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Hanbury Brown and Twiss noise correlations in a topological superconductor beam splitter
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We study Hanbury Brown and Twiss current cross-correlations in a three-terminal junction where a central
topological superconductor (TS) nanowire, bearing Majorana bound states at its ends, is connected to two normal
leads. Relying on a nonperturbative Green function formalism, our calculations allow us to provide analytical
expressions for the currents and their correlations at subgap voltages, while also giving exact numerical results
valid for arbitrary external bias. We show that when the normal leads are biased at voltages V1 and V2 smaller
than the gap, the sign of the current cross-correlations is given by −sgn(V1 V2). In particular, this leads to positive
cross-correlations for opposite voltages, a behavior in stark contrast with the one of a standard superconductor,
which provides direct evidence of the presence of the Majorana zero mode at the edge of the TS. We further
extend our results, varying the length of the TS (leading to an overlap of the Majorana bound states) as well
as its chemical potential (driving it away from half-filling), generalizing the boundary TS Green function to
those cases. In the case of opposite bias voltages, sgn(V1 V2) = −1, driving the TS wire through the topological
transition leads to a sign change of the current cross-correlations, providing yet another signature of the physics
of the Majorana bound state.
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I. INTRODUCTION

In the last two decades, Majorana fermions [1], concepts
which initially were the strict property of particle physics,
found some correspondence in condensed matter physics
settings. Instead of looking at whether an elementary parti-
cle, such as the neutrino, qualifies as a Majorana fermion,
nanoscience physicists are now wondering whether a complex
many body electronic system with collective excitations could
bear such strange objects: a fermion whose annihilation oper-
ator is (sometimes trivially) related to its creation counterpart.
Indeed, Kitaev [2] showed that a one-dimensional (1D) wire
with tight-binding interactions and p-wave pairing exhibits
Majorana fermions at its boundaries. Recent reviews give
a broad summary of this work and its consequences in
condensed matter physics [3–5]. There has been an ongoing
effort to study experimentally whether this toy model has some
correspondence in physical systems. Among strong candidates
are nanowires with Rashba and Zeeman coupling put in
proximity to a BCS superconductor [6–10], and chains of iron
atoms deposited on top of a lead surface [11]. In Refs. [9,10]
the signature for the presence of a Majorana fermion at the
edge of a one-dimensional nanowire consists of a zero-bias
anomaly in the current voltage characteristics. These results
call for the exploration of more involved transport settings and
geometries, where the behavior of the Majorana fermion can
be fully investigated and characterized. Among these settings,
multiterminal hybrid devices offer unique perspectives.

Multiterminal devices have often played an important role
for exploring the electronic transport properties of mesoscopic
devices. They allow us to perform experiments in close
analogy with quantum optics scenarios: in the Hanbury Brown
and Twiss [12] (HBT) experiment, for instance, photons
impinging on a half-silvered mirror are either transmitted
or reflected, and the crossed correlations of intensities from
these two outputs are measured, yielding a positive signal due
to the bunching of photons emitted from a thermal source.
Transposed to condensed matter setups, the sign of the HBT

cross-correlations reveals meaningful information concerning
the physics at play. For a dc biased three-terminal normal
conductor, the electronic analog of the HBT experiment was
studied theoretically and experimentally two decades ago
[13–17]. This was analyzed in terms of current-current crossed
correlations (noise): fermion antibunching (resulting from the
Pauli principle) leads to a negative HBT noise signal. In the
context of conventional BCS superconductivity, three-terminal
devices consisting of a superconductor connected to two
normal leads were also investigated. In such devices, a Cooper
pair can be transferred as a whole in one of the normal leads
(via Andreev reflection or AR), or it can be split into its two
constituent electrons in opposite leads (via crossed Andreev
reflection or CAR). The HBT noise correlations can thus be
negative or positive depending on whether AR or CAR is
dominant [18,19]. By adding appropriate filters (in energy
or spin) to the device in order to rule out AR in each lead,
positive noise cross-correlations, due solely to CAR processes,
can be guaranteed [20,21]. Experimental evidence for Cooper
pair splitting in BCS superconductors has been found both
in nonlocal current measurements [22–24] as well as in noise
correlation measurements [25] with a device analogous to what
was proposed in Refs. [20,26].

In this work, we study HBT noise correlations for a pair
splitter, where a topological superconductor (TS) nanowire,
rather than a standard BCS superconductor, is connected to two
biased normal leads. A schematic view of the setup is shown
in Fig. 1. Because of the presence of the Majorana zero mode
for the TS, the AR and CAR processes are strongly affected.
Studying the current and the HBT cross-correlations in this
setup, one can expect to explore properties and manifestations
of the Majorana bound state. This setup was previously
studied using scattering theory and tight-binding numerical
calculations [27–29]. However, these works concentrated on
the specific case of equal voltages for the normal leads and
focused on voltages below the gap. Our goal is to provide
a complete description of the system, exploring the behavior
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FIG. 1. Schematic view of the setup: a grounded TS nanowire
is tunnel coupled (with hopping amplitudes λ1, λ2) to two normal-
conducting (N1, N2) leads which are biased at voltages V1 and V2,
respectively.

of the current and current correlations, for arbitrary values of
the voltages, thus capturing both the effect of the Majorana
bound state and the high-energy quasiparticles. Below the
gap, we confirm that a TS beam splitter has negative HBT
correlations when the two normal leads have equal voltages
[28,29]. More importantly, we also predict a reversal of the
sign of the current correlations when voltages are changed
from equal to opposite, a feature that is directly related to the
properties of the Majorana bound state at the end of the TS
nanowire.

We perform the calculations within a phenomenological
tunnel Hamiltonian approach, using the boundary Keldysh
Green function of a semi-infinite TS. Solving nonperturba-
tively the Dyson equation, this allows us to obtain analyt-
ical formulas for the current and current correlations. This
approach was introduced in Ref. [30], and can be used to
treat a system composed of an arbitrary number of leads.
The boundary Keldysh Green function of the TS nanowire
encapsulates all the properties of the TS boundary. The
corresponding density of states shows a zero-energy peak,
associated with the Majorana zero mode, and a nonzero
density of states above the proximity-induced gap without
BCS singularity.

Moreover, we can further emphasize the role played by the
Majorana bound state by generalizing the TS boundary Green
function to the case of a finite length nanowire, or one with
an arbitrary chemical potential (adjustable doping). For a TS
of finite length L, the two Majorana bound states localized at
the opposite ends of the nanowire can overlap, leading to a
vanishing of its effect for small enough L, which we confirm
by looking at the L dependence of the HBT correlations.
Also, tuning the chemical potential of the TS allows us to
drive the transition from a topological regime to a trivial
(nontopological) one, which is also manifest in the current
correlations.

The structure of the paper is as follow. In Sec. II we
introduce the Hamiltonian model and detail the formulas
for the transport properties. Sec. III is devoted to our main
results. First, analytical expressions and numerical results
for the current and differential conductances are presented
and discussed. These quantities can readily be measured in
experimental setups. We then provide explicit expressions
for the current correlations in the subgap regime, along with
numerical results at any bias. A detailed qualitative discussion
of the noise behavior, in relation to the particular properties of
the Majorana bound state, is also given. Section IV focuses on
finite size effects as well as the impact of tuning the chemical
potential of the nanowire, driving it away from half-filling. In
Appendix A, the derivation of the boundary Green function for

a TS nanowire with a finite bandwidth and arbitrary chemical
potential is presented. General analytical expressions for the
current and current correlations are provided in Appendix B.
Finally, Appendix C discusses subtleties of the microscopic
tunneling model, and establishes its equivalence with the
scattering matrix formalism for subgap voltages.

II. MODEL AND FORMALISM

We consider a three-terminal device in a T-shaped geom-
etry, as illustrated in Fig. 1, where the end of a topological
superconductor (TS) nanowire is contacted by two normal-
conducting (N) leads. In a general case, two different voltages
V1,2 are applied across the N-TS contacts, while the TS wire
is assumed to be grounded. The full Hamiltonian is given by

H = HTS + HN + Ht, (1)

where the first two terms describe the TS and two N leads,
respectively, and Ht is a tunneling Hamiltonian connecting all
three leads to each other (see below for details). We model the
TS wire as a semi-infinite 1D spinless p-wave superconductor,
corresponding to the continuum version of a Kitaev chain [2,3]
in the wide-band limit. The Hamiltonian of the TS wire located
at x > 0 reads

HTS =
∫ ∞

0
dx �

†
TS(x)(−ivF ∂xσz + �σy)�TS(x), (2)

where � is a proximity-induced pairing gap, assumed to be
real, the Nambu spinor �TS(x) = (cr ,c

†
l )T combines right- and

left-moving fermions, with annihilation field operators cr (x)
and cl(x), respectively, vF is the Fermi velocity, and σx,y,z are
the Pauli matrices in Nambu space. In what follows, we use
units with kB = vF = h̄ = 1.

In this work, following the approach of Ref. [30], we
formulate the transport problem in terms of boundary Keldysh
Green functions (GFs) describing the leads which are coupled
together by tunneling processes. For such a noninteracting
setup with pointlike tunneling contacts, the exact boundary
GFs can be obtained by solving the Dyson equation to all orders
in the tunnel couplings. Below we briefly review the boundary
GF approach (see Ref. [30] for details) and summarize relevant
formulas needed for the calculation of transport observables
in the three-terminal N-TS-N junction.

The boundary Keldysh GF at x = 0 for the TS wire is
defined as follows:

ǧTS(t − t ′) = −i〈TC�(t)�†(t ′)〉, (3)

where the Nambu spinor � = (c,c†)T contains the bound-
ary fermion operator c = [cl + cr ](x = 0), and TC denotes
Keldysh time ordering. Explicitly, the Fourier transforms of
the retarded and advanced GFs for the uncoupled TS wire in
the topologically nontrivial phase derived in Ref. [30] are

g
R/A

TS (ω) =
√

�2 − (ω ± i0+)2 σ0 + �σx

ω ± i0+ , (4)

where R/A corresponds to +/− and σ0 is the unity matrix
in Nambu space. Importantly, this simple expression for
the retarded/advanced boundary GF of a TS wire captures
the zero-energy Majorana bound state as well as continuum
quasiparticles, which allows for studying both subgap and
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above-gap transport on equal footing. The Keldysh component
gK

TS(ω) is expressed via the retarded and advanced components
as

gK
TS(ω) = [1 − 2nF (ω)]

[
gR

TS(ω) − gA
TS(ω)

]
, (5)

where nF (ω) = (eω/T + 1)
−1

is the Fermi function with
temperature T . Throughout the paper we use the chemical
potential μTS of the (grounded) TS wire as a reference energy
level and set μTS = 0. In Appendix A, we give a derivation of
the boundary Green function for a Kitaev chain with the finite
bandwidth and arbitrary values for the band filling, while the
wide-band expression (4) exhibiting particle-hole symmetry
corresponds to half-filling.

In the same manner we construct the Keldysh GFs for the
normal leads. Within the wide-band approximation, taking into
account that the N-TS tunnel coupling effectively involves
only one spin component in the normal conductor, the
retarded/advanced GF for the normal electrodes follows from
Eq. (4) by putting � = 0:

g
R/A

N (ω) = ∓iσ0, (6)

Correspondingly, the Keldysh component gK
N (ω) is determined

via g
R/A

N (ω) by a relation similar to Eq. (5) but with the
respective chemical potential μN in the Fermi function (matrix
in Nambu space),

gK
N (ω) = −2i[1 − 2nF (ω − μNσz)]σ0. (7)

In the voltage-biased junction, μN is shifted with respect to
μTS = 0 by the dc voltage across the N-TS contact.

In terms of the boundary fermions cj representing the three
leads, with j = 0 for the TS wire and j = 1,2 for the normal-
conducting electrodes, the tunneling Hamiltonian takes the
form [30]

Ht = 1

2

∑
j,j ′

�
†
jWjj ′�j ′ , (8)

with �j = (cj ,c
†
j )T the boundary Nambu spinor and W = W †

is the tunneling matrix in lead and Nambu space. In lead space,
we impose that W has vanishing diagonal elements Wjj = 0
for all j , while the off-diagonal elements of W are matrices
in Nambu space, Wjj ′ = λjj ′σz, with a hopping amplitude
λjj ′ . For our setup when two normal electrodes are connected
to the central TS lead, the only nonvanishing couplings are
λ0j = λ∗

j0 = λj for j = 1,2. Without loss of generality, λ1,2

can always be chosen real, and in the case of a single tunnel
junction they determine the normal transmission probability
of the respective N-TS contact [30].

Once the tunneling matrix W is specified, the full Keldysh
GF Ǧ of the system follows from the Dyson equation

Ǧ = (ǧ−1 − W̌ )−1, (9)

with the Keldysh matrix W̌ = diag(W,−W ), and the “un-
coupled” Keldysh GF ǧ is diagonal in lead space. From the
tunneling Hamiltonian (8), it is straightforward to get the
Heisenberg operator for the current flowing from lead j to
the contact region,

Îj (t) = i
e

h̄

∑
j ′ �=j

�
†
j (t)σzWjj ′�j ′(t), (10)

while the dc current Ij = 〈Îj (t)〉 is

Ij = 1

2

e

h̄

∫ ∞

−∞

dω

2π

∑
j ′ �=j

trN
[
σzWjj ′GK

j ′j (ω)
]
, (11)

where trN is the trace over Nambu space. The Keldysh
component of the full GF, GK , is given by [30]

GK (ω) = GR(ω)F (ω) − F (ω)GA(ω)

+ GR(ω)[F (ω)W − WF (ω)]GA(ω), (12)

where Fjk(ω) = δjk[1 − 2nF (ω − μjσz)] contains the distri-
bution functions of the uncoupled leads with the respective
chemical potentials μj .

Finally, the HBT correlations are readily obtained through
the same formalism by computing the zero-frequency cross-
correlations of the above-defined current operator. Quite
generally, the current correlations at zero frequency are defined
as

Sjj ′ =
∫ ∞

−∞
dτ 〈δÎj (τ )δÎj ′ (0)〉, (13)

with δÎj (t) = Îj (t) − Ij . In terms of the full GF, these current
correlations are given by [30]

Sjj ′ =
∫ ∞

−∞

dω

2π

∑
j1 �=j

∑
j2 �=j ′

trN
{
λjj1

[
G−+

j1j2
(ω)λj2j ′G+−

j ′j (ω)

− G−+
j1j ′(ω)λj ′j2G

+−
j2j

(ω)
]}

, (14)

where G−s s = (1/2)[GK + s(GR − GA)] with s = ±.

III. RESULTS

As the system consists of three electrodes, with 0-1 and
0-2 couplings only, it is possible to solve explicitly the Dyson
equation, Eq. (9), in order to obtain an analytical expression
for the full Green function Ǧ. Using Eqs. (11) and (13), one
can then derive an explicit form for the average current Ij ,
and the current correlations Sjj ′ . The expressions we give
below depend on the couplings λ1, λ2 between the TS and
the normal electrodes 1 and 2, on the voltages V1 and V2 of
the two normal electrodes, and on the temperature through
the Fermi function nF (x). A natural quantity appearing in
these formulas is � =

√
λ2

1 + λ2
2, which is related to the total

transmission probability τ between the TS and the normal
leads: τ = 4�2/(1 + �2)2. For all the results presented in
this work, we focus on the case 0 < � < 1, which covers all
possible values of the transmission τ ∈ [0,1]. Taking � > 1
would give the same value of τ , but for a different realization
of the physical system; see the discussion in Appendix C for
more details.

A. Current and differential conductance

The current flowing through normal lead j = 1,2 can be
written in the simple form

Ij = e

h

∫ ∞

−∞
dω

∑
k=1,2

∑
s=±

snF (ω − seVk)Jjk(ω), (15)
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FIG. 2. Zero-temperature local J11(ω) (left panel) and non-local
J12(ω) (right panel) differential conductances (in units of 2e2/h)
vs ω/� for λ1 = λ2 and several values of the total transmission
probability τ .

where Jjj and Jj,k �=j determine, respectively, the local and
nonlocal differential conductances at zero temperature.

Focusing, e.g., on current I1, it can be separated into
a “direct” contribution related to the chemical potential of
electrode 1 (J11), and a “nonlocal” contribution related to
the chemical potential of electrode 2 (J12). The explicit
expressions for the differential conductances J11(ω) and J12(ω)
for |ω| < � are

J11(ω) = 4λ2
1�

2

(1 − �4)2 ω2

�2 + 4�4
− J12(ω),

J12(ω) = 2λ2
1λ

2
2(1 − �4) ω2

�2

(1 − �4)2 ω2

�2 + 4�4
, (16)

while the expressions for |ω| > � are given in Appendix B.
One can see that, in the low-voltage regime, the contribution
to I1 from J11 is linear in V , while the one from J12 scales as
∼V 3, therefore not contributing to the linear conductance in
the zero-temperature limit. This means in particular that in the
low-voltage limit, when coupling to the TS occurs through the
Majorana bound state only, the current in one normal electrode
is not influenced by the voltage in the other one [31].

One can also check that, when setting λ2 = 0, Eq. (16) gives
back the known formula for a single N-TS junction. While J12

trivially vanishes in this case, J11 reduces to 1/(1 + ω2/�2)
for |ω| < �, with � = 2��2/(1 − �4) [30].

Figure 2 shows the local and on-local differential conduc-
tances J11(ω) and J12(ω), for three values of the transmission
τ . Focusing for simplicity on the zero-temperature limit, the
differential conductance G1 = dI1/dV1 is given by

G1(V1) = 2e2

h
J11(V1) � 2e2

h

λ2
1/�

2

1 + V 2
1 /�2

. (17)

The factor λ2
1/�

2 reduces to 1/2 for equal couplings λ1 = λ2,
and is otherwise related to the asymmetry of the couplings.
The local differential conductance J11(ω) has a shape which
is similar to the one of a simple N-TS junction, with a peak
associated with the Majorana bound state, broadened by the
couplings to the normal electrodes. Indeed, the Lorentzian
factor (1 + V 2

1 /�2)−1 in Eq. (17) is reminiscent of the
well-known conductance peak of width � and height 2e2/h

[32,33]. Here, the contribution of this peak is split between
the two normal electrodes, resulting in an extra factor 1/2 in
the equal coupling case, so that the zero-voltage differential

FIG. 3. Current I1 (in units of e�/h) vs voltage V = V1 in the
case of equal (red dashed curve) and opposite (blue full curve) bias
voltages V1,2 at zero temperature, λ1 = λ2, and several values of τ .
In all figures, voltages are given in units of �.

conductance is simply e2/h for each electrode. The nonlocal
differential conductance J12 is shown on the right panel of
Fig. 2, for the case of a symmetric junction, and for three
different values of the total transmission τ . J12 is negligible for
very small transmission (τ = 0.1). For larger transmissions,
it starts from 0 at ω = 0, and is positive for |ω| < �. J12

increases as ω gets closer to �, then abruptly changes sign
above the gap, becoming negative for |ω| > �.

To obtain simple, easily readable formulas for the current,
it is useful to take the zero-temperature limit, and consider
symmetric couplings λ1 = λ2 = �/

√
2. We then get for the

current at voltages below the gap:

I1 = e�

2h

{(
1 +

√
1 + �2

�2

)
tan−1

(
eV1

�

)

+
(

1 −
√

1 + �2

�2

)[
eV1 − eV2

�
+ tan−1

(
eV2

�

)]}
,

(18)

which for equal voltages V1 = V2 = V reduces to

I1 = e

h
� tan−1

(
eV

�

)
. (19)

Figure 3 shows numerical results for the current I1 as a function
of V for a symmetric junction in the case of equal (V1 = V2 =
V ) and opposite voltages (V1 = −V2 = V ). Here we focused
on three different values of the total transmission between the
TS and the normal leads (τ = 0.1,0.5,0.9), and for simplicity
we considered the case of zero temperature. The differences in
the current I1 between the V2 = V1 and V2 = −V1 cases can
be understood from the properties of the nonlocal differential
conductance J12 [see Eq. (16) and the right panel of Fig. 2].
For small transparency (τ = 0.1), J12 is very small, and the
two currents cannot be distinguished in the figure. For larger
transparency, the effect of J12 is only noticeable for large
enough voltage. As J12(ω) > 0 for |ω| < �, the current for
V2 = V1 is larger than the one for V2 = −V1. The difference
between the two currents is maximal for V close to �, when
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J12 reaches its maximum, before decreasing at higher voltages
since J12(ω) becomes negative at high energy.

For arbitrary subgap voltages, the current I2 is readily
obtained from Eq. (18) upon exchanging V1 and V2. For
symmetric couplings λ1 = λ2, one can easily convince oneself
that I2 = I1 in the specific case of equal voltages, while in the
opposite voltage case, one has I2 = −I1.

B. Hanbury Brown and Twiss cross-correlations

As we did for the current, we derive here analytical ex-
pressions for the current auto- and cross-correlations Sjj ′ , and
we are particularly interested in the HBT cross-correlations
S12 between the currents flowing from the central TS to
the two normal leads. As the formulas get rapidly long and
cumbersome, we give here the zero-temperature expression
valid for voltages below the gap �, and for equal couplings
λ1 = λ2 = λ (thus �2 = λ2

1 + λ2
2 = 2λ2). More general for-

mulas are given in Appendix B. Introducing as before the
broadening � = 2��2/(1 − �4), and taking without loss of
generality |V1| � |V2|, we have

S12(V1,V2)

= e2

h

�2

4�2

{(
1 + 1

2

�2

�2 + (eV1)2

)
|eV1|

+ 1

2

�2|eV2|
�2+(eV2)2

−3�

2
tan−1

( |eV1|
�

)
−�

2
tan−1

( |eV2|
�

)

− sgn(V1V2)

[
|eV2| (eV2)2+2�2+2�2

(eV2)2+�2

− 2�tan−1

( |eV2|
�

)]}
. (20)

The last term of this expression is proportional to
−sgn(V1V2), with a coefficient which is always positive,
independently of the voltages. As it turns out, this term is
dominant, and gives the sign of S12 for all voltages below the
gap. In the limit of small voltages |V1|,|V2| 
 �, S12 becomes

S12 � −1

2

e2

h
sgn(V1V2)|eV2|. (21)

Importantly, this means that the HBT cross-correlations are
positive when the two voltages V1 and V2 have opposite signs.

The expression for the correlations S12 in Eq. (20) can
be further simplified for some specific choices of the bias
voltages. For equal voltages V1 = V2, we have

S12(V1 = V2 = V ) = −2e2

h

�2

4

|eV |
(eV )2 + �2

, (22)

which coincides with existing results [28]. Conversely, for
opposite voltages, we have

S12(V1 = −V2 = V )

= 2e2

h

�2

4

[ |eV |
(eV )2 + �2

+ 2�2 + (eV )2

(eV )2 + �2

|eV |
�2

− 2�

�2
tan−1

( |eV |
�

)]
. (23)

Figure 4 shows the HBT cross-correlation noise S12 for equal
and opposite voltages, computed for three different values of
the transmission probability τ . One can see that the cross-
correlations in these two cases are simply opposite as long as
eV 
 �, with negative (positive) values of S12 for the equal
(opposite) voltage case. For |eV | larger than the gap �, S12 is
always a decreasing function of |V |, which, for the opposite

FIG. 4. HBT cross-correlations S12 (in units of e2/h) vs V = V1 in the case of equal (red dashed curve) and opposite (blue full curve)
voltages V1,2 for λ1 = λ2 and several transparencies τ (as noted on each panel), at zero temperature. The bottom right panel combines all curves
to show the overall scale. S12 is negative (positive) for equal (opposite) bias voltages, and the values of S12 are simply opposite in sign in the
two cases for |V | 
 �.
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voltage case, eventually becomes negative for |eV | � � (not
shown), as the TS behaves essentially as a normal electrode at
such high voltages.

C. Discussion of auto- and cross-correlations

In order to better understand the behavior of the HBT
noise correlations S12, it is useful to discuss all the noise
contributions, in particular the autocorrelations S00, S11, and
S22 are also considered. From the definition of the noise,
Eq. (13), and using −I0 = I1 + I2, we have the relation [14]

S00 = S11 + S22 + 2 S12 (24)

so that is is enough to consider S00, S11, and S12 to achieve
a full characterization. For simplicity, we consider in what
follows the regime of symmetric couplings (λ1 = λ2), in the
zero-temperature limit.

1. Equal voltages

For equal voltages V1 = V2 = V , the analytical expressions
for the various noise correlations (in units of e2/h) are

S00 = 2�

[
tan−1

( |eV |
�

)
− |eV |/�

1 + (eV/�)2

]
� 0, (25)

S11 = � tan−1

( |eV |
�

)
− 1

2

|V |
1 + (eV/�)2

� |eV |
2

, (26)

S12 = − 1

2

|eV |
1 + (eV/�)2

� −|eV |
2

, (27)

where the final expressions are obtained in the low-voltage
limit eV 
 �. In terms of the total coupling �, the autocorre-
lation noise S00 in the TS lead has the same expression as for
a single N-TS junction [30].

Focusing on Eqs. (25)–(27), the behavior of the auto- and
cross-correlations at low voltage |eV | 
 � can be understood
from the basic properties of the coupling of the normal
electrodes to the Majorana bound state.

From the point of view of the TS, the two normal electrodes
are at the same potential and thus act as a single one for the total
current I0, so that the total conductance has a peak of height
2e2/h [see Eq. (17) and discussion below]. As a consequence,
much like in the single N-TS junction, the total current I0

is noiseless at low voltage eV 
 �, which is confirmed by
Eq. (25). This total current I0 = 2(e2/h)V is partitioned here
with equal probability between the currents I1 and I2 (see
Fig. 5):

I1 = I2 = (e2/h)V. (28)

These two currents are thus equivalent to the transmitted
and backscattered current from a quantum point contact with
incoming current I0, transmission T = 1/2, and reflection
R = 1 − T = 1/2.

This implies that the autocorrelations S11 and S22 corre-
spond to the noise associated with currents resulting from
random partitioning [34], leading to (restoring units)

Sjj ≡ eIj (1 − T ) = e2

h

|eV |
2

(j = 1,2), (29)

which coincides with Eq. (26) to lowest order in V .

FIG. 5. Schematic picture of the current partitioning between the
TS and two normal leads (N1,2) at low voltage |eV | 
 �. Electrons
(holes) are shown as full (empty) circles. Left panel: the case of equal
voltages, where a noiseless stream of electrons from the Majorana
bound state is partitioned between the two normal leads, with perfect
anti-correlations of the two electron streams. Right panel: the case
of opposite voltages where lead N2 is biased at potential −V , so
that electrons are emitted into N1 while holes are emitted into N2.
The two fermion streams are perfectly anticorrelated, which leads
to positive cross-correlation noise. The arrows indicate directions of
quasiparticle motion.

Finally, the HBT noise S12 corresponds to the correlation
between the two partitioned currents I1 and I2. Due to the
fermionic nature of the electrons, these two currents are totally
anticorrelated (see Fig. 5), yielding a negative correlation noise
[13,14]. Following Eq. (24), and using that I0 is noiseless, one
sees that the HBT correlations and the autocorrelations are
simply related as S12 = −S11, which agrees with Eq. (27) to
lowest order.

2. Opposite voltages

For opposite voltages V1 = −V2 = V the auto- and cross-
correlations take the form (in units of e2/h)

S00 = 2�tan−1

( |eV |
�

)
� 2|eV |, (30)

S11 = �tan−1

( |eV |
�

)
− |eV |/2

1 + (eV/�)2
− f (V,�) � |eV |

2
,

(31)

S12 = 1

2

|eV |
1 + (eV/�)2

+ f (V,�) � |eV |
2

, (32)

where the final expressions correspond to the low-voltage
regime eV 
 �, and we introduced

f (V,�) = �2

2�2

[
eV

2�2 + (eV )2

(eV )2 + �2
− 2�tan−1

( |eV |
�

)]

(33)

While this opposite voltage case has a behavior strikingly
different from its equal voltage counterpart, it can still be
understood with the same ingredients, by taking into account
that the coupling to the Majorana bound state is perfectly
electron-hole symmetric. Indeed, when normal lead 2 is biased
at voltage −V rather than V , it can be seen as a reservoir of
holes biased at voltage V coupled to the Majorana bound state.
The behavior of the system is thus the same as for the equal
voltage case, except that electrons are now replaced by holes
for the current I2. Picturing the total current from the TS as a
stream of particles (thus disregarding the charge), this stream
is still noiseless, with one particle (electron or hole) emitted
during each time interval h̄/eV . The currents I1 and I2 still
result from the random partitioning of such a noiseless stream
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of particles, with electrons for I1 and holes for I2, so that

I1 = −I2 = (e2/h)V. (34)

As a consequence the autocorrelation noises S11 = S22 =
(e3/h)|V |/2 are identical to their counterparts in the equal
voltage case, to lowest order in eV/� [see Eq. (31)]. Much
like the equal voltage case, the two currents I1 and I2 are
totally anticorrelated, which leads to the same expression for
the HBT correlation noise S12, only with the opposite sign, as
the carriers in the two leads now bear opposite charges (see
Fig. 5).

Finally the total noise S00 (which accounts for the charge
of the carriers) corresponds to the current noise of a noise-
less stream of particles (one particle—electron or hole—
transmitted at each time interval h̄/eV ) but with particles
which can be either electron or holes. According to Eq. (24) this
creates a total charge noise S00 = 2(e3/h)|V |, which coincides
with Eq. (30).

The equal and opposite voltage regimes thus have similar
cross-correlation noises but with opposite signs, a direct
consequence of the peculiar properties of the Majorana bound
state, which by definition does not distinguish electrons from
holes.

IV. FINITE LENGTH AND DOPING EFFECTS

The results shown in the previous sections have been ob-
tained for the case of a semi-infinite topological superconduc-
tor bearing a (single) Majorana bound state at its end, with the
boundary Green function for the TS nanowire computed in the
wide-band limit at half-filling, see Eq. (4). We wish to address
here the case of a finite size TS whose two Majorana bound
states (one at each extremity) overlap, leading to radically
different behavior for the HBT correlations. Secondly, this TS
wire can be doped in such a manner that it becomes a trivial
superconductor devoid of topological effects. In this section,
we thus briefly discuss how the noise correlations are modified
when going beyond the approximations used in the preceding
sections.

A. Varying the length of the TS nanowire

The retarded/advanced GF for a TS wire of length L

(−L/2 < x < L/2) computed near x = L/2 in the wide-band
limit is given by [30]

gR/A(ω) = ω tanh(ζωL)
ζωσ0 − tanh(ζωL)�σx

(ω ± i0+)2 − ε2
ω

, (35)

where ζω = √
�2 − ω2 and εω = �/cosh(ζωL) with vF =

h̄ = 1. The finite TS has a Majorana bound state localized
at each end. When the length of the TS is much larger than
the typical scale of the Majorana bound state, which is of the
order of the superconducting coherence length ξ0 = h̄vF /�,
the two end-state wave functions practically do not overlap
and one recovers the same result as for the infinite length GF.
However, with decreasing L, this overlap becomes important,
and we expect to lose the behavior specific to the presence of a
Majorana bound state. In Fig. 6, we show the noise correlations
S12 as a function of the voltage V for the opposite voltage
case, at transmission τ = 0.5, and for several values of the

FIG. 6. Cross-correlations S12 vs V = V1 in the case of opposite
bias voltages (V1 = −V2) for a symmetric junction (λ1 = λ2) with
total transmission τ = 0.5 and several values of the TS wire length
L. Each curve is labeled by the corresponding value of L in units of
ξ0 = h̄vF /�. For L � 1, S12 is identical to the infinite TS case, while
for L ∼ 1 the cross-correlations S12 become negative over the range
|V |/� � (ξ0/L)2

TS length L (in units of h̄vF /�). We see that when L � 1,
the results obtained for V1 = V = −V2 are identical (positive
HBT correlations) to the ones obtained in the previous section
with the infinite length Green function. However, when L is of
order 1, the overlap of the two Majorana end states becomes
important, and S12 turns negative around V = 0, over a range
of voltage which increases as L decreases.

B. Varying the chemical potential of the TS nanowire

Another important parameter is the intrinsic chemical
potential of the topological superconductor, which depends in a
real nanowire on the values of the proximity induced coupling,
the magnetic field, etc. In our approach, this is modeled by the
chemical potential μ of the Kitaev chain. In the calculations
presented so far we always set μ = 0, corresponding to
half-filling of the chain. By varying this parameter at finite
bandwidth, it is possible to go away from half-filling and
therefore to drive the system from the topological phase to
a trivial one where no Majorana bound state is present [3].
In order to observe this transition, one needs to rederive the
Green function for a Kitaev chain beyond the wide-band limit,
with arbitrary values of the gap �, the hopping parameter
t0 and the chemical potential μ. Explicit formulas for this
Green function, and details of the derivation are provided in
Appendix A.

Figure 7 shows the noise correlation S12 for the opposite
(top panel) and equal voltage case (bottom panel), for a chain
with a hopping parameter t0 = 10�, and chemical potential
μ varying from 0 to 13�. When μ is increased, while still
below the bandwidth t0, the correlations S12 are reduced in
absolute value, but keep the same qualitative features, with a
dip (peak) around V = 0 for opposite (equal) voltages. In the
opposite voltage case (top panel), S12 is always positive for
V close to 0, and the decrease at large voltage becomes more
pronounced as μ is increased. In the equal voltage case (bottom
panel), the correlations S12 are essentially scaled down when

054514-7



JONCKHEERE, RECH, ZAZUNOV, EGGER, AND MARTIN PHYSICAL REVIEW B 95, 054514 (2017)

FIG. 7. Current correlations S12 vs V = V1 in the setup with an
infinite TS wire for several values of its chemical potential μ (each
curve is labeled by the corresponding value of μ/�). The top (bottom)
panel shows the case of opposite (equal) voltages. We consider a
symmetric junction (λ1 = λ2) with a total transparency τ = 0.5, and
a hopping strength (TS wire bandwidth) t0 = 10�. The black curve
(labeled “ref”) on each plot corresponds to the wide-band limit [using
Eq. (4)] and serves as a reference for comparison. There is a clear
transition when μ reaches the bandwidth t0: the peak behavior around
V = 0 disappears when μ > t0, signaling the absence of a Majorana
bound state for μ > t0.

μ is increased, with a notable asymmetry between V > 0 and
V < 0 appearing at large μ.

However, the behavior becomes qualitatively different
when μ reaches the value of the bandwidth t0, as the peak
around V = 0 disappears for μ > t0. In the opposite voltage
case (top panel of Fig. 7), S12 becomes negative for all V ,
even close to zero voltage. This is consistent with our previous
interpretation: the positive cross-correlations at low voltage
are associated with the coupling to the Majorana bound state
and this feature disappears for μ � t0, when we cross into
the trivial nontopological phase. In the equal voltage case
(bottom panel), the specific behavior which was present for
small V also disappears, and the correlations S12 become fully
asymmetric, almost vanishing for V > 0. Note that we avoid
on purpose to compute the noise S12 at the precise value of the
transition μ = t0. Indeed the spatial extent of the Majorana
bound state diverges in this case [2], and the overlap of the
Majorana bound states at the two ends of the system could

become important, with a behavior similar to the one presented
in Fig. 6.

V. CONCLUSIONS

In this work, we have explored the properties of a
topological superconductor nanowire, including a Majorana
bound state at its end, by coupling it to two biased normal
leads. We computed the currents and the Hanbury Brown
and Twiss current cross-correlations, and showed that the
sign of such correlations have a very peculiar dependence
on the two voltages V1 and V2 of the normal leads: the
correlations are negative when the voltages have the same
sign, and become positive when the voltages have opposite
signs. In addition, for voltages smaller than the coupling
between the TS and the normal leads, the correlations for
the equal and opposite voltage cases are exactly opposite.
This behavior is in stark contrast with the one observed
with a conventional BCS superconductor, where typically
correlations are positive for voltages of the same sign only
[35]. This is directly related to the properties of the Majorana
bound state, which by definition makes no difference between
electrons and holes. Changing the sign of one of the voltages
is equivalent to replacing a reservoir of electrons with a
reservoir of holes; the coupling to the Majorana bound state
is unaffected, simply leading to a change of sign of the
correlations.

The crossed correlations of a TS wire below the gap at
equal voltages are similar to the fermionic version of the HBT
experiment in normal metals, with differences showing only
at V > � [13–17]. There, the filled Fermi sea which injects
electrons at the two outputs is totally noiseless, and electron
partitioning leads to negative cross-correlations. For the TS
beam splitter presented here, it is therefore crucial to also probe
the HBT noise at opposite voltages to exhibit its positive sign,
in order to rule out a “trivial” interpretation in terms of normal
fermionic leads. Positive correlations in this configuration may
imply—as for the BCS Cooper pair splitter [20]—that the elec-
tron/hole pairs emitted in the two normal metal leads coupled
to the TS via the Majorana fermion may form an entangled
state.

Calculations were performed using a Keldysh boundary
Green function approach, based on a Hamiltonian formalism
[30]. Each electrode is then represented by its boundary
Green function, and the electrodes are coupled through a
tunneling Hamiltonian. Solving the Dyson equation gives
exact (nonperturbative) simple formulas for the current and
the current correlations in terms of the full Green function
of the system. The boundary Green function approach used
here is fully equivalent to the scattering matrix approach for
voltages below the gap (see Appendix C), but also allows us
to easily access the regime of voltages above the gap.

With this method, we were also able to consider more
general situations, simply by adapting the boundary Green
function used for the TS nanowire. We considered a TS
nanowire of finite length and also studied the effect of varying
the chemical potential. Our results show the existence of a
crossover when the length L becomes smaller than h̄vF /�

(the typical length associated with the Majorana bound state),
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with positive correlations becoming negative for small length.
This behavior is due to the hybridization of the two Majoranas
at the ends of the TS nanowire, which then behave as a regular
fermion. This confirms that the unusual sign observed for the
current correlations for a long (or semi-infinite) TS nanowire
is specific to the presence of a Majorana bound state. Next, we
considered the case where the TS nanowire is represented by
a Kitaev chain with a finite bandwidth, and variable chemical
potential μ (the corresponding boundary Green function is
derived in Appendix A). By varying μ, one can explore the
transition from a topological superconductor to a conventional
one. Our results show that above the transition, the cross-
correlations become negative at all voltage, and the specific
features due to the Majorana bound state (peak at low voltage)
disappear.

We believe that these results, obtained by placing the
TS nanowire in a three-lead hybrid system, give access to
unique properties of the TS nanowire, and of Majorana bound
states, which would be more difficult to characterize in a
simple two-lead setup. The specific dependence of the sign
of the correlations as a function of the voltages could provide
an extremely firm experimental proof of the presence of
a Majorana bound state in a TS nanowire. Because of its
versatility and efficiency, the same boundary Green function
approach could be used to consider other multiterminal setups
involving one or several TS nanowires, or more involved
effects, such as interactions.
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APPENDIX A: BOUNDARY GF OF SEMI-INFINITE
KITAEV’S CHAIN

In this Appendix, we provide a derivation of the re-
tarded/advanced GF used in Sec. IV B, which describes
quasiparticle excitations at the boundary of a semi-infinite TS
wire. The derivation is performed for arbitrary values of the
chemical potential μ and (normal-state) conduction bandwidth
t0, so that by varying μ one can drive the wire through a
topological transition at μ = ±t0 [2,3]. This generalizes the
derivation outlined in Ref. [30] for the case μ = 0. Following
the strategy of Ref. [30], we first compute a “bulk” GF for a
homogeneous wire of infinite length, and then the boundary
GF is obtained from the Dyson equation of the wire interrupted
by a local potential scatterer.

The TS wire is modeled by a Kitaev chain [2,3] representing
an effectively spinless single-channel p-wave superconductor.
In terms of fermion operators cx on a 1D lattice with site
numbers x (we set the lattice constant to unity), the model
Hamiltonian reads

HK = 1

2

∑
x

(−t0c
†
xcx+1 + �cxcx+1 + H.c.) − μ

∑
x

c†xcx,

(A1)

where t0 > 0 is the hopping matrix element, � > 0 is the
p-wave pairing amplitude and μ is the chemical potential.
Imposing periodic boundary conditions cx = cx+N , with the
number of lattice sites N → ∞, and passing to momentum
space, cx = N−1/2 ∑

k eikxψk , the “bulk” Hamiltonian H takes
the standard Bogoliubov–de Gennes form

HK = 1

2

∫ π

−π

dk

2π
�

†
khk�k, hk = εkσz + �kσy, (A2)

where �k = (ψk,ψ
†
−k)

T
is a Nambu spinor subject to the reality

constraint �k = σx�
∗
−k, εk = −t0 cos(k) − μ is the kinetic

energy, �k = � sin(k) is the Fourier-transformed pairing, and
Pauli matrices σx,y,z act in Nambu space. Correspondingly,
in coordinate space the retarded/advanced Nambu GF of

�(x) = (cx,c
†
x)

T
for the Kitaev model (A1) is given by

g
R/A

xx ′ (ω) =
∫ π

−π

dk

2π
eik(x−x ′)(ω − hk)−1, (A3)

where the frequency ω should be understood as ω + i0+
(ω − i0+) for the retarded (advanced) GF. Introducing a new
integration variable z = − cos(k), some algebra yields

g
R/A

xx ′ (ω) = 1

2π
(
�2 − t2

0

)
∫ 1

−1

dz√
1 − z2D(z,ω)

×
∑
s=±

[ω + (t0z − μ)σz + s�
√

1 − z2σy]

× (−z + is
√

1 − z2)x−x ′
, (A4)

with

D(z,ω) = (z − Q+)(z − Q−),

Q±(ω) =
−μt0 ±

√
μ2t2

0 − (
�2 − t2

0

)
(ω2 − �2 − μ2)

�2 − t2
0

.

(A5)

The boundary GF of a semi-infinite Kitaev chain located at
x > 0 can be obtained from the “bulk” GF for the translation-
ally invariant model (A1) by adding a local impurity of strength
U at site x = 0, which results in the Hamiltonian H̃K =
HK + Uc

†
0c0. The “full” retarded/advanced GF g̃

R/A

xx ′ (ω) then
obeys the following Dyson equation:

g̃
ν=R/A

xx ′ (ω) = gν
xx ′ (ω) + gν

x0(ω)Uσzg̃
ν
0x ′ (ω). (A6)

In the limit U → ∞, i.e., when one effectively cuts the wire
into two semi-infinite pieces, Eq. (A6) yields for the boundary
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GF [30] defined as G(ω) = g̃11(ω)

Gν=R/A(ω) = gν
00(ω) − gν

10(ω)
[
gν

00(ω)
]−1

gν
01(ω). (A7)

Thus, for computing the boundary GF (A7) one only needs to evaluate Eq. (A4) for x = x ′ and nearest-neighbor sites x − x ′ = ±1.
Using the following integrals with a complex-valued parameter a, Im a �= 0,

1

π

∫ 1

−1

dz√
1 − z2(z − a)

= −1/a√
1 − 1/a2

, (A8)

and for n = 1,2

1

π

∫ 1

−1

dz zn

√
1 − z2(z − a)

= an−1

(
1 − 1√

1 − 1/a2

)
, (A9)

after some algebra we obtain from Eq. (A4)

g
ν=R/A

00 (ω) = (ω − μσz)F−1(ω) + t0σzF0(ω),

gν
±1,0(ω) = gν

0,∓1(ω) = ±i�F−1(ω)σy − (ω − μσz)F0(ω) + (t0σz ± i�σy)[1 − F1(ω)], (A10)

where

Fm=0,±1(ω) = 1(
t2
0 − �2

)
[Q+(ω) − Q−(ω)]

∑
s=±

sQm
s (ω)√

1 − 1/Q2
s (ω)

. (A11)

The boundary GF of the semi-infinite Kitaev chain then follows by inserting Eq. (A10) into Eq. (A7). Equation (A10) is an
extension of the result of Ref. [30] to the general case of μ �= 0. In particular, for μ = 0 and assuming the wide-band limit
t0 � max(�,|ω|) the above expressions in Eq. (A10) simplify to

g
ν=R/A

00 (ω) = ω

t0
√

�2 − ω2
σ0, gν

±1,0(ω) = 1

t0
√

�2 − ω2
(
√

�2 − ω2σz ∓ i�σy), (A12)

and then using Eq. (A7) one recovers the boundary GF (4) quoted in Sec. II.

APPENDIX B: ANALYTICAL FORMULAS FOR THE CURRENT AND NOISE

This Appendix contains more general formulas for the currents and current correlations, which were too lengthy to be shown
in the main text.

The expressions (16) for the local and nonlocal differential conductances can be extended for energies above the gap, leading
to the following general forms:

J11(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2λ2
1λ

2
2(�4 − 1) ω2

�2 + 4λ2
1�

2

(1 − �4)2 ω2

�2 + 4�4
, |ω| < �,

−2λ4
1(�4+2�2

√
1− �2

ω2 − 2�2

ω2 +1)+2λ2
1((3�4+1)

√
1− �2

ω2 +�2(�4+3)− 2�2�2

ω2 )

(�4+2�2
√

1− �2

ω2 +1)2
, |ω| > �,

(B1)

J12(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2λ2
1λ

2
2(�4 − 1) ω2

�2

(1 − �4)2 ω2

�2 + 4�4
, |ω| < �,

−2λ2
1λ

2
2(�4+2�2

√
1− �2

ω2 − 2�2

ω2 +1)

(�4+2�2
√

1− �2

ω2 +1)2
, |ω| > �.

(B2)

Similarly, one can obtain closed-form expressions for the noise cross-correlations S12 at zero temperature for generic values
of the coupling constants λ1,λ2 and voltages V1,V2, thus generalizing Eq. (20). In the subgap regime |V1|,|V2| � �, this reads

S12(V1,V2) = e2

h

4�(λ1λ2)2

(�4 − 1)3

{
− (�4 − 1)2

�2

�|eV2|
�2 + (eV2)2

sgn(V1V2) + 2λ2
1(�2δ − 1)

[
2 tan−1

( |eV1|
�

)
− �|eV1|

�2 + (eV1)2

]

− 2λ2
2(�2δ + 1)

[
tan−1

( |eV1|
�

)
+ tan−1

( |eV2|
�

)
− �|eV2|

�2 + (eV2)2

]

+ 2�2(1 − δ2)

[ |eV1|
�

+
(

2 tan−1

( |eV2|
�

)
− �|eV2|

�2 + (eV2)2
− |eV2|

�

)
sgn(V1V2)

]}
, (B3)
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where we introduced δ = λ2
1 − λ2

2 and focused on voltages
|V1| � |V2|. The complementary situation |V1| < |V2| is read-
ily obtained from the above expression upon exchanging
V1 ↔ V2, λ1 ↔ λ2 (which also implies changing δ into −δ).

APPENDIX C: DISCUSSION OF THE CASE
� > 1 VERSUS � < 1

Our microscopic model contains the two parameters λ1,λ2

describing the tunneling from the TS to normal electrodes 1
and 2. As shown in the formulas for the currents and current
correlations, a natural parameter is

� =
√

λ2
1 + λ2

2, (C1)

which is related to the total transmission probability τ between
the TS and the normal electrodes,

τ = 4�2

(1 + �2)2
(C2)

This relation generalizes the equivalent one for a simple
junction composed of two leads [30,36]. We see that when
� goes from 0 to 1, τ also varies from 0 to 1, so the whole
range of transparencies is covered by taking � in [0,1]. From
Eq. (C2), one also sees that for a given � in [0,1], the value
1/� gives the same value of the transparency τ . However,
as we show below, taking � > 1 leads to a different physical
realization of the system.

Indeed, choosing the value τ of the total transparency
between the TS and the normal leads, even for a symmetric
system, does not totally specify the system. This can be
understood simply from the scattering matrix formalism, as
noted by Valentini and co-workers [29]. Writing the scattering
matrix for a three-lead system, where the two lateral leads
(lines/columns 1-2) are symmetrically connected to a central
one (line/column 3) with a transparency τ = √

1 − r2, we
have

S =
⎛
⎝· · t

· · t

t t r

⎞
⎠ (C3)

with r2 + 2t2 = 1. Imposing the unitarity of the S matrix gives
the values of the coefficients in the 1-2 block s12 [written as dots
in Eq. (C3)], which represent direct reflection/transmission
in the subsystem of the two lateral leads. There are two
possible solutions (written here for simplicity with real
coefficients)

s12,+ = 1

2

(
(1 − r) −(1 + r)

−(1 + r) (1 − r)

)
(C4)

and

s12,− = 1

2

(−(1 + r) (1 − r)
(1 − r) −(1 + r)

)
, (C5)

and we denote by S+ and S− the complete scattering matrices
corresponding to the choice of s12,+ and s12,− respectively.
The difference between the two choices can be understood
for example by taking r close to 1 (very poor transmission to
the central lead). Then the amplitude of direct transmission
between 1 and 2 [elements (1,2) and (2,1)] are very different

� 1

t t

�1�r��2 1

(a)

� 1

t t

�1�r��2 1

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

5

=1/4

=4.

I1

(c)

V

V1=−V2=V

FIG. 8. Panels (a) and (b) : schematic illustration of the behavior
of the system for the choice of � < 1 and � > 1, in the case of a
strong reflection (r close to 1). While �=�0 <1 and �=1/�0 >1
correspond to the same transparency between the TS and the normal
leads, the transparency of the direct channel between the two normal
leads is totally different in the two cases. Panel (c) : plots of the
current I1(V ) in the V1 = −V2 = V configuration, for � = 4 and
� = 1/4.

for S+ and S− : for S−, it is (1 − r)/2, which is close to 0;
while for S+ it is −(1 + r)/2 which is close to 1 in absolute
value. This means that, for a given transmission to the central
lead (which fixes r), the currents I1 and I2 have totally
different values for the two choices S+ or S− as soon as the
voltages V1 and V2 are not equal (if V1 = V2, then the direct
transmission between leads 1 and 2 has no consequence).
The impact of the choice of S+ or S− is illustrated in Fig. 8,
with a plot showing the current I1(V ) in the opposite voltage
configuration (V1 = −V2 = V ), for � = 1/4 and � = 4. The
two values of � correspond to the same transparency τ � 0.22
between the TS and the two normal leads, but the currents I1

and I2 = −I1 are very different for the two values of �. For
� = 4 the current I1 is much larger as V increases, because of
the direct current going from normal lead 1 to normal lead 2.

The two choices for S correspond precisely to
the choice � < 1 (→ S−) or � > 1 (→ S+) in the
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microscopic calculation. The relation between � and r is

� =
√

1 − r

1 + r
(� < 1) or � =

√
1 + r

1 − r
(� > 1),

(C6)

or equivalently

r = 1 − �2

1 + �2
(� < 1) or r = �2 − 1

�2 + 1
(� > 1) (C7)

with 0 < r < 1, and �2 = λ2
1 + λ2

2 is given from the Hamil-
tonian. As a proof of these relations, we show below that the
currents obtained from the scattering matrices S+ and S−, for
voltages smaller than the gap, coincide with the expressions
obtained from our Hamiltonian calculation in terms of �

[see Eq. (16)]. The details of the scattering matrix calculation
follows Ref. [28].

Channels 1 and 2 correspond to the two normal leads, while
channel 3 is related to the superconductor. We first construct
the see and she 2 × 2 matrices describing the scattering
between the normal leads, of an electron into an electron (ee)
or a hole (he). These are [28]

see = s12 − a(ω)2r

1 + r2a(ω)2

(
t2 t2

t2 t2

)
, (C8)

she = a(ω)2

1 + r2a(ω)2

(
t2 t2

t2 t2

)
, (C9)

where a(ω) = exp[−i arccos(ω/�)] is the amplitude for
Andreev reflection at energy ω, s12 is given by Eqs. (C4)
or (C5), and r = √

1 − 2t2 is the reflection amplitude from
the superconductor. For simplicity, we consider a symmetric
system, and we take r and t real.

The expression for the current I1 in terms of the scattering
matrix elements is [28]

I1 = e

h

∫ ∞

0
dω nF,1e(ω)

(
1 − ∣∣see

11

∣∣2 + ∣∣she
11

∣∣2)

− nF,1h(ω)
(
1 + ∣∣seh

11

∣∣2 − ∣∣shh
11

∣∣2)
+ nF,2e(ω)

(−∣∣see
12

∣∣2 + ∣∣she
12

∣∣2)
+ nF,2h(ω)

(−∣∣seh
12

∣∣2 + ∣∣shh
12

∣∣2)
, (C10)

where nF,1e(ω) is the Fermi function of electrode 1,
with nF,1h(ω) = 1 − nF,1e(−ω), shh(ω) = [see(−ω)]∗, and
seh(ω) = [she(−ω)]∗. Comparing with Eq. (15), we see that
the two expressions of the current are identical if we have
1 − |see

11|2 + |she
11 |2 = 2J11(ω) and −|see

12|2 + |she
12 |2 = 2J12(ω).

Using Eqs. (C8) and (C9), we get after some algebra
(recalling that r2 + 2t2 = 1)

1 − ∣∣see
11

∣∣2 + ∣∣she
11

∣∣2 = (1 − r2)2 ± (1 − r)2rω2

4r2ω2 + (1 − r2)2
, (C11)

(−∣∣see
12

∣∣2 + ∣∣she
12

∣∣2) = ∓ r(r + 1)2ω2

4r2ω2 + (1 − r2)2
, (C12)

where the ± sign refers to the choice of (s12,+) or (s12,−).
One can show that these expressions are equal to 2J11(ω) and
2J12(ω) from Eq. (16) with λ1 = λ2 = �/

√
2 if the relation

between r and � is

r = 1 − �2

1 + �2
(for s12,−) or r = �2 − 1

�2 + 1
(for s12,+).

For a given transparency τ , taking � > 1 thus represents a
system where there is a strong, direct link between the lateral
leads 1 and 2, which is not the system we are studying here.
This explains why, in all the results presented in this work, we
consider 0 < � < 1 only.
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