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Quartet currents in a biased three-terminal diffusive Josephson junction
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Biasing a three-terminal Josephson junction (TTJ) with symmetrical voltages 0,V, −V leads to new kinds
of DC currents, namely quartet Josephson currents and phase-dependent multiple Andreev reflection (MAR)
currents. We study these currents in a system where a normal diffusive metallic node N is connected to three
terminals S0,1,2 by barriers of arbitrary transparency. We use the quantum circuit theory to calculate the current
in each terminal, including decoherence. In addition to the stationary combination ϕQ = ϕ1 + ϕ2 − 2ϕ0 of the
terminal phases ϕi, the bias voltage V appears as a new and unusual control variable for a DC Josephson
current. A general feature is the sign changes of the current-phase characteristics, manifesting in minima of
the quartet “critical current”. Those sign changes can be triggered by the voltage, by the junction transparency
or by decoherence. We study the possible separation of quartet currents from MAR currents in different regimes
of parameters, including a “funnel” regime with very asymmetric couplings to S0,1,2. In the regime of low
transparency and asymmetric couplings, we provide an analytic perturbative expression for the currents, which
shows an excellent agreement with the full numerical results.
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I. INTRODUCTION

The understanding of subgap transport in transpar-
ent superconducting/normal-metal/superconducting (SNS)
Josephson junctions, either point-contact like, or made of a
diffusive metallic region, has reached an advanced state on
both experimental and theoretical levels. Multiple Andreev
reflections (MARs) allow to describe dissipative quasiparticle
motion below the superconducting gap �, where transport
is assisted by Cooper pairs [1]. Electrons and holes cross
the structure, being Andreev-reflected at each NS interface.
Each crossing provides the energy eV for electrons and holes,
in such a way that steps in the I (V ) characteristics appear
around values of the voltage V ≡ 2�/ne (n positive integer).
The most quantitative understanding of MAR transport has
been obtained for point-contact junctions, where transport is
fully phase coherent [2]. On the other hand, in diffusive SNS
junctions, another important parameter appears due to the
dephasing of electrons and holes between successive Andreev
reflections. This leads to the so-called Thouless energy ET h

as another relevant energy scale [3]. ET h is proportional to the
inverse of the dwell time τd for a quasiparticle diffusing across
the structure. In transparent SNS junctions, shorter than the
superconducting coherence length, one has � < ET h, while
ET h < � on the contrary in long diffusive junctions. MARs in
the incoherent regime have been extensively studied [4,5] and
reproducible junctions with very good quality are routinely
fabricated. A minigap forms at an energy scale set by ET h,
which also sets the scale of the junction critical current, e.g.,
eIc � GN ET h where GN is the junction normal conductance.

Recently, multiterminal structures, made of three or more
superconducting terminals contacted by a single normal

region, have been considered theoretically, both at equilibrium
[6–12] and under voltage bias [13–18]. Experiments have
addressed either three terminals but two being equipotential
[19], or three independent terminals, i.e., biased with different
voltages, the latter corresponding to the present study. Ex-
periments involve junctions made of a diffusive metal [20],
clean nanowires [21,22] or 2D electron gas [23–25], and
multichannel graphene [26–30]. Transport in multiterminal
junctions enables DC phase-coherent transport at nonzero but
commensurate voltages [13–15]. Indeed, setting to zero both
voltage and phase at, say, terminal S0, and biasing terminals
S1 and S2 at voltages V1 and V2, due to the Josephson relation
dϕi

dt = 2eVi
h̄ , two relevant variables can be chosen within the

sets (ϕ1, ϕ2) and (V1,V2). For instance, fixing V1 + V2 = 0
leaves V1 − V2 = 2V and ϕ1 + ϕ2 as independent control vari-
ables. This holds for any commensurate combination nV1 +
mV2 = 0, nϕ1 + mϕ2 being the relevant stationary phase
variable.

As a result, a stationary current component can appear as
a DC resonance, similar to an equilibrium Josephson current,
but also controlled by the voltage V . For V1 + V2 = 0 such a
current involves two entangled pairs emitted from S0 crossing
simultaneously and transmitted, one in S1, the other in S2.
Those processes have been dubbed as “quartet currents” since
the elementary “exchange currency” between one terminal
and the two others is made of two Cooper pairs instead of
one. Of course, they coexist with the standard AC Josephson
current flowing between any pair of terminals.

Another striking signature of the voltage commensurability
is the presence of phase-dependent “phase-MAR” currents,
where quasiparticle transport is accompanied by quartets in-
stead of single pairs like in the two-terminal case [16,31,32].
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Contrarily to two-terminal MARs flowing between any pair
of the terminals biased at (0,V,−V ), phase-MARs involve all
three terminals like quartets.

Such quartet currents, and higher-order resonances, are
reminiscent of the synchronization of AC Josephson currents
in junction arrays, well documented some decades ago [33],
and recently revisited in a more general context [34]. In these
downmixing phenomena, leading to DC currents in biased
arrays, the underlying mechanism can be understood by the
classical nonlinear dynamics of an equivalent RSJ (resistively
shunted junction) circuit, and it is strongly conditioned by the
circuit environment, i.e., by the impedance of the junction plus
the external circuit at the AC Josephson frequency. In con-
trast, the phenomena addressed in this paper are intrinsically
quantum and fully mesoscopic. Just as MARs, they cannot
be described by classical or quantum phase dynamics in a
Josephson junction array, using a given current-phase char-
acteristics for each junction [33,34]. Quartet and phase-MAR
currents are indeed another consequence of multiple Andreev
reflections, allowed only in a multiterminal structure. They
open new phase-coherent channels in a dissipative structure,
that cannot be deduced in a phenomenological way from
independent two-terminal Josephson currents. Discriminating
classical downmixing from mesoscopic multipair resonances
and separating quartets from phase-MARs remains an exper-
imental challenge for the future that could be tackled with a
suitable SQUID geometry [31].

Experiments in TTJ’s [20,21,26] have revealed clear sig-
natures of Josephson-like currents in a low-bias regime
(eV � �), beyond the regime of DC Josephson effects be-
tween any pair of terminals, i.e., for currents higher than
the critical currents flowing in any pair of terminals. In this
low-bias range, MAR currents are strongly hampered by a
necessarily large number of Andreev reflections. On the con-
trary, quartets need minimally four Andreev reflections, which
makes the quartet current visible against MARs. In fact, it
has been shown theoretically that the quartet current does not
decrease like MAR currents when eV goes to 0 but instead
enters a regime where the current sign changes several times
with voltage, due to nonadiabatic resonances [36,37]. In Refs.
[20,21,26], robust transport anomalies were found as a func-
tion of the two applied voltages V1,2, and were interpreted by
three “quartet” modes corresponding to two Cooper pairs si-
multaneously crossing the structure. In Ref. [20] the junctions
are long and the Thouless energy is much smaller than the
superconducting gap. The observation of strong anomalies in
a regime ET h < V < �, where the voltage is too large to allow
coherent motion of individual pairs, is especially striking. In
Refs. [21,26] instead, the system is in a coherent regime and
MARs can be observed at higher voltages.

A recent experiment used a four-terminal junction where
two of them are grounded and enclose a loop pierced by a flux
[26]. The flux dependence of the quartet current displayed the
expected oscillating behavior, but with two new features: the
presence of the hc

4e periodicity signaling the quartet mode, and
a phase inversion of the oscillation. The latter was ascribed
to resonances within the effective Andreev spectrum, due to
the underlying running phase originating from the voltage
bias[35–37]. This sheds light on the microscopic origin of
quartets, viewed as “self-induced Shapiro steps” in Ref. [13].

FIG. 1. Sketch of a three-terminal junction (TTJ), with super-
conductors S0,1,2 at voltages (0,V, −V ) respectively, coupled to a
node by couplings �0,1,2 (see text). The thickness of the connection
between the leads and the central node represents the strength of
the corresponding coupling constant. (a) Symmetric TTJ (�0 = �1 =
�2); (b) funnel TTJ (�0 � �1, �2); and (c) fully asymmetric TTJ
(�0 � �1 � �2).

Theory has, until now, addressed the case of a few channels
[35–37], describing the junction with a few-level quantum
dot. MARs in a TTJ have also been described with the help
of scattering theory, in the full (V1,V2) plane [17]. Yet a
microscopic description is still lacking for a diffusive junction
with a very large number of channels.

Motivated by recent experiments where a sizable normal-
metal island (rather than a system of quantum dots) separates
the superconducting leads, we consider here a short diffusive
three-terminal junction (TTJ) (Fig. 1) described by quantum
circuit theory [38,39] to calculate quartet and MAR DC cur-
rents at any voltage. Dephasing can be introduced and may
lead to a small Thouless energy, mimicking one important
aspect of a long diffusive junction. The dependence of cur-
rents with voltage and quartet phase is studied in detail, both
for a symmetric and a strongly asymmetric TTJ. This paper
follows previous ones where the spectral normal density of
states NDOS was calculated, first at equilibrium [40], then at
nonzero voltages [32] at which BCS-like resonances appear
at MAR voltages. Moreover, the low-voltage behavior of the
NDOS of a symmetric TTJ displays a phase-dependent pseu-
dogap behavior, allowing to make the link with an adiabatic
regime when V → 0. In the present paper, the spectral quartet
current is shown to possess resonances at voltages coinciding
with those of the NDOS, but with signs alternating between
successive resonances. Integration on energy yields the low-
voltage phase-coherent DC current, which in general departs
strongly from an adiabatic behavior, with strong oscillations
in the voltage dependence.

This motivates the study of an asymmetric “funnel” TTJ
where the biased terminals are much more weakly coupled
than the unbiased one (Fig. 1). In this situation, we show that
it is possible to reach a quasi-adiabatic regime, where the
low-voltage current does not exhibit sign changes anymore.
The numerical study presented here is complemented by a per-
turbative expansion of the nonlinear circuit theory equations.

The other focus of the paper is the balance between quartet
and MAR currents, important in view of obtaining unambigu-
ous signatures of quartet current in experiments. As expected,
even at low voltages, both have the same order of magnitude
for a symmetric TTJ corresponding to a fully resonant cavity
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making the junction. On the contrary, in the funnel case, the
phase-dependent MAR component becomes negligible at low
voltages. Yet the phase-independent MAR remains strong if
the junction formed by the two biased terminals (at V,−V ) is
symmetric. Only in a completely asymmetric TTJ, all MAR
processes can be made smaller than quartets at low voltage.
Finally, owing to the odd (for quartets) and even (for MARs)
symmetries in phase, the DC current in all branches, which
combines quartet and MAR contributions, yields a phase shift
in the current-phase relationship and therefore makes TTJs a
new source of tunable “ϕ junction”.

The paper is structured as follows. The model and basic
equations are presented in Sec. II. Section III discusses how
the symmetry with respect to voltage inversion allows a prac-
tical definition of quartet and MAR currents for a junction
with general asymmetry of the contacts. Section IV addresses
a perturbative expansion when the contacts are strongly asym-
metric, in the “funnel” case. Section V provides results on the
spectral currents, that can be compared to the NDOS structure.
Section VI describes the phase and voltage dependence of the
quartet currents, for a symmetric and then for an asymmetric
TTJ. Section VII discusses MAR currents and compares them
to quartet currents. Section VIII provides a conclusion and
perspectives.

II. THE MODEL

Let us consider a three-terminal junction formed by con-
necting three superconductors with a normal diffusive metallic
region (Fig. 1). The superconducting coherence length being
larger than both the Fermi wavelength and the elastic mean
free path, one can employ the quasiclassical equations of
nonequilibrium superconductivity, which take the form of
a diffusive equation for the quasiclassical Keldysh-Nambu
Green’s function [41],

Ǧ =
(

ĜR ĜK

0 ĜA

)
, Ǧ2 = 1̌, (1)

where ĜR,A,K correspond to the retarded, advanced and
Keldysh components, respectively. In addition to Keldysh-
Nambu space (to be denoted with a check hat Ǧ), the
quasiclassical Green’s function generally depends on two
times (or energies) and on spatial coordinates Ǧ(E, x). The
diffusive equation for the corresponding Green’s function is
also known as the Usadel equation (see also Ref. [39]),

∂

∂x

(
D(x)Ǧ

∂

∂x
Ǧ

)
− i[Ȟ, Ǧ] = 0, Ȟ =

(
Ĥ 0
0 Ĥ

)
;

Ĥ = E σ̂z + 1

2
�(x)(iσ̂y + σ̂x ) + 1

2
�∗(x)(iσ̂y − σ̂x ). (2)

Here the products should be understood as a matrix product in
Nambu-Keldysh space along with a convolution in the double
time (or energy) representation. The Pauli matrices in Nambu
space are here denoted with a hat by �̂σ = σ̂x, σ̂y, σ̂z, and D(x)
denotes the diffusion coefficient.

The Usadel equation can be seen as a conservation of the
quasiparticle current density ǰ(x),

∂

∂x
ǰ(x) + ie2ν

h̄
[Ȟ, Ǧ] = 0; ǰ = −σ (x)Ǧ

∂

∂x
Ǧ. (3)

Here, ν is the electronic density of states and σ (x) is the
conductivity. The two quantities are related by σ = e2Dν.

Here we employ a discretized version of the quasiclassical
equations, the so-called quantum circuit theory [38,39]. The
superconducting terminals Si are assumed to be homogeneous
and described by Keldysh-Nambu matrices Ǧi, and they are
connected by a discrete “node” described by the unknown ma-
trix Ǧc. This discretization requires that the nodes dimensions
are much smaller than the superconducting coherence length.
At equilibrium, the terminal Green’s functions are functions
of one energy variable and are given by

ĜR
i = 1

ξ

(
ε �i

−�∗
i −ε

)
; ĜA

i = − 1

ξ ∗

(
ε∗ �i

−�∗
i −ε∗

)
, (4)

where complex energies have been introduced as ε = E + i0+

and ξ =
√

ε2 − |�|2. Here �i = |�|eiϕi . The positive vanish-
ing complex part of ε is essential in view of the branch cut of
the square root function in the complex plane.

The advanced and retarded Green’s functions are related
by ĜA

i = −σ̂z(ĜR
i )†σ̂z and the Keldysh Green’s function ĜK

i is
obtained from

ĜK
i = h(E )

(
ĜR

i − ĜA
i

)
, h(E ) = tanh

(
βE

2

)
. (5)

In the present paper, terminals S0,1,2 are respectively set
to voltages V0 = 0,V1 = V,V2 = −V , and the corresponding
phases obey the Josephson relation ϕi = ϕ0,i + 2eVit

h̄ . Here the
reference phase ϕ0 is set to zero. While the Green’s function
of terminal S0 is given by Eqs. (4) and (5), those of terminals
S1,2 correspond to an out-of-equilibrium situation and must be
described by a two-time Green’s function Ǧ j (t1, t2). The latter
is connected to its equilibrium counterpart by the following
gauge transformation:

Ǧi(t1, t2) = ei(σ̂z⊗1)eVit1 Ǧi(t1 − t2)e−i(σ̂z⊗1)eVit2 (6)

where σ̂z acts in Nambu space while 1 acts in Keldysh space,
and Ǧi(t1 − t2) corresponds to the equilibrium Green’s func-
tion given by Eqs. (1), (4), and (5) (upon Fourier transforming
back from energy to time variable),

Due to the time dependence in the Hamiltonian, and
periodicity with a single Josephson frequency ω0 = 2eV

h̄ ,
one can use double-time Fourier transform and represent
the Green’s functions in terms of a single energy variable
(within the interval [−ω0

2 , ω0
2 ]) along with two harmonic in-

dices, Ǧ(E1 = E + nω0, E2 = E + mω0) → Ǧ(E , n, m) [32].
Notice that this definition is redundant, as Ǧ(E , n, m) =
Ǧ(E − pω0, n + p, m + p) for any integer p, such that cal-
culations can be performed in the energy interval [−ω0

2 , ω0
2 ]

[42]. Convolution products in energy are then obtained as
matrix products in the space of harmonics. An alternative
representation with only one harmonic index has been used in
Ref. [43], in this case the matrix products appear as a recursion
relation in the harmonic indices.

Let us now write the circuit theory equations. The node
is separated from each terminal by a connector. Those ex-
press the conservation of the Keldysh matrix current, as a
discretized version of Eq. (3). As shown by Nazarov [38], the
(matrix) spectral current flowing between terminal Si and the
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node takes the form

Ǐic =
(

ÎR
ic ÎK

ic

0 ÎA
ic

)
(7)

= 2e2

π h̄

∑
n

T (i)
n [Ǧi, Ǧc]

4 + T (i)
n ({Ǧi, Ǧc} − 2)

(8)

where the T (i)
n are the transmission coefficients of channel n

across each connector. Note that since Ǧ2 = 1̌, both matrices
Ǧi and Ǧc commute with {Ǧi, Ǧc}. This explains the notation
using the fraction for matrix inversion in Eq. (8). To sim-
plify, one can formally take N equivalent channels and define
T (i)

n = T �i/N , where T is a scaling transparency factor for
all contacts, and the factors �i are used to describe contact
asymmetries.

The physical DC current Ii in terminal i (index c is omit-
ted), as measured in an experiment, is then given by the
Nambu trace of the Keldysh component of the matrix current
ÎK
ic as

Ii =
∫ ω0/2

−ω0/2
dE

∑
n

TrN
[
σ̂zÎ

K
ic (E , n, n)

]
. (9)

The circuit theory formulation allows to take into account
the dephasing, which takes place in a normal metal diffusive
conductor. In the single-node model the only source of coher-
ence loss is due to the difference in wave vectors of electrons
and holes at the same energy. The loss of coherence is taken
into account by connecting a fictitious terminal to the node.
The current to this terminal is given by

Ǐ f c = 2e2

π h̄

∑
i

T �i

4
[Ǧ f , Ǧc] , Ǧ f = −i

Eτd

h̄

(
σ̂z 0
0 σ̂z

)
,

(10)

where σ̂z is the Pauli matrix in Nambu space, and τd is
the dwell time of quasiparticles in the node, including the
connectors. Notice that no physical current flows towards
this fictitious terminal. This can be checked by substituting
the expression of I f c into Eq. (9), which gives 0 thanks to
the simple block-diagonal structure of Ǧ f with σ̂z matrices
on the diagonal.

The basic equation of circuit theory, which determines Ǧc

stems from the law of current conservation∑
i

Ǐic + Ǐ f c = 0 . (11)

The same equation can be rewritten as a commutation
relation between the Green’s function of the central node and
a matrix M̌ that depends both on the Green’s functions of the
terminals and that of the central node

[Ǧc, M̌] = 0, (12)

M̌ =
∑

i=0,1,2

T �i

(
Ǧi

1 + (T �i/4)({Ǧi, Ǧc} − 2)
+ Ǧ f

)
. (13)

The solution for the node Green’s function can be written
formally as

Ǧc = M̌√
M̌2

, (14)

where the denominator guarantees that Ǧc obeys the normali-
sation condition Ǧ2

c = 1̌. As M̌ depends on Ǧc, this is a highly
nonlinear equation.

The so-called “tunnel” approximation amounts to neglect-
ing the term in T �i in the denominator of M̌, yielding

M̌ =
∑

i={0,1,2}
T �i(Ǧi + Ǧ f ). (15)

This approximation requires that T � 1. One must stress that
this approximation is much more than a simple perturbative
calculation in the tunneling transmissions. Indeed, the cir-
cuit theory entails multiple scattering within the node. For
instance, in the absence of decoherence, τd = 0, and for a
symmetric junction with two terminals, the tunneling approx-
imation turns out to be exact whatever the T (i)

n = Tn [44]. This
is due to the fact that {Gc, Gi} becomes independent of i in
this case and the denominator can be factorized in Eq. (13).
This property does not hold for more than two terminals.

In practice, the Green’s functions and matrix currents are
expressed in Nambu-Keldysh-harmonics space and thus have
dimension 4(2Nm + 1) where Nm is the maximum number of
harmonics of the Josephson frequency retained in the calcula-
tion. Satisfactory convergence is obtained by using Nm = 2�

eV
as the matrix entries decay quickly at large harmonics value.
In the tunnel approximation, the M̌ matrix is independent
from Ǧc and can be computed from the terminals Green’s
functions. The solution for Ǧc is given by Eq. (14): Ǧc is
proportional to the M̌ matrix, but has to satisfy the normaliza-
tion condition Ǧ2

c = 1̌. Numerically, this can solved at each
energy by doing the following: M̌ is diagonalized by using
the appropriate change of basis, its diagonal form is then
normalized, so as to contain only ±1 eigenvalues, and then Ǧc

is obtained by returning to the original basis. In the general
case, the nonlinear Eq. (12) is solved by adding an iteration
procedure. Starting from an initial guess for Ǧc (which can
be for example the solution obtained in the tunnel approx-
imation), the matrix M̌ is computed from Eq. (13), and Ĝc

is obtained from this M̌ matrix. From this new Ǧc, a new
M̌ matrix can be computed, leading to a new Ǧc, etc. The
iteration procedure is repeated until the change in Ǧc from
one step to the next is small enough. Once the solution for
Ǧc is found, the current Ii(ϕQ,V ) in terminal i is obtained
from Eq. (9), where the summation is truncated, running from
n = −Nm to +Nm, where Nm is the number of harmonics
retained in the calculation. Alternatively, one can integrate the
traced Keldysh component of the matrix current ÎK

ic (E , 0, 0)
over the interval [−Em, Em], where Em is a large energy cutoff
[corresponding here to Em = (Nm + 1)ω0]. In the following,
unless explicitly stated, all the numerical results that we show
have been obtained by solving the full nonlinear equation us-
ing an iteration procedure.

III. QUARTET AND MAR CURRENTS

The three-terminal setup allows two distinct kinds of DC
currents to flow within the structure. First, dissipative currents
generalize [13,14,16,17] the MAR currents of a two-terminal
junction. As a novel feature, those currents depend on the
quartet phase, due to interfering scattering paths within the
node [16,31,32]. Second, the special condition V1 = −V2
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drives a DC Cooper pair component from terminal S0 to termi-
nals S1,2, as a current of quartets (entangled pairs of Cooper
pairs) IQ. This current is dissipationless, like the excess cur-
rent stabilized at a Shapiro step in a junction irradiated with
microwaves [13].

Thus one can write the Keldysh currents as

Ǐic = ǏQ,i + ǏMAR,i (16)

corresponding respectively to the quartets and MAR contribu-
tions. The MAR current can be further split as

ǏMAR,i = ǏavMAR,i + ǏphMAR,i (17)

where ǏavMAR,i is the “ordinary” MAR current, obtained by av-
eraging ǏMAR on the quartet phase, while ǏphMAR,i corresponds
to the phase-dependent part.

For a symmetric TTJ, such as �1 = �2, the MAR current
components flowing in terminals S1 and S2 are opposite, so
that no MAR current flows through terminal S0, whose current
is only due to quartets. For this reason, we sometimes refer to
IQ as the quartet current from S0 in the symmetric case. In this
case, the components IQ and IMAR are obtained by integrating
over frequency [see Eq. (9)], the spectral components defined
as follows:

ǏQ = ǏQ,0 = Ǐ0 = e2

h
T �0[Ǧ0, Ǧc], (18)

ǏMAR = ǏMAR,1 = −ǏMAR,2 = e2

2h
T �1[Ǧ1 − Ǧ2, Ǧc] (19)

where the products entail matrix products of the Ǧα,β
i,c (E , n, m)

with α, β running on the Nambu indices 1 (for electrons) and
2 (for holes), and n, m running as integers.

In the general case of asymmetric contacts, one can no
longer access a simple self-contained expression for the var-
ious components of the current. Instead, one may rely on
the symmetries of the physical (energy integrated) current.
Indeed, to separate the total current in its quartet and MAR
components in the general case of asymmetric contacts, one
may use the symmetries with respect to V and ϕQ. Time-
reversal symmetry actually imposes that the total current is
odd under a change of sign of both voltage and phases. First,
as any dissipative current, the MAR components are odd in
voltage thus even in ϕQ. On the contrary, the quartet current is
even in voltage and odd in ϕQ. Therefore, one has for the DC
currents

I i
Q(ϕQ,−V ) = I i

Q(ϕQ,V ), (20)

I i
Q(−ϕQ,V ) = −I i

Q(ϕQ,V ), (21)

I i
MAR(ϕQ,−V ) = −I i

MAR(ϕQ,V ), (22)

I i
MAR(−ϕQ,V ) = I i

MAR(ϕQ,V ). (23)

This suggests to use symmetrization with respect to V as a
definition of MAR and quartet currents in each contact,

I i
Q(ϕQ,V ) = 1

2 [I i(ϕQ,V ) + I i(ϕQ,−V )], (24)

I i
MAR(ϕQ,V ) = 1

2 [I i(ϕQ,V ) − I i(ϕQ,−V )]. (25)

A word of caution is needed about those definitions, if used
in the biased terminals. In fact, as found numerically and can
be shown by symmetry considerations, in the symmetric TTJ

case �1 = �2, one obtains I1
Q = I2

Q = − I0
Q

2 . This corresponds
to the intuition that a quartet current splits equally into S1 and
S2. Conversely, in the general case �1 �= �2, one still finds
I0
Q + I1

Q + I2
Q = 0 but I1

Q �= I2
Q, except for low transparency, as

shown by a perturbative expansion of the circuit theory equa-
tions (see next section). This means that high-order multiple
Andreev reflections entangle different kind of processes, and
the symmetrizing procedure is merely a convenient definition
separating dissipative and nondissipative current components.
Yet, this definition is unambiguous in terminal S0: for ar-
bitrary couplings �i, symmetrization in V allows to isolate
the quartet current. Let us remark that this procedure is
convenient in calculations, but less in experiments where ex-
trinsic causes can perturb the symmetry between V > 0 and
V < 0.

IV. PERTURBATIVE EXPANSION

Circuit theory is nonlinear, which manifests both in the
normalization of the node Green’s function and in its self-
consistent definition through Eq. (12). It is nevertheless
possible to find a perturbative solution when some of the
three contacts are more weakly coupled than others. This
is especially useful in the case where the weaker couplings
are with the biased contacts, that we call a “funnel” TTJ
[Fig. 1(b)].

Let us consider a TTJ with couplings �i between the
node and the three terminals at voltages 0,V,−V . The con-
tact transparencies are Ti = T �i where T denotes the overall
transparency of the TTJ. When T � 1, which is assumed
here, the equations for the node Green’s function Ǧc (in
Nambu-Keldysh-harmonics space) and the currents take the
form

M̌ = T
∑

i=0,1,2

�i(Ǧi + Ǧ f ), (26)

[Ǧc, M̌] = 0, (27)

(Ǧc)2 = 1, (28)

Ǐi = e2

h
T �i[Ǧi, Ǧc]. (29)

This leaves the couplings �i and the decoherence parameter
τd [see Eq. (10)] as the only parameters of the problem. We
first take Ǧ f = 0 (no decoherence).

Since we are focusing on the case of a funnel TTJ, let us
define �0 = γ0 (= 1 by definition, if unspecified), �1 = εγ1

and �2 = εγ2 (with γ1 and γ2 ∼ γ0) where ε � 1 is an ex-
pansion parameter. We know a priori that to obtain the quartet
current we need at least a “trajectory” (in terms of products of
Green’s functions) passing twice through terminal 0 and once
through both terminals 1,2, thus second order in ε is required.
Let us write

Ǧc = Ǧ0 + εX̌ + ε2Y̌ (30)
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and solve at order 2 for Eqs. (1)–(3). Defining Ǧ12 = γ1Ǧ1 +
γ2Ǧ2, this yields

{X̌ , Ǧ0} = 0, (31)

[X̌ , Ǧ0] = [Ǧ12, Ǧ0], (32)

{Y̌ , Ǧ0} = −X̌ 2, (33)

[Y̌ , Ǧ0] = [Ǧ12, X̌ ]. (34)

Owing to the constraint Ǧ2
0 = 1, a solution for Eq. (31) is

X̌ = Ž − Ǧ0ŽǦ0 (35)

where Ž is an arbitrary matrix. Inserting in the other equa-
tions and solving finally gives

Ž = 1
2 Ǧ12, (36)

Y̌ = − 1
2 [ŽǦ0Ž + {Ž2, Ǧ0} − 3Ǧ0ŽǦ0ŽǦ0]. (37)

The current in terminal 0 is obtained as an expansion in ε,
starting at first order

Ǐ0 = εǏ (1)
0 + ε2 Ǐ (2)

0 , (38)

Ǐ (1)
0 = e2

h
T [Ǧ0, Ǧ12], (39)

Ǐ (2)
0 = e2

2h
T 2[Ǧ12, Ǧ0Ǧ12Ǧ0]. (40)

The first-order term contains components involving termi-
nal 0 and one of terminals (1,2), i.e., quasiparticle currents
like two-terminal MARs. One verifies that the quartet current
is contained in the second-order terms that involve all three
terminals. This yields a simple expansion for the second-order
(quartet) current component

Ǐ (2)
0 = e2

2h
T 2(�1�2)2(Ǧ1Ǧ0Ǧ2Ǧ0 + Ǧ2Ǧ0Ǧ1Ǧ0

− Ǧ0Ǧ1Ǧ0Ǧ2 − Ǧ0Ǧ2Ǧ0Ǧ1). (41)

Let us show that, in a second-order expansion, the quartet
current components in S1 and S2, obtained by symmetrization
in V , are equal. One indeed shows easily that they are given
by

Ǐ (2)
1 = e2

2h
T 2

(
�1�2)2(Ǧ0Ǧ2Ǧ0Ǧ1 − Ǧ1Ǧ0Ǧ2Ǧ0),

Ǐ (2)
2 = e2

2h
T 2(�1�2)2(Ǧ0Ǧ1Ǧ0Ǧ2 − Ǧ2Ǧ0Ǧ1Ǧ0). (42)

Replacing V by −V amounts to exchanging Ǧ1 and Ǧ2, as
well as the phases ϕ1, ϕ2. Since the DC current is a function of
ϕ1 + ϕ2 only, one sees that it also amounts to exchanging Ǐ (2)

1

and Ǐ (2)
2 , once integration on energy is performed. Therefore,

symmetrization in V yields the same quartet component in S1

and S2, equal to half of that in S0 given by Eq. (41). Pushing
the above expansion to higher order (3 and 4), one can verify
that this property does not hold anymore if �1 �= �2. This
shows that in the general case, if one is interested in the
current in the biased terminals, symmetrization in V allows to
separate a “quartet” from a “MAR” DC component only for

a symmetric junction. Contrarily, the symmetrizing procedure
can always be used in terminal 0. Notice that antisymmetriza-
tion in ϕQ is equivalent to symmetrization in V , owing to
Eqs. (20)–(23).

Taking into account decoherence, if Ǧ f is nonzero, the
zeroth order in ε for the node Green’s function is obtained
by solving [

Ǧ(0)
c , Ǧ0 + Ǧ f

] = 0, (43)(
Ǧ(0)

c

)2 = 1. (44)

This yields the same formal solution as in the coherent
case, replacing Ǧ0 by Ǧ(0)

c ,

Ǧc = Ǧ(0)
c + εX̌ + ε2Y̌ , (45)

Ž = 1
2 Ǧ12, (46)

X̌ = Ž − Ǧ(0)
c ŽǦ(0)

c , (47)

Y̌ = − 1
2

[
ŽǦ(0)

c Ž + {
Ž2, Ǧ(0)

c

} − 3Ǧ(0)
c ŽǦ(0)

c ŽǦ(0)
c

]
, (48)

and the current in terminal 0,

Ǐ0 = e2

h
T

[
Ǧ0, Ǧ(0)

c

]
, (49)

which does not simplify like in Eq. (41).
This perturbative calculation can be generalized to arbi-

trary transparencies.

V. SPECTRAL QUARTET CURRENTS

In this section, we discuss the spectral structure of
the current components in a symmetric TTJ (�1 = �2) bi-
ased at (0,V,−V ), calculated in the full-energy interval, in
units of e2

h . They are given by Iic(E ) = 
(Ǐ24
ic (E , 0, 0) −

Ǐ13
ic (E , 0, 0)), and they are compared to the spectral density

(NDOS) Nc(E ) = 
(Ǧ11
c (E , 0, 0) − Ǧ22

c (E , 0, 0)), as calcu-
lated in Ref. [32].

FIG. 2. Spectral current (red) and NDOS (grey) for a two-
terminal junction at equilibrium. Scales are arbitrary. The spectral
current peaks at the gap and minigap edges, especially at low trans-
parency; (top left) T = 0.1, τd = 0.025; (top right) T = 0.1, τd =
2; (bottom left) T = 0.8, τd = 0.025; and (bottom right) T = 0.8,

τd = 2.
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FIG. 3. Funnel TTJ, low transparency. (Top) Spectral cur-
rent (exact, thick; perturbative, dotted); (bottom) NDOS (exact
and perturbative cannot be distinguished) (V = 0.6, ϕQ = 2π

3 ).
Here �0 = 1, �1 = 0.01, �2 = 0.03, T = 0.02. Curves are vertically
scaled by the squared transparency T 2.

As a benchmark, Fig. 2 shows the spectral current and the
NDOS for a two-terminal junction at equilibrium, at fixed
phase, varying the decoherence (τd ) and the transparency T .
In both spectra, one sees the minigap, which is reduced by
decoherence. The spectral current shows a sharp peak at the
minigap edges, plus a marked peak around the gap in the
tunnel case (T � 1, top panels of Fig. 2). The structures are
broadened at high transparency. All take locally the form of a
renormalized BCS NDOS.

Let us now consider a “funnel” TTJ out of equilibrium (bi-
ased at voltages V,−V ) with ε � 1 and T � 1 (see Sec. IV).
Figure 3 shows the exact result for the spectral current to-
gether with that of the perturbative calculation (see Sec. IV)
in the coherent case (τd = 0), where the agreement between
the two is remarkable. For moderate decoherence (Fig. 4), the
quality of the perturbative calculation degrades. Notice that to
reproduce the exact current peaks of the numerical solution, a
very small parameter ε is required, because of resonances that
are difficult to capture perturbatively. On the other hand, the
NDOS is very close to that of the strongly coupled terminal
S0, i.e., a simple BCS spectrum. Indeed, the proximity effect
in the node is here dominated by terminal S0.

Let us now consider a fully symmetric TTJ, �1 = �2 = �0.
For low transparency T � 1, the density of states displays

FIG. 4. Funnel TTJ, low transparency. Spectral current with
moderate decoherence (exact, thick; perturbative, dotted) (V = 0.4,
ϕQ = 2π

3 , τd = 0.4, �0 = 1, �1 = �2 = 0.002, T = 0.001).

sharp BCS-like structures centered at energy values corre-
sponding to the six gap edges, e.g., given by E = ±�,±(� +
V ),±(� − V ) [32]. Due to higher-order MAR processes,
weaker structures also occur at E = ±(� ± nV ) with |n| > 1.
Figure 5 shows the spectral current in terminal S0 (which
reduces to the quartet contribution in this case), together with
the NDOS, represented with a different scale. One sees that
the spectral current peaks at the same energies as the NDOS.
Remarkably, its sign changes from one structure to another.
For large transparency (bottom panels of Fig. 5), the peaks
broaden but the spectral currents still oscillate from one struc-
ture to the next. For large decoherence and low transparency,
one distinguishes three structures at E ∼ 0,±2V , of width
∼ 1

τd
, the latter being the mirror of the E ∼ 0 region through

Andreev reflection in terminals 1,2.
Finally, let us stress the consequences of these properties

on the total current, which is obtained by the integration of
the spectral current. As the spectral current is an oscillating
function of energy, which is very sensitive to the junction
parameters that can shift or affect these oscillations, one can

FIG. 5. Spectral current (red) and NDOS (grey) for a fully
symmetric TTJ, V = 0.65, ϕQ = 2π

3 , �0 = �1 = �2 = 1 (left, τd =
0.025; right, τd = 2). (Top) T = 0.1. (Bottom) T = 0.8. Current for
τd = 2, T = 0.1 is scaled up by a factor 5 to help visibility. The
spectral current exhibits structures together with the NDOS, with
marked sign changes.
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FIG. 6. (a) Weakly asymmetric TTJ quartet current as a function of V , low transparency (�0 = 1, �1 = �2 = 1.5, T = 0.01, ϕQ = 2π

3 ,
τd = 1.25). (Inset) Corresponding quartet current-phase characteristics across a sign change. V = 0.495 (blue); 0.5095 (red, upscaled by
factor 5); 0.52 (black). (b) TTJ quartet current as a function of V for different transparencies, coherent case, ϕQ = 2π

3 . Curves are scaled
(divided) by the transparency T (T = 0.01, black; T = 0.3, green, T = 0.7, red). ϕQ = 2π/3, �0 = 1, �1 = 1.5, �2 = 0.6, τd = 0. (c) TTJ
quartet current as a function of V for different transparencies, incoherent case; same scaling and parameters as (b), τd = 1.25. (d) TTJ quartet
current as a function of V for different decoherence rates, at low transparency (τd = 0, black; τd = 0.3, green, τd = 3, red). ϕQ = 2π/3,
�0 = 1, �1 = �2 = 0.8, T = 0.01 [same scaling as (b)].

expect that the total current can change sign when these pa-
rameters are varied. This will indeed be shown in the next
sections.

VI. PHASE AND VOLTAGE DEPENDENCE
OF THE QUARTET CURRENTS

The quartet phase ϕQ is stationary for any bias voltage V .
Therefore the voltage appears as a novel control parameter for
a DC Josephson current, in contrast with two-terminal junc-
tions. As shown below and in next section, the dependence of
the quartet and the phase-MAR currents with V is highly non-
trivial and reflects the resonant dynamics of a driven quantum
system. Here, the quartet current IQ is calculated in terminal
S0 for a TTJ such that �1 ∼ �2, but with the ratio �1/�0 = ε

taking any value.

A. Weakly asymmetric TTJ, ε � 1

Let us first consider the situation close to the fully symmet-
ric TTJ [see Fig. 1(a)] with ε � 1. We fix the quartet phase and
plot the quartet DC current as a function of V , as an integral
over energy of the spectral current. In all figures the current
is in units of e2�

h . The behavior of a weakly asymmetric TTJ
is rather complex, with several sign changes of the current

(Fig. 6). Figure 6(b) shows the effect of the transparency at
zero decoherence, Fig. 6(c) corresponds to strong decoher-
ence. In Fig. 6(d) transparency is fixed and decoherence is
varied. The calculation is limited by numerics for small V
and other sign changes may occur in the very low V regime
(where the current experiences strong oscillations with V ).
A similar behavior was obtained in a separate quantum dot
model calculation [35–37].

Figure 6(a) shows the quartet current-phase characteristics
close to a sign change, around V = 0.5�. The anharmonicity
is strong very close to V = 0.5� at the π − 0 transition. A
general trend is as follows: π junction at low voltage, 0 junc-
tion at intermediate voltage, and π junction at higher voltage.

The quartet current vanishes at high voltages [Figs. 6(b)–
6(d)] regardless of transparency and decoherence (V > 2�

signals the quasiparticle transfer onset between the side and
central leads).

Changing the transparency does not affect “much” the
overall shape of the quartet current-voltage characteristics:
The voltage at which the current changes sign then depends
on the transparency T , especially in the presence of deco-
herence [Figs. 6(b) and 6(c)], and modifies its amplitude (we
stress that the curves have been rescaled by the transparency
for convenience). The introduction of moderate decoherence
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FIG. 7. (a) Funnel TTJ quartet current as a function of voltage, coherent case (exact, thick; perturbative, dotted), ϕQ = 2π/3, τd = 0.
(b) Quartet current-phase characteristics, V = 0.5 (blue), 1 (red), 1.5 (black); �0 = 1, �1 = �2 = 0.03, T = 1, ϕQ = 2π/3, τd = 0. (c) Funnel
TTJ quartet current as a function of voltage (exact, thick; perturbative, thin), ϕQ = 2π/3, τd = 0.4. (d) Quartet current-phase characteristics,
V = 0.8 (blue), 0.855 (red, vertical upscaling by a factor 500), 0.9 (black); �0 = 1, �1 = �2 = 0.005, T = 0.1, ϕQ = 2π/3, τd = 0.4.

τd = 1 reduces somehow the amplitude of the quartet current.
Figure 6(d) shows the effect of decoherence in the tunnel
regime, where we see that strong decoherence cancels the sign
change at large voltages.

Let us emphasize that the occurrence of a new control
parameter V for the quartet current offers the following pos-
sibility: By changing the overall transparency of the TTJ, or
that of one or two contacts only, one can change the sign of
the current, provided the voltage V is suitably chosen. This
extends the range of phenomena causing sign changes in a
Josephson current. This might be useful in devices where
commuting a junction from π to 0 is required.

B. Funnel TTJ

Let us now consider a “funnel” TTJ with ε � 1 [Fig. 1(b)],
and compare the exact current with that found by second-
order expansion in ε (see Sec. IV). The result is displayed
in Fig. 7(a). In the coherent case, the agreement with the
perturbative result is qualitatively good if ε is small enough.
Notice that the total current is the result of an integral over
a strongly oscillating function, and the result is therefore
quite sensitive to approximations. Remarkably, the sign of the
quartet current is always negative, apart for high values of V .
This corresponds to a π quartet junction. Figure 7(b) shows
the quartet current-phase characteristics for a given V , which
is close to a harmonic relation IQ = IQc sin ϕQ, with IQc < 0.
The quartet critical current peaks around V = �.

Conversely, with moderate decoherence, the agreement
with the perturbative treatment in ε is less good, especially
for intermediate voltages [Fig. 7(c)]: in this region, the quartet
current changes sign, from a π junction (low voltage) to a 0
junction (high voltage). The quartet characteristics IQ(ϕQ) at
fixed V becomes strongly anharmonic in the region of the sign
change [Fig. 7(d)].

Let us end this section by proposing an indirect experi-
mental detection of the sign changes, when a phase-sensitive
experiment is not possible. Figure 8 shows the maximum
(“critical”) quartet current, taken on all possible quartet phase
values. It displays sharp minima when the phase-sensitive
current changes sign. Similar trends were observed in ferro-
magnetic Josephson junctions as a witness of 0/π transitions,
as a function of the junction length [45]. Here, such minima
observed as a function of V are hardly explainable by con-
ventional models based on extrinsic synchronization by the
outer circuit, as often advocated in experiments against the
mesoscopic quartet mechanism.

VII. MAR CURRENTS AND THE BALANCE
WITH QUARTET CURRENTS

A. Phase symmetry of MAR currents

We first consider a junction, which is symmetric in ter-
minals 1,2, i.e., �1 = �2. The full MAR current is defined

214517-9



T. JONCKHEERE et al. PHYSICAL REVIEW B 108, 214517 (2023)

FIG. 8. Nonmonotonous variation with V of the TTJ maximum
quartet current (red), taken on the quartet phase (�0 = �1 = �2 = 1,
T = 1, τd = 0).

as IMAR = e2

2h T �1(I1 − I2), and there is no MAR current in
terminal S0. The phase-dependent part of the MAR current
I i

phMAR is defined by subtracting from the full MAR current its
average on the quartet phase ϕQ,

I i
phMAR = I i

MAR − 〈I i
MAR〉ϕQ . (50)

The phase-MAR current is represented as a function of the
phase ϕQ on Fig. 9. It is an even function of ϕQ, contrarily to
the quartet current, which is odd. As a function of voltage, the
phase-dependent MAR current also presents sign changes, at

FIG. 9. (Top) TTJ quartet current (black) and phase-MAR cur-
rent (red) as a function of V (�0 = 1, �1 = �2 = 0.8, ϕQ = 2π/3,
T = 0.01, τd = 0). (Bottom) Phase-MAR current-phase characteris-
tics across a sign change. V = 0.25 (full); 0.76 (dotted).

FIG. 10. (Top) Current in S1 (normalized by a factor �1)
showing different phase shifts, with �0 = 1, �1 = �2 = 0.2, τd =
0.5, V = 0.2 (black, quartet-dominated current), 0.45 (blue), 0.55
(green), 0.7 (red, MAR-dominated current). Dotted lines feature the
phase-independent MAR current. (Bottom) Current in S0, show-
ing different phase shifts, with V = 0.4, τd = 1, �0 = 1, and
�1 = �2 = 1 (black, quartet-dominated current), �1 = 1.2, �2 = 0.8
(blue), �1 = 1.4, �2 = 0.7 (green), �1 = 2, �2 = 0.5 (red, MAR-
dominated current).

values of V different from those making the quartet compo-
nent change sign.

B. A TTJ is a ϕ junction

Owing to the different symmetries of quartet and phase-
MAR currents with respect to the quartet phase, their
superposition yields a phase shift, that makes a TTJ a tunable
ϕ junction. The phase shift indeed depends on the parameters
of the TTJ: bias voltage V , transparency, decoherence, and
also on the two relevant asymmetries that comparing contact
0 to contacts (1,2) (see the “funnel” case), and that mutually
comparing contacts 1,2.

This is illustrated by two examples. First, within (S1, S2)
symmetry, the current in terminal S1 superimposes quartet
and MAR components thus displays a phase shift, which
in Fig. 10 (top) varies with the voltage. As V increases, it
passes from a quartet-dominated current, nearly zero at zero
phase, to a MAR-dominated current, with phase-MAR com-
ponent maximal near zero phase. Second, with an (S1, S2)
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FIG. 11. TTJ quartet current (red) and phase-MAR current (blue)
as a function of V (�0 = 1, �1 = �2 = ε�0, ϕQ = 2π/3, τd = 0).
(Top) ε = 0.1. (Bottom) ε = 0.02.

asymmetry, the current in terminal S0 contains MARs in addi-
tion to quartets and displays a phase shift, here at fixed voltage
and varying the asymmetry [Fig. 10 (bottom)]. It goes from a
quartet regime to a MAR regime as asymmetry is increased.
Provided phase-MARs are not negligible, such a phase shift
could be observed in a phase-sensitive experiment as proposed
in Ref. [31].

C. Conditions to observe quartets against MARs

In a non-phase-sensitive transport experiment, and in the
case where MARs are observed in the full (V1,V2) con-
ductance map, care must be taken in interpreting the V − I
anomaly observed on the “quartet line” V2 = −V1. For a rather
symmetric TTJ one finds that IQ and IphMAR have comparable
magnitudes, even at low voltage (Fig. 9). This is due to the
fact that in the present model simulating a cavity with a dense
level spectrum, a symmetric TTJ behaves as a resonant junc-
tion and therefore MARs can be strong even at low voltage.
On the contrary, when �1, �2 � �0, the phase-MAR current
becomes very small at low voltages and is dominated by the
quartet current (Fig. 11).

As shown above, a funnel asymmetry is sufficient to
make phase-MAR very small. This is because those processes
involve coherently all three contacts and taking ε � 1 sup-
presses multiple Andreev reflections between S0 and both
(S1, S2). It also trivially hampers two-terminal MARs occur-
ring either between S0 and S1, or between S0 and S2, which

FIG. 12. Quartet and full MAR currents in a fully asymmetric
TTJ, �0 = 1, �1 = 0.2, �1 = 0.05. MAR currents in terminals S0

and S1 strongly decay at low voltages, contrarily to quartet currents.
Current sign convention is inverted in terminals 1,2 to help compari-
son. Notice that here Iq0 � 2Iq1 � 2Iq2.

participate to the phase-independent MAR current. Neverthe-
less, if couplings between the node and the leads S1, S2 are
comparable albeit small, MARs between those contacts (with
voltage difference 2V ) become resonant and can overcome
quartets. Figure 12 shows that if one instead takes �0 � �1 �
�2 (or �0 � �2 � �1) [full asymmetry, see Fig. 1(c)], all
two-terminal MARs are suppressed at low V and the total
MAR current becomes negligible compared to the quartet
current below V = 0.2� in the coherent case.

VIII. DISCUSSION AND CONCLUSIONS

In this paper we have studied in detail the voltage and phase
dependence of the two DC current components involving
quartets in a three-terminal Josephson junction biased with
opposite voltages: quartet current and phase-MAR current.
The salient feature is the sign changes occurring as the volt-
age is varied. The quartet current switches from a π to a 0
junction. These sign changes are absent at low voltage when
the junction is strongly asymmetric in terms of the coupling
to the unbiased “source” terminal compared to the two others
(“funnel junction”). This, and the agreement between a pertur-
bative and the exact calculation, points towards nonadiabatic
effects as being responsible for such sign changes. This is
similar to the behavior reported in quantum dot junctions
[26,35–37]. In the funnel junction, a wide pseudogap in the
normal density of states protects from nonadiabatic transitions
between negative and positive energy Andreev bound states,
and the finite voltage behavior emerges adiabatically from the
zero-voltage one, which manifests a π junction.

The effect of decoherence has been also investigated, as
well as the overall transparency of the contacts. This leads
to shifts of the sign changes that sensitively depend on the
multiple Andreev reflections occurring at the contacts. At low
voltages, phase-MAR currents become negligible compared
to quartet currents in a funnel asymmetric TTJ. All MAR
currents become negligible if the low-voltage TTJ is fully
asymmetric. When phase-MARs are not negligible, which
is the generic situation, the TTJ becomes a controllable ϕ

junction.
Probing the sign changes of the quartet current, more gen-

erally the ϕ-TTJ, requires a full quartet SQUID geometry [31].
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A less demanding probe is the strongly nonmonotonic varia-
tion of the quartet “critical” current Iqc that can be observed
in a direct transport experiment, as measured by the width of
the Josephson-like anomaly found on the quartet line. This
nonmonotonic dependence and the strong sensitivity of the
positions of the IQc minima with voltage are a hallmark of
quartet processes. They are directly related to the mesoscopic
nature of the quartet process and can thus be distinguished
from other synchronization mechanisms due to an external
circuit impedance, stronger than that of the junction itself:
such an impedance has no reason to depend sensitively on the
details (transparency, decoherence, asymmetries) of the TTJ.

Potential extensions of this paper include the computation
of the noise characteristics of the TTJ within the circuit the-
ory framework. In previous studies where the diffusive node

between the superconducting leads is replaced by a system
of quantum dots [35,46] showed that at low temperature, the
Fano factors relevant to the TTJ vanish for decreasing voltage,
as expected for a Josephson-like signal (the same should be
true in the context of circuit theory).
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