
AP Ī − 5p4 + 2p2 + 3

2p4 + 20p2 + 10
LP Ī p2 + 3

2p2 + 10
RP Ī 3�1 − p2�

2�5 − p2�

P SII 125p2 + 39

125 − 125p2

AP SII 43p12 − 318p10 − 463p8 + 12p6 + 413p4 + 274p2 + 39

�p4 + 10p2 + 5�3

LP SII p6 + p4 + 39p2 + 39

�p2 + 5�3

RP SII 3�15p6 − 49p4 + 21p2 + 13�
�5 − p2�3

P J̄z
0

AP J̄z 2p�3p2 + 5�
p4 + 10p2 + 5

LP J̄z 5p

p2 + 5
RP J̄z − p

P SJzJz 88

5 − 5p2

AP SJzJz 8�1 − p2��− 25p8 + 48p6 + 30p4 − 200p2 + 275�
�p4 + 10p2 + 5�3

LP SJzJz 8�− 2p6 + 71p4 − 340p2 + 275�
�p2 + 5�3

RP SJzJz 8�8p4 − 19p2 + 11�
5 − p2

P Q̄ 3/5
AP Q̄ 3p4 + 10p2 + 3

p4 + 10p2 + 5
LP Q̄ p2 + 3

p2 + 5
RP Q̄ p2 + 3

5 − p2

P SQQ 96

125�1 − p2�
AP SQQ 32�1 − p2��15p8 + 40p6 + 38p4 + 32p2 + 3�

�p4 + 10p2 + 5�3

LP SQQ 32�− p4 + 2p2 + 3�
�p2 + 5�3

RP SQQ 32�1 − p2��− 3p4 + 8p2 + 3�
�5 − p2�3
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TABLE II. The analytic formulas for the case of a molecular spin S=1, when the state J=3 /2 of the occupied dot lies in the bias window.
The first column shows the type of polarizations in the leads: P for parallel �PL= PR= p�, AP for antiparallel �PL=−PR= p�, LP �PL= p, PR=0�
for left lead polarized only, and RP �PR= p, PL=0� for right-lead polarized only. The second column shows the quantity whose analytical
formula is given in the third column.

P Ī 2/7
AP Ī

−
2�p − 1��p + 1��7p4 + 14p2 + 3�

3�p6 + 21p4 + 35p2 + 7�
LP Ī 2�p2 + 1�

5p2 + 7
RP Ī 2�p4 + 2p2 − 3�

3�p4 − 2p2 − 7�

P SII
−

4�539p2 + 75�
1029�p2 − 1�

AP SII 4�p − 1��p + 1��357p16 − 2698p14 − 24654p12 − 71634p10 − 100500p8 − 68254p6 − 23458p4 − 3846p2 − 225�
9�p6 + 21p4 + 35p2 + 7�3

LP SII 4�27p6 + 27p4 + 81p2 + 25�
�5p2 + 7�3

RP SII 4�p − 1��p + 1��3p10 + 85p8 + 270p6 − 518p4 + 1215p2 + 225�
9�p4 − 2p2 − 7�3

P J̄z
0

AP J̄z 4p�3p4 + 14p2 + 7�
p6 + 21p4 + 35p2 + 7

LP J̄z 2p�p2 + 7�
5p2 + 7

RP J̄z −
2p�p2 − 7�

p4 − 2p2 − 7

P SJzJz 552

7 − 7p2

AP SJzJz 8�p − 1��p + 1��105p14 − 63p12 − 471p10 + 8617p8 − 7021p6 − 3381p4 − 2597p2 − 3381�
�p6 + 21p4 + 35p2 + 7�3

LP SJzJz −
8�24p8 + 367p6 − 1963p4 + 4921p2 − 3381�

�5p2 + 7�3

RP SJzJz 8�p − 1��p + 1��3p10 + 30p8 − 673p6 + 3321p4 − 5614p2 + 3381�
�p4 − 2p2 − 7�3

P Q̄ 4/7
AP Q̄ 4�p6 + 7p4 + 7p2 + 1�

p6 + 21p4 + 35p2 + 7
LP Q̄

−
4�p2 + 1�

p4 − 2p2 − 7
RP Q̄ 4�p2 + 1�

5p2 + 7

P SQQ
−

288

343�p2 − 1�
AP SQQ

−
32�63p16 + 420p14 + 980p12 + 1388p10 − 622p8 − 1348p6 − 668p4 − 204p2 − 9�

�p6 + 21p4 + 35p2 + 7�3

LP SQQ 32�2p10 + 7p8 − 16p6 + 58p4 − 42p2 − 9�
�p4 − 2p2 − 7�3

RP SQQ 32�6p6 − 7p4 + 24p2 + 9�
�5p2 + 7�3
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III. RESULTS

In this section, we present the results we have obtained
for the various quantities. We will focus on the mean current

Ī and the current noise SII, on the mean charge on the dot Q̄
and its fluctuations SQQ, and on the mean value of the z
component of the spin on the dot Jz and its fluctuations SJzJz

.
In order to see the effect of the lead magnetization, we will
show all these quantities as a function of the polarization of
the leads. For simplicity, we choose to have a single param-
eter for the lead polarizations, and we have chosen four rep-
resentative cases. In the first two cases, the two electrodes
are magnetic. The absolute value and the direction of the
polarizations are the same in the two electrodes but are either
parallel �PL= PR= p, case noted P� or antiparallel �PL=−PR
= p, case AP�. In the two remaining cases, only one of the
electrode is magnetic �with a polarization p�, while the other
one has no magnetic property. The polarized electrode can be
either the left one, which is the source electrode �case LP�, or
the right one, which is the drain electrode �case RP�.

Tables I and II give the analytic formulas we have ob-
tained, in the four different cases for the lead polarization,
for a molecular spin S=1 /2 and S=1 �we do not show any
formula for a higher spin S as they become too lengthy�. For
simplicity, we have chosen equal bare transition rates for the
left and right electrodes, �L

�0�=�R
�0�=1 �formulas with general

transition rates can be obtained easily with the same
method�. As can be seen on the table, each analytic formula
is given by a fraction of two polynomial in p and containing
only of even powers of p �except for Jz where there is an
additional factor p�. The orders of these polynomial, and
their coefficient, increase when the molecular spin is in-
creased.

A. Mean current and current fluctuations

The behavior of the mean current as a function of the lead
polarization, for the case of the molecular spin S=1 /2, is
shown in the top panel of Fig. 3. The simplest case is the
case of parallel polarizations �P, dotted curve�: the mean cur-
rent is then constant �value of 3/10�, and the polarization of
the leads has thus no effect. Note that the fact that the current
is constant is related to the choice we made for the density of
states �↑/↓,j = �1� pj� /2 �j=L ,R�. Indeed, we see that the total
density of states �spin up + spin down� in each electrode is
constant.

Consider next the antiparallel case �AP�. We see �full
curve in Fig. 3� that the mean current has a maximum for
zero polarization and decreases to zero when p approaches
�1. This behavior can be understood simply: when �p� is
large �let us take, for example, p close to 1�, the electrons
coming from the left electrode have preferentially a spin up,
while the electrons going to the right electrode have prefer-
entially a spin down; the transport of such an electron from
the left to the right electrode implies thus a flip of the elec-
tron spin and thus an increase of 1 of the z component of the
molecular spin. However, this will lead quickly to a maxi-
mally polarized molecular spin, for which such a spin ex-
change will be impossible. The only processes contributing
to transport will then involve the electrons with a low density

of state �spin down in the left lead or spin up in the right
one�, for which the current goes to 0 when �p� goes to 1. This
behavior is a case of spin blockade: for �p�=1, an electron is
blocked on the dot because its spin does not fit the collecting
electrode spin.

The case where the right electrode only is polarized �RP,
dash-dotted curve in Fig. 3� is similar. For p=1, the system
reaches a state where the z component of the molecular spin
is maximally negative �Sz=−S for the empty dot�. In this
state, spin-up electron can tunnel from the left electrode to
the right electrode without any spin flip, but as soon as a
spin-down electron is tunneling from the left electrode, it is
blocked on the dot because it cannot flip to a spin-up electron
and tunnel to the right electrode. Because of the very large
Coulomb repulsion on the molecular level, the presence of
this spin-down electron forbids any further transport of
spin-up electron. This case is thus also a case of spin block-
ade, as in the AP case, but the Coulomb repulsion on the
molecular level plays here a central role. A similar spin-
blockade phenomenon has been described in Ref. 5. The de-
crease in the mean current with p is a bit slower than in the
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FIG. 3. �Color online� The mean current Ī �top panel� and its
fluctuations SII �bottom panel� for the case of a molecular spin S
=1 /2 for the four different cases of electrodes polarizations. The
inset in the bottom panel shows the behavior of SII in the parallel
case �P� on a larger scale.

COLOSSAL SPIN FLUCTUATIONS IN A MOLECULAR… PHYSICAL REVIEW B 78, 045316 �2008�

045316-7



AP case, as the process where an electron tunnel without any
spin flip, and without involving small densities of states, is
always possible when �p��1.

Finally, the case where the left electrode only is polarized
�LP, dashed curve in Fig. 3� has a totally different behavior.
There, the current is slowly increasing when �p� increases,
and there is no-spin blockade. Indeed, as the density of states
of both spins is important in the right electrode, it is always
possible to have transport of an electron without spin flip and
involving large densities of states.

Let us now consider the zero-frequency current fluctua-
tions, shown in the bottom panel of Fig. 3. Again, we ob-
serve very different behavior for the four different cases of
electrode polarizations. At p=0, the value of SII is 39 /125
=0.312. In the parallel case �P, dotted curve�, SII increases
with p and diverges as �1− p2�−1 as �p� approaches 1 �see the
inset in the figure�. On the other hand, in the antiparallel case
�AP, full curve�, the current fluctuations are nearly maximal
at p=0 �with small shoulders near �p�=0.3� and decrease to 0
as �p�→1. This huge difference in behavior can be under-
stood using the segment picture; let us take, for example, p
close to 1. In the parallel case, the most probable process
contributing to transport is simply the transport of one
spin-up electron, without any spin flip and thus without ex-
changing angular momentum with the molecular spin. The
most probable segment is thus a very short one, with a single
electron transferred. However, an exchange of angular mo-
mentum �spin flip for the electron and modification of the z
component of the molecular spin� can happen with a small
probability; when this happen, the system will then transfer
again a very large number of electrons without any spin flip,
and it will take a very long time before the z component of
the molecular spin recovers its initial value. There is thus a
small probability to have a very long segment, with many
electrons transferred—the smaller the probability, the longer
the segment. This presence of rare but arbitrary long segment
when p goes to 1, in a “background” of very short segments,
explains the divergence of SII in the parallel case. The situ-
ation is different for the antiparallel case: for p close to 1, the
molecular spin is with a high probability in a maximally
polarized state �Sz=S for the empty dot�. The most probable
process is again the transfer of a single electron without spin
flip �this produces a low current as it involves a small density
of state in one of the electrodes�. There is again a small
probability of a spin flip, which will bring the molecular spin
in the state Sz=S−1. However, at this point, the most prob-
able process �involving large densities of state in both elec-
trodes� tends to bring the molecular spin back to the Sz=S
state. The resulting segment is thus also short, with two �or at
most a few� electrons transferred. As this probability for such
longer segments goes to zero when p→1, and as the length
of these segments is quite short, we understand why the cur-
rent fluctuations SII go to 0 when �p�→1. Note that a similar
behavior has been found for transport through a quantum dot
�without molecular spin� and called in this context dynamical
spin blockade.12,13 There, it can lead to positive cross corre-
lations in devices with three electrodes.

Alternatively, the divergence of the current fluctuations
can be understood by simply looking at the situation of to-
tally polarized electrodes ��p�=1�. In this case, there is only

one spin species in both electrodes, and thus any spin flip is
forbidden. The z component of the molecular spin, Sz, thus
stays forever in the state it has been prepared initially, giving
a current which depends on the value of Sz, but which is
different from the mean current �the latter taking into ac-
count all possible values of Sz� for an infinitely long time.
This leads to divergent fluctuations SII.

The bottom panel of Fig. 3 shows also the results when
only one electrode is polarized. In the case where the right
electrode only is polarized �RP, dash-dotted curve�, the cur-
rent fluctuations go to 0 as �p�→1, as in the AP case. Note
however the presence of broad shoulders, with a maximum
of the fluctuations near �p�=0.6. Finally, in the case where
the left electrode only is polarized �LP, dashed curve�, the
fluctuations have a behavior similar to the one of the mean
current, with a slow increase when �p� increases.

B. Jz and the Jz fluctuations

In many works about electronic transport in the incoher-
ent regime, the emphasis is put on the statistics of the elec-
tronic current, and little attention is given to the statistics of
other quantities �see however Ref. 15�. Here we study the
statistics of the total spin of the molecule �i.e., its z compo-
nent Jz�, which gives us precious information on the impact
of the electronic current on the molecular spin.

The results for the mean value of the z component of the
molecular spin, Jz and the Jz fluctuations, SJzJz

, are shown in
Fig. 4. Note that these two quantities involve both the mo-
lecular spin when the dot is full �Jz� and the molecular spin
for the empty dot �which is noted Sz, but as the intrinsic
molecular spin S is also the total spin for an empty dot, Jz
reduces to Sz for an empty dot�. The mean value Jz is an
important quantity, as it shows how the current through the
molecule is changing the polarization of its spin �as without
any current, one has simply Jz=0�. The fluctuations SJzJz
show how the molecular spin fluctuates around its mean
value; it gives thus precious information on how precisely
one could control the molecular spin polarization by apply-
ing a current.

In the parallel case �P, dotted curve in the top panel of Fig.
4�, the mean value Jz is simply 0 for all p. In the antiparallel
case �AP, full curve�, Jz is a nonlinear odd function of p,
going from 0 to 1 for p going from 0 to 1. This behavior is
easily understood. For p�0, for example, the spin-up elec-
trons have a larger density of state than spin-down electrons
in the left electrode, and it is the opposite in the right elec-
trode. The system thus favors the transport of a spin-up elec-
tron from the left electrode into a spin-down electron in the
right electrode �compared to the process with the spin ex-
changed�, and this process increases Jz by 1. On average Jz
will thus be positive for p�1. For p=1, we have seen that
current is 0 because of spin blockade. In this case, the system
is frozen in the state where the dot is full, with Jz=1, hence
one has Jz=1.

The behavior is quite similar in the case where the left
electrode only is polarized �LP, dashed curve�: Jz is an odd
function of p, positive for p�1. There are two main differ-
ences with the antiparallel case. First, the slope at p=0 is
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smaller �it is 1 for LP and 2 for AP�. Next, Jz does not reach
1 �but 5/6� for p=1. This is because the current is nonzero
even for p=1 �no-spin blockade�, and thus the molecular
spin oscillates from the value Jz=1 �filled dot� and Sz=1 /2
�empty dot�. Finally, the case where the right electrode only
is polarized �RP, dash-dotted curve� has an opposite sign, and
the behavior is simply linear, with Jz=−p. The fact that the
sign is the opposite from the sign of the other cases
�Jz=−1 for p=1� is due to the fact the tunneling of a spin-up
electron to the right electrode �dominant for p�1� is done
either without spin flip �if the electron coming from the left
electrode is also a spin-up electron� or with a spin-flip which
decreases Jz by 1 �if the electron coming from the left elec-
trode is a spin-down electron�. The fact that Jz reaches the
value −1 for p=1 is again due to spin blockade, as in the
antiparallel case.

Let us now consider the fluctuations of Jz around its mean
value, SJzJz

�bottom panel of Fig. 4�. Note first that the value
of SJzJz

for p=0 is 88 /5=17.6. This value, which determines
the overall scale of the fluctuations, is extremely large and is
discussed in more details below. In the parallel case �P�, SJzJz

is increasing as �p� increases and has the same �1− p2�−1 di-
vergence as the current noise �for the same reasons�. In the
other three cases, SJzJz

is maximum at p=0 and decreases as
�p� increases, with a much broader shapes for the cases with
only one electrode polarized �LP and RP� compared to the
antiparallel case �AP�. In the antiparallel case, and in the case
where the right electrode only is polarized �RP�, SJzJz

is 0 for
�p�=1 because of spin blockade �current is zero�. However in
the case where the left electrode only is polarized �LP�,
SJzJz

=4 /27 for �p�=1 because there is no-spin blockade: for
p=1 the molecular spin oscillates between the values Sz
=1 /2 and Jz=1, leading to these nonzero fluctuations. Fi-
nally, we note that the behavior of SJzJz

is very similar in the
two cases where there is only one electrode polarized �LP
and RP�; this is quite remarkable, as the currents �and the
current noises� in these two cases have a completely different
behavior �see Fig. 3�.

As said above, the scale of these Jz fluctuations is very
large, with a value SJzJz

=88 /5 for p=0. A natural normaliza-
tion of these fluctuations, to take into account the value of
the molecular spin, is to divide by �2S+1�2 �note that �=1�.
Here, S=1 /2, which gives a normalized value of 22/5. As
can be seen from the definition of the fluctuations on Eq. �2�,
the fluctuations of SJzJz

have the dimension of a time
�as �=1, Jz is dimensionless� and should be compared with a
typical time in the system. Here, the natural time is just the
inverse transition rate 1 /�L,R

�0� =1, which gives the scale of the
time to transfer an electron. The value of the Jz fluctuations
at p=0 is quite larger than this time scale. Compared with
the value for the charge fluctuations SQQ, which is 96 /125
�0.77 �see Table I�, shows also that the normalized Jz fluc-
tuations for p=0 are extremely large. Even if these fluctua-
tions decrease with increasing �p� �except in the parallel
case�, they remain quite large when �p� is not close to 1. One
can thus speak of colossal spin fluctuations, and this implies
that it is difficult to control the molecular spin with the cur-
rent, except with electrodes having polarizations p close to 1.

In this respect, the antiparallel case is much more favor-
able than the case where only one electrode is polarized. One
could, for example, think to use a setup with only one polar-
ized electrode to flip the molecular spin by reversing the
current in the setup. Indeed, reversing the voltage bias will
make the system go from the LP case to the RP case. If
p=0.5 for the polarized electrode, we see in the top panel of
Fig. 4 that Jz would change from approximately 0.5 �case
LP� to −0.5 �case RP� when the bias voltage is reversed.
However, as the Jz fluctuations are very large �the normal-
ized value is �5�, it is difficult to say that the molecular spin
is controlled. Performing the same with two polarized elec-
trodes in the antiparallel polarization configuration would be
more effective: reversing the bias voltage is then equivalent
to the change p→−p, and with p=0.5 it would change Jz
from approximately 0.75 to −0.75. The normalized value of
the Jz fluctuations is then approximately 1.3, which is much
lower than in the previous case.

IV. BEHAVIOR FOR LARGER MOLECULAR SPIN

In Sec. III, we have shown the results obtained in the case
of a molecular spin S=1 /2. The method we have presented is
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FIG. 4. �Color online� The mean value of the z component of the
molecular spin, Jz �top panel� and its flucutations SJzJz

�bottom
panel� for the case of a molecular spin S=1 /2, for the four different
cases of electrode polarizations.
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of course not limited to this value of the spin, and we discuss
in this section how the results are changed when the molecu-
lar spin is larger than 1/2. Note that the analytical results for
S=1 are given in Table II. One obtains with these results that
the plots are qualitatively similar to the ones for S=1 /2.

In order to discuss the behavior at larger S, one should
distinguish between the mean current �and the current fluc-
tuations� on the one hand and the mean value of Jz �and the
Jz fluctuations� on the other hand. For the mean current, and
the current fluctuations, there is very little change as one
increases the spin, and the physical explanations we have
given for S=1 /2 apply for arbitrary spin. This is illustrated

in Fig. 5, which shows the mean current Ī �top panel� and the
current fluctuations SII �bottom panel� as a function of the
polarization p for the antiparallel �AP� configuration and for
the values of the spin S=1 /2, S=1, and S=3 /2. One can see
that both the mean current and the current fluctuations de-
crease a little bit as the spin is increased, with very little
change in the p dependence. For larger values of S, the

curves will slowly converge toward a “classical curve,” ob-
tained by considering a classical �fixed� spin.

The situation for the mean of Jz and its fluctuations is
slightly different. First, as J=S+1 /2, it is natural to normal-
ize the results for the different S to compare them; we nor-
malize Jz by S+1 /2 and the Jz fluctuations by �2S+1�2. The
normalized mean of Jz is shown in the top panel of Fig. 6 for
the case of antiparallel polarizations �AP� and for the values
of the spin S=1 /2, S=1, and S=3 /2. When p→1, the mo-
lecular spin is maximally polarized, and thus each curve
reaches the value 1 for p=1. However, the slope at p=0
increases when S increases. By inspection of the formulas,
we see that the slope at p=0 is given by 4 /3� �S+1�. The
molecular spin is thus more easily polarized when S in-
creases. When the molecular spin becomes large, we expect
that it becomes more sensitive to the electrode magnetiza-
tions, reaching even for small �p� highly polarized states.

The Jz fluctuations, SJzJz
, normalized by �2S+1�2, are

shown in the bottom panel of Fig. 6. Two important charac-
teristics appear on this figure. First, the maximum value of
the normalized fluctuations, for p=0, increase strongly when
S increase. This maximum is already very large for S=1 /2
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FIG. 5. �Color online� The mean current Ī �top panel� and its
fluctuations SII �bottom panel�, in the antiparallel configuration of
the electrodes, for the values of the spin S=1 /2, S=1, and S=3 /2
as a function of the electrode polarizations p. When increasing the
spin S, the curves converge toward a “classical” curve �dotted line�
corresponding to a fixed spin.
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FIG. 6. �Color online� The normalized mean value of Jz,
Jz / �S+1 /2� �top panel�, and its normalized fluctuations
SJzJz

/ �2S+1�2 �bottom panel�, in the anti-parallel configuration of
the electrodes, for the values of the spin S=1 /2, S=1, and S=3 /2
as a function of the electrodes polarizations p.
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�see the discussion in Sec. III�, but it is still much larger for
larger S. At p=0, SJzJz

=88 /5 for S=1 /2, SJzJz
=552 /7 for S

=1, and SJzJz
=2080 /9 for S=3 /2, . . .. Second, the width of

the curves as a function of p decreases as S increases: the full
widths at half maximum are �0.6 for S=1 /2, �0.45 for S
=1, and �0.35 for S=3 /2. This means that for �p� large
enough, the normalized fluctuations decrease when S is in-
creased. For example, on the figure, we see that for �p�
�0.4, the normalized Jz fluctuations for S=3 /2 are smaller
than those for S=1 /2. We expect this tendency to continue
when S is increased, with the normalized Jz fluctuations for a
large spin S having the shape of a narrow peak with a very
large maximum value. As soon as the electrodes have some
magnetization, a larger spin is thus relatively easier to con-
trol than a small spin S, as the normalized Jz fluctuations can
be much smaller.

V. ALTERNATIVE METHOD OF CALCULATION

We discuss here shortly another method of calculation,
which can also be used to obtain analytical formulas for the
averages and fluctuations of different quantities and which
can even give access to analytic expression for the higher
moments. It is derived from the master-equation approach to
the full counting statistics, which was introduced in Ref. 16,
and adapted for a molecular quantum dot magnet �placed
between normal electrodes� in Ref. 7. A full explanation of
the method can be found in these two references.

In the master-equation approach, a n�n matrix L deter-
mines the time evolution of the populations of the n different
states of the system,

dp�t�
dt

= Lp�t� , �17�

where p�t� is the vector containing the populations. Any off-
diagonal element Lij of the matrix L gives the transition
probability from state i to state j. To obtain the full counting
statistics of a given physical quantity, a counting field � is
introduced in the matrix L by making the appropriate re-
placements of diagonal and nondiagonal elements. The ei-
genvalues of the matrix L��� then give access to the full
counting statistics, as the cumulant generating function is
simply proportional to the eigenvalue ���� which satisfies
lim�→0 ����=0. The full counting statistics is thus obtained
by solving the equation

�n + fn−1����n−1 + ¯ + f1���� + f0��� = 0, �18�

where the functions f i��� �i=0, . . . ,n−1� depend on the ma-
trix L modified by the counting field �. The solution which
satisfies lim�→0 ����=0 then gives access to the cumulants
Cn�X� of the quantity X associated with the counting field �,

Cn�X� = � �n����
��n �

�=0
. �19�

Note that the first two cumulants �C1 and C2� are simply the
average and the fluctuations which have been calculated in
Secs. I–IV. In general, the cumulant of order n can be ex-
pressed as a combination of the centered moments of order

�n.17 T is the measuring time, which must be larger than all
typical times in the system. It is in general impossible to
solve Eq. �18� analytically �except in special cases which can
be reduced to small n, as in Ref. 7�. However, if one is
interested in the cumulants up to a finite order nmax only, then
one can expand the function ���� in power of � and keep
only the terms up to the order nmax. It is then possible to
solve Eq. �18� by expanding all the terms in powers of �, and
by solving order by order, starting from order 1 up to order
nmax. Specifically, to compute the average and fluctuations
�of the chosen quantity� only, it is enough to write ����
=C1�+ �C2 /2��2 to develop f0���, f1���, and f2��� up to order
2 in � and then to solve Eq. �18� first for C1 �terms in �� and
then for C2 �terms in �2�.

There are two kinds of observable with different types of
counting fields. First, chargelike operators, which have a
given value for each state of the dot �for example, the charge
Q or Jz�. In this case, the counting field is simply introduced
by adding +c
� to each diagonal element L

, where c
 is the
value of the observable �for example, Jz� in state 
. Second,
currentlike operators, which are associated with transitions
between different states �the charge current being the main
example�. In this case, the counting field is introduced by
multiplying the off-diagonal elements L
� which are associ-
ated to transitions contributing to the current by ei�. For this
second kind of observable, there is an additional factor in on
the right-hand side of Eq. �19�.

With this alternative method, we have computed all the
quantities shown in Secs. I–IV of this paper, and we verified
that we could indeed recover the same formulas. This
method allows us to compute quite easily cumulants of order
higher than 2. We do not provide here a complete exploration
of the higher cumulants of the physical quantities we are
interested in, but as an example Fig. 7 shows the third and
fourth cumulants of the current for the four possible cases of
electrode magnetizations.

We see on these plots that some of the features present for
the current fluctuations �Fig. 3� are more pronounced on the
third and fourth cumulants. In the right-lead polarized case
�RP�, peaks for large p are becoming more pronounced,
while in the left lead polarized case �LP�, the variations of
the cumulant as a function of p are extremely small.

Note that such higher moments were recently measured18

for a quantum dot connected to normal leads: there the re-
duction in all the moments is attributed to the fact that when
one electron occupies the dot, a second electron cannot enter.
In our case, we recover qualitatively similar behaviors for
different electrode configurations between the noise and the
third moment. Yet, the higher moments computed here have
a more complex structure with local minima which are
placed away from zero polarization. A precise interpretation
of these effects goes beyond the scope of the paper.

VI. CONCLUSION

In this paper, we have studied the incoherent transport
between ferromagnetic electrodes through a magnetic mol-
ecule with an isotropic spin. The molecule is modeled as a
single resonant level, with large electronic interaction forbid-
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ding double occupancy of the level. There is an exchange
coupling between the molecular spin and the electronic spin
on the molecular level. By extending an original method
�which was first introduced by Korotkov14 in the study of
noise of the singe-electron transistor�, we have shown that it
is possible to obtain analytical formulas for the average and
fluctuations of all physical quantities of interest. The idea of
the method is to separate the transport process in statistically
independent segments, and to compute the average and fluc-
tuations using the properties of individual segments, and then
averaging using the statistical distribution of all segments.
We have focused on the current through the molecule and its
fluctuations and on the total spin of the molecule and its
fluctuations. We limited the calculations to the case of a tem-
perature � much smaller than the bias voltage, and with only
the level J=S+1 /2 in the bias window, but using the same
method it would be quite easy to generalize the results to
higher temperatures or to the case where the two levels J
=S�1 /2 are inside the bias window.

By considering several configurations of the magnetiza-
tion of the electrodes �both electrodes polarized with parallel
or antiparallel polarizations or only one electrode polarized�,

we have shown that there is a rich variety of behaviors. De-
pending on the electrode polarizations, the current can de-
crease or increase with the electrode polarization; for maxi-
mally polarized electrodes, it can be blocked due to spin
blockade. The current fluctuations can show a nonmonotonic
behavior as polarization is increased.

With the study of Jz �the z component of the total spin of
the molecule�, we have been able to characterize how the
electronic transport affects the molecular spin. If the results
for the average of Jz show, as expected, that it is possible to
polarize the molecular spin by using magnetic electrodes
�nonzero average of Jz whose sign depends on the sign of the
current�, the results for the fluctuations of Jz show that these
fluctuations are very large. This shows that it is effectively
difficult to control the molecular spin with the current, ex-
cept with electrodes having polarizations close enough to 1.
We have shown how these results evolve when increasing
the bare molecular spin: the polarizability of the molecular
spin increases near p=0, and the fluctuations of Jz are more
peaked around p=0. These large fluctuations of the molecu-
lar spin are of course a direct consequence of the isotropy of
the molecular spin. The fluctuations would be severely re-
duced in molecular magnets, where a strong spin anisotropy
is present.

We have also shown that we can obtain the same results
using a different calculation, based on an extension of the
method introduced by Bagrets and Nazarov16 to compute the
full counting statistics in Coulomb blockade systems. In con-
trast to the segment method, this second method offers the
possibility to compute the higher cumulants of the physical
quantities, and we have shown as an example the results for
the third and fourth cumulants of the electronic current. In-
formation about all current moments enables to further char-
acterize the statistics of electron transfer. Note that this sec-
ond method, which is in principle more performant as it
allows us to compute higher moments, gives however less
information for the physical interpretation of the results,
compared to the segment method.
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APPENDIX A: EXPLICIT FORMULAS I: FIRST AVERAGE:
AN AVERAGE IN A GIVEN SEGMENT

In the segment picture, the statistical average X̄ and the
fluctuations SXX of a given random variable X�t� reduce to an
average of quantities in a single segment, such as,
�X� , ��� , �X�� ,¯, and its lowest-order examples are Eqs. �5�
and �7�. In these formulas, the average in a single segment is
done in two steps, i.e., first a Poissonian average over a given
segments is taken, and then one takes an average over dif-
ferent segments with suitable weights. One may denote the
first average for a given segment 	 as �¯�1. The probability
with which in a given segment 	= �
1 ,
2 , ¯ ,
M−1�, the mth
state happens to survive during a period �m is proportional to
exp�−�m�m�, where 1 /�m is the average lifetime of the mth
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FIG. 7. �Color online� The third cumulant of the current C3�I�
�top� and the fourth cumulant of the current C4�I� �bottom� as a
function of the electrodes polarizations p for the four different cases
of electrodes polarizations. The inset on the bottom panel shows the
curves on a larger scale.
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state. The probability with which 	 is characterized by a set
of transition times ��0 ,�1 , ¯ ,�M−1� thus obeys a Poissonian
distribution,

P1��0,�1, ¯ ,�M−1� = �0�1 ¯ �M−1e−�0�0e−�1�1
¯ e−�M−1�M−1,

�A1�

and in that case, one can rewrite the probability P�	� of the
segment 	 as P�	�= P1��0 ,�1 , ¯ ,�M−1�P2�	�. Then, together
with the explicit definition of the first average,

�X�	��1 =� d�0d�1 ¯ d�M−1X�	�P1��0,�1, ¯ ,�M−1� ,

�A2�

one indeed arrives at Eq. �8�. In Eq. �A2�, X�	� is, e.g., Jz�	�,
defined as Eq. �3�. As for the second average, Sec. II B dem-
onstrates how to construct explicitly P2�	� in the case of
molecular quantum dot magnet.

At linear order, the role of �¯�1 is nothing more than a
replacement �m→ ��m�1=1 /�m, e.g.,

�Jz�	��1 = �
m=0

M−1

Jm
z ��m�1 = �

m=0

M−1
Jm

z

�m
. �A3�

At second order, one may also use the following mathemati-
cal trick.14 Let us attempt to calculate, e.g., �Jz�	���	��1,

�Jz�	���	��1 = � �
m=0

M−1

Jm
z �m �

m�=0

M−1

�m��1

= � �
m=0

M−1

Jm
z ��m�2 + �

m�m�

Jm
z �m�m��1

= �
m=0

M−1

Jm
z ���m�2�1 + �

m�m�

Jm
z ��m�m��1

= �
m=0

M−1

Jm
z 2

�m
2 + �

m�m�

Jm
z 1

�m

1

�m�

= �
m=0

M−1
Jm

z

�m
2 + �Jz�	��1���	��1. �A4�

At the second identity, we divided the double summation into
diagonal and off-diagonal parts. To give some concrete
examples, in the case of segments 	=A and
	=B��i1 , i2 , ¯ , i4S� defined in Sec. II, the final expression
reads explicitly as

�Jz�A���A��1 =
S

��Q=0�Sz = S��2 +
S + 1/2

��Q=1�Jz = S + 1/2��2

+ �Jz�A��1���A��1, �A5�

�Jz�B����B���1 =
S

��Sz=S
Q=0 �2 +

S − 1/2
��Sz=S−1/2

Q=1 �2

+ �
l=1

2s

i2l−1� S − l + 1/2
��Jz=S−l+1/2

Q=1 �2 +
S − l

��Sz=S−l
Q=0 �2�

+ �
l=1

2s

i2l� S − l

��Sz=S−l
Q=0 �2 +

S − l − 1/2
��Jz=S−l−1/2

Q=1 �2�
+ �Jz�B���1���B���1, �A6�

where we used an abbreviated notation, �Sz

Q=0

=�Q=0�Sz�=�Q=0
+ �Sz�+�Q=0

− �Sz� and �Jz

Q=1=�Q=1�Jz�
=�Q=1

+ �Jz�+�Q=1
− �Jz�. Substituting Eqs. �A5� and �A6� into

Eq. �8� in Sec. II A, and together with P2�A� and P2�B��
constructed in Sec. II B �Eqs. �13� and �15��, one finds �Jz��
appearing in Eq. �7� for X=Jz. Evaluating other averages in a
single segment, such as ���, �Jz�, ��2�, and �Jz

2�, one finally
finds the expression for SJzJz

=2�2�Jz�.

APPENDIX B: EXPLICIT FORMULAS II: SECOND
AVERAGE: AVERAGE OVER DIFFERENT SEGMENTS

AND CONSISTENCY WITH THE FULL COUNTING
STATISTICS GENERATING FUNCTION

To illustrate how to evaluate the average over different
segments, let us give here some explicit formulas, which
typically appear in the calculation. For simplicity, we con-
sider here only the case of S=1 /2 and parallel �P� or anti-
parallel �AP� spin alignment of the electrodes: PL= PR= p for
P and PL=−PR= p for AP. Using Eq. �8� in Sec. II A, and
some explicit formulas in Appendix A and in Sec. II B �ex-
pressions for P2�A� and P2�B��, in particular, i.e., Eqs. �13�
and �15��, one finds the average duration of a segment as

���P =
2

3 + p

3�L + 2�R

�L�R
,

���AP =
2�3 + 10p2 + 3p4��L + 4�1 − p4��R

�1 + p�3�3 − 2p − p2��L�R
. �B1�

Here, we used a slightly different convention from the body
of the paper, so that we can compare our results directly with
that of Ref. 7. The convention here is �L,R

↑ =�L�1+ pL,R� and
�L,R

↓ =�L�1− pL,R�. Note that Eq. �B1� is not symmetric func-
tions of p, and this reflects the choice of the reference state.
The average net charge on the dot is

�Q�P =
6

3 + p
, �Q�AP =

2�3 + 10p2 + 3p4�
�1 + p�3�3 − 2p − p2��R

,

�B2�

no longer a symmetric function of p. On the other hand, the
average charge normalized by the average duration of a seg-
ment, which is the physically measurable average charge, is
a symmetric function of p, independent of the choice of the
reference state,

Q̄P =
�Q�P

���P
=

3�L

3�L + 2�R
,
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Q̄AP =
�Q�AP

���AP
=

�3 + 10p2 + 3p4��L

�3 + 10p2 + 3p4��L + 2�1 − p4��R
.

�B3�

As for the current, one has to evaluate similarly, �k�P or �k�AP
to find

ĪP =
�k�P

���P
=

3�L�R

3�L + 2�R
,

ĪAP =
�k�AP

���AP
=

�1 − p2��3 + 5p2��L�R

�3 + 10p2 + 3p4��L + 2�1 − p4��R
. �B4�

Here, we used the same notation k as Ref. 14 to ease the
comparison. Observable quantities, i.e., the charge, current,
or spin averaged over measurement time, are either a sym-
metric �even� or an antisymmetric �odd� function of p de-
pending on their symmetry properties under spin reversal.
One can verify, for example, that Jz averaged over the mea-
surement time is an odd function of p,

J̄zP = 0,

J̄zAP =
�Jz�AP

���AP
=

2p�4�1 + p2��L + �1 − p2��R�
�3 + 10p2 + 3p4��L + 2�1 − p4��R

.

�B5�

Note that the average Jz vanishes for P alignment.
At second order, one finds expressions, such as ��2 is the

centered moment of second order�

�2�Q�P =
24�L�R

�1 − p2��3�L + 2�R�3 ,

�2�Q�AP =
8�1 − p2��3 + 32p2 + 38p4 + 40p6 + 15p8��L�R

��3 + 10p2 + 3p4��L + 2�1 − p4��R�3 .

�B6�

Note that these correlation functions are actually cumulants
or fluctuations around the mean value. At this order, expres-
sions start to be lengthy, so that we list here only a few
examples of our results,

�2�I�P =
�L�R�27�1 + 3p2��L

2 + 48p2�L�R + 4�3 + p2��R
2�

�1 − p2��3�L + 2�R�3 ,

�B7�

�2�Jz�AP =
2�6�L

2 + 4�L�R + �R
2�

�1 − p2��L�R�3�L + 2�R�
. �B8�

In order to check the consistency of these results, let us
compare them with the FCS generating function ��� ,��. For
nonmagnetic electrodes �p=0�, the analytic expression for
��� ,�� is given in Ref. 7 as19

���,�� = T� � − z�L − �R

2
+

1

2
��z�L − �R + ��2 + 4z�L�Re�� ,

�B9�

where z= �2S+2� / �2S+1�, i.e., z=3 /2 for S=1 /2. Taking de-
rivatives of Eq. �B9� with respect to counting fields � or �,
one can, in principle, obtain any correlation function associ-
ated with Q and I, i.e.,

�m,n�Q,I� = � 1

T
��QmIn��c�

p=0
= � 1

T

�m

��m

�n

��n���,���
�→0,�→0

.

�B10�

At lowest orders, this gives

�1�Q�p=0 = Q̄p=0 =
3�L

3�L + 2�R
, �1�I�p=0 = Īp=0 =

3�L�R

3�L + 2�R
,

�2�Q�p=0 = �2�Q�p=0 =
24�L�R

�3�L + 2�R�3 ,

�2�I�p=0 = �2�I�p=0 =
3�L�R�9�L

2 + 4�R
2�

�3�L + 2�R�3 . �B11�

One can, therefore, check the consistency between Eqs. �B3�,
�B4�, �B6�, and �B7� and Eq. �B9� by verifying the formulas
given in Eq. �B11�. Formulas �B3�–�B8� are also listed in
Table I for �L=1 and �R=1.
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