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Multipair dc Josephson resonances in a biased all-superconducting bijunction
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An all-superconducting bijunction consists of a central superconductor contacted to two lateral supercon-
ductors, such that nonlocal crossed Andreev reflection is operating. Then new correlated transport channels
for the Cooper pairs appear in addition to those of separated conventional Josephson junctions. We study this
system in a configuration where the superconductors are connected through gate-controllable quantum dots.
Multipair phase-coherent resonances and phase-dependent multiple Andreev reflections are both obtained when
the voltages of the lateral superconductors are commensurate, and they add to the usual local dissipative transport
due to quasiparticles. The two-pair resonance (quartets) as well as some other higher order multipair resonances
are π shifted at low voltage. Dot control can be used to dramatically enhance the multipair current when the
voltages are resonant with the dot levels.
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I. INTRODUCTION

One of the most striking manifestations of macroscopic
quantum coherence is the Josephson effect:1 a dc current flows
when a phase difference is imposed on a junction bridging
two superconductors with a narrow insulating, metallic, or
semiconducting region. When applying a constant voltage bias
to this same junction, an oscillatory current arises2 and the
application of an rf irradiation leads to the observation of
Shapiro steps with zero differential resistance2,3 and phase
coherence.4 More generally, the microscopic origin of these
effects is Andreev reflections of electrons and holes at the
boundaries of the two superconductors. The same mechanism
participates in the appearance of a subgap structure in highly
transparent voltage-biased junctions, a feature understood to
be due to dissipative quasiparticle emissions called multiple
Andreev reflections (MAR),5,6 which were observed in atomic
point contact experiments.7

Nonlocal quantum mechanical phenomena8 and entangle-
ment are nowadays investigated in condensed matter physics,
in particular, in superconducting circuits.9 Multiterminal su-
perconducting hybrid devices with one superconducting arm
and two normal-metal electrodes have also been studied in
the last decade10 with the aim of detecting nonlocal entangled
electron pairs.11 There is now convincing experimental data
on nonlocal current and noise detection which points in this
direction.12–14 Yet, there is also a growing interest in three-
terminal all-superconducting hybrid structures,15–18 so far
mainly in regimes dominated by phase-insensitive processes.
A recent calculation for a superconductor/normal conduc-
tor/superconductor junction, where the N region is tunnel
coupled to another superconductor, also showed resonances
ascribed to voltage-induced Shapiro steps.19

The present work shows that a nondissipative phase-
coherent Josephson signal of Cooper pair transport could be
observed in a device consisting of three superconductors driven
out of equilibrium. This effect relies on a combination of
both direct Andreev reflections and nonlocal crossed Andreev

reflections (CAR),10 and is thus directly tied to nonlocal
entangled electron processes as well as Josephson physics.
Here, the “bijunction” which we propose consists of a central
superconductor S0 coupled via two adjustable quantum dots
to two lateral superconductors Sa and Sb, biased at voltages
Va and Vb (Fig. 1). As the coherence length of S0 (which is
grounded at V0 ≡ 0) is assumed to be larger than the distance
between the dots, this bijunction cannot be simply considered
as two separated junctions in parallel. Each junction consists
of a quantum dot, made with, e.g., carbon nanotubes13,20 or
nanowires,14 and labeled Dα (α = a,b). The dots introduce
additional degrees of freedom (position of energy levels,
coupling widths) which provide full control of the junctions.
Equilibrium calculations21 in a similar three-terminal device
involving normal-metal interfaces showed that a bijunction
could be a source of spatially correlated pairs of Cooper pairs
(referred to as “nonlocal quartets”) transmitted into Sa and Sb

simultaneously.
This paper reports on calculations of out-of-equilibrium

transport in a biased SaDaS0DbSb bijunction, with the follow-
ing main results:

(i) At commensurate voltages nVa + mVb = 0 (m and n

integers), dc Josephson resonances appear, which correspond
to the phase-coherent transport of n pairs to Sa , and m pairs to
Sb, from S0.

(ii) The Josephson current-phase relation of quartet reso-
nances (n = m = 1) and that of some higher-order resonances
are π shifted at low bias. This new mechanism for producing
a π shift is of particular importance for future interferometry
experiments.

(iii) Gate and/or bias voltages can be tuned to enhance
the multipair resonances by orders of magnitude as compared
to the adiabatic regime, making them easily observable in
experiments.

(iv) At larger biases, a dc quasiparticle-pair interference
term, corresponding to phase-dependent MAR, emerges from
the dissipative Josephson component.
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FIG. 1. (Color online) A Josephson bijunction (left). Supercon-
ductors Sα (α = a,b) are biased at voltages Vα , while S0 is grounded.
The distance between the two quantum dot junctions is comparable to
the coherence length. The right panel shows the energy diagram for
the SaDaS0DbSb bijunction and a higher-order diagram associated
with a “sextet” current with three pairs emitted, two in Sa and one in
Sb, with Va = −Vb/2.

The structure of this paper is the following. In Sec. II,
we explain qualitatively the multipair Josephson resonances
from a simple adiabatic argument. The following sections
are concerned with an exact out-of-equilibrium calculation,
valid at arbitrary voltages. Section III details the Hamiltonian
formalism which we have used to perform the calculations.
Section IV shows and discusses results obtained in the regime
where the quantum dots have a behavior similar to metallic
junctions. The next section shows results for the opposite
regime where the dots present a narrow resonance. Finally,
Sec. VI presents the conclusions and perspectives of this work.

II. ADIABATIC ARGUMENT

A simple phase argument21 suggests the existence of
quartet resonances in a bijunction. Starting with an equilibrium
situation, the current-phase relation of a single tunnel junction
SaS0 with phases ϕa in Sa and ϕ0 in S0 is Ic sin (ϕa − ϕ0),
to which higher-order harmonics can also contribute. In a
SaS0Sb bijunction (with phase ϕb in Sb), there exists in
addition a quartet and a pair cotunneling supercurrent. The dc
quartet supercurrent can be viewed as a nonlocal second-order
harmonic

IQ = IQ0 sin(ϕa + ϕb − 2ϕ0), (1)

while the pair cotunneling corresponds to a dc Josephson effect
between Sa and Sb through S0:21

IPC = IPC0 sin(ϕa − ϕb). (2)

More generally, assuming large enough transparencies,
multipair currents Ia/b in electrodes Sa/Sb are obtained when
differentiating the Josephson free energy with respect to the
superconducting phases (assuming ϕ0 ≡ 0)

Ia/b =
∑
n,m

Ia/b,(n,m) sin(nϕa + mϕb). (3)

When voltages Va/b are applied to Sa/b, ϕa and ϕb acquire a
time dependence, and in the special case where

nVa + mVb = 0, (4)

the adiabatic approximation yields

d [nϕa(t) + mϕb(t)] /dt = 0. (5)

The corresponding current component

Ia/b,(n,m) sin[nϕa(t) + mϕb(t)] (6)

and its higher harmonics are constant in time despite the
applied voltages, thus leading to a dc current signaling the
existence of a multipair resonance. An example of such a res-
onance is provided in Fig. 1 from a diagrammatic point of view,
showing the case 2Va + Vb = 0 to lowest order. The voltage
constraint allows one to close a resonance path provided by
one Andreev reflection in Sb and S0, two in Sa , as well as two
CAR amplitudes in S0. Note that in general these multipair
resonances must coexist with the usual ac components

Ia,(1,0) = I0a sin ϕa(t), Ib,(0,1) = I0b sin ϕb(t), (7)

and with the MAR dc currents discussed in Ref. 16.
While this low-bias argument suggests the possibility of
multipair resonances also at higher voltages, an exact
out-of-equilibrium calculation at arbitrary voltage is still
lacking, and it is discussed below.

III. HAMILTONIAN FORMALISM

The model Hamiltonian of the SaDaS0DbSb bijunction is
written as

Ĥ =
∑

j

Ĥj + ĤD + ĤT , (8)

where Ĥj is the Hamiltonian for the lead Sj (j = 0,a,b),
expressed with the Nambu spinors

Ĥj =
∑

k

�
†
jk (ξk σz + �σx) �jk,

(9)

�jk =
(

ψjk,↑
ψ

†
j (−k),↓

)
,

with the Pauli matrices acting in the Nambu space. ĤD is the
Hamiltonian of the two dots, with a single noninteracting level
in each dot:

ĤD =
∑

s,α=a,b

εαd†
αsdαs . (10)

ĤT is for the tunneling between the dots and the electrodes:

ĤT (t) =
∑
jkα

�
†
jktjαeiσzϕj /2dα + H.c., (11)

where dα = (dα↑d
†
α↓) is the Nambu spinor for dot α, and tjα is

the tunneling amplitude between lead j and dot α.
The phases are specified by the applied voltages ϕj (t) =

ϕ
(0)
j + 2eVj t/h̄. The “bare” phases ϕ

(0)
j , which are usually

unimportant in an out-of-equilibrium setup, are relevant here
in the transport calculations. The superconducting gaps � are
assumed identical and the couplings are taken symmetric.
The width of the superconducting region S0 is assumed to
be negligible, a situation which corresponds to the maximum
coupling between the two junctions forming the bijunction.

As the leads degrees of freedom are quadratic, they can be
integrated out by averaging the evolution operator over these
leads. We use for this a Keldysh path-integral technique. The
Green’s function Ĝ of the dots which is nonperturbative in ĤT ,
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is obtained from a Dyson equation6 involving the free dots
Green function, and electrode self-energies with both local
and nonlocal propagators.23 The details for a multiterminal
structure with two quantum dots have been given in Ref. 24.
Due to the presence of the two dots, the Green function of the
dots is a 2 × 2 matrix in the dots space:

Ǧ
ηη′
αβ (t,t ′) = −i

〈
TC

{
dη

α(t)d†η′
β (t ′)

}〉
, (12)

where η,η′ are Keldysh indices. The self-energy is also a 2 × 2
matrix in the dots space:

̌ =
(

̂aa ̂ab

̂ba ̂bb

)
, (13)

and the component αβ (with α,β = a,b) is given by a sum
over the leads j :

̂αβ(t1,t2) =
∑

j

�j,αβ

∫ ∞

−∞

dω

2π
e−iω(t1−t2)e−iσz(Vj t1+ϕ

(0)
j /2)[ω1 − �jσx]e+iσz(Vj t2+ϕ

(0)
j /2)

⊗
[

− �(�j − |ω|)√
�2

j − ω2
τz + i sign(ω)

�(|ω| − �j )√
ω2 − �2

j

(
2fω − 1 −2fω

+2f−ω 2fω − 1

) ]
, (14)

where �j,αβ = πν(0)t∗jαtjβ and fω is the Fermi function.
The average current from electrode j can then be computed using a Meir-Wingreen-type formula22 generalized to

superconductors:23,24

〈Ijα〉(t) = 1

2
Tr

{
(τz ⊗ σz)

∫ +∞

−∞
dt ′(Ǧ(t,t ′)̌j (t ′,t) − ̌j (t,t ′)Ǧ(t ′,t))αα

}
, (15)

where τz acts in Keldysh space, and σz in Nambu space, and
the trace is taken in the Nambu-Keldysh space. For arbitrary
voltages Va and Vb, the time dependence of the system is
described in terms of two independent Josephson frequencies
ωa = 2eVa/h̄ and ωb = 2eVb/h̄, the Green function Ĝ(t,t ′) is
a function of two times, and solving the Dyson equation is a
daunting task. However, when the voltages Va and Vb applied
to superconductors a and b are commensurate (nVa + mVb =
0, with n and m integers), the time dependence of the system
is periodic, with a period T = |m|2π/ωa = |n|2π/ωb, where
ωa,b = 2e|Va,b|/h̄ are the Josephson frequencies. As in the
study of standard multiple Andreev reflection (MAR) between
two superconductors,23 it is then convenient to introduce
the double Fourier transforms with summation over discrete
domains in frequency:

Ǧ(t,t ′) =
+∞∑

n,m=−∞

∫
F

dω

2π
e−iωnt+iωmt ′Ǧnm(ω), (16)

̌(t,t ′) =
+∞∑

n,m=−∞

∫
F

dω

2π
e−iωnt+iωmt ′̌nm(ω), (17)

where ωn = ω + nṼ , the frequency integration is performed
over a finite domain F ≡ [−Ṽ /2,Ṽ /2], and Ṽ is the smallest
common mutiple of |Va| and |Vb|. The advantage of this
representation is that the Dyson equation for the full Green
function Ǧnm(ω) is now a matrix equation:

Ǧnm(ω) = [
Ǧ−1

0,nm(ω) − ̌nm(ω)
]−1

, (18)

where Ǧ0,nm is the dots Green function without coupling to
the superconducting leads. This equation can be solved by
limiting the discrete Fourier transforms to a cutoff energy Ec,
which gives finite matrices in Eq. (18). The cut-off energy Ec

must be chosen large compared to all the relevant energies in
the system. Ec defines a finite number of frequency domains
nmax. As the width of each domain is ∼V , one has nmax ∼
�/V , which implies that obtaining numerically the full Green
function becomes very expensive at very low voltage. Typical
values which we have used in our calculations are in the range
Ec ∼ 5 to 10�.

From Eq. (14), we find that the self-energy in the double
Fourier representation is (writing explicitly the 2 × 2 matrix
of Nambu space)

̂αβ,nm(ωn) =
∑

j

�j

(
δn,mX̂j (ωn − σjV/2) δn−σj ,mŶj (ωn − σjV/2)e−iϕ

(0)
j

δn+σj ,mŶj (ωn + σjV/2)e+iϕ
(0)
j δn,mX̂j (ωn + σjV/2)

)
, (19)

where X̂ and Ŷ are matrices in the Keldysh space:

X̂j (ω) =
[

− �(�j − |ω|)ω√
�2

j − ω2
τ̂z + i

�(|ω| − �j )|ω|√
ω2 − �2

j

(
2fω − 1 −2fω

+2f−ω 2fω − 1

)]
, (20)
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and Ŷj (ω) = −�jX̂j (ω)/ω. The expression of the Fourier
transform of the current from dot α to lead j is

〈Ijα〉(ω′) =
∑
n,l

2πδ(ω′ − (n − l)V )

× 1

2

∫
F

dω

2π
Tr

(
σzτ̂z

∑
m

[Ǧnm(ω)̌j,ml(ω)

− ̌j,nm(ω)Ǧml(ω)]αα

)
. (21)

The dc current, which we study in the following sections, is
obtained by taking ω′ = 0 in the last equation.

IV. METALLIC JUNCTION REGIME

We first consider the regime in which each dot mimics
a metallic junction, achieved by placing energy levels out
of resonance εα > � and choosing large couplings �α > �

(α = a,b, and �α = ∑
j πν(0)|tjα|2, where tjα are tunneling

couplings defined in Eq. (11), and ν(0) is the normal density
of states of the electrodes at the Fermi energy). We compute
the dc currents 〈Ia/b〉 for different ratios of the voltages,
satisfying nVa + mVb = 0. The results for the largest reso-
nances (|n| + |m| � 3 in nVa + mVb = 0) are shown in the
left panel of Fig. 2. One clearly sees that the resonances are
easily distinguished from the phase-independent background
current. The resonant multipair dc current 〈IMP

a 〉 is a function of
the combination nϕ(0)

a + mϕ
(0)
b , which implies a simultaneous

crossing of n pairs from S0 to Sa and m pairs from S0 to Sb.
The upper right panel in Fig. 2 shows as an example the phase
dependence for n = 2 and m = 1, which is indeed a sinusoidal
function of the combination 2ϕ(0)

a + ϕ
(0)
b . The existence of

dc phase-coherent resonances despite large nonzero voltages

is the result of new coherent modes connecting the three
superconductors.

One of the lowest-order (and larger) resonances corre-
sponds to quartets (Va = −Vb), i.e., to the correlated trans-
mission of two pairs from S0 to Sa and Sb, respectively. The
“dual” lowest-order resonance corresponds to Vb = Va , where
pairs cross from Sa to Sb by cotunneling through S0.
The sign of the multipair resonances is nontrivial. In particular,
the quartet resonance is negative, which means that the current
〈Ia(ϕ(0)

a + ϕ
(0)
b )〉 is of π type, as shown in the lower right panel

of Fig. 2. Similar sign changes of the multipair current-phase
relation are also obtained for certain high-order resonances.
The π shift is understood from a simple argument. It is related
to the internal structure of a Cooper pair via the antisymmetry
of its wave function, similarly to the π -junction behavior of a
magnetic junction formed by a quantum dot with a localized
spin.25 Starting from two Cooper pairs in S0, the production
of a nonlocal quartet consists in forming two nonlocally
entangled singlets in the dots Da and Db. These two split
pairs correspond to two CAR amplitudes, as those apparent
in Fig. 1. A nonlocal singlet is obtained by the operator

1√
2
(d†

a↑d
†
b↓ − d

†
a↓d

†
b↑) acting on the empty dots. Applying this

operator twice to describe a nonlocal quartet state leads to
�Q,Da,Db

= −|↑ ↓〉a |↓ ↑〉b, which is recast as the opposite of
the product of a pair in Da and another one in Db. A similar
reasoning can be applied in order to explain the anomalous
sign of higher-order harmonics.

V. RESONANT DOTS REGIME

We now investigate the possibility for optimizing the
multipair resonances by tuning the dot levels, with εa =
−εb = −0.4� inside the gap, choosing small values of the
couplings �a = �b = 0.1�. We focus on the quartet resonance
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FIG. 2. (Color online) “Broad” dots regime (metallic junctions): |εa,b| = 6�, �a,b = 4�. Left: amplitudes of the phase-dependent dc
current 〈Ia(ϕ(0)

b )〉 for the main resonances (with |n| + |m| � 3), in units of e�/h̄, centered around the values of the phase-independent current
(small horizontal bars). Horizontal axis is Va/Vb, with Vb/� = 0.3. Upper right: current 〈Ia〉, for the resonance 2Va + Vb = 0, as a function of
the phases ϕ(0)

a and ϕ
(0)
b , showing the dependence in 2ϕ(0)

a + ϕ
(0)
b . Lower right: the current-phase relation 〈Ia(ϕ(0)

b )〉 at ϕ(0)
a = 0 for the resonance

Va + Vb = 0, which shows the π -phase behavior.
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FIG. 3. (Color online) Current-phase relations Ia(ϕ(0)
b ) (red, full

curve) and Ib(ϕ(0)
b ) (blue, dashed curve), in units of e�/h̄, in the

quartet configuration Va = −Vb, for the resonant dots regime: εa =
−εb = 0.4� and � = 0.1�. Note the different y scales in the different
panels.

Va = −Vb for specificity (similar behavior is observed for the
other resonances).

When the bias is small enough (Vb � 0.1� here), the
system is in the adiabatic regime, and the current does not
change when Vb is varied. We independently checked with
a Matsubara formalism calculation (not shown) that this
current is the same as the one obtained here at equilibrium
(Vb = 0). The current-phase relations 〈Ia(ϕ(0)

b )〉 and 〈Ib(ϕ(0)
b )〉

for V = 0.09� are shown in the first panel of Fig. 3. These
average currents are identical, and thus are made only from
a quartet component. They show a purely harmonic function
of the phase ϕ

(0)
b , and suggest a π -junction behavior for the

quartet resonance near equilibrium.
When Vb increases and the nonadiabatic regime is reached,

drastic changes appear in the current-phase relations, as shown
in the next panels of Fig. 3. There, both the sign and the
(nonsinusoidal) shape of the current-phase relation changes
rapidly with Vb as it approaches the dot energy |εb|. The
amplitude of the quartet current near the resonance is ∼1000
times larger than the one in the adiabatic regime. This resonant
effect of the dot levels is most apparent by plotting the
critical current IQ

c [the maximum of the absolute value of
the phase-dependent part of Ia(ϕ(0)

b )] as a function of Vb. This
is shown in the left panel of Fig. 4. IQ

c sharply increases and
reaches a maximum around Vb  εb. The large increase in
the quartet current is due to a double resonant effect: First,
as the dots have opposite energies εa = −εb, the formation
of a quartet in the double dot as a pair in Da and a pair in
Db is resonant (this is true for any voltage Vb); second, when
Vb  εb the tunneling of a pair from Da to Sa , and from Db to
Sb, is also resonant.

0.2 0.4 0.6
0

0.2

0.4 IcQ V

V

V0 0

Vb V

Va V

FIG. 4. (Color online) Left panel: critical current IQ
c in units of

e�/h̄ as a function of the voltage in the quartet configuration, for
resonant dots (same parameters as in Fig. 3). Right panel: lowest-order
diagram contributing to the phase-dependent MAR current.

Increasing Vb further, e.g., Vb � 2�/3 in the present
case, we see from the lower panels of Fig. 3 that the
currents 〈Ia(ϕ(0)

b )〉 and 〈Ib(ϕ(0)
b )〉 start to deviate substantially.

This implies the existence of another phase-sensitive process
different from the one responsible for multipair resonances.
We call this current contribution I phMAR (for phase-sensitive
MAR), as it is the result of the combination of a multipair
process with MAR. The lowest-order diagram contributing to
I phMAR is shown in the right panel of Fig. 4. It can be seen as
the interference of the amplitudes of two MAR processes at the
SaS0 and SbS0 interfaces, each promoting a quasiparticle from
an energy ∼−� in superconductor Sb to an energy ∼+� in
superconductor S0. This diagram has a threshold at V = 2�/3,
corresponding to the observed value at which I phMAR becomes
noticeable. However, unlike the usual MAR processes found
in single junctions, this process (and similar ones of higher
order) has the striking property of being phase dependent.

Addressing more general resonances, the total dc cur-
rent can be decomposed into three components, as in-
spired by Josephson’s work.2 Defining Ī = (〈Ia〉,〈Ib〉),
ϕ̄ = (ϕa,ϕb), V̄ = (Va,Vb), and ε̄ = (εa,εb) one has
Ī (ϕ̄,V̄ ,ε̄) = ĪMP(ϕ̄,V̄ ,ε̄) + Ī phMAR(ϕ̄,V̄ ,ε̄) + Ī qp(V̄ ,ε̄). As-
suming electron-hole symmetry to hold, for instance, with flat
normal-metal density of states in the leads, one can show that
in the situation studied here, the dc current obeys the relation

Ī (ϕ̄(0),V̄ ,ε̄) = −Ī (−ϕ̄(0),−V̄ ,−ε̄). (22)

Then the following properties hold: (i) The pure quasiparticle
current Ī qp is phase insensitive and odd in voltages. (ii) The
coherent multipair current ĪMP is a function of nϕ(0)

a + mϕ
(0)
b ;

it is odd in phases and even in voltages, just like the
nondissipative Josephson term. It satisfies m〈Ia〉 = n〈Ib〉.
(iii) The component Ī phMAR is even in phases and odd in
voltages, like the dissipative (“cos ϕ”) Josephson component,
but it becomes dc in a bijunction. This Ī phMAR component is
also a function of nϕ(0)

a + mϕ
(0)
b .

VI. CONCLUSIONS

We have shown by nonperturbative out-of-equilibrium
calculations that coherent multipair and phase-dependent
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MAR processes appear in a superconducting bijunction. These
are due to crossed Andreev reflection processes, through the
formation of several entangled nonlocal pairs, and lead to
signatures in the dc current with very specific phase and voltage
dependence. A natural extension of the present work should
focus on the role of local Coulomb interaction on the dots. In
the metallic junction regime and in the resonant regime near
the dot resonance, a self-consistent mean-field treatment could
be applied (as done in Ref. 26 for a three-terminal normal-
superconducting setup with resonant dots). We expect that the
same physical mechanisms would qualitatively produce the
same effects. A more complex treatment would be required
away from resonance, where interactions would have a larger
impact and the Kondo mechanism could play an important role.

From an experimental standpoint, multipair resonances can
be directly detected by transport measurements where one
probes the nonlocal conductance d〈Ia〉/dVb as a function of
Va ,Vb. The phase coherence of the multipair current, and
its actual dependence in ϕ

(0)
a/b, however, are more difficult

to probe directly. One way would be to design specific
superconducting quantum interference device geometries or
microwave reflectivity experiments.27
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