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We consider the electronic analog of the quantum optics Hong-Ou-Mandel interferometer in a realistic
condensed matter device based on single electron emission in chiral edge states. For electron-electron collisions
we show that the measurement of the zero-frequency current correlations at the output of a quantum point
contact produces a dip giving precious information on the electronic wave packets and coherence. As a feature
truly unique to Fermi statistics and condensed matter, we show that two-particle interferences between electron
and hole in the Fermi sea can produce a positive peak in the current correlations, which we study for realistic

experimental parameters.
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I. INTRODUCTION

The Hong-Ou-Mandel (HOM) interferometer is a
celebrated tool of quantum optics, where two photons are sent
on the two input channels of a beam splitter, while measuring
the coincidence rate at the two outputs.! A dip is observed
when the photons are identical and arrive simultaneously
at the splitter, as they necessarily go to the same output
because of bosonic statistics. Measuring this dip can give
access to the time difference between the photons, and to
the length of the photon wave packet.” Since the first HOM
experiments, many works have used this interferometer,
for example, to characterize single photon sources and
photon indistinguishability,’> to demonstrate the control of
interferences with a resonant cavity,’ to perform interference
between two photon pairs,? etc.

Single electron sources in condensed matter physics are
now available: Electrons can be emitted periodically into edge
states of the quantum Hall effect (QHE).>~!! Such sources open
the way to performing analogs of quantum optics experiments,
such as Hanbury-Brown Twiss (HBT) interferometry.'>!3 As
electrons obey the fermionic statistics, and are subject to
Coulomb interactions, one expects to observe fundamental
departures from photon measurements. In particular, electron
vacancies in the Fermi sea (the set of low energy states filled
with electrons) create “holes,” which have a charge opposite to
that of the electron. In two-fermion interference experiments,
it is essential to understand the role of the Fermi sea, of
electron/hole pair creation, and propagation.

The electronic analog of the HOM experiment in condensed
matter has so far eluded a complete theoretical description. '8
Contrary to photons, two identical electrons arriving simulta-
neously at the splitter exit in two opposite channels because of
Fermi statistics. Surprisingly, this leads to a signature similar
to that of photons, albeit on a different physical quantity. For
electrons, it is the current-current cross correlation at zero
frequency which exhibits a dip (in absolute value, as cross
correlations are negative) when the time difference between
the electrons is varied. Using analytical calculations describing
a realistic model of the emitter, we show that two-electron
interferences bear strong similarities with that of photons. The
shape of the dip provides valuable information on the wave
packets. We next consider the case of interferences between
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an electron and a hole, which has no counterpart with photons:
Positive interferences (a peak rather than a dip) are obtained,
which depend on the energy overlap between the electron
and hole wave packets, and which is strongly affected by
temperature.

This article is organized as follows. In Sec. II we describe
the setup and the formalism of our calculations. Section III
is devoted to the results we obtain for electron-electron
collisions. In Sec. IV we consider the case of a collision
between a hole and an electron, and conclusions are given
in Sec. V.

II. SETUP AND FORMALISM

In Fig. 1 two counterpropagating edge states meet at a
quantum point contact (QPC).!” A single electron emitter is
connected to each incoming edge state, and single electrons
can be injected with a controlled time difference in the two
edge states. The current correlations are measured at the two
output of the QPC, as a function of the time difference between
the two injections. In existing experiments, the emission of a
single particle is repeated periodically.”!%!?

The zero-frequency current correlations between the out-
puts read

Sp' = / dt dt'[(IP™ (O 1" @) — (I O) 15" ))], (D)

where I7"'(¢) and I5"'(¢) are the currents outgoing from the
QPC. With a linear dispersion, the currents depend on x — ¢
only (we set the Fermi velocity vy = 1), and we compute the
current at the immediate output of the QPC (x = 0", where
for convenience we use for each edge an x axis pointing in the
propagation direction). The QPC is described by its scattering
matrix which expresses the outgoing fields in terms of the
incoming ones:

<1/f§l“<r)> (VT VR (@“(r)) o
v ) VR VT J\yvir®)/)
where 7 and R = 1 — 7T are the transmission and reflection

probabilities. Expressing the currents operators at the output
of the QPC in terms of the incoming ones, and dropping the
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FIG. 1. (Color online) The device. Two chiral edge states meet at
a quantum point contact. In each edge state a single electron source
injects an electron when a time-dependent voltage V() is applied
at the source. Cross correlations at the two outputs are measured as
a function of the time difference between the electrons which are
emitted by each source.

9

in” superscript gives

IP°(0) = THt) + RI(0) + ieRT W v — vrlyr)(@0),
18°(1) = RI 1) + T h(t) — ieNRT (Y1 ¥, — yivrn)(0).

Using these expressions in Eq. (1) allows us to express the
noise in terms of the incoming operators only:*’

S =RT (Si1 + S — M), 3)

where the first two terms are the autocorrelation noise on the
two incoming edges. The last term combines averages on both
incoming edges:

A4=£/ﬁmﬁwww&mﬂﬁawmw
+ (W OWE)) (W Ov )], &)

These averages are performed on the state | V) of the edges, and
correspond to electronic coherence functions which generalize
the optical coherences.? The transmission 7 simply acts as a
trivial prefactor for the current correlations in S5

III. ELECTRON-ELECTRON COLLISIONS

In order to get analytical formulas for the HOM dip, we
perform calculations where a single electron, with a given
wave packet, is added to each edge. These analytical formulas
are next compared with Floquet calculations for a periodic
source, where no simple analytical formulas are available in
our case (note that analytical formulas can be obtained in the
case of a slow sinusoidal drive, see Ref. 17).

When one electron with wave function ¢, »(x) is added to
each edge, the states describing the edges are

W12) = [dx $1.2(x) ¥ ,(x) [0). &)

where |0) stands for the Fermi sea at temperature T of the edge.
In the case of identical wave packets ¢;(x) = ¢»(x) = p(x),
reaching the QPC with a time difference 6z, we get for the
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noise
2

out
Slz(at)zl_ R

28uBT

Jo~ dklgpt)PPe ™ (1 — fi)?
Jo© dklpto)P(1 — fi?

where fi = 1/(1 + %%/ is the Fermi distribution and
¢(k) is the normalized wave function in momentum space.
Sypr is the noise in the HBT configuration, where only a
single electron is emitted towards the QPC: "3

2 dklptora — f2 -
= dklp®R0— fi) |

Equation (6) shows immediately that when the two identical
electrons reach the QPC simultaneously (67 = 0), the noise
is zero, as expected from Fermi statistics. On the other hand,
for large values of §¢ [much larger than the inverse of the
typical width of ¢(k)], the numerator in Eq. (6) vanishes, and
the noise is given by 2SugT, the sum of the noise of the two
electrons taken independently. At low temperature, when the
wave packet ¢(k) has weight above the Fermi level only, the
noise can be simplified further:

SHBT = —ezRT |:

Sou(1)
2SuBT

This expression is reminiscent of the one obtained in optics,
where the shape of the HOM dip is given by the self-
convolution of the photon wave packet.?

Equations (6) and (8) are easily generalized to the case of
two different wave packets. Specific formulas of the HOM
dip can be obtained analytically for different shapes of wave
packets. We concentrate here on Lorentzian wave packets in
energy space

2
=1- ‘/dx d(x)d*(x + 81)| . ®)

VT 1

J7 (k — ko) +iT’
which corresponds to the emission by the discrete level
of a quantum dot at energy ko, as found in the single-

electron emitter. The real space profile of this wave packet
is exponential (see Fig 1):

br(x) = V2T e e g (—x), (10)

¢rk) = )

where 6(x) is the Heavyside function. The noise at zero
temperature for the case of two Lorentzian wave packets,
centered at the same ko but with different widths I'"; » reads

S75'(31) 4r I —2T 81 2T, 81
—1- [0(50)e 205 4 0(—51)e2%1],
2SuBT (T +Tp)?

Y

when wave packet 2 reaches the QPC at a time &t after
wave packet 1. A remarkable feature of this HOM dip is its
asymmetry: It has an exponential behavior, with different time
constants depending on the sign of §¢. The contrast of the
HOM dip 4" I, /(T'; + I'»)? is smaller than 1, which reflects
the fact that the two electrons are not identical. The same
contrast was obtained in Ref. 17 for a periodic source with a
slow sinusoidal drive. It is only in the case of identical wave
packets that a maximum contrast is recovered, and the HOM
dip has a simple exponential form 1 — ¢~2T!%!_ For arbitrary
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FIG. 2. (Color online) HOM dips as a function of the time
difference 6¢, obtained from Floquet scattering matrix formalism
in the optimal emission regime (full) and analytical predictions of
Eq. (11) for exponential wave packets (dot-dashed line). Upper
panel: Symmetric case, with emitter transparencies D = 0.2, 0.5,
and 0.8 (from outer to inner curve). Inset: Dips for D = 0.2 on two
periods of the applied voltage. Lower panel: Asymmetric case, with
transparencies D, = 0.2, D, = 0.5 (bottom curve) and D; = 0.1,
D, = 0.8 (top curve).

wave packets, Eq. (8) shows that the asymmetry of the HOM
dip is possible only if the wave packets in real space have
no mirror symmetry. This is clearly the case for exponential
wave packets, but it is not true for instance for Lorentzians
in real space. The asymmetry in the HOM dip thus provides
information on the spatial symmetry of the electronic wave
packets.

We now compare Eq. (11) with the results of a Floquet
calculation including the emission process from the single-
electron emitters. This emitter is based on the mesoscopic
capacitor.”!1* A complete description of this system and of
the Floquet scattering theory is available.'?! A quantum dot
is connected through a QPC to the main edge state, and is
capacitively coupled to a gate. The dot has discrete energy
levels whose width increases with the transparency of the QPC
and with temperature. A time periodic voltage V (¢) on the gate
is used to create an oscillation of the dot levels. First the highest

S%(St) = —e*RT
o= [(fowdkm(kw(l—fk)

where the first two terms are the HBT noise of the injected
electron and hole, respectively, and the third term is due to
the electron-hole interferences. For the physics to be the most
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occupied level is put far above the Fermi energy, which causes
the emission of one electron from the dot to the main edge;
second this (now empty) level is put far below the Fermi level,
which causes the emission of a hole in the main edge. Several
profiles of V(¢) are possible. The one which yields optimal
emission uses voltage steps, with an amplitude equal to the
level spacing of the dot A. The electron is expected to be
emitted with a Lorentzian energy profile, which reflects the
Lorentzian density of state of the dot level.

The dot is described by its scattering matrix, and the Floquet
formalism is used to take advantage of the time periodicity?? in
order to compute the relevant quantities.'” Figure 2 compares
the results for the HOM dip with the analytical formula of
Eq. (11). The period of the applied voltage V (¢) of the emitters
is Tp = 400 (in units of 2/A), and temperature is chosen to
be small (T = 0.01A). When V (¢) consists of sharp periodic
steps (optimal emission) the emitting level is put alternatively
atenergy +A /2 and —A /2 with respect to the Fermi level. The
upper panel shows the symmetric case, where the two emitters
have identical parameters. For three different transparencies
we observe three different HOM dips with a maximum contrast
(the minimum value is 0 at §¢ = 0). The dip is broader for lower
emitter transparency, which signals a broader wave packet,
as the electron takes a longer time to exit the dot. For the
emitter operated in the optimal regime, it is known that the
electron emission time as a function of the transparency D is
given by 7 = 2 /A)(1/D — 1/2)."° We have used this value
of the emission time (with 2I' = t~!) to plot the analytical
predictions from Eq. (11) (dot-dashed curves). The agreement
is excellent, without any fitting parameters, especially in the
low transparency regime where it is known that true single
electron emission is achieved.'®?

In the asymmetric case (lower panel), as the emitted
electrons are not identical, the contrast is smaller than 1, and the
HOM dips are asymmetric. The agreement with the analytical
prediction is again very good, both for the asymmetric shapes
and for the value of the contrast.

IV. ELECTRON-HOLE COLLISIONS

The results presented so far are quite similar to those
obtained with photons in optics. However, the existence of
the Fermi sea allows us to create holes in it, which have no
counterpart for photons. We study two-particle interferences
of electrons and holes, injecting one electron in one branch,
with a state given by Eq. (5), and one hole injected on the other
branch, with a state |W;) = fdx dn(x) ¥(x) |0). We get for
the noise:

Jo " dklg(k)*(1 — fi)? ? N Jo dklgn (k)| £ ’ 5 |2 dk g ()i (e i (1 — fo)|?
o7 dklgy (k)2 fi ’

Jo dk g ()P~ fo) [5° dk' | (k) fio

transparent, we consider in the following the electron-hole
symmetric case: ¢.(kr + 8k) = ¢, (kp — 5k). In this case, the
first two terms are equal to Syt [see Eq. (7)]. The expression
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of the noise then simplifies to a form similar to the electron-
electron case:

S9(81) _

Jo dk g (k)pj:(k)e =™ fi(1 — fi) ?
2Supr ’

Jo dk g (k)21 = fi)?

Comparing Eq. (12) with Eq. (6) we notice important changes.
First, the interferences contribute now with a positive sign to
the noise, that is, the opposite of the electron-electron case.
Electron-hole interferences produce a “HOM peak” rather than
a dip. Second, the value of this peak depends on the overlap of
the electron and the hole wave packets [¢. (k)¢ (k)], times the
Fermi product f;(1 — fi). This peak thus vanishes as T — 0
since it requires a significant overlap between electron and hole
wave packets, a situation which only happens in an energy
range ~kpT around kp, where electronic states are neither
fully occupied nor empty.

Note that the many-body state |V, ) (or |W¥;,)) created by the
application of the electron creation (or annihilation) operator
as in Eq. (5) is quite complex when the wave packet ¢,(x)
[or ¢;,(x)] has an important weight close to the Fermi energy.
Indeed, due to the changes imposed on the Fermi sea, many
electron-hole pairs are created, and the state is not simply
one electron (or one hole) plus the unperturbed Fermi sea.
The appearance of a positive HOM peak can be attributed to
interferences between these electron-hole pairs coming from
the two branches of the setup. It is quite remarkable that
eventually the peak can simply be computed from the overlap
of the electron and hole wave packets [see Eq. (12)].

We now consider the observation of these electron-hole
interferences with realistic electron emitters using Floquet
scattering theory. The simultaneous arrival of an electron and a
hole at the QPC happens quite naturally in this device. Indeed,
each emitter emits periodically an electron and then, half a
period Ty later, a “hole.” If one applies a time-shift 7/2
between the two emitters, one expects that an electron from one
emitter, and a hole from the other one, will interfere at the QPC.
The optimal emission regime of Fig. 2 does not show any sign
of electron-hole interference, as can be seen in the inset of this
figure (no peak at t = Tj/2). This is easily understood from
Eq. (12), as the electron (hole) wave packet is a Lorentzian
peaked at energy A/2 (—A/2), and the overlap of the two
wave packets is negligible, even in the totally transparent case.

We have considered two regimes where there is a significant
overlap between electron and hole wave packets, leading to
observable electron-hole peak. In both cases we have used a
small but nonzero temperature 7 = 0.1 A, which is compatible
with existing experimental values (typically A ~2 K, and
T ~ 150 mK'?). The first regime is the “resonant emission”
regime, where the applied voltage still consists of sharp steps
with amplitude A, but where the dot levels are shifted with
respect to the optimal emission regime (see the upper panel of
Fig. 3), such that there is always one dot level which is resonant
with the Fermi level of the edge [the dot levels go back and
forth between energies Erp +nA and Er + (n + 1)A, with n
an integer]. Electron and hole emission thus happens for an
important part at the Fermi energy, which leads to a significant
overlap between electron and hole [see Eq. (12)], and to the
creation of electron-hole pairs.>® The results for the HOM
noise are shown in the bottom panel of Fig. 3, which have

12)
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FIG. 3. (Color online) Upper panel: Electron (left) and hole
(right) emission process, for a square voltage drive, for the two
positions of the dot levels (values V, and V_ of the drive). The
position of the dot levels is parametrized by € with respect to Er.
Bottom panel: HOM peak for electron-hole collision, for a square
voltage drive, at different level positions € = 0.5, 0.4, 0.25, and O (in
units of A) from the smallest to the largest peak. T = 0.1A in both
panels.

been computed for an emitter with transparency D = 0.2.
The different curves span the different cases between optimal
emission (negligible peak at + = Tp/2) and resonant emission
(largest peak t = Tj/2). This peak has shape similar to the
HOM dip, and it is due to the exponential profile of the wave
packets in real space.

In the second regime the applied voltage has a sinusoidal
dependence [V (¢) = (A/2)sin(2rt/Tp)], rather than steps.
The main emitting dot level now has a time dependence of
the form ~E 4 V (¢), which also creates energy distributions
for the emitted electron and hole with substantial weight
close to the Fermi energy. This weight increases with the dot
transparency,'® and one can thus expect that the HOM peak
grows larger for transparencies closer to 1. The result for the
HOM noise in this case is shown in Fig. 4 for different values
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FIG. 4. (Color online) HOM peak for electron-hole collision, for
a sine voltage drive, at different transparencies, D = 0.2, 0.5, 0.7,
and 1.0 (smaller to larger peak), with 7 = 0.1A.
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of D. We observe a small positive peak at t = Tp/2 = 200 for
the smallest transparency, which increases as D is increased.
For a totally transparent dot (D = 1), the peak becomes as
large as the HOM dip (for interferences processes between
two sinusoidal sources, see also Ref. 24).

V. CONCLUSIONS

In conclusion, the fermionic HOM interferometer exhibits
a dip in the zero-frequency current correlations when two
electrons collide. Through analytic calculations we were able
to relate the shape of the dip to the properties of the electron
wave packets colliding. This showed good agreement with
the more realistic treatment of the single-electron emitter via
Floquet scattering theory, which also allows us to consider
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more experimentally relevant situations. We showed that
interferences between an electron and a hole in the Fermi
sea, both close to the Fermi energy, can produce an HOM
peak, which should be observable in future experimental setups
involving two emitters. Future work should address the role
of Coulomb interactions within the edge or between the two
edges at the location of the QPC.
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