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We study theoretically the impact of an applied DC-current on a mesoscopic chiral p-wave superconductor.
Performing quasi-classical calculations on a two-dimensional system, with an external magnetic flux to generate a DC
current, we show that the current can trigger a transition to a state with a domain wall between regions of different
chiralities. The system shows an hysteretic behavior, as different domain wall configurations are possible for a given
current. This domain wall creation mechanism can give new insights on recent experiments observing anomalous current
variations in Sr2RuO4 junctions.

1. Introduction

Chiral superconductors have been attracting interest by
their striking features originating from time-reversal symme-
try breaking and finite angular momentum of Cooper pairs.1)

Sr2RuO4, which is thought to be a chiral triplet p-wave
superconductor, is one of the best-studied systems.2–4) The
chiral superconducting state, which is topologically non-
trivial, exhibits topologically-protected chiral edge channels
at the surfaces,5,6) and has potential application to quantum
computing using Majorana fermions in vortices.7–10)

A number of experiments have been performed to
characterize the superconductivity in Sr2RuO4. The triplet
nature of Sr2RuO4 has been observed by the Knight shift
measurement,11) while spontaneous time-reversal symmetry
breaking has been detected by muon spin resonance12) and
the Kerr effect.13) Edge currents predicted for chiral p-wave
pairing symmetry, however, have not been observed in
scanning SQUID experiments,14,15) which has stimulated
several theoretical studies proposing other symmetries for
boundary-induced16) or bulk17–19) superconductivity, or
considering the multi-band effect on chiral p-wave super-
conductivity.20–28)

Josephson junction experiments play an important role
to determine pairing symmetry. SQUID experiments for
Sr2RuO4 have observed anomalous dynamical shift of the
diffraction patterns.29,30) In addition, anomalous current-
driven switching has been reported in current–voltage (I–V)
characteristics of Josephson junctions.31–34) These anomalies
have been attributed to domain wall motion, which is
compatible with chiral pairing symmetry, and indicate a
pathway to novel devices which control the inertial degree of
freedom in superconducting states. While theoretical studies
of domain wall formation in Sr2RuO4 based on energetic
arguments do exist,35) details on how domain wall motion is
driven by applied currents have not been clarified so far.

The goal of this work is to study the impact of a DC-
current bias on a p-wave superconductor with a finite width
(see the left panel of Fig. 1). We show that above a given
threshold, a DC-current can create a domain wall separating
two regions of different chiralities. Because of this domain
wall creation, the system shows an hysteretic behavior: for a
given DC-current, it can be in different states depending on
its history. To keep the calculations as simple as possible, we
consider the system at equilibrium, with the DC current
created by the application of an external vector potential. The

results we obtain are relevant to understand experimental
results of I–V curves measured in current-biased weak link
experiments.31–33) Our goal is to show that in addition to the
domain wall motion, domain wall creation or destruction is
also an essential mechanism of these systems when a DC-
current is applied.

We employ the quasi-classical theory to evaluate the
spatial profile of the pair potentials and of the current.36,37) By
assuming that the superconducting gap is much smaller than
the Fermi energy, this method can calculate properties of
superconductors with arbitrary pairing symmetries, and has
been applied to various phenomena in chiral p-wave
superconductors, such as spontaneous chiral edge channels
and domain walls,5,6) local densities of states in mesoscale
superconducting islands,38) and paramagnetism.39) In this
paper, we follow the algorithm of Ref. 38.

This paper is organized as follows. In Sect. 2, we detail the
model (a p-wave chiral superconductor strip threaded by an
external flux), and give the essential steps of the quasi-
classical theory used to make the calculations. Section 3 is

Fig. 1. (Color online) Left: a schematic view of the system. A slab of p-
wave superconductor, with a width L along the x-direction, and very large
dimensions along the y- and z-direction. By applying an external vector
potential, we induce a total current Jtot along the y-direction, and the behavior
of the system is essentially two-dimensional. Right: a typical classical
trajectory along the 2d x–y system, with specular reflection on both sides,
which is used in the semi-classical calculations.
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devoted to the exposition and to the discussion of the results.
In Sect. 3.1, we show the results that we obtain for the pair
potential components and the current density in the weak
screening case. These results serve as a model to understand
the results for the strong screening case, given in Sect. 3.2,
which are more complex but also directly relevant for
experiments. In Sect. 3.3 that we discuss their relevance to
existing experimental works. Finally, Sect. 4 contains the
conclusions and the perspectives of this work, and Appendix
contains details about the numerical calculations.

2. Method

2.1 Model
We consider a p-wave superconductor in the shape of slab

with a finite width L (along which we place the x-axis), and
with very large dimensions along the y- and z-directions
(much larger than any significant length in the system), see
Fig. 1. As we will study the impact of an applied current
along the y-axis, the system is invariant by translation along
the z-direction, and we can simply perform 2d calculations in
the x–y plane.

To apply the current, we consider that on a large scale the
system forms a loop (with a radius R ! 1 in the y–z plane),
and we apply through this loop an external magnetic flux
�ext, which can be described by a potential vector Aext ¼
ð0; Ay;ext; 0Þ in the absence of the screening current, where
Ay;ext ¼ �ext=R is a constant parameter. This external
magnetic flux induces a superconducting current along the
y-direction, whose properties can be examined in a thermal
equilibrium state. Although the I–V characteristics of real
superconducting junctions (or superconducting weak links)
are more complex because the system is driven into a non-
equilibrium state for a finite voltage bias, we expect that
this simple setup is sufficient to explain the essence of the
domain-wall transition due to an external current, as observed
in the experimental I–V characteristics.31,33)

2.2 Quasiclassical theory
For calculation of the order parameters and the current, we

employ the quasi-classical formalism, using the Eilenberger
equation. The principle of the methods can be found in the
literature,5,38) we give here only the essential steps, stressing
the original points of the present work.

The quasi-classical Green function ĝðkF; r; !nÞ describing
the superconductor is defined as:

ĝðkF; r; !nÞ ¼
g f

�~f �g

 !
; ð1Þ

where the kF dependence represents the symmetry of the
order parameter, r is the coordinate dependence, !n ¼
�Tð2n þ 1Þ is a Matsubara frequency, and the 2 � 2 matrix
structure is in the Nambu space. The quasi-classical Green
function is normalized as:

ĝ2 ¼ 1̂: ð2Þ
The Eilenberger equation is:

� ivF � rĝ ¼ ½ĥ; ĝ�; ð3Þ

ĥ ¼ i!n � evF �AðrÞ ��ðkF; rÞ
�ðkF; rÞ� �i!n þ evF �AðrÞ

 !
; ð4Þ

where �ðkF; rÞ is pairing potential, and AðrÞ is the vector
potential.

A standard method to solve the Eilenberger equation,
taking into account the Green function normalization, is to
use the Ricatti parametrization.36) We write ĝ in terms of the
Ricatti amplitudes a and b (we now omit the r, kF and !n

dependence for brevity), with:

ĝ ¼ �1
1 þ ab

1 � ab 2ia

�2ib �ð1 � abÞ

 !
: ð5Þ

The amplitudes a and b obey the Ricatti equations:

vF � ra ¼ �2ð!n � ievF �AÞa � ��a2 þ�; ð6Þ
vF � rb ¼ þ2ð!n � ievF �AÞb þ � b2 ���: ð7Þ

As the derivate appears only in vF � r, the Ricatti equations
can be written as 1d equations along the semi-classical
trajectories (given by the direction of vF).

The right panel of Fig. 1 shows a typical classical
trajectory: a straight line which is specularly reflected on
both sides of the sample. At the position of the reflection rn,
the y component of the wave-vector kF is conserved, while
the x component is reversed at each reflection. The Ricatti
amplitude then obey the boundary conditions:

aðrn;kFjoutÞ ¼ aðrn;kFjinÞ; ð8Þ
bðrn;kFjoutÞ ¼ bðrn;kFjinÞ; ð9Þ

where kFjin and kFjout are the incoming and outgoing wave-
vectors at the reflection point. Using the translational
invariance along the y-direction, all quantities can be
expressed as function of x only. At a given point x, a
trajectory is fully parametrized by the angle �k between the
wavevector at this point and the x-axis.

2.3 Expression of the physical quantities
The physical quantities are expressed in terms of the Green

function component f, ~f, and g, which are given in terms of
the Ricatti amplitudes in Eq. (5). For superconductors with
p-wave chiral symmetry, the pair potential �ðkF; rÞ ¼
�x cosð�kÞ þ i�y sinð�kÞ is determined by a self-consistent
gap equation

�xðxÞ
�yðxÞ

 !
¼ TVp

X
0<!n<!C

Z �

0

d�k
2 cos �k

2 sin �k

 !

� ð fð�k; !n; xÞ þ ~f
�ð�k; !n; xÞÞ; ð10Þ

ðVpÞ�1 ¼ log
T

TC

� �
þ

X
0<n<!C=ð2�T Þ

1

n � 1=2
; ð11Þ

where TC is the superconducting transition temperature and
!C is a cutoff energy.5) The current density along the y-
direction is:

JyðxÞ ¼ �2evFNð0ÞT
X

0<!n<!C

Z �=2

0

d�k sin �k

� Imðgð�k; !n; xÞ þ gð� � �k; !n; xÞÞ; ð12Þ
where Nð0Þ is the normal density of states per unit volume at
the Fermi energy.

The magnetic field and the vector potential are obtained
from integration of the current density using the Maxwell
equation as
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dBz

dx
ðxÞ ¼ ��JyðxÞ; ð13Þ

dAy

dx
ðxÞ ¼ BzðxÞ; ð14Þ

under the boundary conditions, Bzð0Þ ¼ ð�=2ÞJtot, BzðLÞ ¼
�ð�=2ÞJtot and AyðL=2Þ ¼ Ay;ext, where Jtot ¼

R
L
0
dx JyðxÞ is

the total current. These boundary conditions are a due to the
infinite slab geometry: a simple application of the Ampere
law shows that the magnetic field outside the slab is constant,
with a value directly proportional to the total current in the
sample, and opposite signs on both sides. Using Eqs. (10)–
(14), one can iteratively find a solution of the problem for a
given value of the external vector potential Ay;ext. Starting
from an initial guess for the values of the gaps �xðxÞ, �yðxÞ
and the current density JyðxÞ, one computes the value of the
vector potential A ¼ ð0; AyðxÞÞ, and then solve the Ricatti
equations [Eqs. (6) and (7)] to obtain new values for �xðxÞ,
�yðxÞ, and JyðxÞ.
3. Results

In this paper, we always consider a wide supercon-
ductor strip (L � �0), taking L ¼ 25�0, where �0 ¼ ħvF=
ð��0Þ is the superconducting coherence length [with �0 �
�bulkðT ¼ 0Þ].

We study two situations. First, in Sect. 3.1, the case of
�L ¼ L ¼ 25�0 for which the effect of the screening current
is not significant. Here, �L ¼ ð�nse2=mÞ�1=2 is the London
penetration depth, where ns is the density of condensed
electrons, and m is the electron mass. Second, we consider
the case of �L ¼ L=10 ¼ 2:5�0 in Sect. 3.2, for which the
screening effect is so strong that the magnetic field is almost
zero inside the strip except for the edge region. We note that
the latter situation corresponds to the experiments for
Sr2RuO4,31,32) while the former situation may be realized if
one tunes the temperature just below the transition temper-
ature TC. All the results we show have been obtained using a
temperature T ¼ 0:2TC, and a cutoff frequency !C ¼ 10TC.
Finally, we discuss the relevance of our results to experi-
ments for Sr2RuO4 in Sect. 3.3.

3.1 Weak screening case
The results for �L ¼ L ¼ 25�0 are shown in Fig. 2.

Because the screening effect is weak, the external vector
potential Ay;ext creates a superconducting current Jy running
in the y-direction which is nearly uniform inside the whole
width of the strip. This current is proportional to Ay;ext, up to
some value where a transition occurs. Above the transition,
the current decreases rapidly to 0. This is visible on the
panel (c) of Fig. 2, which shows the total current Jtot ¼R L
0
dx JyðxÞ as a function of Ay;ext. One can see that the

transition occurs for jAy;extj ’ 0:8A0 for our choice of
parameters, where A0 ¼ �0=ðevFÞ, with �0 � �bulkðT ¼ 0Þ.

The shape of the gap components (normalized by �0) and
of the current density [normalized by evFNð0ÞTC] below the
transition are shown on the panel (a) of Fig. 2, for a value
Ay;ext ¼ 0:45A0. One can see that the induced current is
constant in the strip, except near the edges where the
presence of the chiral edge currents, with opposite directions
at the two edges, modifies Jy.5,6) For Ay;ext ¼ 0:45A0, the
induced uniform current has a limited effect on the gap

components �x and �y, which are close to their values in the
case without the applied flux (Ay;ext ¼ 0); the system remains
in a px þ ipy state in the middle of the strip, while it has a py-
like character at the two edges as �x drops to zero there.

The profile of the gaps drastically changes if Ay;ext is larger
than the transition threshold. The superconducting gaps and
the current density above the transition are shown on the
panel (b) of Fig. 2. One can see that the transition has had a
dramatic effect on the �y component, which is now negative
near the right edge of the system, and close to zero around
the center of the system. On the other hand, the �x gap
component is not qualitatively changed from its value below
the transition (there is the combination of a slight increase
due to decrease of �y, because of the competing effect
between two components,5) and a global decrease due to
large flux applied). This means that the system is in a px state
in the middle of the strip, while below the transition it was in
a px þ ipy state. The change of sign of �y is reflected on the
sign of the edge currents: the edge currents have now the
same signs on both edges of the system, while they had
opposite signs below the transition.

Fig. 2. (Color online) Results for the weak screening case (�L ¼ L ¼
25�0). The px- and py-components of the pair potential, �x and �y

(normalized by the bulk zero-temperature gap �0) and the current density
Jy [normalized by evFNð0ÞTC] as a function of x for (a) below the transition,
Ay;ext ¼ 0:45A0 and (b) above the transition, Ay;ext ¼ 1:25A0, where A0 ¼
�0=ðevFÞ. Below the transition, the pair potential components are similar to
the zero applied flux case, the overall shift of the current is due to the applied
flux, and the currents due to edge states are opposite on both sides of the
sample. On the other hand, above the transition, the sign of �y is inversed on
the right side of the system, with a wide region near the middle where �y is
suppressed. The current due to the edge states are now identical on both sides
of the sample. (c) The total current Jtot ¼

R L
0
dx JyðxÞ as a function of Ay;ext.

The total current is proportional to Ay;ext, up to a transition value
(jAy;extj ’ 0:8A0) beyond which it decreases in absolute value.
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For this low screening case, we found a unique stable
solution for each value of Ay;ext. We obtain the same results if
the initial condition is the solution without external flux or if
we perform a sweep and use as initial condition the solution
obtained for a slightly different applied flux. Therefore, there
is no hysteresis in the flux-current relation for the weak
screening case.

3.2 Strong screening case
The results for �L ¼ L=10 ¼ 2:5�0 are shown in Fig. 3.

The panel (a) of Fig. 3 shows the total current Jtot ¼R L
0
dx JyðxÞ as a function of the applied Ay;ext. The middle

(black) curve corresponds to the solution obtained with the
zero-field solution as the initial state, indicating a behavior
similar to the one of the low screening case: the total current
is proportional to the applied flux Ay;ext, up to some value
(here approximatively jAy;extj ¼ 1:3A0), where there is a
transition. We note that the critical current (the current at the
threshold) is now much smaller than the one for the weak
screening case, because the current is localized near the edges
due to screening effect.

However, there exists other stable solutions in contrast to
the weak screening case. The lower (red) and the upper (blue)
curves show the results obtained when performing a sweep
from a large negative Ay;ext value and from a large positive
values of Ay;ext, respectively. These two curves have been
obtained by starting from an initial state beyond the
transition, and then reducing jAy;extj gradually, using the
solution at each step as the initial state for the next step. One
can see that three stable solutions with different values of the
total current Jtot are realized in a wide range of Ay;ext. The
existence of three stable solutions means, for example, that it
is possible to have the same total current Jtot ¼ 0 with three

different values of the applied flux Ay;ext. This is illustrated in
Figs. 3(b)–3(d). Each of the graphs shows plots of �x, �y,
and Jy as a function of x when the total current Jtot ¼ 0. In
Fig. 3(b), the applied flux is Ay;ext ¼ 0, and the behavior of
the gap components �x, �y and of the current Jy is similar to
the low screening case below the transition, while Figs. 3(c)
and 3(d) correspond to Ay;ext ’ 	0:2A0. The behavior here
is qualitatively different, and presents similarities with the
curves observed above the transition in the low screening
case: the gap �y changes sign as a function of x when going
from one edge of the sample to the other, and the current Jy
is similar at the two edges of the system. Note that here,
because of the strong screening, there is no region where the
�y component is zero. And the current density Jy also has a
marked feature in the region where the gap �y is changing
sign.

These observations can be understood as due to the
creation of a domain wall. The middle (black) curves in
Fig. 3(b) correspond to a system which is a px þ ipy state on
the whole x-axis, as the components �x and �y are both
positive for all x (see the inset, where the arrows represent
schematically the direction of the edge currents). However, in
Figs. 3(c) and 3(d), we see that �y is changing sign for some
x value, meaning there is a domain wall between a px þ ipy
region and a px � ipy region. This is shown schematically in
the insets, with the domain wall position shown as a dashed
line. This domain wall is manifest in the bumps visible in the
current Jy near the change of sign of �y. Figures 3(c) and
3(d) correspond to a situation where a domain wall was
created by the transition at high jAy;extj, and remain present in
the system when Ay;ext, is slowly varied. The motion of the
domain wall is illustrated by the thin dotted curves of
Fig. 3(c), which show �y for Ay;ext ¼ �1:0 and 0.5 (while the

Fig. 3. (Color online) Results for the strong screening case (�L ¼ L=10 ¼ 2:5�0). (a) Total current as a function of the applied Aext;y. The middle (black)
curve corresponds to the solution obtained with the zero-field solution as initial state. The upper (blue) and lower (red) curves show the hysteresis when
performing a sweep from a large negative Ay;ext value and from a large positive values of Ay;ext, respectively. Other panels: Plots of the values of �x, �y, and Jy
(normalized as in Fig. 2) as a function of x for the value of Ay;ext where the total current is 0. (b) Non-sweep case, Ay;ext ¼ 0. (c) The case of left to right sweep
[in red, corresponding to the lower (red) curve in panel (a)] and (d) right to left sweep [in blue, corresponding to the upper (blue) curve in panel (a)], showing
the existence of other stable solutions with zero total current: these solutions have a domain wall inside the system. The insets on panels (b), (c), and (d) show a
schematic picture of the edge currents directions (thin arrows) and of the domain wall current direction (thick arrows). The two thin dotted gray curves of
panel (c) are plots of �y for values of Ay;ext ¼ �1:0 and 0.5, which show the motion of the domain wall as Ay;ext is varied.
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dashed red one is for Ay;ext ¼ �0:2): one can see that the
domain wall, which correspond to the change of sign of
Ay;ext, is moving from left to right as Ay;ext is increased.

3.3 Discussion
The present results have been obtained on a simplified

model where the system is at equilibrium, and the DC current
is due to an applied flux. However they could shed a new
light on experimental results where current–voltage curves
are measured. Indeed, several experiments31–34) have studied
anomalous transport and critical current switching in
Sr2RuO4 junctions. There, these anomalous switching have
been shown to be related to the existence of chiral
superconductivity, and the results have been discussed in
terms of domain wall motion due to an applied DC current.
Our results show that, in addition to domain wall motion, an
applied DC current can create a domain wall, and that the
system can switch between different configurations with
different numbers of domain walls (in our case 0 or 1), and
which have different critical current values. Figures 3(b)–
3(d) show three different configurations which can exist for
the same value of the applied flux, and which correspond to
different values of the critical current. The potential switching
between these different states is reminiscent of the one
observed experimentally when varying voltage. A detailed
comparison with the experiments would need to treat the
nonequilibrium voltage states driven by the dynamics of the
superconducting phase,40) which is beyond the scope of this
work and is left for future study.

4. Conclusions

In this article, we have computed the response of a two-
dimensional p-wave superconductor strip with a finite width
under an external flux. We have performed quasi-classical
calculations, where the Green function is obtained by solving
the Eilenberger equation, using a Ricatti representation.
The solution, obtained recursively, gives access to the gap
components �x, �y and the current density Jy as a function of
the position.

As expected, applying a flux creates a DC current in the
superconductor. We observe that above a given threshold
for the applied flux, the system undergoes a transition,
accompanied with the creation of a domain wall separating
px þ ipy and px � ipy regions. In the experimentally relevant
case of strong screening, the system shows hysteresis: to a
given value of the total current correspond several states
which have different domain wall configurations.

These results may be of importance for the understanding
of experiments measuring current–voltage characteristics of
Sr2RuO4-Ru junctions,31–34) where critical current was shown
to be related to chiral p-wave superconductivity. We think that
domain wall creation by the applied DC current may be an
important ingredient to understand experimental results.
Extensions of this work could include the effect of surface
roughness on the edge current,41–45) the effect of impurities in
the superconductor,46) and more realistic ring geometries.47) A
study based on energetic arguments, in the spirit of Ref. 35,
studying the coupling between domain wall currents and an
applied vector potential also offers promising perspectives.
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Appendix: Details of the Numerical Calculations

In numerical calculations, it is convenient to express all
the quantities in a dimensionless form. We normalize the
superconducting gaps, �xðxÞ and �yðxÞ by the zero-temper-
ature bulk value �0 � �bulkðT ¼ 0Þ, and the length by the
zero-temperature coherence length �0 ¼ ħvF=��0. We also
normalize the vector potential AyðxÞ, the magnetic field BzðxÞ
and the current JyðxÞ by �0=ðevFÞ, �0=ð2

ffiffiffi
2

p
��0�LðTÞÞ, and

evFNð0ÞTC, respectively, where �0 ¼ h=2e is the flux
quantum, �LðTÞ ¼ ð�nse2=mÞ�1=2 is the London penetration
depth, nsðTÞ is the density of condensed electrons, and m is
the electron mass. Note that Tc is here always the critical
temperature in the absence of applied flux (the variation of
Tc with the applied flux being very small). In terms of
dimensionless quantities, the Ricatti equations are written as

da

dx
¼ 1

� cos �k
� ���a2 � 2

!n

�0

þ iAy sin �k

� �
a

� �
: ðA:1Þ

db

dx
¼ 1

� cos �k
��� þ� b2 þ 2

!n

�0

þ iAy sin �k

� �
b

� �
:

ðA:2Þ
The Maxwell equations, Eqs. (13)–(14), are written in terms
of the dimensionless quantities as

dBz

dx
¼ � 4

ffiffiffi
2

p
�0

�2e���L
JyðxÞ; ðA:3Þ

dAy

dx
¼ ��0

2
ffiffiffi
2

p
�L

BzðxÞ: ðA:4Þ

When integrating these equations, we impose the boundary
conditions, AyðL=2Þ ¼ Ay;ext and Bzð0Þ ¼ 2

ffiffi
2

p
�0

�2e���L
Jtot, BzðLÞ ¼

� 2
ffiffi
2

p
�0

�2e���L
Jtot, where Ay;ext is the external vector potential

generated, and Jtot ¼
R
L
0
dx JyðxÞ is the total current. Then, the

magnetic field and the vector potential are obtained as

BzðxÞ ¼ � 4
ffiffiffi
2

p
�0

�2e���L

Z x

0

dx0 Jyðx0Þ � 1

2
Jtot

� �
; ðA:5Þ

AyðxÞ ¼ �
Z L=2

x

dx0
��0

2
ffiffiffi
2

p
�L

Bzðx0Þ þ Ay;ext: ðA:6Þ

The iterative calculation is repeated until the variation of
all the quantities between two successive steps is smaller than
a given threshold.
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