
Anyonic Statistics Revealed by the Hong-Ou-Mandel Dip for Fractional Excitations

T. Jonckheere , J. Rech, B. Grémaud, and T. Martin
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The fractional quantum Hall effect (FQHE) is known to host anyons, quasiparticles whose statistics is
intermediate between bosonic and fermionic. We show here that Hong-Ou-Mandel (HOM) interferences
between excitations created by narrow voltage pulses on the edge states of a FQHE system at low
temperature show a direct signature of anyonic statistics. The width of the HOM dip is universally fixed by
the thermal time scale, independently of the intrinsic width of the excited fractional wave packets. This
universal width can be related to the anyonic braiding of the incoming excitations with thermal fluctuations
created at the quantum point contact. We show that this effect could be realistically observed with periodic
trains of narrow voltage pulses using current experimental techniques.
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The fractional quantum Hall effect (FQHE) is an
important example of a many-body system where elec-
tronic correlations have an essential impact [1]. When a
fraction ν of the states of the lowest Landau level is
occupied, the system reaches a state which cannot be
understood without electronic interactions. The well-
known Laughlin wave function describes the highly corre-
lated ground state of the FQHE when ν ¼ 1=ð2nþ 1Þ for n
integer. The fundamental excitations of the FQHE are
anyons: quasiparticles which bear a fractional charge,
and obey fractional statistics [2,3]. In a given Laughlin
state, when two anyons are exchanged, the system acquires
a phase expðiπνÞ, to be contrasted with the �1 of bosonic
or fermionic statistics. More complex fractions exist,
potentially hosting non-Abelian anyons, relevant for quan-
tum computing applications [4].
A fractional charge e=3was experimentally observed for

the Laughlin state with ν ¼ 1=3 more than twenty years
ago, by measuring the shot noise across a quantum point
contact (QPC) in the tunneling regime, where individual
fractional quasiparticles can tunnel between opposite edge
states [5–8]. Fractional statistics, however, has proved more
difficult to observe. Only very recently, two different
experiments have been able to clearly show specific
signatures directly associated with the fractional statistics
of anyonic quasiparticles [9,10].
Electronic transport in FQHE occurs only through chiral

edge modes, traveling along the boundary. These can be
used as 1d electron beams enabling us to realize transport
experiments inspired from quantum optics, such as the
Hong-Ou-Mandel (HOM) interference experiment, where
two identical photons are sent with a controlled time delay
on a beam splitter [11]. The electronic counterpart was
performed a few years ago in the integer QHE, where
current correlations were shown to give precious informa-
tion on the electronic wave packets and the many-body

electronic state [12–15]. Recently, two-particle time-
domain interferences were obtained in the FQHE, demon-
strating that quasiparticles keep their coherence allowing
for time-domain interference [16].
In this work, we show that using narrow periodic pulses

of voltage, periodically exciting fractional charges, and
measuring the HOM noise at the output of a QPC, one
obtains a signal which is directly related to the anyonic
statistics. To this aim, we first explain the unique properties
of the time-dependent tunneling current at a QPC when a
single fractional quasiparticle is incident, which are asso-
ciated with braiding of the fractional quasiparticle with
the thermal anyonic excitations occurring at the QPC.
Our quantitative predictions, obtained with perturbative
calculations performed using the nonequilibrium Keldysh
Green’s function formalism, could be checked with current
experimental techniques, providing a relatively easy path
for the study of fractional statistics.
We consider a FQH bar, with Laughlin filling factor

ν ¼ 1=ð2nþ 1Þ for n integer, and describe the edge states
in terms of the bosonic Hamiltonian H0 ¼ ðvF=4πÞR
dx

P
μ¼R;Lð∂xϕμÞ2, where ϕR=L are the bosonic fields

describing the right- or left-moving edge states propagating
with velocity vF [17]. A bosonization identity, ψR=LðxÞ ¼
UR=L=ð2πaÞe�ikFxe−i

ffiffi
ν

p
ϕR=LðxÞ, relates the quasiparticle

(QP) operator to the bosonic field, with a a small cutoff
parameter a and UR=L a Klein factor. The presence of a
QPC (at x ¼ 0), in the weak backscattering regime, allows
the tunneling of individual QP of charge e� ¼ νe between
the two edges. This is described by the tunneling
Hamiltonian HT ¼ Γψ†

Rð0ÞψLð0Þ þ H:c: See Fig. 1 for a
sketch of the setup.
To better understand the importance of the anyonic

statistics for tunneling at the QPC, let us first consider
the somewhat simpler situation where a single QP of charge
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e� is incoming on the R edge. To this aim, when computing
physical quantities (current, etc.), we replace the ground
state by a prepared state jφi ¼ ψ†

Rð−x0;−T Þj0i, where a
single QP has been added at an initial time −T < 0.
Without loss of generality, we choose x0 ¼ vFT , such that
the QP reaches the QPC at t ¼ 0. We now proceed with
the perturbative calculation of the mean tunneling current
hITðtÞi at the QPC, using standard Keldysh Green’s
function formalism. The tunneling current operator is given
by ITðtÞ ¼ ie�½Γψ†

Rð0; tÞψLð0; tÞ − H:c:�. To lowest order
in Γ, the mean current is given by [18]

hITðtÞi ¼ −
i
2

Z
dt0

X
η;η0

η0hφjTKITðtηÞHTðt0η0 Þjφi; ð1Þ

where TK is time ordering along the Keldysh contour, and
η; η0 ¼ � are Keldysh indices. Using the bosonized form of
the quasiparticle operators, and keeping in mind that
x0 ¼ vFT , we have

hITðtÞi ¼ Γ2
e�

2

Z
dt0

X
η;η0

η0½Gðσηη0tt0 ðt − t0ÞÞ�2

×

�
Gð−t0ÞGðtÞ
Gðt0ÞGð−tÞ −

Gðt0ÞGð−tÞ
Gð−t0ÞGðtÞ

�
; ð2Þ

with

GðtÞ ¼ 1

2πa

�
sinhðiπa=ðβvFÞÞ

sinhðiπa=ðβvFÞ − πt=βÞ
�
ν

; ð3Þ

where G½σηη0tt0 ðt − t0Þ� ¼ Gð0; tη; t0η0 Þ ¼ h0jTKψ
†ð0; tηÞ

ψð0; t0η0 Þj0i, with σηη
0

tt0 ¼ signðt− t0Þðηþη0Þ=2þðη0−ηÞ=2
accounting for the effect of time ordering along the
Keldysh contour. G is the quasiparticle Green’s function
(identical for right and left movers), directly obtained from

its bosonic counterpart, with β the inverse temperature.
Note that the power ν leads to a slow decay of this Green’s
function at long times since ν < 1, up to the thermal
timescale τTh ¼ ℏβ. In the limit of vanishing cutoff a → 0,
it is easy to check that GðtÞ=Gð−tÞ ¼ exp½−signðtÞ × iπν�.
This directly arises from the nontrivial exchange properties
of anyonic quasiparticles, exploiting their linear dispersion
along the edge [18]. It follows that the last factor of Eq. (2)
can be simplified as

Gð−t0ÞGðtÞ
Gðt0ÞGð−tÞ ¼ exp

�
−iν

Z
t

t0
dτ 2πδðτÞ

�
: ð4Þ

The current can thus be written as

hITðtÞi ¼ 2ie�Γ2

Z
t

−∞
dt0 sin

�
2πν

Z
t

t0
dτδðτÞ

�

× ½Gðt − t0Þ2 − Gðt0 − tÞ2�: ð5Þ

One readily sees from Eq. (5) that the tunneling current
has remarkable properties, which are unique to fractional
charge tunneling in the FQHE [18]. It is of course zero for
t < 0, i.e., before the arrival of the e� QP. On the other
hand, for t > 0, the t0 integration is restricted to the negative
portion of the real axis, and the current is simply propor-
tional to sinð2πνÞ. This, in turn leads to a nonzero current
even for a time t taken long after the e� QP has reached the
QPC position, as a consequence of the slow decay in time
of Green’s function Gðt − t0Þ.
The mean current thus remains finite for a long time

interval, set by the thermal time scale τTh. We emphasize
that this is in sharp contrast with the case of an incoming
electron charge, since even for fractional edge states, the
mean tunneling current is nonzero only at the specific time
that the electron arrives at the QPC [18].
This nontrivial behavior of the tunneling current after the

arrival of a single QP of charge e� can be directly linked to
the anyonic statistics of the fractional excitations. The
phase 2πν occurring for t0 < 0 < t can be understood
qualitatively from Eq. (1) by considering the time ordering
of the right-moving edge operators (ψR, ψ

†
R). From the

expressions of jφi, IT , and HT , one readily sees that
the average current in Eq. (1) involves a contribution of
the form TψRð0Þψ†

RðtÞψRðt0Þψ†
Rð0Þ, as the prepared state

ensures that the QP reaches the QPC at time 0. For t > 0
and t0 < 0, the time ordering thus requires us to bring both
ψRð0Þ and ψ†

Rð0Þ between the operators at t and t0, yielding
twice a phase πν. On the opposite, if t and t0 have the same
sign, one can easily see that the exchanges needed for the
ordering now contribute with opposite phases, thus giving a
zero net result. An equivalent point of view, developed in
Refs. [19–21] is to see the expression of Eq. (1) as the
interference between a process where a quasiparticle or
quasihole (QP/QH) excitation is created at the location of

FIG. 1. The setup: a Hall bar in the Laughlin series, whose edge
states are described by the bosonic fields ϕR and ϕL, with a QPC
at position x ¼ 0. The right- and left-moving edges are driven,
respectively, by the time-dependent potential VRðtÞ and VLðtÞ,
resulting in a tunneling current IT in between edge.
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the QPC at time t0, before the passage of the e� QP, and
another where the QP/QH is created at time t, after the
passage of the e� QP. In both points of view, the tunneling
current is nonzero because of the braiding of the incoming
fractional QP with a thermal QP/QH excitation created at
the QPC. This braiding results from the anyonic statistics,
giving a nontrivial phase πν when two quasiparticles are
exchanged.
We now show that the same tunneling current, with the

same signature of fractional statistics, can be obtained by
applying a short voltage pulse that excites a fractional
average charge. This is a highly nontrivial statement, as it is
known that such a voltage pulse does not create the same
many-body state as the one obtained by adding a single
quasiparticle on top of the ground state [22].
The presence of an external time-dependent voltage bias

leads to an extra term in the total Hamiltonian, of the
form HV ¼ −ð2e ffiffiffi

ν
p

=vFÞVðx; tÞ∂xϕR. The voltage can be
taken into account by using the following transforma-
tion: ϕðx; tÞ ¼ ϕð0Þðx; tÞ þ e

ffiffiffi
ν

p R
t
−∞ dt0Vðx0; t0Þ, with x0 ¼

x − vFðt − t0Þ and where ϕð0Þðx; tÞ is the equilibrium
bosonic field [22]. Assuming that the voltage is applied
on a long contact, we can simplify

R
t
−∞ dt0V½vFðt0 − tÞ; t0�≃R

t
−∞ dt0Vðt0Þ. This leads to a time-dependent tunneling
amplitude at the QPC ΓðtÞ ¼ Γ exp½ie� R t

−∞ dt0Vðt0Þ�.
Proceeding with the perturbative calculation of the tunnel-
ing current, one gets [18]

hITðtÞi ¼ 2ie�Γ2

Z
t

−∞
dt0 sin

�
e�

Z
t

t0
dt00Vðt00Þ

�

× ½Gðt − t0Þ2 − Gðt0 − tÞ2�: ð6Þ

One can thus readily recover the result of Eq. (5), provided
that one chooses a voltage pulse VðtÞ ¼ ð2π=eÞδðtÞ, which
excites a mean charge e� ¼ νe. The tunneling current
hITðtÞi is the same for a single QP of charge e� arriving
on the QPC, or when applying a very short voltage pulse
VðtÞ exciting a mean charge e�.
This picture is further generalized by considering a

voltage VðtÞ composed of several short pulses of charge
e�. There, the phase of the sine term counts the number of
fractional charges e� that have passed through the QPC,
each of them contributing a phase 2πν. This then has
important consequences for the tunneling current. For
example, at filling factor ν ¼ 1=3, when two short frac-
tionally charged pulses arrive at the QPC with a time delay
much smaller than the thermal scale, the main contribution
to the current in Eq. (6) comes with a factor sinð4π=3Þ < 0,
making it negative. Figure 2 shows the current for an
ensemble of short pulses (each with a charge e�, and a
width δt ≪ β). The dashed lines show the arrival times of
the pulses at the QPC. We see that the current decreases
slowly in absolute value after each pulse reaches the QPC,
reflecting the slow decrease of the QP Green’s function G.

More interestingly, the value of the current depends on the
history of the pulses applied at earlier times. In particular,
as argued above, the current can be negative when two
pulses arrive at closely separated times (e.g., for t between
0.2 and 0.4β). The inset of Fig. 2 shows the equivalent
picture when similar pulses, but carrying a charge e rather
than e�, are incident on the QPC. There, the current is
nonzero only when the pulse reaches the QPC, with no
effect from earlier pulses. Note that the same expression for
the tunneling current, Eq. (6), allows one to describe a
random stream of pulses, recovering known results
for the collision between two Poissonian streams of charges
e* [23].
While the use of voltage pulses is routinely performed,

the measurement of time-dependent currents still consti-
tutes an experimental challenge in quantum Hall junctions.
We now propose a simpler alternative, within grasp of
modern experiments, in order to reveal the effect of anyonic
statistics. This relies on the measurement of the HOM
noise, i.e., the current correlations resulting from two
individual voltage pulses of fractional charge colliding at
the QPC with a controllable time delay.
Let us first consider two narrow pulses of charge e�,

incoming on the two inputs of the QPC. The tunneling
current noise is defined as

Sðt; t0Þ ¼ hTKδITðt−ÞδITðt0þÞi; ð7Þ

with δITðtÞ ¼ ITðtÞ − hITðtÞi, and � are Keldysh indices.
The HOM noise is the zero-frequency tunneling noise,
when two pulses are incident on the QPC with a given
time delay δt. It serves as a measure of the interference
between the colliding excitations at the QPC. It can be
written as [18]

FIG. 2. Mean current hITðtÞi (in units of e=β) as a function of t
(in units of β) corresponding to Eq. (6) with ν ¼ 1=3, for a
random ensemble of short pulses of width β=100, each carrying a
charge e=3. The arrival times at the QPC are shown as dashed
vertical lines (pulses for t < −0.4β are not shown). Inset: same
figure for pulses carrying a charge e.
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SHOMðδtÞ ¼
1

2SHBT

Z
∞

−∞
dtdt0Gðt0 − tÞ2

× fcos ½2πνfδtðt; t0Þ� − 1g; ð8Þ

where fδtðt; t0Þ is 1 if only one of the times t or t0 is in the
interval ½−δt=2; δt=2�, and 0 otherwise, and normalization
is given by twice the value of the Hanbury Brown–Twiss
(HBT) noise SHBT [24].
A very good approximation of Eq. (8) (exact for

δt=β → 0), is given by

SHOMðδtÞ !δt≪τTh
1 − exp

�
−2πν

jδtj
β

�
: ð9Þ

This result shows a behavior typical of a HOM dip for long
and short time delays. For very large jδtj, it saturates to 1 as
the two incident charges e� reach the QPC at very distant
times without interfering, therefore reproducing twice the
amount of the HBT noise. For δt ¼ 0, the HOM dip drops
all the way to 0, as a result of perfect interference between
the two identical incoming charges. This can be understood
as a fractional charge injected from the left and another one
injected from the right braiding with opposite phases with
the thermal excitations of the QPC. At δt ¼ 0 these phases
cancel exactly. The most important result, however, is the
behavior at intermediate δt: Eq. (9) shows that the width of
the HOM dip is ∼β, set by the thermal timescale τTh,
independently of the width of the incoming pulses. This is
in sharp contrast with the conventional HOM dip, for
example, between electronic wave packets in the integer
QHE [14,25], where the dip width is directly proportional
to that of the incoming wave packet. This striking result can
be understood from our discussion of the tunneling current
above. Indeed, we showed that, as a consequence of
anyonic statistics and the braiding with thermal excitations,
a single charge e� reaching the QPC creates a nonzero
current up to times ∼β after the tunneling event occurred.
Two charges incident on both inputs of the QPC thus

interfere up to times set by the thermal timescale, which
explains the width of the HOM dip. The observation of
such an HOM dip can thus provide a direct proof of the
anyonic statistics of the incoming fractional charges. We
now show how a realistic periodic voltage bias with
frequency ω, sending pulses of charge qe (with noninteger
q), can be used to observe the HOM dip of width ∼β. For
illustrative purposes, we consider a periodic voltage VðtÞ
consisting of Lorentzian pulses, also known as levitons
[26–29], but the results are independent of the actual shape
of the voltage potential, as long as the pulse width is small
compared to β. We use the Floquet formalism, where the
essential ingredients are the coefficients pl, which corre-
spond to the Fourier coefficients of the phase ϕðtÞ ¼
e�

R
t
−∞ dt0Vacðt0Þ created by the ac part of the time-

dependent voltage VðtÞ. The dc part of the voltage leads
to a mean charge qe injected per period, with q ¼ e�Vdc=ω.

We consider that the voltages VRðtÞ and VLðtÞ, applied on
the right and left edge, respectively, differ by a time shift δt
only, so that

VLðtÞ ¼ VRðt − δtÞ ¼ Vdc

π

X
k

η

η2 þ ðt=T0 − kÞ2 ; ð10Þ

where T0 ¼ 2π=ω is the period of the drive, and η is the
finesse.
Figure 3 shows the normalized HOM noise for a periodic

Lorentzian drive, at ν ¼ 1=3, with realistic values for the
experimental parameters (frequency ω ¼ 1 × 2π GHz, and
finesse η ¼ 0.01) [30]. The black dotted line shows the
shape of the narrow Lorentzian pulse over one period. The
full curves show the HOM dip as a function of the time-
shift δt. In panel (a), the average charge per pulse is fixed to
qe ¼ e=3, and the temperature T is varied from 250 down
to 25 mK. At T ¼ 25 mK, the hierarchy of the different
timescales is thus: pulse width (∼20 ps) ≪ thermal

(a)

(b)

FIG. 3. HOM noise as a function of δt for a filling factor
ν ¼ 1=3, for VðtÞ made of voltage pulses with Lorentzian shape
of finesse η ¼ 0.01, with ω ¼ 2π=T0 ¼ 2π GHz. (a) pulses of
charge e=3, and T in mK indicated near each curve.
(b) T ¼ 25 mK, and the charge of each pulse (in units of e)
shown near each curve. The thick dashed line shows the
theoretical prediction of Eq. (9) for two infinitely narrow pulses
at T ¼ 25 mK. The dotted curve shows the shape of VðtÞ over
one period.
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timescale (∼300 ps) < period (∼1000 ps). One can readily
see that, while the width of the HOM dip is close to that of
the Lorentzian pulse at T ¼ 250 mK, it significantly
increases as the temperature is lowered, ultimately being
much larger at T ¼ 25 mK. We consider, in panel (b), a
fixed temperature T ¼ 25 mK, and an injected charge per
period which varies from qe ¼ e down to qe ¼ e=3. There,
the width of the HOM dip is similar to that of the incoming
pulse for q ¼ 1 (corresponding to the injection of a full
electron per period on each edge), before increasing
substantially as q is lowered, recovering a wide HOM
dip for q ¼ 1=3. The thick dashed line corresponds to the
analytical prediction of Eq. (9) for T ¼ 25 mK. This shows
a very good agreement with the full numerical result
obtained for q ¼ 1=3, with only a small underestimation
of the width of the dip associated with the assumption of
infinitely sharp pulses.
In conclusion, we have shown that the anyonic statistics

of quasiparticles in the FQHE has direct consequences on
the HOM interference of excitations created by narrow
voltage pulses. Contrarily to the usual picture, where the
width of the HOM dip is trivially related to the temporal
extension of the incoming excitations, here it is fixed by the
thermal scale, which dominates at low temperature. We
have shown how this can be explained by the anyonic
braiding of the incoming quasiparticles with thermal
excitations naturally occurring at the QPC. Reducing
temperature increases the thermal time, which enhances
the timescale on which braiding is effective, and thus leads
to a wider HOM dip. Our proposal could be realized with
current experimental techniques, and could lead to an
original and relatively simple way to observe directly the
consequences of anyonic statistics in the FQHE. A natural
extension of this work would be to consider more exotic
fractions like ν ¼ 2=5 or ν ¼ 2=3 [31,32], or even ν ¼ 5=2,
characterized by non-Abelian statistics [4,33–35].
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Cavanna, Y. Jin, and G. Fève, Phys. Rev. B 94, 115311
(2016).

[26] H. Lee and L. S. Levitov, arXiv:cond-mat/9312013.
[27] J. Keeling, I. Klich, and L. S. Levitov, Phys. Rev. Lett. 97,

116403 (2006).
[28] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin,

W. Wegscheider, P. Roulleau, and D. C. Glattli, Nature
(London) 502, 659 (2013).

[29] J. Dubois, T. Jullien, C. Grenier, P. Degiovanni, P. Roulleau,
and D. C. Glattli, Phys. Rev. B 88, 085301 (2013).

[30] Note that this frequency is a bit smaller than the one
commonly used in experiments (for example, ω ≃ 5 ×
2π GHz in Ref. [28]). We have chosen realistic values

PHYSICAL REVIEW LETTERS 130, 186203 (2023)

186203-5

https://doi.org/10.1103/RevModPhys.71.875
https://doi.org/10.1103/PhysRevLett.53.722
https://doi.org/10.1103/PhysRevLett.53.722
https://doi.org/10.1016/j.aop.2007.10.008
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1038/38241
https://doi.org/10.1126/science.aau3539
https://doi.org/10.1038/s41467-019-09758-x
https://doi.org/10.1038/s41467-019-09758-x
https://doi.org/10.1126/science.aaz5601
https://doi.org/10.1038/s41567-020-1019-1
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1126/science.1232572
https://doi.org/10.1126/science.1232572
https://doi.org/10.1002/andp.201300181
https://doi.org/10.1002/andp.201300181
https://doi.org/10.1103/PhysRevB.86.125425
https://doi.org/10.1103/PhysRevB.86.125425
https://doi.org/10.1103/PhysRevLett.112.046802
https://doi.org/10.1103/PhysRevLett.112.046802
https://doi.org/10.1038/s41467-022-33603-3
https://doi.org/10.1038/s41467-022-33603-3
https://doi.org/10.1080/00018739500101566
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.186203
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.186203
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.186203
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.186203
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.186203
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.186203
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.186203
https://doi.org/10.1103/PhysRevLett.123.016803
https://doi.org/10.1103/PhysRevLett.123.016803
https://doi.org/10.1103/PhysRevLett.125.196802
https://doi.org/10.1103/PhysRevLett.125.196802
https://doi.org/10.1103/PhysRevB.105.075433
https://doi.org/10.1103/PhysRevB.105.075433
https://doi.org/10.1103/PhysRevLett.118.076801
https://doi.org/10.1103/PhysRevLett.116.156802
https://doi.org/10.1103/PhysRevLett.116.156802
https://doi.org/10.1103/PhysRevLett.108.196803
https://doi.org/10.1103/PhysRevB.94.115311
https://doi.org/10.1103/PhysRevB.94.115311
https://arXiv.org/abs/cond-mat/9312013
https://doi.org/10.1103/PhysRevLett.97.116403
https://doi.org/10.1103/PhysRevLett.97.116403
https://doi.org/10.1038/nature12713
https://doi.org/10.1038/nature12713
https://doi.org/10.1103/PhysRevB.88.085301


for the experimental parameters, which allows us to take a
smaller value for the finesse, as higher harmonics of the base
frequency ω are more easily accessed. The experiment of
Ref. [28] used pulses with width as small as 30 ps, which is
similar to the width of 20 ps that we consider in Fig. 3.

[31] C. L. Kane, M. P. A. Fisher, and J. Polchinski, Phys. Rev.
Lett. 72, 4129 (1994).

[32] A. Bid, N. Ofek, H. Inoue, M. Heiblum, C. Kane, V.
Umansky, and D.Mahalu, Nature (London) 466, 585 (2010).

[33] S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys. Rev.
Lett. 99, 236807 (2007).

[34] M. Dolev, M. Heiblum, V. Umansky, A. Stern, and D.
Mahalu, Nature (London) 452, 829 (2008).

[35] J.-Y. M. Lee and H. S. Sim, Nat. Commun. 13, 6660 (2022).

PHYSICAL REVIEW LETTERS 130, 186203 (2023)

186203-6

https://doi.org/10.1103/PhysRevLett.72.4129
https://doi.org/10.1103/PhysRevLett.72.4129
https://doi.org/10.1038/nature09277
https://doi.org/10.1103/PhysRevLett.99.236807
https://doi.org/10.1103/PhysRevLett.99.236807
https://doi.org/10.1038/nature06855
https://doi.org/10.1038/s41467-022-34329-y

