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Real-time simulation of finite-frequency noise from a single-electron emitter
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We study the real-time emission of single electrons from a quantum dot coupled to a one dimensional conductor,
using exact diagonalization on a discrete tight-binding chain. We show that, from the calculation of the time
evolution of the one-electron states, we have simple access to all the relevant physical quantities in the system.
In particular, we are able to compute accurately the finite-frequency current autocorrelation noise. The method
that we use is general and versatile, allowing us to study the impact of many different parameters, such as the
dot transparency or level position. Our results can be directly compared with existing experiments, and can also
serve as a basis for future calculations including electronic interactions using the time-dependent density-matrix
renormalization group and other techniques based on tight-binding models.
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I. INTRODUCTION

The study of electronic transport in mesoscopic systems—
where small size, low temperature, and careful fabrication of
the sample ensure that quantum coherence is preserved—has
shown tremendous progress in recent decades, providing a
deep understanding of the behavior of these systems.1,2 Recent
progress opened the way to the study of these systems on short
time scales, by looking at either the real-time dynamics or
the high-frequency fluctuations.3–6 A recent experiment has
demonstrated the feasibility of single electron emission, where
a single electron is periodically emitted from a quantum dot
into an edge state of a two-dimensional (2D) electron gas in the
quantum Hall effect regime7 (see also Ref. 8). Measurements
of the current and finite-frequency current correlations in this
system confirmed that the system indeed behaves as a single-
electron emitter.9

In this work, we study this system using real-time numerical
simulations. Modeling the edge state and the quantum dot as a
tight-binding chain without electronic interactions (see Fig. 1),
we compute numerically the time evolution of the system when
a time-dependent gate voltage is applied to the dot, using the
time evolution of the one-electron states. We are able to study
all the aspects of single-electron emission by calculating the
average of all the relevant physical operators. In particular,
we show that these real-time calculations allow us to compute
accurately the finite-frequency autocorrelation noise of the
emitted current, which has been used as definite experimental
proof of single-electron emission.9 In the optimal emission
regime, our method provides very good agreement with the
analytical results for the finite-frequency noise obtained from
a semiclassical model,10 which proves the power of real-time
simulations in this context. More importantly, our approach
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FIG. 1. (Color online) Sketch of the system: a tight-binding chain
of length L, with a dot defined on one end (red sites, at the right of
the td link), on which a time-dependent potential V (t) is applied.

can be used to study several different regimes where no
analytical results are available.

The goal of this work is twofold. First, as the single-
electron emission experiments are currently performed in a
regime where electronic interactions in the one-dimensional
channel are small and can be neglected, the results obtained
within our real-time simulation for noninteracting electrons
are relevant, and can be directly compared with experimental
data. We stress however that fermionic correlations are
accounted for exactly with our approach. The method is quite
versatile, and allows us to easily study the effect of various
parameters, such as transparencies, temperature, the exact
shape of the driving voltage, etc. Moreover, the real-time
simulation gives us access to appealing visualisations of the
electronic transport in these systems, with easy access to
real-time density in real and energy space, as well as the
shape of emitted wave packets. As a means to get results
for the noninteracting system, our method thus appears to be
complementary to calculations based on the Floquet scattering
theory,11–15 with equivalent results but different strengths and
weaknesses.

Second, this work is a necessary first step toward the use of
more involved real-time simulations, such as time-dependent
density-matrix renormalization group (td-DMRG) and related
techniques,16–23 where electronic interactions can be taken into
account in such a time-dependent situation.

The understanding of the role played by the different
timescales, finite-size effects, and discretization, which our
approach provides for noninteracting electrons, constitutes a
prerequisite for the application of these more advanced and
complex methods. In this regard, the present work is done in the
same spirit as Ref. 24 (where shot-noise was computed from
real-time dynamics) but actually goes beyond in considering
the finite-frequency noise in a time-dependent setup.

This article is organized as follows. In Sec. II we detail the
model we have used, and we derive expressions for the aver-
ages of physical quantities in terms of the numerical solution
for the time evolution of the one-electron states. In Sec. III we
present our results, first considering the static properties of the
dot (mean charge), and then extending these considerations
to the time-dependent properties (emitted charge density
along the chain, emitted current, and autocorrelation noise).
Section IV is devoted to discussions and conclusions.
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FIG. 2. (Color online) Top: Profile of the potential V (t) used in
our calculations: V (t) is constant and equals V− for t � 0 (system in
equilibrium), then shows perfect periodic steps between V+ and V−
for t > 0. Bottom: Illustration of the electron emission process in the
optimal regime, where V+ − V− = � (the level spacing of the dot),
and the values of V+ and V− are chosen such that the Fermi energy
εF of the chain is always in the middle of two energy levels. The
left drawing shows the electron emission, when the driving potential
brings an occupied level (black) above the Fermi energy; the right
drawing shows the hole emission, when the empty level (black) is put
below the Fermi energy by the driving potential.

II. MODEL

A. General formalism

The system is modeled as a one-dimensional (1D) tight-
binding chain of length L, with the Hamiltonian

H = −
L∑

j=1,�=jd

(ĉ†j ĉj+1 + H.c.) − td (ĉ†jd
ĉjd+1 + H.c.)

+ [εd + V (t)]
∑
j>jd

ĉ
†
j ĉj , (1)

where ĉj and ĉ
†
j are fermionic annihilation and creation

operators at site j . The dot is composed of the sites j > jd ,
with a tunneling amplitude td to or from the dot, an on-site
energy εd , and an applied time-dependent potential V (t). To
perform periodic single-electron emission, V (t) is a periodic
function of time (with period T ), which in the optimal situation
brings alternatively the highest occupied dot level above the
Fermi energy in the leads (electron emission), and the lowest
unoccupied state below the Fermi energy (hole emission); see
Fig. 2. In order to compute the evolution of the system, we
consider it to be in equilibrium at t � 0 with V (t) = const,
while the periodic potential is applied for t > 0.

For t � 0, the system is in equilibrium, and we can
compute the L eigenstates of the Hamiltonian H , denoted φi

(i = 1, . . . ,L) with increasing energies E1 < E2 < · · · < EL.
The initial N -particle state, at zero temperature, is simply
obtained by filling the N lowest energy states. For nonzero
temperature, the occupation of the states is given by the Fermi
distribution. In the following, we will work with the chain
at half-filling, with N = L/2. For t > 0, the evolution of

each one-electron states φi(t) can be obtained by solving the
time-dependent Schrödinger equation

ih̄
∂φi(t)

∂t
= H (t) φi(t). (2)

This can be achieved by numerical integration of the differen-
tial equation for an arbitrary potential V (t).

As there are no electronic interaction in the system, each
occupied electronic state evolves independently from the other
states, and the N -particle state at time t > 0 is simply obtained
by filling the same one-electron state as for the initial state, but
using now the time-dependent φi(t). Introducing φ̂

†
i (t) as the

fermionic operator creating an electron in the single-electron
state i at time t , the N -particle wave function of the chain at
time t is

|�(t)〉 = φ̂
†
1(t) φ̂

†
2(t) · · · φ̂

†
L/2(t) |0〉

≡ |1,1, . . . ,1,0,0, . . . ,0〉t , (3)

where |0〉 denotes the empty band.
We want to stress that this method does not rely on

any adiabatic approximation for the evolution due to V (t),
and it can be applied with an arbitray potential V (t). In a
nutshell, what we are doing is simply taking the system in a
given initial state (t < 0), and computing its time evolution
using the time-dependent Schrödinger equation. This can be
done in principle for any system (e.g., even with electronic
interactions), but would be impractical at the level of the
N -electron state because of the huge size of the Hilbert space.
But since we are considering here noninteracting electrons,
this can be done for each electron independently [Eq. (2)],
thus relatively easily.

For the sake of simplicity, we consider here the special
case of a piecewise constant potential V (t), which allows us
to reduce the numerical integration of the differential equation
to simple matrix products (see below). Note however that the
numerical cost of solving numerically the differential equation
with a more complex V (t) is only slightly higher, so in practice
our method can be applied without difficulty to any reasonable
form of V (t). We thus focus on a potential V (t) which at t > 0
consists of perfect periodic steps (see Fig. 2) and takes the
form

V (t) =

⎧⎪⎨
⎪⎩

V− if t � 0,

V+ if 0 + nT � t < T
2 + nT ,

V− if T
2 + nT < t � T + nT ,

(4)

where n is a positive integer. In this case, knowing the
eigenvalues and eigenstates of the system for V = V− and
V = V+ is enough to get the time evolution of any one-particle
state by expressing it alternatively in the basis of these
eigenstates. During a time interval where V (t) is constant, the
time evolution is simply given by phase factors coming from
the eigenenergies. Then the sudden switch of V (t) from V+ to
V− (or vice versa) is accounted for by a basis transformation
from the V+ eigenstates to the V− eigenstates (or vice versa),
which ultimately amounts to a simple matrix product. By
combining the trivial time evolution for a constant V (t) with
the change of basis when V (t) switches from one value to
another, we easily get access to the one-particle state evolution
for any time t .
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B. Calculation of operator average

The fermionic operator for the one-particle state φ̂i(t) can
be written in full generality in the basis of the position states
along the chain:

φ̂i(t) =
L∑

j=1

αi,j (t)ĉj , (5)

where αi,j (t) is a time-dependent unitary matrix. This matrix is
the natural object coming out of the numerical evolution of the
system, as it expresses the one-particle states at time t in terms
of the position states. In particular, the lines of the matrix αi,j (t)
at t = 0 correspond to the eigenstates of the Hamiltonian (1),
which are naturally obtained in the position-state basis, as is
the Hamiltonian itself.

For convenience, we compute all the operator averages in
the Heisenberg picture. The time-dependent position operators
along the chain can then be written as

ĉk(t) =
L∑

m=1

α∗
m,k(t)φ̂m(0), (6)

where the one-electron states operators are taken at t = 0.

1. Average current

The current operator on link k (between sites k and k + 1)
at time t is

Îk(t) = −i(ĉ†k(t)ĉk+1(t) − H.c.) (7)

and its average is

〈Ik(t)〉 = −i

( ∑
m,n

αm,k(t)α∗
n,k+1(t)

×〈�(0)|φ̂†
m(0)φ̂n(0)|�(0)〉 − H.c.

)
(8)

with |�(0)〉 ≡ |�〉, the half-filled Fermi sea at time t = 0.
Using Eq. (3), at zero temperature the average of the φ̂ operator
product is simply δm,n for the occupied states (m � L/2), and
0 for the empty ones (m > L/2), leading to

〈Ik(t)〉 = 2
∑

n�L/2

Im[αn,k(t)α∗
n,k+1(t)]. (9)

At nonzero temperature, one has 〈φ̂†
nφ̂n〉 = f (En), where f (E)

is the Fermi function at energy E, and the average current
becomes

〈Ik(t)〉 = 2
L∑

n=1

f (En)Im
[
αn,k(t)α∗

n,k+1(t)
]

. (10)

2. Current correlations

The correlation between the current at link k and time t1
with the one at link l and time t2 is given by

Sk,l(t1,t2) = 〈�|Ik(t1)Il(t2)|�〉 − 〈�|Ik(t1)|�〉〈�|Il(t2)|�〉.
(11)

Proceeding along the same lines as for the current average, and
using Wick’s theorem for averages involving four φ̂ operators,
we get at finite temperature

Sk,l(t1,t2) = (−1)
L∑

m=1

L∑
n=1

f (Em)[1 − f (En)]

× [αm,k(t1)α∗
n,k+1(t1) − αm,k+1(t1)α∗

n,k(t1)]

× [αn,l(t2)α∗
m,l+1(t2) − αn,l+1(t2)α∗

m,l(t2)]. (12)

3. Mean charge on the dot

The operator Q̂(t) describing the charge on the dot is

Q̂(t) =
∑
j>jd

ĉ
†
j (t)ĉj (t), (13)

leading to the average charge

〈Q(t)〉 =
∑
j>jd

∑
m,n

αm,j (t)α∗
n,j (t)〈�(0)|φ̂†

m(0)φ̂n(0)|�(0)〉

=
∑
j>jd

L∑
n=1

f (En)|αn,j (t)|2. (14)

The results from Eqs. (10), (12), and (14) show that all
the averages can easily be computed from the time-dependent
matrix αi,j (t), which is directly obtained from the numerical
computation of the time evolution.

III. RESULTS

A. Parameters and operating regime

We present below the results that we have obtained to
characterize the emission of single electrons in the one-
dimensional chain. One must be aware that our approach uses
a nonchiral system, where excitations can propagate to the left
and to the right, in order to simulate a chiral system (an edge
state of the quantum Hall effect). In our setup, the left-going
excitations correspond to the ones coming out of the dot in the
real system, while the right-going excitations are incoming
onto the dot, and thus need to be avoided. Multiple reflections
inside the simulated dot are equivalent in the real system to
performing multiple round trips inside the dot.

In the remainder of the text, we work with a dot composed
of five sites, located at the end of a much longer chain
(approximately a few hundred sites, typically 500). This size
of the dot is the result of a compromise. On the one hand, the
dot has to be as small as possible compared to the chain, in
order to minimize finite-size effects. Indeed the level spacing
in the chain must be negligible compared to the level spacing
in the dot, in order to appear as a continuum. On the other
hand, since we apply a time-dependent voltage of the order
of the dot level spacing, the latter needs to be small compared to
the bandwidth of the tight-binding chain, in order to minimize
the effects of the nonlinear dispersion relation of the chain.
As the level spacing is inversely proportional to the size of
the dot, one thus needs to consider a large enough dot to meet
this requirement. In practice, we found that using a dot of five
sites was a good compromise, in particular because we were
able to perform the current measurement near the dot, thus
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reducing the spreading of wave packets during propagation,
which arises from the nonlinear dispersion.

We consider the chain to be at half-filling, and work with
physical dimensions corresponding to h̄ = e = 1. The tunnel-
ing amplitude along the chain [first term in the Hamiltonian
(1)] has been taken as the unit of energy, and as a consequence
the Fermi velocity at half-filling is equal to 2 sites per unit of
time. This means that an excitation takes a time L to reflect
at the boundary and come back to its starting point along a
chain of L sites. In particular, the current measured at a given
link due to the passage of an excitation will be completely
spoiled after a time L by the reflection of that same excitation
at the end of the chain. One can thus expect that the numerical
quantities we compute will be reliable up to a time ∼L only.

Unless specifically stated, all the results presented below
were obtained in the optimal regime for electron emission. In
this regime, the amplitude of the driving potential, V+ − V−, is
taken to be equal to the dot level spacing �. When the driving
potential switches to the value V+, one energy level of the dot
is put at an energy εF + �/2 (where εF is the Fermi energy of
the chain), and an electron is emitted at this very energy (see the
bottom left panel of Fig. 2). When V (t) switches back to V−,
this same level is brought down to the energy εF − �/2, and
a hole is emitted, i.e., an electron tunnels back to the dot level
(see the bottom right panel of Fig. 2 ). This parameter regime
is the one best suited to emit a true single electron and a single
hole during each period, as has been shown experimentally,7

and it is thus the most relevant one for our study. Note
however that there is no difficulty in exploring other operating
regimes with our method (for example, a dot level in resonance
with εF ).

B. Static properties of the dot

Before studying the properties of the electron emission by
the dot, it is necessary to characterize the properties of the
dot itself without a time-dependent potential V (t) applied.
Figure 3 shows the mean charge on the dot as a function
of the on-site energy εd , for several values of the tunneling
amplitudes to the dot td at zero temperature (top plot), and
for increasing temperature with td = 0.2 (bottom plot). For
a small value of td at zero temperature, we observe that the
mean charge is quantized, with well defined plateaus at integer
value. This simply reflects that when the dot is weakly coupled
to the chain, the number of electrons on the dot is an integer:
it can vary between 5 and 0, leading to five energy levels.
Indeed, the density of states (not shown) that corresponds to
∂〈Q〉/∂εF = −∂〈Q〉/∂εd has five narrow peaks at the position
of the steps in 〈Q〉, corresponding to the five energy levels of
the dot. As td is increased, the steps between the plateaus are
smoothed due to the increased fluctuations between the dot
and the chain, leading to broadened energy levels. Increasing
the temperature for fixed td (bottom plot) has a similar effect:
it broadens the energy levels, leading to smoothed steps.

For the parameters we have chosen, the level spacing of the
dot � is of the order of 1. Yet, because of finite-size effects,
the level spacing � is not constant and depends on the levels
considered. We thus focus on the electron and hole emission
from the central level of the dot (εd = 0), for which the optimal
emission regime is obtained by taking V+ = −V− � 0.6.
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FIG. 3. (Color online) Mean charge on the dot as a function of the
on-site energy of the dot εd , for several tunneling amplitudes to the dot
td at zero temperature (top), and for several temperatures at td = 0.2
(bottom). For small td and temperature, the mean charge tends to be
quantized at integer values, with sharp steps between the plateaus.
When td or the temperature are increased, the steps are smoothed due
to the increased fluctuations between the dot and the lead.

C. Time-dependent charge on the dot

We consider now the time-dependent charge on the dot
when V (t) is applied, in the optimal emission regime (εd =
0, V+ = −V− = 0.6). Figure 4 shows the mean charge for
this choice of V+,V− as a function of time (0 < t < T ), for
several values of the tunneling amplitude to the dot td , at zero
temperature. Several observations can be made from these
plots.
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FIG. 4. (Color online) Mean charge 〈Q〉 on the dot as a function
of time when V (t) is applied for different tunneling to the dot td at
zero temperature. This data is obtained for a chain of length L = 500,
with a period T = 200.
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First, when the potential V is switched from V− to V+ (at
t = 0), one electron leaves the dot, and the charge, up to a very
good approximation, decreases exponentially,

〈Q〉(t) � 2 + exp(−t/τ ), (15)

with a characteristic time τ which increases as td decreases.
Calculations in the continuous limit for a perfect dot predict7

τ � 2π

�

1

D
, D 	 1, (16)

where D is the transparency of the dot. For the tight-binding
chain that we consider, the relation between the tunneling
amplitude td and the transparency is, in the linear regime of
voltage,25–27

D(td ) � 4t2
d(

1 + t2
d

)2 . (17)

Using this expression of D(td ) and performing a fit of the data
gives the function τ � 6.1/D(td ), with a reasonable agreement
with the value of the level spacing in our system (6.1 � 2π/�

for � � 1).
When the potential V (t) switches back to V− (for t � T/2),

the charge starts to increase (as an electron comes back inside
the dot, or equivalently a hole comes out of the dot), and the
behavior is symmetrically reversed, with a similar exponential
growth back toward the initial charge.

Second, the qualitative behavior of the system changes as
the ratio of the decay time τ to the half-period T/2 changes.
When τ 	 T/2, the electron is emitted/absorbed from the dot
much faster than the half-period, and the emitted/absorbed
charge is close to 1. This is the case on the two upper plots of
Fig. 4, where it is clear that the charge 〈Q〉 goes all the way
from 3 to 2 on the first half-period, then back from 2 to 3 on the
second half-period. The electron is thus emitted or absorbed
with a probability close to 1 at each half-period. On the
other hand, when τ > T/2, the electron emission/absorption
is not complete during one half-period, which means that the
probability that an electron is emitted or absorbed on each
half-period is smaller than one. This is shown on the bottom
plots of Fig. 4.

Note that, in this regime (τ > T/2), the variation of the
charge during one half-period is smaller than 1. One has then
to be careful with the choice of initial conditions. Indeed, we
are trying to model a periodic system using a finite one starting
from an equilibrium or ground-state configuration. Depending
on the initial parameters, the system will take one or several
periods to relax toward the permanent periodic regime (which
is independent of the initial conditions). This is illustrated on
the left plot of Fig. 5, which shows 〈Q〉(t), with τ 
 T/2,
for several periods (we chose T = 50 for a chain of length
L = 1000, to be able to compute the evolution on many
periods without suffering from reflections at the boundary
of the chain). It is clear that the extrema of the oscillations
of 〈Q〉 tend to relax toward long-term values 2 + Q+ and
2 + Q−. As it is numerically very inefficient to compute the
evolution over many periods (it requires very long chains
to avoid boundary effects), we have to modify the initial
conditions in order to reach the periodic regime as soon as
the time-dependent potential is applied. Knowing the value of
the escape time τ from the dot for our choice of parameters,
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FIG. 5. (Color online) Mean charge 〈Q〉 on the dot as a function
of time when V (t) is applied, in the regime where τ 
 T/2 (small
tunneling amplitude to the dot). The left plot, obtained with a period
T = 50 on a chain of length L = 1000, shows that starting at t = 0
with 〈Q〉 = 3 does not correspond to the long-time limit: after several
periods one reaches a long-time regime where 〈Q〉 oscillates between
the values 2 + Q+ and 2 + Q−. The right plot, obtained with a period
T = 200 on a chain of length L = 500, shows that it is possible to
access the long-time limit from t = 0 by switching on V (t) at an
earlier time tin < 0 to get the correct charge 〈Q〉(t = 0) = 2 + Q+
(see text for details).

and introducing s = exp(− T
2τ

), the values of Q+ and Q− can
be predicted analytically by solving the equations expressing
that the charge at the end of one period (at t = nT + T − 0)
has to be the same as the charge at the beginning of the period
(at t = nT + 0):

Q− = s Q+, Q+ = s Q− + (1 − s), (18)

giving Q+ = 1/(1 + s) and Q− = s/(1 + s). In practice, in
order to have the correct value of the charge (2 + Q+) at
t = 0, we switch the potential V (t) from V− to V+ at a time
tin < 0, such that the value of 〈Q〉 at time t = 0 is precisely
2 + Q+. We are thus letting a fraction of electrons escape from
the dot for t < 0, in order for the charge to take the right value
at t = 0. The result of this procedure is shown on the right plot
of Fig. 5. One can see that the charge has indeed the predicted
periodic behavior, with increase and decrease between the
values 2 + Q+ and 2 + Q− shown as dashed lines.

D. Visualization of the time-dependent density

The numerical results allow us to obtain a visual repre-
sentation of the emitted wave packets propagating along the
chain. The left part of Fig. 6 shows an example of the results,
obtained for a chain of length L = 500, and an intermediate
value for the dot tunneling amplitude, td = 0.4, at zero
temperature. The chain is initially in equilibrium at half-filling
(occupation =0.5 on all sites, except on the dot at the extreme
right of the chain, which contains three electrons). Starting at
t = 0, the electron is emitted and appears as a left-propagating
wave packet, which initially has an exponential profile. As
it propagates along the chain, this wave packet broadens due
to the nonlinear spectrum of the chain. At t = 100 = T/2 the
emission of a hole starts, with properties similar to the electron.

Performing a Fourier transform for each of the one-electron
states gives us access to the density in the wave-vector space
(or k space) as a function of time, which is shown on the
right part of Fig. 6. Initially, the system is in equilibrium, at
zero temperature, and has all the states for |k| < kmax occupied
(occupation 1, the “Fermi sea”) while all the other states are
empty. For t > 0, the electron emission shows up as a well
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FIG. 6. (Color online) (Left) Density along the chain (mean occupation of each site) at different times for a chain of length L = 500, with
a dot tunneling amplitude td = 0.4, at zero temperature, over one period of length T = 200. One clearly sees the emission of the electron at
t = 0 with an exponential profile, and of a hole at t = T/2 = 100. Because of the nonlinear spectrum of the chain, wave packets broaden
during propagation. (Right) Same evolution shown for the occupation in k space, for negative k (left-going excitation). The emission of the
electron shows up as a well defined peak above the occupied states.

defined peak above the Fermi sea. Similarly, the emission of
the hole for t > 100 appears as a dip in the Fermi sea. Both
structures manifest at the same distance from kF , confirming
that the electron and hole are emitted with energies symmetric
with respect to the Fermi level.

Looking at the density in k space for different tunneling
amplitudes td gives us information about the properties of
the emitted electron, and about the “quality” of the electron
emission. Figure 7 shows the electron peak for a small
tunneling amplitude td = 0.2 and a larger one td = 0.6 (and
other parameters as in Fig. 6). A small transparency leads to a
narrow peak that is well separated from the Fermi sea, while a
larger transparency creates a broader peak that tends to merge
with the Fermi sea.14

E. Time-dependent current

The current coming out of the dot contains information
similar to the time-dependent charge on the dot, as it is given
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FIG. 7. (Color online) Effect of the dot tunneling amplitude td on
the electron peak in momentum space, for td = 0.2 (left) and td = 0.6
(right), for a chain of 500 sites, with other parameters as in Fig. 6. A
smaller transparency leads to a narrower peak, well separated from
the occupied states, while a larger transparency gives a broader peak
which tends to merge with the occupied states.

by the time derivative of this charge. We recall that the current
is computed on a link very close to the dot (a few sites away),
in order to minimize the effect of the nonlinear spectrum of
the chain, which tends to spread the wave packet propagating
along the chain during its travel.

Figure 8 shows the current for the same parameters as in
Fig. 4, computed from Eq. (9) between sites 490 and 491
for a chain of length 500. For td = 0.5 and 0.3, the current
shows a dip followed by a peak, due to the passage of the
electron then the hole. The peaks have an exponential profile
with some oscillations that correspond to the ones present in
the charge 〈Q〉(t) [we could check explicitly that computing
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FIG. 8. (Color online) Mean current 〈I 〉 between sites 490 and
491 as a function of time when V (t) is applied for different tunneling
to the dot td at zero temperature. Data obtained for a chain of length
L = 500, with a period T = 200.
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d〈Q〉(t)/dt gives the same peaks]. As td is reduced, the width
of the electron and hole wave packets increases, and becomes
larger than the half-period. This is apparent on the plots for
td = 0.2 and td = 0.1, where the current does not reach zero
at t = 100 = T/2. There, when the external drive switches
from V+ to V− and the hole emission begins, the sign of
the current changes abruptly. Bear in mind that we had to
start the emission at time tin < 0 (see Sec. III C) in order
to be immediately in the periodic regime at t = 0. This has
the undesired consequence of reducing the oscillations of the
current in the first half-period compared to the following ones,
as can be seen on the bottom right plot of Fig. 8 (the current for
later periods—not shown—is similar to the one of the second
half-period). This is because, when using a nonzero tin, the
charge has the correct “periodic” value at t = 0, but there is no
abrupt change of the potential at that time, unlike what happens
at t = T/2,T , . . . . The values for the current during the first
half-period are thus somewhat inaccurate. For this reason, in
the calculation of the current autocorrelations (see below), we
use the current starting from the second half-period only.

F. Current autocorrelations

The current correlations at finite frequency contain more
information about the single-emission process than the mean
current or the mean charge do.

We have computed the autocorrelation for currents on the
same link,

Sk,k(t1,t2) = 〈�|Ik(t1)Ik(t2)|�〉 − 〈�|Ik(t1)|�〉〈�|Ik(t2)|�〉,
(19)

for a link k close to the dot. Because the applied voltage is
periodic in time, Sk,k(t1,t2) is a periodic function of the mean
time (t1 + t2)/2. By taking the average over one period T , we
obtain the autocorrelation noise, which depends on the time
difference only:

Sk,k(t) = Sk,k(t ′,t ′ + t)
t ′
. (20)

Performing a Fourier transform of Sk,k(t) gives access to
the autocorrelation noise as a function of frequency. This
quantity has been measured experimentally for a frequency
of the order of the frequency of the applied voltage V (t),
as reported in Ref. 9. Using a semiclassical model, valid
in the optimal emission regime where the Fermi energy of
the chain is halfway between two dot levels, Albert et al.10

have provided an analytical formula for the autocorrelation
noise as a function of the frequency ω and the escape time τ

of the electron from the dot:

Sk,k(ω) = 2

T
tanh

(
T

4τ

)
ω2τ 2

1 + ω2τ 2
, (21)

where T is the period of the applied voltage. A good
agreement between this formula and the experimental results
was obtained.9,10

Figure 9 shows the results obtained for Sk,k(ω = 2π/T )
in units of the driving frequency (1/T ), as a function of the
escape time of the dot scaled by the half-period τ/(T/2), for a
chain of length L = 600 with a period T = 200. The current
correlations were computed at zero temperature, close to the
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τ T 2

0.5
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1.5

2.0

S 2π T e2 T

FIG. 9. (Color online) Autocorrelation noise S of the current on
link 590, taken at the frequency 2π/T of the applied potential V (t),
as a function of the escape time from the dot. The noise is expressed
in units of the drive frequency (1/T ), while the escape time is in
units of the half-period (T/2). The black dashed curve shows the
theoretical prediction of the semiclassical model of Ref. 10. The red
points show the results obtained with our calculations, for a chain of
length L = 600 and a period T = 200.

dot, on the link between sites 590 and 591 (while the dot
occupies sites 596 to 600). Note that in this regime, the results
are nearly insensitive to temperature, as long as it is much
smaller than the level spacing in the dot. The first observation
to be made is that the numerical results (red points) are very
close to the predicted analytical formula (dashed black curve);
the numerical curve is just slightly above the theoretical one
(by ≈4%).

The curve has a maximum for τ ∼ T/2, delimiting two
regions that correspond to two different regimes. On the left
of the maximum, when τ 	 T/2, the emission time of the
electron or hole is much shorter than the half-period, so
it is emitted with probability 1, and the noise comes from
the uncertainty in the emission time, which decreases with
τ . This is the jitter regime, or phase-noise regime. On the
right, when τ 
 T/2, the emission time of the electron or
hole is larger that the half-period, so the emission probability
is smaller than 1, which is the cause of the noise. This is
thus the shot-noise regime, or charge-noise regime. Note that
the deviations of our numerical results with respect to the
theoretical curve are similar in both regimes. This is a good
indication of the reliability of our calculations, in particular
that the use of an initial time tin < 0, which is only needed
in the shot-noise regime (see Sec. III C), gives correct results.
Larger deviations appear only for very small values of τ/(T/2),
which correspond to the large transparency regime when the
escape time from the dot gets close to the time of a round trip
inside the dot. The semiclassical model cannot be used in that
regime and the analytical formula (21) is no longer valid.

We have chosen the period T = 200 to be as large as
possible for the chain length L = 600, taking into account the
finite size constraints. Indeed, the maximum time before an
emitted wave packet is reflected at the boundary of the chain
and comes back, spoiling the measurement of the current,
is approximatively tmax � 600 (because the Fermi velocity
is 2 sites per unit of time). The time averaging procedure
[Eq. (20)] requires at least one period T , while the integration
for the Fourier transform needs at least another period T .
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FIG. 10. (Color online) (Left) Same as Fig. 9 for chain lengths
L = 300, 400, 500, and 600 (blue, orange, green, and red, or from
top to bottom). In each case the period has been chosen as T = L/3.
Smaller chain gives a higher autocorrelation noise. (Right) Relative
difference �S/S between the computed autocorrelation and the
theoretical formula, for the same chain lengths, as a function of the
escape time from the dot. The relative difference decreases when the
chain length (and thus the period T ) increases; for the longer chain
(L = 600), the relative difference is about 4%

Moreover, we had to discard the current obtained during the
first half-period, as some of its features are different from
those of the real periodic current (see the lower right panel
of Fig. 8, and the discussion at the end of Sec. III E). Taking
T = tmax/3 � L/3 is thus close to the maximum value that
can reasonably be taken for the period T . Another constraint
prevents us from taking arbitrarily large values for the escape
time. The magnitude of the initial emission time tin < 0 that
we need to use increases with τ , making it difficult to reach
numerically large values of τ , as it imposes a larger maximum
time tmax, and thus a longer chain. This is the reason why the
largest value of τ/(T/2) on Fig. 9 is approximatively 2.

In order to investigate the effects of the finite size on the
difference between the numerical results and the theoretical
curve, we have computed the current autocorrelation for
increasing sizes, L = 300, 400, and 500, taking T = L/3
in each case. As shown on Fig. 10 (left), taking a smaller
chain, and thus a smaller period T , gives a higher current
autocorrelation. We also see that the deviations from the
analytical model for large transparencies (bottom left part of
the curves) appears for larger values of τ/(T/2) for decreasing
chain lengths L. This is because a given value of τ/(T/2)
corresponds to a larger transparency for a smaller chain, which
has a smaller T .

The right plot of Fig. 10 shows the relative difference
between the computed autocorrelation and the theoretical pre-
diction, �S/S = [S(k,k)(2π/T ) − Stheor]/Stheor, as a function
of the escape time τ . We see that this relative difference
decreases from the 8%–10% range for a chain with L = 300
and T = 100 to approximatively 4% for the L = 600 chain
with T = 200. One can thus expect that using a longer chain
with a larger T should bring the numerical results closer to
the theoretical prediction, although a systematic difference,
independent of the chain length, cannot be excluded from our
results.

Our simulations allow us to compute easily the autocorre-
lation noise for different operating regimes, which cannot be
described by the semiclassical model. As an example, we have
considered the resonant regime, where for the two values of
V (t) there is a dot level resonant with the Fermi energy (see
left panel of Fig. 11). This regime is not expected to provide
good quality emission of single electrons, as two levels are
contributing equally, at the same time, to the electron emission

V t
ΕF
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τ T 2

1

2

3

4

S 2π T e2 T

Tem p 0.

Tem p 0.1

FIG. 11. (Color online) Autocorrelation noise in a same setup
as in Fig. 9, in the resonant regime: dot levels are put at the Fermi
energy by the external potential (see left panel). The curves with dots
show the results obtained at temperature 0 (red) and 0.1 (blue). The
black dashed curve is the analytical prediction in the optimal regime.
The noise in the resonant regime is much higher than in the optimal
regime, showing that the resonant regime is not suitable for single
electron emission.

(the level at the Fermi energy, and the level above it). This is
clearly visible in the computed autocorrelation noise (right
panel of Fig. 11), which is much larger than the noise in the
optimal regime. This regime is also much more sensitive to the
temperature since a dot level is always at the Fermi energy:
for small emission time τ , the noise obtained at a temperature
of 0.1 is larger than the one at zero temperature.

IV. CONCLUSIONS

In this work, we have shown that real-time simulations
on a tight-binding chain are a powerful and versatile tool
for studying the single-electron emitter, giving the ability to
compute accurately elaborate quantities such as the finite-
frequency current-autocorrelation noise. Using a noninteract-
ing system, we have shown that the time evolution can be
obtained simply and efficiently from the evolution of the
one-electron states, and we have derived the formulas for
the useful physical quantities (charge on the dot, emitted
current, and current autocorrelations) in terms of the nu-
merical object describing the one-electron state’s evolution.
This allowed us to study the characteristics of the single-
electron emitter as a function of different parameters (dot
transparency, period of the AC drive, temperature, etc.),
giving us access at the same time to illustrative visualizations
(current, time-dependent density along the chain, etc.) and
providing information about complex quantities. Our calcu-
lations of finite-frequency current-autocorrelation noise are
in good agreement with theoretical predictions in the regime
when these are applicable (and thus also with experimental
observations), and can be used to explore other regimes. We
have detailed the limitations due to the finite size of the
system.

This work can be extended in several directions. First, for
noninteracting electrons, we have only explored a small part of
the parameter space and of the possible manipulations of the
system. We have mainly focused in this work on the optimal
regime for single-electron emission as well as the less effective
resonant regime, but the method can also be used to study in
detail other regimes. We have also limited our study to the
case of a perfect piecewise constant time-dependent potential.
Our approach can easily be used to study the effect of the
experimental limitations on this shape of potential, or to study
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different types of potential [for example V (t) ∼ sin(t)] that
would lead to the emission of electrons with different energy
distribution. It also has the ability to simulate a true “one shot”
experiment, where a single pulse (rather than a periodic drive)
is applied on the dot to emit one electron, starting from an
equilibrium situation.

Our method can also be extended to study more elaborate
setups based on the manipulation of the emitted single electron.
For example, a weak link in the middle of the chain, which
would only partially transmit an incoming wave packet, would
be equivalent to a quantum point contact. This could be used to
perform a real-time study of tomography protocol proposals,14

or to consider more complex setups such as interferometers.28

Placing dots at both ends of the chain could also be used to
study two-electron interference processes.29,30

Second, this work can be seen as a first step toward the study
of the single-electron emitter taking into account electronic
interactions. As it shows that using a discrete tight-binding
model allows us to get a faithful and accurate physical
description of the single-electron emitter, we can consider
extending our calculations to more powerful methods such
as the time-dependent density-matrix renormalization group

(td-DMRG),16–23 which can include electronic interactions.
This work gives us the necessary understanding of the role
and limitations of the different parameters in the system (chain
size, dot size, period of the AC drive, etc). Using td-DMRG
(or similar techniques), we could study the impact on the
emitted electron of strong Coulomb interactions inside the dot.
We could also consider electronic density-density interactions
between two edge states, which should be experimentally
relevant, as the experiments have been achieved so far with
edge states of the quantum Hall effect with a filling factor
ν = 2, where two edge states are propagating.

Note added. A preprint (Ref. 15) has recently appeared,
where details of the Floquet scattering theory for the
same setup are presented, together with the semiclassical
model.
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Phys. Rev. Lett. 101, 166802 (2008).
30S. Juergens, J. Splettstoesser, and M. Moskalets, Europhys. Lett.

96, 37011 (2011).

045321-9

http://dx.doi.org/10.1103/PhysRevLett.96.176601
http://dx.doi.org/10.1103/PhysRevLett.96.176601
http://dx.doi.org/10.1103/PhysRevLett.99.236803
http://dx.doi.org/10.1103/PhysRevLett.84.1986
http://dx.doi.org/10.1103/PhysRevLett.84.1986
http://dx.doi.org/10.1103/PhysRevLett.99.066601
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1088/0268-1242/26/5/055010
http://dx.doi.org/10.1103/PhysRevB.82.201309
http://dx.doi.org/10.1103/PhysRevB.82.041407
http://dx.doi.org/10.1103/PhysRevB.82.041407
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.75.035315
http://dx.doi.org/10.1103/PhysRevB.75.035315
http://dx.doi.org/10.1103/PhysRevLett.100.086601
http://dx.doi.org/10.1103/PhysRevLett.100.086601
http://dx.doi.org/10.1088/1367-2630/13/9/093007
http://dx.doi.org/10.1088/1367-2630/13/9/093007
http://arXiv.org/abs/arXiv:1111.3136
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.88.256403
http://dx.doi.org/10.1103/PhysRevLett.88.256403
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1103/PhysRevB.78.195317
http://dx.doi.org/10.1103/PhysRevB.78.195317
http://dx.doi.org/10.1103/PhysRevB.79.235336
http://dx.doi.org/10.1103/PhysRevB.79.235336
http://arXiv.org/abs/arXiv:1004.4178
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevB.82.205414
http://dx.doi.org/10.1103/PhysRevB.82.205414
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1103/PhysRevB.38.10113
http://dx.doi.org/10.1103/PhysRevB.38.10113
http://dx.doi.org/10.1103/PhysRevB.84.081303
http://dx.doi.org/10.1103/PhysRevB.84.081303
http://dx.doi.org/10.1103/PhysRevLett.101.166802
http://dx.doi.org/10.1209/0295-5075/96/37011
http://dx.doi.org/10.1209/0295-5075/96/37011

