PRL 98, 073002 (2007)

PHYSICAL REVIEW LETTERS

week ending
16 FEBRUARY 2007

Directed Motion for Delta-Kicked Atoms with Broken Symmetries:
Comparison between Theory and Experiment
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We report an experimental investigation of momentum diffusion in the §-function kicked rotor where
time symmetry is broken by a two-period kicking cycle and spatial symmetry by an alternating linear
potential. We exploit this, and a technique involving a moving optical potential, to create an asymmetry in
the momentum diffusion that is due to the classical chaotic diffusion. This represents a realization of a

type of Hamiltonian quantum ratchet.
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The ratchet effect, in other words the rectification of
fluctuations in a system without net bias, was first proposed
by Feynmann and has since formed the subject of numer-
ous studies [1,2]. Recently, there has been further interest
and investigations of Hamiltonian chaotic ratchets, where
the extrinsic noise is replaced by deterministic chaos.
Hamiltonian systems offer the additional possibility of a
fully quantum ratchet, where some form of directed trans-
port appears in the context of coherent wave dynamics;
other types of ratchets in dissipative and noisy quantum
systems, corresponding to coherence times which are rela-
tively short, have also been proposed [3]. Previous studies
of chaotic Hamiltonian ratchets [4] indicated that directed
motion arises if certain symmetries are broken, but persists
only in the presence of mixed phase-space dynamics (e.g.,
a bounded classical phase space with a mixture of regular
tori and chaotic regions). The quantitative analysis of the
directed current then relies on the details of the classical
phase space [2].

In [5,6] an alternative theoretical proposal for chaotic
but asymmetric momentum diffusion, aimed at a realiza-
tion with cold atoms in far-detuned pulsed optical lattices,
was presented. Experiments with cold atoms in near-
detuned, driven optical lattices had already been shown
to provide realizations of classical Brownian and dissipa-
tive ratchets [7]. Far-detuned lattices minimize decoher-
ence effects; hence, they provided the clearest demon-
strations of Hamiltonian quantum chaotic dynamics [8].
In particular, cold atoms in 6-kicked optical lattices can
realize the dynamics of the chaotic quantum kicked rotor
and show the effect of dynamical localization (DL): the
momentum diffusion of the cold atoms follows approxi-
mately the classical chaotic rate, (p*>) = Dt, up to a time
scale * ~ D/ k2, after which the diffusion stops and the
quantum momentum probability distribution N(p) local-
izes, with a variance (p2)!/2 = L ~ D/h. DL is a quantum
coherent effect due to destructive wave interference [9].

The directed chaotic transport mechanism of [5,6] is
generic in character: a quantum kicked rotor with broken
time and space symmetry diffuses asymmetrically for a
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finite time scale 7;. An ensemble of classical particles
initially with (p(r = 0)) = 0 will end up with nonzero
current {(p(t = tz)) # 0. However, in the classical case,

the kinetic energy and hence the momentum width L ~

V{(p?) = /Dt grow without limit as  — 0. For a ratchet in
an unbounded phase space (such as a chaotic system), it is
thus most useful to consider the behavior of the relative
asymmetry I5(t) = {p(¢))/L. Hence, for the classical dy-
namics, Iz(t — o) — 0. In contrast, for the quantum dy-
namics, a new and modified form of localization,
asymmetric dynamical localization (ADL), was found in
[5,6] to arrest the diffusion and “freeze” the asymmetry.
Hence the relative asymmetry Ig(t — o0) — {p(tg))/

Dr*; i.e., it tends to a constant value. This may be
considered a type of quantum ratchet. Other theoretical
proposals for Hamiltonian regular or chaotic directed mo-
tion have subsequently also been published by several
groups [10].

In this Letter we report experimental realizations of the
chaotic kicked rotor with the broken time and space sym-
metry proposed in [5,6], which permit quantitative com-
parisons with the analytical results for the “ratchet time”
tg and the periodic ‘“‘current reversals’ expected from the
theoretical model. We present an accurate formula for the
classical ratchet current (a simplified formula was pre-
sented in [11]). Good agreement is obtained between the-
ory and experiment. To our knowledge, this experiment
remains the only realization of directed transport in a
Hamiltonian quantum system.

An optical lattice formed by two counterpropagating
laser beams may be used to trap laser-cooled atoms in a
one-dimensional periodic potential. Here, an accelerating
optical lattice was sometimes also used to apply an addi-
tional “rocking” linear potential. In a frame with accel-
eration a, the Hamiltonian has an additional inertial term
[12]:

2
H= 2p_M + Vycos(2k; x) = Max, (1)

where M is the mass of the atom, k;, = 27/ the laser
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wave vector, and V|, the potential depth. If the optical
lattice is applied as a series of short (8-function) pulses
with period T, then we may, as for the usual 6-kicked rotor,
write the Hamiltonian including the rocking potential in
dimensionless form:

2
H = % + S[K cos(¢) + A(=1)'$18(r = n),  (2)

where K is the stochasticity parameter which describes the
strength of the kick. Here p = 2Tk, p/M is a scaled
momentum, ¢ = 2k, x a scaled position, 7 = t/T a scaled
time, and H = 8wxT*H /h the scaled Hamiltonian, and
A = 2k, aT? is the effective strength of the linear potential.
The commutation relation [¢, p] = i8wxT gives the
scaled unit of system action or effective Planck constant
heir = 8wiT (wp the atomic recoil frequency) which may
be controlled through the period of the pulses.

For a d-kicked rotor, to lowest order, the momentum
diffusion rate is the uncorrelated ‘‘random walk’ rate D =
K?/2. Corrections to the random walk rate arise from
short-range correlations between kicks, reflecting a short-
term “memory’’ in the system [13]. The leading nonzero
correction is C(2) = K?J,(K), a 2-kick correlation (simply
put, it implies a memory effect between kick n and kick
n + 2). It persists deep into the chaotic limit since it decays
slowly: C(2)/Dy ~ K~'/2, so remains important even if,
say, K = 50. In [6] it was shown that for the classical
6-kicked rotor (with A # 0) where time symmetry is bro-
ken by a kicking cycle of periods T(1 + b): T(1 — b)
(where b < 1), then, for short times, this 2-kick correla-
tion takes a novel, quite different form. The net effect is
that even pure chaotic diffusion can produce an asymmetry
in the momentum distribution N(p).

We consider now an ensemble of particles with initial
(¢t = 0) momentum distribution strongly peaked about a
value p;, in the (nonaccelerated) lattice frame, i.e.,
Ny(p) = 8(p — p.). Then, here we extend the work in
[6]: using the method of [13], to obtain an explicit formula
for the asymmetry I(¢) = ((p — p.)) at arbitrary times:

1(1) = Iy sin[(1 — B)A — 2bp, JF(0), 3)

where the maximum current is I, = —1_7’(/1((2%‘;3
0

{Jo(2KDb)J,[(1 — b)K] + J5[(1 + b)K]} and the time de-
pendence is given by F where 1 = F(r) = 0:

F(t) = 1 — Jy(2Kb)* 2. 4)

For ¢ small, F(¢) ~ ¢ grows linearly with time, but for ¢ >
tr = 1/(Kb)?, it saturates, i.e., F(f) — 1. Hence t is the
classical time scale for the current to develop; if dynamical
localization occurs too quickly, i.e., * < fz, no appre-
ciable quantum effect is observed. Conversely, if * >>
tg, the asymmetry is negligible compared with L [the
asymptotic variance of N(p)]. Optimally, we require
"~ tg.

For a ratchet effect, as usually understood, a distribution
initially with zero average momentum {p) = 0 and p; =
0, i.e., in the rest frame of a potential (giving no net bias),
evolves to an asymptotic distribution with (p) = 0. In the
present experiment, this requires A # 0: for example, for
A=m/2 and p=0, if at r =0, (p) =0, we obtain
I(t > t*) = I,. However, in order to fully investigate the
underlying mechanism, here we also investigated exten-
sively starting conditions with nonzero initial momentum,
ie, p # 0.

In our experiment we use laser-cooled cesium atoms in a
far-off resonant pulsed optical lattice. The lattice is formed
by two horizontal counterpropagating laser beams, 1/e
radius (0.95 = 0.05 mm), with parallel linear polarizations
which produces a spatial variation of the ac Stark shift
proportional to the local intensity, and which hence is
sinusoidal. Further details of the setup are found in [14].

To investigate starting conditions with nonzero mean
momentum we have used a moving optical lattice formed
by laser beams with a controlled frequency difference to
make the kicking potential, so that atoms which are sta-
tionary in the laboratory frame have a momentum p; in the
rest frame of the optical potential. This is achieved by
driving two acousto-optic modulators at frequencies that
differ by 2A f, such that the atomic momentum in the rest
frame of lattice is p; = mA2A fhe/4arh. Using this tech-
nique, p; may be varied over a large range in order to
sample several periods of the oscillation of the asymmetric
diffusion without the beams becoming significantly mis-
aligned from the cloud of cold atoms.

For these experiments the period of the kicks is 7 =
9.47 ws and pulses are square with duration typically 7, =
296 ns (t,/T = 1/32 = b), which is sufficient for there to
be no substantial effects on the diffusion constant due to
the finite temporal width of the kicks in the region of p; =
0 [15] (for larger p;, these effects become important and
start to affect the data). An investigation of the effects on
the momentum diffusion arising the finite width of the
kicks was presented in [14]. We were able to investigate
values of the parameters K = 2 — 5 (with order 10% error
arising mainly from the measurement of the beam inten-
sity), her = 1, and values of b = 1/8 — 1/32. Values of K
close to the first maximum of the Bessel function J,(K)
may be expected to produce the largest maximal currents /,
and hence the clearest experimental signature. For values
of K = 2-5 there are still stable islands in the classical
phase space; nevertheless, these are sufficiently small: for
b # 0, good quantitative agreement with calculated cha-
otic diffusive rates is obtained for lower K than for the
standard map [6].

Finally, for experiments with A # 0, the linear rocking
term of alternating sign was included by accelerating the
optical lattice [16]. This is done by modulating the fre-
quency of one of the laser beams in a linear manner by an
amount *4§f in the time of the kick period 7. The dimen-
sionless potential gradient A is related to the magnitude
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FIG. 1. Demonstration of a type of quantum ‘‘ratchet effect.”
The graph shows the final momentum asymmetry (p) vs ® =
(2pb — A)/7 for K=2.6, b=1/16, and hy = 1. Solid
squares are data for p; = 0, open squares p; = 8. For the
maximum at & = 0.5, the cloud is initially at rest relative to the
optical lattice (i.e., p; = 0) and has no asymmetry; after 120
kicks, there is a constant ‘“‘ratchet current” {(p) = 4.

of the frequency modulation (acceleration of the lattice)
by A =2mt,6f for finite square pulses of width z,.
Accelerating the potential thus provides a simple way of
controlling the magnitude of A and hence controlling the
phase shift of the momentum-dependent diffusion constant
in order to make it locally asymmetric around zero mo-
mentum. As the maximum frequency modulation ampli-
tude allowed by the radio-frequency synthesizers in our
apparatus was *1.25 MHz, this limits the range of A
achievable to =37/4. In order to observe one complete
oscillation of the momentum diffusion constant, for some
experiments an additional constant frequency offset was
introduced between the laser beams such that in the rest
frame of the lattice the mean atomic momentum was p; =
8.

Figure 1 shows the asymmetry {p) (combining p; = 0
and p; = 87) plotted as a function of ® = 2p;b —
A)/7 = [2p. b — A(1 — b)]/7 suggested by Eq. (3). In
particular, the data at & = 0.5, corresponding to p; = 0,
hence represent a ratchet current /, = 4 obtained in the rest
frame of the potential. The behavior is in good agreement
with quantum simulations carried out here, which yielded
I(t = ") = I sin® =~ 3.8 sin®. The corresponding classi-
cal formula from Eq. (3) yields a much larger current
I, = 7.5. For these values of K and b, the result is close
to the simplified classical current formula I(r — o0) =
K? # sin® obtained in [11].

In Fig. 2 the dependence on {(p) on b is tested more
extensively for A = 0 and is seen to oscillate with a period
7/b and is consistent with [, « 1/b, in agreement with
theory. However, in order to test experimentally the time
dependence of the classical correlations [i.e., the behavior
of F(z) above], further experiments for smaller 7 = 1/4,
for which there is closer agreement for classical and quan-
tal diffusion (i.e., #* = tg), were obtained. Hence in Fig. 3
the growth in time of the momentum asymmetry {(p) is
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FIG. 2. Behavior as a function of b and initial momentum p; .
Momentum asymmetry vs starting momentum p; in the lattice
frame for K = 3.3, h = 1, and b = 1/32 (solid squares) and
b = 1/16 (open triangles). The asymmetry is consistent with the
theoretical prediction of Eq. (3), i.e., {p) « I;sin2p;b and
(approximately) I o« 1/b.

shown for the quantal, classical [i.e., Eq. (3)], and experi-
mental values and for K = 2.1, h = 1/4, and A = 0. The
agreement between all three is quite good. Strikingly, there
is, for these parameters, near-perfect agreement between
the quantum calculation and the classical formula since
t* ~ m?/(Kb)?> ~ tg. The agreement with experiment is
reasonable too, but the experimental curves experience
slight distortion due to the momentum boundary due to
the finite duration of the pulses [14]. While the relatively
small value of i = 1/4 considered yields excellent
classical-quantal agreement, it means that the momentum
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FIG. 3. Time dependence of the momentum asymmetry for
K =21, hg = 1/4, and b = 1/8 (solid squares), for experi-
mental, classical, and quantal results in a regime where t* = 5.
Good agreement for all three is shown. The results confirm the
validity of the time dependence of Eq. (3).
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FIG. 4. Experimental and quantal momentum distributions
after 240 kicks, showing that quantum coherence is sufficiently
maintained that asymmetric dynamical localization persists for
long times. This shows that the quantum ratchet effect persists
asymptotically. Both (b) and (c) show a large relative asymmetry
(p)/L. The corresponding classical momentum is not shown:
while (p) is similar for the quantum and classical results, the
width (hence the kinetic energy) of the classical distribution
grows without limit, i.e., L ~ Dt — . The relative asymme-
try (p)/L — 0 asymptotically and the asymmetry becomes less
apparent at long times.

boundary is rather closer in, at p = 167 (the theoretical
values, with perfect & kicks, are obviously unaffected).
Figure 4 shows the long time behavior but otherwise the
same parameters as Fig. 3. The calculated quantal and
experimental momentum distributions preserved the fro-
zen ADL distribution [in practice decoherent processes
will lead to slow loss of ADL in the experimental N(p)],
but Fig. 4 shows that the qualitative behavior remains after
120 kick pairs. We note that the method for evaluation of
the experimental N(p) will tend to somewhat overestimate
(p); conversely, the theoretical results are for an initial
(Gaussian) distribution of momentum width o, = 1; for
larger initial momentum widths (and for the experiment
o, = 4), there will be a damping of the current [, —
Iyexp(—402b?). Although the near exact quantitative
agreement at ¢t — oo is somewhat fortuitous, quantal and
experiment are in quite good agreement. The width of the
classical distribution, in contrast, continues to grow with-

out limit for chaotic and unbounded dynamics, i.e., L ~

V{p?*) — o0; hence the classical relative asymmetry (p)/L
tends to zero at long times.

In summary, we have demonstrated experimentally di-
rected transport which relies on the persistence of coherent,
unitary quantum evolution over the full time scale of the
experiment. This represents a type of Hamiltonian quan-
tum ratchet.
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