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We study the out-of-equilibrium current through a quantum dot which is placed between two superconduct-
ing leads held at fixed voltage bias, considering both cases of the absence and the presence of an additional
normal lead connected to the dot. Using the nonequilibrium Keldysh technique, we focus on the subgap bias
region, where multiple Andreev reflections are responsible for charge transfer through the dot. Attention is put
on the dc current and on the first harmonics of the supercurrent. Varying the position and/or the width of the
dot level, we first investigate the crossover between a quantum-dot and quantum point-contact regimes in the
absence of a normal lead. We then study the effect of the normal electrode connected to the dot, which is
understood to lead to dephasing, or alternatively to induce reverse proximity effect. By increasing the dot
coupling to the normal probe, we show the full crossover from zero dephasing to the incoherent case. We also
compute the Josephson current in the presence of the normal lead and find it in excellent agreement with the
values of the nonequlibrium current extrapolated at zero voltage.
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I. INTRODUCTION

Nonequilibrium transport between superconductors with a
dc voltage bias gives rise to a subgap structure in the current-
voltage characteristics which can be described in terms of
multiple Andreev reflections �MAR�.1,2 Indeed, it has been
understood since the 1960s �Ref. 3� that when the bias po-
tential between two superconductors is smaller than the su-
perconducting energy gap, electrons have to be transferred in
bunches in order to satisfy energy requirements. The calcu-
lation of the current in the presence of such MAR processes
can proceed along several directions. Early work1 considered
a formulation of transport in terms of transmission probabili-
ties rather than amplitudes. During the last decade or so,
MAR processes have been studied theoretically in the coher-
ent regime for point contacts, using either scattering theory4,5

or microscopic tight-binding Hamiltonians.6 The coherent
current which flows between the two superconductors is then
time dependent: it contains all harmonics of the Josephson
frequency. Of particular interest in Refs. 5 and 6 was the fact
that in addition to the dc current, the cosine and sine harmon-
ics of the current were computed. These harmonics also ex-
hibit structures at the MAR onsets and they allow for some
additional diagnosis at low voltages: the amplitude of the
sine first harmonic �SFH� at zero voltage corresponds to the
critical current in the Josephson �zero-bias� limit while the
cosine first harmonic vanishes.

On the experimental side, in the context of mesoscopic
physics, pioneering experiments were performed on atomic
point contacts for the current7 as well as for the noise.8 At the
same time, samples containing a diffusive normal metal
sandwiched between superconducting leads were studied,9 a
regime which also triggered theoretical activity.10

Given the recent interest in nanophysics for studying sys-
tems with reduced size �such as quantum dots and mol-
ecules�, MAR through a quantum dot described as a resonant
level without interactions has been addressed.11,12 It was
found that the position of the resonance bears strong conse-
quences on the dc current-voltage characteristics. So far
however, little is known on the harmonics of the supercur-
rent. Experiments on nonequilibrium supercurrent through
quantum dots have recently been performed, pointing out the
effect of size quantization and in some cases of resonances,
attributed to Coulomb interactions.13,14

So far MAR transport calculations have been focused ei-
ther on the incoherent or coherent cases. The crossover re-
gime was discussed for a chaotic dot junction where an ex-
ternal magnetic field serves as a dephasing factor.15 In
mesoscopic physics, the current �and noise� which flows be-
tween a source and a drain can be modified if one inserts a
voltage probe between the two.16,17 The probe voltage can be
adjusted so that no net electrons flow through it, electrons
which enter this probe loose their phase coherence because
they enter in contact with an electron reservoir. In mesos-
copic transport, such probes can be used as a way to mimic
the effect of inelastic scattering/decoherence on transport be-
tween the source and the drain. One can thus model the
crossover between the two regimes by adjusting the degree
of decoherence by varying the coupling to such voltage
probes. At the same time, experimentally one could also con-
struct actual nanostructures which contain a controlled con-
nection to such voltagelike probes.

In this paper, we address key issues associated with MAR
for a device consisting of two superconductor connected to a
quantum dot/resonant level, in the absence and in the pres-
ence of a normal-metal lead connected to the dot. To achieve
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this, we will choose a Hamiltonian formulation and we will
use a Keldysh Green’s function approach where the leads are
effectively integrated out. First, we will study the supercur-
rent harmonics of an isolated quantum dot. We will first
show under which conditions the regimes of a point contact
and of a resonant level are recovered, and then discuss the
properties of the supercurrent harmonics for the case of the
resonant level; we will show that these properties differ
strongly from those of a quantum point contact. Next, we
will introduce a normal probe which is directly connected to
the dot and we will monitor the full crossover from the co-
herent regime to the fully incoherent regime. We will also
compute the �equilibrium� Josephson current independently
and we will check whether its first harmonic corresponds to
the extrapolated amplitude of the SFH at zero bias. Note that
the setup is similar to that of Ref. 18, however, the attention
there was put at the nonequilibrium Josephson effect under
current injection from the normal probe.

Note that the inclusion of a normal probe can be inter-
preted as a source of dephasing,16,17 extended to the case of a
supercurrent. Yet it can also have an alternative interpreta-
tion. In the presence of superconducting leads, superconduct-
ing correlations are induced on the dot because of the �usual�
proximity effect. This, for instance is illustrated in several
recent works both in equilibrium19 and in voltage-biased20

superconducting devices where an effective action for the dot
is derived. Now, the addition of a normal lead will induce a
reverse proximity effect on the dot which will compete with
the existing one: superconducting correlations on the dot will
be suppressed. It is the ratio between the escape rates to the
superconducting leads and to the normal leads which will
determine the coherent/incoherent character of transport.

The paper is organized as follows. In Sec. II, the general
model is introduced. Section III reviews the nonequilibrium
formalism to study transport. Details on how the current har-
monics are computed are presented in Sec. IV. The dc current
and harmonics are discussed in Sec. V for several limiting
cases and in the presence of the normal lead, and the com-
parison with the Josephson current calculation is performed
in Sec. VI. We conclude in Sec. VII, while details about the
numerical implementation are given in Appendix.

II. MODEL HAMILTONIAN

The system we study consists of a quantum dot attached
to two superconducting leads. For simplicity, the coupling
between the two leads is assumed to be symmetric. In addi-
tion, a third lead in the normal-metal regime is attached to
the dot �Fig. 1�. This model is a generalization of the two
terminal structure presented in Refs. 20. The tunnel coupling
from the dot to the normal lead will be a control parameter
for adjusting dephasing effects. The dot contains for simplic-
ity a relevant single electronic level but the analysis can be
straightforwardly extended to treat a multilevel dot. We label
the applied bias voltage on the left �right� lead VL �VR�,
where Vj �j=L ,R� is measured with respect to the dot level
�see the tunnel Hamiltonian below�. The chemical potential
of the normal lead is set at VN=0.

We focus on the most interesting low-temperature �T�
limit with moderate �but not low� transmission to the super-

conducting electrodes, which allows, in principle, to neglect
Coulomb charging effects. The resulting Hamiltonian of the
system with the time-dependent tunneling terms reads

H = HD + �
j=L,R,N

Hj + HT�t� , �1�

where

HD = �0 �
�=↑,↓

d�
†d�. �2�

The BCS Hamiltionian of the superconductors and normal
metal is expressed in terms of Nambu spinors

Hj = �
k

� jk
† ��k�z + � j�x�� jk,

� jk = � � jk,↑

� j�−k�,↓
† �, �k = k2/�2m� − � �3�

with �z and �x as Pauli matrices in Nambu space. The gap is
assumed to be the same for the two superconducting leads
�j=L ,R� � j �� while for the normal lead �j=N� �N�0.
With the Nambu notation, the tunneling term becomes

HT�t� = �
jk

� jk
† T j�t�d + H.c., d = �d↑

d↓
† � �4�

with a tunneling amplitude T j�t�= tj�ze
i�z	j�t�/2, where the

presence of the bias voltage induces a time dependence of
the extracted phases of the superconducting order param-
eters: 	 j�t�=� jtVj /2 and � j = 
1 for j=L /R. We often set
�=e=1 and restore them when convenient in final expres-
sions. With these notations, the current operator between lead
j and the dot reads

Ij�t� = i�
k

� jk
† �zT j�t�d�t� + H.c. �5�

III. KELDYSH FORMALISM

We use the Keldysh Green’s function formalism in order
to compute the current. The details of such calculations have
appeared elsewhere20 so here we only summarize the tech-
niques. The Coulomb interaction is neglected here. First, a

RL V=−V/2V=+V/2

S SD

N
V=0N

FIG. 1. Schematic of the setup. A single-level quantum dot is
placed between two superconductors, which are biased with volt-
ages 
V /2. An additional normal-metal lead plays the role of a
voltage probe �Ref. 16�. Its coupling to the dot is controllable and
its voltage is taken to satisfy a zero-current condition for the probe.
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Keldysh partition function is introduced �H0=HD
+� j=L,R,NHj�

Z = Tr	e−�H0S�
,��
 , �6�

where

S�
,�� = Tc exp�− i�
−


+


dtHT�t,��
 �7�

and

HT�t,�� = �
jk

�̂ jk
† T j�t��̂ze

i�̂z�z�j�t�/2d̂�t� + H.c., �8�

�z is a Pauli Matrix in Keldysh space, and we have intro-
duced a counting field � j for each lead-dot coupling, which
allows to compute the current by deriving the partition with
respect to it

�Ij�t�� = iZ0
−1��Z���t��

�� j�t�
�

�=0
. �9�

The action possesses a quadratic dependence on the lead fer-
mion spinors so the latter can be integrated out.20 One is left
with an action which depends on the dot spinors only, for
which the effect of the leads appears via self-energies in
Keldysh Nambu space

�̂ j�t1,t2� = � j�
−



 d�

2�
e−i��t1−t2�e−i�zVjt1�� · 1 − � j · �x�ei�zVjt2

� �−
��� j − ����
�� j

2 − �2
�̂z

+ i sign���
����� − � j�
��2 − � j

2 �2f� − 1 − 2f�

+ 2f−� 2f� − 1 �� ,

�10�

where we define the escape rates from the dot as

� j = �� j�0��tj�2 �11�

with � j�0� the �constant� density of states of lead j in the
normal state. Fermi filling factors are given by f�=1 / �e��

+1�. With this definition, the formula for the partial average
current reduces to20

�Ij�t�� =
1

2
Tr��̂z�z�

−


+


dt��Ĝ�t,t���̂ j�t�,t� − �̂ j�t,t��Ĝ�t�,t��

= − 2 Re tr��z��̂ j � Ĝ�+−�t,t�� , �12�

where the trace “tr” operates only in Nambu space and the
symbol � denotes convolution in time. Here the Green’s func-
tion of the dot �which is dressed by the leads� is defined as

G��
ss��t,t�� = − i�Tc	S�
�d�

s �t�d�
†s��t��
�0. �13�

This constitutes an extension of the Meir-Wingreen21 for-
mula for a dot connected to one or several superconducting
or normal-metal leads. Provided that the Green’s function is
computed exactly it applies also for situations where there

are interactions �electron-electron or electron-phonon� on the
dot.

IV. CALCULATION OF THE MAR CURRENT

We are interested in the calculation of the electrical cur-
rent through a quantum dot with a single level �0, which is
placed near two superconducting leads with applied voltages
VL=V /2 and VR=−V /2. The reference position for the zero
of energy is chosen halfway between the two chemical po-
tentials of the superconductors. In principle, the position of
the dot level should depend on the geometry �escape rates�
and on the applied bias, and it could be derived in a self-
consistent way. Here, we ignore such dependence and as-
sume that the dot-level position can be changed using a me-
tallic gate located close to the dot. Nevertheless, an
important part of our study will deal with �0�0. In order to
avoid the proliferation of parameters, we choose to specify a
symmetric device, where the transparencies of the left and
right superconducting leads are the same, while no assump-
tion is made about the normal lead. With this choice, at �0
=0 the requirement that no net current flows in the normal
leads imposes that VN=0 invoking electron/hole symmetry.
In what follows, all energy/frequency scales are expressed in
units of the superconducting gap �.

When a bias is applied to superconductor, the current is
not stationary as it contains all harmonics at the Josephson
frequency �J=2eV /�. It is then convenient to introduce a
double Fourier transform with summations over discrete do-
mains in frequency

G�t,t�� = �
n,m=−


+
 �
F

d�

2�
e−i�nt+i�mt�Gnm��� , �14�

��t,t�� = �
n,m=−


+
 �
F

d�

2�
e−i�nt+i�mt��nm��� , �15�

where �n=�+nV and the frequency integration is performed
over a finite domain F��−V /2,V /2�, where V is the voltage
on the leads. With these definitions, the Fourier transform of
the current becomes

Ij���� = �
n,l

2����� − �n − l�V�
1

2
�

F

d�

2�

�Tr��z�̂z�
m

�Ĝnm����̂ j,ml��� − �̂ j,nm���Ĝml����
 ,

�16�

where the matrices Ĝnm��� and �̂ j,nm��� have a 4�4 block
structure for every pair of energy domain indexes n and m.

In the double Fourier representation, the lead self-energy
is given by20
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�̂ j,nm��n�

= � j� �n,mX̂j��n − Vj� �n−2Vj/V,mŶ j��n − Vj�

�n+2Vj/V,mŶ j��n + Vj� �n,mX̂j��n + Vj�
� ,

�17�

where

X̂j��� = �−
��� j − �����

�� j
2 − �2

�̂z

+ i
����� − � j����

��2 − � j
2 �2f� − 1 − 2f�

+ 2f−� 2f� − 1 �� �18�

and Ŷ j���=−� jX̂j��� /�.
The dressed Green’s function for the dot appears from the

Dyson equation of the form

Ĝnm��� = �Ĝ0,nm
−1 ��� − �̂T,nm����−1, �19�

where Ĝ0,nm
−1 ���=�nm��n−�0�z��̂z and �̂T=�

j

�̂ j.

The dressed Green’s function is obtained numerically: in
practice, it requires the inversion of a “large” matrix �Eq.
�19��. This finite matrix is obtained by limiting the discrete
Fourier transforms �Eqs. �14� and �15�� to a cut-off energy
Ec, which has to be large compared to all the relevant ener-
gies of the problem. This energy Ec defines a finite number
of frequency domains nmax. As the width of each domain is
�V, one has nmax�1 /V, which reflects the fact that at small
voltages, one needs to sum on a very large number of An-
dreev reflections. In practice, we have chosen in most case
Ec=16� and we have computed the current for V�0.1 only.
See Appendix for more details on the numerical implemen-
tation.

V. RESULTS FOR THE MAR CURRENT

We present here the results for the MAR currents in dif-
ferent regimes. First, in Secs. V A and V B, we consider the
case without coupling to a normal lead, respectively, in the
quantum point-contact �QPC� limit and the resonant-level
regime. This will allow us to compare with existing results
and also to provide new results for the resonant-level case.
Then, in Sec. V C, we consider the effect of the coupling to
the normal lead on the MAR current. The current is plotted
in units of e� /h and calculations are performed choosing a
temperature �=0.01� in order to study the bias dominated
regime.

A. Quantum point-contact limit

If the escape rate �S��L=�R, see Eq. �11�, is sufficiently
large compared to the superconducting gap, the resulting
open quantum dot sandwiched between the superconducting
electrodes should behave like a point contact. The case of a
point contact was studied both in the context of scattering
theory4,5 and from a Hamiltonian approach6 a decade ago.
There, results were obtained both for the dc current as well

as for the first harmonics Icos and Isin of the current.

I�t� = Idc + Icos cos�2eVt/�� + Isin sin�2eVt/�� + ¯ .

�20�

Figure 2 displays these quantities for the case of a open
quantum dot, for several escape rates and for several level
positions of the dot. The challenge lies with the fact that in
order to reproduce the case of the QPC at high transmission
�large coupling �S�, one has to include a large number of
Andreev reflections between the dot and the superconducting
leads, especially at low voltages. In practice, this means us-
ing a large cut-off energy Ec and thus a very large matrix size
�nmax for small voltage. The existing results for the dc cur-
rent as well as for the first harmonics5,6 provide a reference
for our results in the QPC limit.

In the top panel of Fig. 2, we plot the dc current for
several values of �S�� and several values of the dot-level
position, which allow to describe the crossover from the high
transmission to the low-transmission regime. In the normal
state, the transmission probability between the source and
drain electrodes as a function of energy � is given by a
Lorentzian line shape

T��� = �1 + �� − �0�2/�S
2�−1 �21�

and this transmission is unity �resonant behavior� whenever
�−�0=0. This resonant behavior, in principle, affects the
transmission of electrons and holes through the quantum dot.
In our calculations to describe the QPC limit, �0 is shifted
away from zero beyond the superconducting gap, because
otherwise, regardless of the line width broadening provided
by �S, there are reminiscences of resonant MAR behavior
�for a description of these resonant processes, see Sec. V B�.
For �0=2 and �S=5� or �S=10�, no significant features of
MAR are found in the dc current, in accordance with Refs. 5
and 6. The dc current is linear for voltages larger than the
quasiparticle onset V�2�, and it vanishes abruptly close to
V�0.1�, where some MAR structure is noticeable for �S
=5 �lower transparency�. Note that we have used increased
cut-off energies �Ec=30 and 50� for the cases �S=5 and 10,
respectively; this limits the data for �S=10 to V�0.2. In
order to further reduce the transparency and thus observe
some structure, one can either decrease the escape rate or
drive �0 further away from 0. Cusps in the current derivative
appear as expected at the so-called MAR onsets defined as
eV=2� /n, n integer, ��S=2, �0=4�. As the transparency is
reduced ��S=2, �0=6 and 8� only the quasiparticle onset �n
=1� and the n=2 onset are identifiable. By reproducing the
calculations of Ref. 5, we have compared quantitatively our
results with those for a true QPC and found that by using the
transparency T of the QPC as a fitting parameter, we can get
a near perfect agreement between the two results �not
shown�. For example, the values of T corresponding to �S
=2, �=4, 6, and 8 are, respectively, T=0.55, 0.35 and 0.23.

In the bottom panels of Fig. 2, the first harmonics are
displayed. We first discuss their general behavior. Both the
cosine and sine harmonics display structures at the MAR
onsets, in the same manner as the dc current. These struc-
tures are more pronounced for lower transparencies �but note
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that for �S=5�, �0=2 some structures are found for onsets
corresponding to n�3�. For voltages beyond the single-
particle current �n=1� onset, the cosine and sine harmonics
eventually decay. The cosine harmonic vanishes at low volt-
age, which is clear for all parameters displayed, except for
the one which corresponds to the highest transmission ��S
=10� because of our numerical limitation for V→0 �i.e., the
vanishing of the cosine harmonics for �S=10 should be vis-
ible for V�0.2�. The sine harmonics saturates at a nonzero,
positive value, for V→0. This is a signature of the fact that
the Josephson effect operates at zero voltage and our non-
equilibrium calculation at V→0 should, in principle, match
with a calculation of the �equilibrium� Josephson current.
The value of the first harmonics of the Josephson current,
computed independently �see Sec. VI�, is shown by a circle
on the y axis for the low-transmission curves. One can see
that there is an excellent agreement between this value and
the extrapolation of the nonequilibrium data for V→0 �quan-
titatively, the agreement is better than 1%�. As in the case of
the dc current, we have compared these results with those
obtained for a QPC in Ref. 5. Using the values of the QPC
transmission obtained with the dc current fits, we find a good
qualitative agreement between the two results for the cos
component, except at large voltage where the results we ob-
tained decrease �in absolute value� much faster. For the sin
component, the shapes of the curves are similar but there is

an overall downward shift of the our results with respect to
the QPC results. We attribute this to the fact that although the
dot level has been positioned away from the superconducting
gap region, the energy-dependent transmission of the dot still
plays a role in the MAR processes and a perfect match with
the QPC limit is not attainable. Note that we also find a
downward shift of the first harmonics of the Josephson cur-
rent with respect to the first harmonics of the Josephson cur-
rent of a real QPC,5 using the transmission values found with
the dc current fits. Finally, the fact that the sine harmonic is
negative for large V �V��� at very large �S ��S=10 or 5,
�0=2� remains a puzzle for us but it seems to be related to
this global downward shift. We have carefully checked that
this is not due to any numerical imprecision or convergence
problem �see Appendix�. The inset on the sine harmonics
plot shows the results at large V for larger values of �S ��S
=10,20,30,40 from bottom to top�. It shows that even with
larger �S the sine harmonics remains negative at large V,
however it tends to decrease in absolute value as �S is in-
creased.

B. Narrow resonance limit

We now shift the discussion to the case where the line
width of the dot is smaller than the superconducting gap,
setting for convenience the dot-level position at �0=0. The
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FIG. 2. �Color online� Quantum point contact limit. dc �top panel�, cosine first harmonic �lower left panel�, and sine first harmonic �lower
right panel� of the MAR current for different escape rates and dot-level position. The circles on the y axis for the sine harmonic show the
value of the first harmonics of the equilibrium Josephson current �computed independently�. The inset in the sine harmonics panel shows
results for �S=10,20,30,40 �bottom to top� for V between 1.0 and 3.0.

NONEQUILIBRIUM SUPERCURRENT THROUGH A QUANTUM… PHYSICAL REVIEW B 80, 184510 �2009�

184510-5



dc current was studied previously for similar parameters.11,12

Here one of our aims is to also include a discussion of the
harmonics of the current which is absent in the literature.

In the top panel of Fig. 3 we show that we are able to
reproduce these results for the dc current. One finds a very
good agreement with existing results: tunnel Hamiltonian ap-
proach to all orders, or, alternatively scattering-theory ap-
proach with the Lorentzian line shape of Eq. �21�. For the dc
current, the striking effect of the presence of a resonance is
the fact that it favors specific Andreev reflection processes.
Indeed, some structure is found at the odd n onsets �recall
that the onsets are located at eV=2� /n�. In the so-called
MAR ladder picture, an electron which transits from one
superconductor to the other gains an energy eV, and the same
is valid for a hole which is reflected back. Because of the
presence of the resonance the trajectories of electrons and
holes will have larger or smaller weights in the dc current: a
resonant trajectory corresponds to the situation where the
electron or hole energy crosses at one point the resonant
level.11,12 For the case of n odd, with the resonant level lo-
cated in the middle of the bias window, a resonant-hole tra-
jectory always occurs after �n−1� /2 reflections. For instance,
at n=3 the first and last electron trajectory are nonresonant
while the hole trajectory is. We have also observed �not
shown here� that shifting the position of the resonant level
leads to an overall shift of the MAR structure. Displacing the
resonance means that the electron trajectories around the
�n
1� /2 reflection will have an enhanced transmission
while the hole resonance weakens.

In the top panel of Fig. 3, the dc current for several values
of the resonance line width are presented. As expected, noth-
ing significant occurs for the dc current with decreasing �S:
the MAR structure gets sharper but on the other hand the dc
current is reduced. For voltages beyond the superconducting
gap, and substantial line widths �S=0.5,1, the behavior
seems to be linear, while for �S=0.1,0.2 we see the begin-
ning of a saturation for the current at large voltages. Indeed,
in the limit eV�� the current is only due to quasiparticle
transfer and it behaves like the current of a resonant level
between two normal leads. The apparent lack of saturation
for �S=0.5,1 only reflects the fact that we are displaying a
limited voltage range in order to focus on the MAR structure.

We turn now to the first harmonics of the current. Both
harmonics decay at voltages beyond the superconducting gap
�quasiparticle-dominated regime, as explained above�. MAR
onsets appear at the odd onsets found in the dc current. How-
ever, the cosine harmonic �Fig. 3 lower left panel� shows a
dip at the n=2 onset. It vanishes at low voltage and displays
large voltage oscillations in this range. While the cosine har-
monic was strictly negative for the QPC limit, here we see
that its sign is reversed, except for the fact that it takes some
negative values at relatively high transparencies ��=1.� near
eV=�.

The sine harmonic �Fig. 3 lower right panel� also has a
reversed sign with respect to the QPC situation for the volt-
age range under study, except perhaps at high voltages �eV
�2�� and high transparencies. As the voltage is lowered, the
sine harmonic decreases in amplitude and seems to saturate
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panel� of the MAR current with dot-level position �0=0 and different escape rates �S.
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at some negative value when the voltage approaches zero.
One would expect that the SFH would approach the station-
ary Josephson current value when V=0 as it is in a point
contact.5,22 However, this would mean in the present case,
that the junction is in the �-junction regime, which is only
possible either under strong Coulomb interaction23,24 or in
spin-active junctions.25,26 In noninteracting nonmagnetic
resonant contacts the Josephson current is always
positive.27,28 This phenomenon can be explained with strong
nonequilibrium population of the Andreev levels in the MAR
regime, which changes their contribution to the current com-
pared to the equilibrium regime. At small bias voltage, the
MAR can be understood in terms of adiabatically moving
Andreev levels and Landau-Zener transitions between the
levels, and between the levels and continuum states.5,22 In
point contacts, the Andreev level positions are strongly
asymmetric with respect to the chemical potential �except at
the full transmission limit�: one level lies below the chemical
potential close to the filled continuum state band while an-
other lies above the chemical potential close to the depleted
band. At small voltage the quasiparticles exchange between
the levels is negligible and the level population is determined
by an exchange with the corresponding continuum band thus
keeping level populations close to equilibrium. In resonant
contacts the situation is different: when �0=0, the levels are
symmetric with respect to the chemical potential, they inter-
act with the continuum bands identically and therefore their
populations are identical �neglecting weak effect of inelastic
relaxation�. This eventually switches off the level contribu-
tion to the Josephon current, revealing current of the con-
tinuum states, which is negative.27 In equilibrium, the Jo-
sephson current is dominated by the Andreev levels and it is
positive. The effect should gradually vanish when the reso-
nant level shifts from the chemical potential because the An-
dreev level positions become asymmetric as in the point con-
tacts. We note that similar discontinuity of SFH at zero
voltage exists also in fully transparent point contact.

The presence of the resonant level thus modifies drasti-
cally the MAR current. It changes the dc current-voltage
characteristics by favoring some structure at odd MAR on-
sets. For the sine and cosine harmonics, the effect is more
dramatic as these harmonics change sign in �almost� the
whole range of the subgap voltage.

C. MAR current in the presence of a normal lead

We now turn to the central point of this study: how does
the gradual coupling to a normal lead affect the MAR cur-
rent? First, the dot level is set at �0=0, and the chemical
potential of the normal lead �N=0, in order to ensure that no
net current flows through this lead. We focus in this section
only on the case of the resonant-level regime �S=0.2 rather
than the point-contact regime �S�2. A reason for this choice
is first the fact that we expect the dot level to be broadened
by the presence of the additional lead and in order to observe
any broadening effect we need to start with a rather sharp
level. Second, we have seen in Sec. V B that the presence of
a narrow resonance gives rise to rather sharp features in the
dc current and its harmonics so it is natural to ask how these

features are modified by the presence of the normal lead.
In the top panel of Fig. 4 the dc current is plotted, for

increasing values of the coupling �N to the normal lead. One
notices that a moderate amount ��N=0.05� of coupling is
sufficiFent to provoke an important deviation with respect to
the case in the absence of coupling: at �N=0.05 the dc cur-
rent displays a substantial peak close to eV=.1� and we are
not able to show the decay of this current for V→0 because
of numerical limitations. In the insets of the panels of Fig. 4,
we compare the case �N=0 and �N=0.02 to show that the
strong departure from the situation with no coupling is in-
deed gradual. Further increasing the coupling to �N=0.2 re-
duces the peak amplitude, and shifts both this peak and the
overall MAR structure slightly to the right. Eventually, at
�N=0.5,1 ,2, the low-voltage peak and the MAR onset struc-
ture at eV=2� /3 are lost, the amplitude of the dc current is
reduced, but the quasiparticle onset is clearly identifiable. By
extrapolation of our data at V→0, we also observe �for �N
=0.2–2� that to a very good accuracy the decay of the dc
current at low voltage is linear. However it is known that in
the coherent regime, this decay at low voltages is exponen-
tial. This constitutes a signature that the gradual coupling of
the dot to the normal lead allows to describe a crossover
from coherent to incoherent MAR. The enhancement of the
low-voltage current for small �N��S remains a puzzle.

A similar anomaly occurs at low voltages for the cosine
harmonic when �N is switched on. From the left panel of Fig.
4 and its inset, we see a sharp negative value dip at small
voltage and small �N, which becomes more shallow and
moves toward larger voltages when the coupling to the nor-
mal probe increases. For �N=2, the amplitude of the cosine
harmonic is strongly suppressed compared to its value in the
absence of normal lead coupling. For �N=0.2–2, the ex-
trapolation to low voltage of our results show a linear behav-
ior in voltage. The presence of the normal lead seems to
restore some of the features found for the QPC regime �nega-
tive sign� because the resonance is broadened. However, this
broadening also erases most of the information on the MAR
onsets because phase coherence is gradually destroyed. Also,
note that some dip is formed at eV=� although no noticeable
structure was found in the dc current.

For the sine harmonic, we saw in Sec. V B for the reso-
nant case �with �N=0� that the current seemed to saturate at
negative values for V→0. In the presence of coupling to the
normal lead however �Fig. 4, lower right panel�, this is no
longer true: upon reduction in the voltage, this harmonic
switches from negative to positive. The coupling to the nor-
mal lead thus restore the equilibrium population of the An-
dreev level for small V. In Sec. VI, we will show that the
extrapolation of these curves at V=0 truly corresponds to the
Josephson current. In contrast to the cosine harmonic, sig-
nificant MAR structures are observed up to �N=0.5 but large
�N eventually sets the sine harmonic to zero.

In summary, the normal lead acts like a dephasing probe,
or, equivalently it is subject to the reverse proximity effect
which destroys superconducting correlations on the dot.
First, the coupling to the normal lead tends of course to
smoothen the current features but also it brings a reduction in
the supercurrent harmonics because of a lack of phase coher-
ence. The signatures of MAR are due to �many� round trips
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of electrons and holes between the superconducting leads but
if such carriers are brought in contact with a reservoir, only
the dc current survives, while the ac current vanishes. For
large coupling to the normal reservoir, the dc current re-
sembles that of two normal-metal-superconductor junctions
in series and the linear-voltage dependence of the dc current
is an illustration of this fact. Also, note that the current re-
duction in the presence of a dephasing lead for a single
normal-metal-superconductor junction was discussed in Ref.
29. Any resonant feature associated with such a junction gets
broadened by the presence of the dephasing probe and this
leads to an effective reduction in the conductance but also of
the Fano factor. Our microscopic approach of the dc super-
current and its first harmonics allows to describe the full
crossover from coherent transport to incoherent transport.

VI. JOSEPHSON CURRENT

In this section, we compute to Josephson current for the
setup including the normal lead. This allow us to check that
the nonequilibrium current extrapolated at V=0 corresponds
to the Josephson current. This check was so far performed
for a point contact only.5 Here we extend it to the case of a
resonant level, in the presence of the normal lead. Note that
this geometry �Josephson junction with a normal lead con-
nected to the central region� was studied previously30 in the
context of scattering theory, to probe how the Josephson cur-

rent is affected by current injection from the normal lead.
Here we assume no current injection, the normal lead plays a
passive role.

In order to compute the Josephson current, we use the
imaginary-time �Matsubara� path-integral approach to calcu-
late the partition function Z and then the Josephson current.
The Hamiltonian is the same as in Sec. II, except that a
constant phase difference is imposed between the supercon-
ductors. The lead degrees of freedom are integrated out in
the same manner as before. This yields the partition function
�� is a Matsubara fermionic frequency�

Z =� Dd̄Dde−S, S = �−1�
�

d̄�L�d� �22�

with an effective �Euclidean� Lagrangian �matrix in Nambu
space� of the dot

L� = − i��1 + ��� + �0�z + ��� cos
�

2
�x − i sign ��N,

�� =
2�S

��2 + �2
, �23�

where �0 is the dot level measured from the chemical poten-
tial of the superconducting leads, �S and �N are the tunnel
widths of the dot due to its coupling to the left/right super-
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conducting lead and the normal electrode, respectively, � is
the superconducting phase difference.

With these notations, the partition function reduces to a
product of 2�2 determinants

Z = �
�n

det L�n
�24�

with �n= �2n+1�� /� and the Josephson current is obtained
from its logarithmic derivative

J��� = −
2

�

�

��
ln Z = −

�2

�
�
�n

�n
2

det L�n

sin � . �25�

Note that this expression is similar to that found in Ref.
25 except that the escape rate �N now appears in the deter-
minant. The sum is computed numerically and the sine har-
monic of J��� is extracted. At the same time, we extrapolate
the sine harmonic of the nonequilibrium current �Sec. V C�
to zero voltage and we compare the two.

Figure 5 shows the comparison, for �S=0.2 �as in Sec.
V C�. The extrapolation of the out-of-equilibrium case has
been obtained by computing the sine harmonics at V=0.1
and V=0.05. We see that the agreement between the sine
harmonic of the Josephson current and the extrapolated
MAR harmonics is very good �there is no adjustable param-
eter�, for values of �N between 0.1 and 2.0. Note that the
precision of the extrapolation increases when �N increases
�as Isin becomes flatter near V=0 when �N is larger, see Fig.
4�, which explains that the agreement is not totally perfect
for the smaller values of �N. Going to values of �N smaller
than 0.1 �not shown� leads to some larger discrepancy be-
tween the two types of calculations because of the presence
of resonant transmission at �0 with unit transmission. The
inset of Fig. 5 shows the current-phase relationship of the
Josephson current. For large �N the current-phase relation-
ship becomes essentially sinusoidal as for a tunnel junction.
The presence of the normal lead randomizes the phase of
electrons and holes, and it is equivalent to reducing the trans-
mission probability: we have computed the current-phase re-

lationship at �N=0 while displacing the dot level �0� �0,4�
to reduce the transparency of the junction �not shown�, and
found quantitative agreement between this situation and that
where the normal lead is present.

VII. CONCLUSION

We have considered nonequilibrium transport through a
quantum dot sandwiched between superconducting leads in
the subgap regime. The dc and the first harmonics of the
current at the Josephson frequency were computed, both in
the presence and in the absence of a normal lead connected
to the dot.

When the dot level is shifted from the middle of the bias-
voltage window and the tunneling rates to the superconduct-
ing leads are large compared to the gap, the current re-
sembles closely that of a superconducting QPC. This is
explicit for the dc current, but some difference remain for the
harmonics. Below the quasiparticle onset, the cosine har-
monic clearly identifies with the QPC case but it deviates
from the latter at higher voltages. The sine harmonic shows
qualitative agreement with the QPC situation except that the
overall signal is shifted downwards. This, for instance, is
responsible for a sign change in the sine harmonic at large
voltage while such change is not observed a for a QPC. This
is attributed to the fact that the resonance features of the
junction cannot be avoided for the parameter chosen and
they affect more the current harmonics than the dc current.

We have also reproduced the dc current of a resonant
level in the absence of interactions and the harmonics of the
current have been obtained. For this situation, we recover the
known fact that only the odd MAR processes survive the dc
current. These onsets are also present for the harmonics but
the more dramatic effect is that the sign of the current har-
monics is reversed with respect to the QPC case.

In the presence a coupling to a normal lead, the Keldysh
formalism can be extended by the addition of a self-energy in
the dot Green’s function with appropriate Fermi/tunneling
phase factors requiring that no current flows in the dot. So
far most of the works on MAR have nevertheless focused on
either on the coherent or the incoherent MAR and little has
been said about the gradual change from one regime to the
other �see although Ref. 15�. This has been one of the main
focus of this study. The gradual coupling to the normal lead
are at first not dramatic for the dc current. The coupling to
the lead first smoothes out the MAR features but as it is
increased a linear �rather than exponential� dependence of
the current is found at low voltages and only the quasiparti-
cle onset survives. This dc current-voltage characteristics
corresponds to two normal-metal-superconductor junctions
in series with a total lack of phase coherence between the
two. The harmonics do display a rather dramatic behavior:
upon increasing the coupling to the normal lead from zero,
the amplitude of both harmonics rises sharply, and it satu-
rates when the tunneling rate to the normal and the supercon-
ducting leads are comparable. The harmonics retain some
structure at the predicted onsets for larger coupling than the
dc harmonics.

An important check of this work was to compare the first
harmonic of the Josephson current with the extrapolated
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FIG. 5. �Color online� Comparison between the first sine har-
monic of the Josephson current J��� �full curve� and the extrapola-
tion at zero voltage of the first sine harmonic of the MAR current
�circles�. Inset: current-phase relationship of the Josephson current
for �N=0,0.2,0.5,1.0,2.0 �from larger to smaller amplitude�. For
both plots the parameters are �S=0.2 and �0=0.
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value of the MAR sine harmonic at zero voltage. We found
that in the presence of the normal lead, the agreement is
excellent, but in the absence of so-called dephasing ��N=0�,
the resonant features in the MAR process render the com-
parison difficult.

This work could be extended in several directions, some
in a straightforward manner: the Keldysh formulation which
was adopted here is quite flexible and can be adapted to treat
multiterminal devices, or alternatively multilevel dots �which
are likely to give rise to several resonances in the subgap
region� or more complicated structures described by tight-
binding Hamiltonians.

Other perspectives of this study concern the inclusion of
interactions. Few work include so far electronic correlations
on the dot in the calculation of the dc current.31,32 The ap-
proach chosen in Ref. 31 requires a minimal Coulomb inter-
action parameter in order to trigger a departure from the
noninteracting regime. There, interactions are shown to re-
duce drastically the dc current, to shift and to damp out the
structure found at the MAR onsets. The approach of Ref. 32
is complementary as it treats weak interactions in a system-
atic perturbation-theory approach: there, interactions are
shown to lead to a small enhancement of the dc current.

At the same time, electron-phonon interactions have been
included perturbatively20 in the calculation of the dc MAR
current. While inelastic scattering can provide a source of
dephasing, the choice of the low-temperature regime and the
weak electron-phonon coupling assumption resulted there in
a current-voltage characteristics which is only weakly af-
fected by the vibrations: no dissipation associated with these
vibrations was noticed. At higher temperatures and stronger
phonon coupling, phonon scattering could provide a definite
source of decoherence.

In some sense, the simple model presented here for the
inclusion of decoherence could serve as a point of compari-
son for a more complete study of a dot strongly coupled to
phonons out of equilibrium.
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APPENDIX: NUMERICAL IMPLEMENTATION

The numerical implementation follows directly from Eqs.
�16�–�19�. The matrix inversion giving the dressed Green’s
function �Eq. �19�� can be done once the sum �n,m over the
frequency domains has been truncated. We have chosen a
constant width Ec for each domain, defining a V-dependent
nmax=Ec /eV. It is clear that the smallest values of V are the
most expensive to obtain numerically, which explains why
our results are limited to eV /��0.1. We have taken great
care to check that our results do not suffer from convergence
problem due to the truncation. In practice, we have chosen
Ec=16�, apart from some special cases in the QPC limit
where larger Ec were needed �see the discussion in the QPC
section�. Note that for most of the curves shown in the fig-
ures, convergence could be obtained with a much lower
value of Ec. Once the dressed Green’s function Gnm is com-
puted, the current is obtained by the numerical integration
over the fundamental domain �−V /2,V /2� given in Eq. �16�.

We have used the following Green’s function sum
rules20,33 as independent checks of our method:

Tr	�y�zG�t,t�
 = 0, �A1�

Tr	− �yG�t,t�
 = 2, �A2�

where �z acts in Nambu space, �y acts in Keldysh space, and
the trace is taken on both Nambu and Keldysh space.

We found that the first sum rule was always satisfied to
large precision within our truncation scheme. The second
sum rule is only approximatively satisfied and gives useful
information on the quality of the truncation. Typically, it has
a value larger than 1.9 for most of the results shown but can
be somewhat lower when �S increases. However, we have
found that the computed current does not depend critically
on the precise validation of this sum rule �e.g., in the very
large �S limit, correct value of the current can be obtained
even with this sum rule giving values as low as 1.6�.
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