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Abstract
We consider a non-chiral Luttinger liquid in the presence of a backscattering Hamiltonian
which has an extended range. Right/left moving fermions at a given location can thus be
converted as left/right moving fermions at a different location, within a specific range. We
perform a momentum shell renormalization group treatment which gives the evolution of the
relative degrees of freedom of this Hamiltonian contribution under the renormalization flow,
and we study a few realistic examples of this extended backscattering Hamiltonian. We find
that, for repulsive Coulomb interaction in the Luttinger liquid, any such Hamiltonian
contribution evolves into a delta-like scalar potential upon renormalization to a zero
temperature cutoff. On the opposite, for attractive couplings, the amplitude of this kinetic
Hamiltonian is suppressed, rendering the junction fully transparent. As the renormalization
procedure may have to be stopped because of experimental constraints such as finite
temperature, we predict the actual spatial shape of the kinetic Hamiltonian at different stages
of the renormalization procedure, as a function of the position and the Luttinger interaction
parameter, and show that it undergoes structural changes. This renormalized kinetic
Hamiltonian has thus to be used as an input for the perturbative calculation of the current, for
which we provide analytic expressions in imaginary time. We discuss the experimental
relevance of this work by looking at one-dimensional systems consisting of carbon nanotubes
or semiconductor nanowires.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Luttinger liquids (LLs) [1–3] constitute an important
paradigm of theoretical condensed matter physics. In the
context of quantum nanophysics, they are very good can-
didates for explaining the transport properties of correlated
one-dimensional systems. Many techniques for the fabrication
of nanowires with large mobility are now available, and
∗ Author to whom any correspondence should be addressed.

naturally occurring one-dimensional systems such as carbon
nanotubes are routinely employed in electronic quantum
transport (all constitute strong candidates for LL), generating
a dialogue between experimentalists and theorists.

In quantum transport, LLs made their appearance in the
early nineties. Several authors [4–7] established the phase dia-
gram of the transport properties of a one-dimensional wire
with a delta function impurity, as a function of the interac-
tion parameter g of the LL and the transmission of the bar-
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rier. Indeed, it was noticed that [4–7] when integrating out
the quadratic bosonic degrees of freedom of the LL Euclidean
action away from the impurity location, the resulting action
with fields evaluated at the location of the impurity corre-
sponds to that of a particle in a periodic potential coupled to
a bath of harmonic oscillators [8, 9]. These results allowed to
establish a one-to-one mapping between the two systems, and
in particular their phase diagram.

In the presence of backscattering, a barrier with high or
low transmission renders the system insulating when Coulomb
interactions (g < 1) are operating, while in the opposite case of
attractive interactions (g > 1), the barrier is transparent. In the
dual situation, where effectively two semi-infinite wires com-
municate by a tunnel hopping amplitude, Coulomb interac-
tions (g < 1) lead as expected to an insulating behavior, while
attractive interactions (g > 1) result in perfect transmission.
These results were further extended to treat resonant tunneling
in double and periodic barriers [5, 6, 10]. In the case of a dou-
ble barrier, it was shown that there is a possibility for electrons
subject to Coulomb repulsion to be nevertheless transmitted
when 1/2 < g < 1, an effect known as resonant tunneling. It
was further argued [11, 12] that when coupling an LL to acous-
tic phonons, the phase diagram is substantially modified by the
attractive retardation effects mediated by phonons. Quantum
impurity problems in the context of LLs is still an active field
of research, with recent results demonstrating the equivalence
between two distinct LL impurity problems [13].

LLs are also very useful for their predictive power in
the transport properties of the fractional quantum Hall effect
(FQHE). Indeed, edge excitations occur at the boundaries of
the FQHE bar, described by the chiral version of the LL. This
allowed [14, 15] to characterize the transport properties of
a Hall bar separated by a quantum point contact (QPC). In
turn, these results lead to an experimental proposal allowing
to identify the fractional charge of Laughlin quasiparticles by
measuring the backscattering current and noise [16, 17].

The renormalization group (RG) is a very powerful tool for
most fields of low and high energy physics (for a presenta-
tion in the context of condensed matter physics, see [18, 19]).
Here in low dimensional quantum transport, it allows to derive
phase diagrams as a function of the LL interaction parameter.
In its perturbative version (integrating momentum/frequency
degrees of freedom on a shell close to the Fermi energy) it
enables to specify the evolution of the coupling constants of
the system under renormalization. At zero temperature, one
needs to push the renormalization until convergence is ulti-
mately reached. However, since the experiment is carried out at
a finite temperature T0, the renormalization procedure should
be stopped when a lower cutoff is reached, such as the low-
est Matsubara frequency 2πkBT0. Other cutoffs may dictate
that the renormalization of the coupling parameters should be
stopped, e.g. when a specific (external) frequency scale asso-
ciated with a perturbation is reached, or when the frequency
related to the length scale of the system L (ωL = πu/L, u Fermi
velocity) is attained. The (perturbative) RG approach is there-
fore not only relevant for establishing the ultimate convergence
point, but also for identifying the coupling constants when

the procedure has to be stopped because of the experimental
context.

The analysis of impurity/tunneling effects in both non-
chiral and chiral LLs have been achieved mostly so far assum-
ing that the backscattering/tunneling location is point-like as
described by a scalar potential. Yet in practice, the presence
of an impurity generates a kinetic backscattering Hamiltonian
with a finite extent, and the situation is even more complex
if several impurities/tunneling locations are present. This is
relevant for both non-chiral LL which describe Coulomb inter-
actions between electrons in the nanowire as well as chiral
LL where the edge excitations describe fractional quasipar-
ticles in the quantum Hall effect. When a QPC pinches off
an FQHE bar, this QPC is placed at distance above the two-
dimensional electron gas, and the tunneling region between
counter-propagatingedge states should also have a finite range.
This situation has been only studied in some specific instances
so far. In the FQHE, backscattering in an extended tunneling
region has been addressed [20], with the informative result
that the Fano factor associated with Laughlin quasiparticle
is unchanged, in the Poissonian limit (lowest order in the
tunneling amplitude).

Extended backscattering Hamiltonians (XBHs) are likely
to be present in one-dimensional physical systems which
are relevant for experiments. For metallic carbon nanotubes,
which constitute strong candidates for multi-mode LLs, this
backscattering can occur because of the presence of impuri-
ties/defects located in a finite region of the wire, or alterna-
tively because such nanotubes contain a ‘cusp’ or a ‘bend’ [21].
In the latter case, the extent of the backscattering Hamiltonian
region is typically proportional to the radius of curvature of this
bent region. Semiconductor nano-wires allow more flexibility,
as metallic gates placed in the vicinity of the nanowire can
be tailored to generate an ‘extended impurity’ region. Right
(left) moving electrons can be for instance backscattered into
left (right) moving electrons at a specific position over a finite
range. This case of a purely local backscattering potential (gen-
eralized with a finite extent) has been discussed in [22], and
involve only minor modifications/adjustments of the formal-
ism of [4–6]: this mechanism is represented by the ‘vertical’
paths for electron tunneling in figure 1. Alternatively a right
(left) moving electron can be destroyed at a specific location
and be transferred as a left (right) moving electron at a dif-
ferent location (a process described by an oblique tunneling
path in figure 1). In a tight binding picture, such processes are
equivalent to next near neighbor hopping and so on. Contrary
to local tunneling they are described by a kinetic contribution
to the Hamiltonian rather than a scalar potential as in [22]. To
our knowledge, such an XBH has not been considered so far in
the literature, and no analysis of its renormalization flow has
been made available in the context of LLs.

In the present paper, we intend to bridge this gap, for the
case of non-chiral LLs. Our aim is therefore to study the effect
of weak backscattering due to an interaction of arbitrary shape,
which includes a scalar potential as well as a hopping (kinetic)
interaction over some region of space. We introduce the LL
model with this XBH in section 2. We derive the RG equation
for the latter in section 3, focusing on a kinetic Hamiltonian
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Figure 1. Schematic representation of a one-dimensional wire with
an XBH. Right and left moving fermions are depicted by full
horizontal lines, and the phases of the right/left fermion fields
appear as θ(x) ∓ φ(x). Vertical dashed lines with arrows indicate a
backscattering path which can be described by a scalar potential as
in [22]. Oblique tunneling paths correspond to the finite range
processes which delocalize right and left moving electrons, and
constitute the focus of this study. The gray area depicts the region
where the amplitude of the XBH, centered at x = 0, is appreciable.

with a finite range and centered at a specific location. This,
together with the two applications described in this work,
constitute the central results of this paper. We illustrate our
renormalization results in section 4 with numerics showing
the evolution of the RG procedure for both an extended local-
ized interaction and a double barrier/extended interaction. One
(expected) result that we recover is that if one pushes the renor-
malization procedure to zero temperature, any XBH is washed
away when interactions are attractive (g > 1), but with repul-
sive Coulomb coupling (g < 1), it converges to the stable fixed
point which corresponds to a delta-like function (scalar) poten-
tial. More importantly, along the way of the RG flow (when
renormalization may have to be stopped because of experimen-
tal constraints) the initial XBH undergoes major shape changes
where new length scales appear in this kinetic Hamiltonian
profile. In section 5, we derive the linear response theory for
the backscattering current associated with such XBH and show
how it collapses to the result where the potential is purely local
[5, 6]. A discussion about the applicability and relevance of
our results in physical situations is presented in section 6. We
conclude in section 7.

2. Model

2.1. Luttinger model and backscattering interaction

We consider an (infinite) one-dimensional interacting electron
nanowire in the presence of an XBH. We focus for simplic-
ity on spinless fermions (i.e. in the absence of spin flip pro-
cesses, since adding the spin degrees of freedom is a mere
formality [5, 6]). The fermion annihilation operators are then
a superposition of fields emanating from the right and left:

ψ(x) =
1
√
η

[
eikF x ei

√
π(φ(x)−θ(x)) + e−ikF x ei

√
π(φ(x)+θ(x))

]
, (1)

where η is the short wave length cutoff of the Luttinger model,
while θ(x) and φ(x) are the bosonic fields of the non-chiral LL

model, which satisfy the canonical commutation relation:

[
φ(x), θ(x′)

]
= − i

2
sgn(x − x′). (2)

The free Hamiltonian reads:

H0 =
u
2

∫
dx

[
g(∂xφ)2 + g−1(∂xθ)2

]
, (3)

where u is proportional to the bare Fermi velocity and g is the
LL interaction parameter, with g < 1 for repulsive (Coulomb)
interaction, g = 1 for non-interacting fermions, and g > 1 for
attractive interactions (in what follows, we set u = 1 for sim-
plicity). The interaction responsible for backscattering effects
has then the general form:

Himp =

∫
dx dx′

[
V(x, x′)ψ†(x)ψ(x′) + H.c.

]
. (4)

If V(x, x′) ∼ δ(x − x′), this interaction corresponds to a scalar
potential, but otherwise, it describes a kinetic hopping term
where right (left) moving fermions at a given location are con-
verted into left (right) moving fermions at a different locations,
as depicted in figure 1. In terms of the bosonic fields, the con-
tribution of equation (4) which describes solely backscattering
effects reads:

H′
imp =

∫
dx dx′ η−1V(x, x′) cos

{√
π
[
θ(x) + θ(x′) + φ(x)

−φ(x′)
]
+ kF(x + x′)

}
, (5)

while other contributions in equation (4) are linear in the
bosonic fields, and can be reabsorbed in the bare action result-
ing from equation (3) giving rise to a mere modification of the
LL parameters u and g [4–6].

2.2. Euclidean action and Green’s functions

The partition function of the system is then expressed as a
functional integral over the bosonic fields θ and φ:

Z =

∫
DθDφ e−S(θ,φ), (6)

where S = S0 + Simp is the total action, and S0, Simp are respec-
tively the free Euclidean action and the action associated with
the XBH.

The free Euclidean action in imaginary time reads:

S0 =
1
2

∫ β

0
dτ

∫
dx

[
g(∂xφ)2 + g−1(∂xθ)2 − 2i∂τφ∂xθ

]
,

(7)
which is conveniently written in Fourier space

S0 =
1
2

∑
p

[
q2gφ∗

pφp +
q2

g
θ∗pθp − iωqφ∗

pθp − iωqθ∗pφp

]
,

(8)
with p = (q,ω). For subsequent calculations (for instance
when performing the average over the fast degrees of freedom
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of the impurity action), it is useful to introduce the following
bare Green’s functions (in their Fourier transform version):(

Gφφ(p) Gφθ(p)
Gθφ(p) Gθθ(p)

)
=

1
p2

(
g−1 iω/q

iω/q g

)
, (9)

while the Green’s functions in space/imaginary time read:

Gφφ(z, τ ) =
∫

|p|�Λ

d2 p
(2π)2

Gφφ(p)eiqz+iωτ , (10)

where Λ is a large momentum/frequency cutoff, and
similar expressions are defined for θφ, φθ, θθ Green’s
functions. Note that for a purely local backscatter-
ing potential or a weak link separating two semi-
infinite LLs [4–6, 10], only the diagonal elements
Gφφ and Gθθ are needed. Off diagonal elements Gφθ and
Gθφ are for instance unavoidable in transport problems involv-
ing the injection of electrons in the bulk of LLs [23–27]. In the
present ‘extended’ impurity problem, all Green’s functions
are needed because the impurity action contains both fields θ
and φ [see equation (12) below].

The contribution to the action associated with the XBH
is more conveniently described after the following change of
coordinates is performed on the interaction potential:

V(x, x′) = V̄(xG, z), (11)

where xG = (x + x′)/2 is the center of mass coordinate and
z = x − x′ is the relative coordinate. Concerning the depen-
dence of V̄(xG, z) on the center of mass coordinate xG, we
assume that it is restricted to a finite range characterized by
a length scale L, while the dependence on the relative coordi-
nate z occurs within a range a. Note that in general, both L and
a should be chosen to be much larger than η or (equivalently)
the inverse momentum cutoffΛ−1. V̄(xG, z), for dimensionality
reasons, also contains prefactors with powers of L and a. With
these notations, the backscattering action [associated with the
Hamiltonian in equation (5)] then reads:

Simp =

∫ β

0
dτ

∫
dxG dz η−1V̄(xG, z)

× cos
{√

π
[
θ
(

xG +
z
2

, τ
)
+ θ

(
xG − z

2
, τ

)
+φ

(
xG +

z
2

, τ
)
− φ

(
xG − z

2
, τ

)]
+ 2kF xG

}
.

(12)

3. Momentum shell renormalization

In this section, we use a perturbative RG approach to deal with
the backscattering action Simp describing an XBH. Let us first
recall the basics of the perturbative RG procedure:

• In the total action S = S0 + Simp, one first identifies the
fast and slow components of the fields θ and φ. This
means identifying the momentum/frequency components
of these fields which belong to the interval [Λ/b,Λ]

(fast modes), as well as those who belong to the inter-
val [0,Λ/b] (slow modes) where Λ is the upper cutoff
and b > 1 (b = 1 + ε, 0 < ε � 1). One then treats the
backscattering interaction to lowest non-vanishing order
in perturbation theory, and integrates over the fast degrees
of freedom. Upon re-exponentiating, this generates a new
action. If this new action has the same form as the preced-
ing one, the theory is called ‘renormalizable’ and one can
follow with the next steps.

• The cutoff of this new action is now Λ/b. One then needs
to rescale the units of all parameters (length or frequency
scales) to reimpose the cutoff Λ.

• One then obtains a similar action to that of our start-
ing point, with parameters that have changed/evolved
under the renormalization procedure. This then allows
to derive a differential equation characterizing the
evolution of these parameters under the renormalization
procedure. Note that in the present situation, there is no
specific coupling constant which is renormalized (as in
the delta function scalar potential case): rather, the whole
XBH amplitude V̄(xG, z) undergoes modifications upon
renormalization.

The details of the renormalization procedure are described
in appendix A. The main results are that first, V̄(xG, z) is not
modified as far as the center of mass coordinate xG is con-
cerned (because of the translational invariance of the free sys-
tem), all modifications occur in the dependence with respect
to the relative coordinate z:

1
V̄(xG, z, t)

dV̄
dt

(xG, z, t) = α(g,Λ, z), (13)

with

α(g,Λ, z) = 1 − g−1 +
g−1 − g

2

[
1 + J0(Λ|z|)

]
, (14)

where J0 is the Bessel function of zeroth order. Here,
t = log(b) is a fictitious time which describes the evolution
under renormalization. This, together with its applications
described in the following section, constitutes the central result
of this work. It suggests that the entire impurity backscatter-
ing interaction V̄(xG, z) is modified as a whole, as illustrated
by the presence of the relative spatial coordinate z in the argu-
ment of the Bessel function in equation (26). This is indeed
in sharp contrast with previous RG treatments applied to LLs
which only lead to a modification of the coupling constants of
the initial action.

The backscattering interaction evolves under the RG proce-
dure as:

V̄(xG, z, t) = V̄(xG, z, 0)e
∫ t

0 α(g,Λ,z)dt′ . (15)

It is therefore quite informative to plot the functionα(g,Λ, z) as
a function of the interaction parameter g and the spatial coor-
dinate z, which we report in figure 2. When α(g,Λ, z) > 0,
the XBH amplitude tends to increase, while it is exponen-
tially suppressed when α(g,Λ, z) < 0. It is thus useful to iden-
tify in figure 2 which parameter regions in the (1/g, z)-plane
correspond to positive or negative α. One notices oscillations
near the g = 1 line as a function of z which are associated
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Figure 2. Plot of α(g,Λ, z) as a function of the inverse interaction
parameter 1/g and the relative coordinate z (in units of Λ−1).

with the zeros of the Bessel function. These oscillations per-
sist both on the attractive (g > 1) and the repulsive (g < 1)
sides of figure 2. For strong attractive interactions of the LL
(g � 1), the backscattering interaction is always suppressed
(as illustrated by the dark regions on the left side of the figure),
while for strong repulsive interactions (g � 1) in the LL, one
observes a central peak (light colored region on the right side
of the figure) which is centered at z = 0. Although we need to
illustrate our results with more specific forms of the interaction
potential, we can already make an important statement: when
interactions are repulsive, any non-zero interaction V̄(xG, z)
evolves into a narrow potential centered at z = 0, whose ampli-
tude becomes larger when the repulsion is stronger. On the
opposite, in the presence of attractive interactions, the ampli-
tude V̄(xG, z, t) of the XBH tends to be reduced under the RG
flow.

4. Application to an extended relative interaction

4.1. Extended Gaussian potential

In order to make progress, we make the further simplifying
assumption that V̄(xG, z) is the product of a center of mass
contribution VL(xG) (localized around the position xG = 0),
and a relative contribution va(z) (labeled below as the rela-
tive XBH) which specifies the hopping range. According to the
previous section, only va(z) is modified under renormalization.
We first illustrate our result with a (relative) XBH amplitude
va(z) which contains a single central peak at z = 0. Although
any form for va(z) with a characteristic length scale a can be
employed, for specificity, we choose a Gaussian form:

va(z) =
1√

2πa2
exp

(
− z2

2a2

)
. (16)

The range a is chosen to be one order of magnitude larger than
the inverse momentum cutoff (a = 10Λ−1). In figure 3, we dis-
play the evolution of the shape of the relative interaction va(z)
at different steps of the RG procedure. There, the ratio r dis-

played on top of each graph represents the ratio between the
running momentum cutoff and the initial momentum cutoff
(or alternatively, the ratio between the running energy cut-
off and the initial energy cutoff since the dispersion in the
LL is assumed to be linear). One notices that very early in
the renormalization procedure (r = 0.88), va(z) already under-
goes substantial modifications: oscillations appear for val-
ues of the coupling parameter g which correspond to attrac-
tive interactions in the LL, and the overall interaction va(z)
is tilted upwards toward the region g < 1 (repulsive interac-
tions). These oscillations correspond to the spacing between
minima/maxima of the exponent α(g,Λ, z), itself governed by
the oscillations of the Bessel function J0, as discussed when
describing figure 2. For r ranging between 0.65 and 0.41, such
oscillations propagate over the whole range of attractive and
repulsive values of g. For g > 1, one also notices the forma-
tion of two ‘bumps’, which stay stable upon further renormal-
ization. In the opposite case of repulsive interactions, g < 1,
a small peak rises at z = 0 and grows considerably, getting
higher and narrower as one moves forward in the renormaliza-
tion treatment. This is well illustrated in the lower right panel
of figure 3, which corresponds to r = 0.06. One readily sees
that the height of this peak is larger when repulsive interactions
are stronger (1/g ∼ 2).

As the renormalization procedure is taken further yet (not
shown), say r = 0.001, the scale of the plots has to be changed
in order to visualize the totality of the central peak at z = 0
for g < 1, while the structures/oscillations for attractive val-
ues of the interaction (g > 1) can no longer be noticed. This
indicates that if the renormalization procedure is pursued until
an energy cutoff is reached, corresponding to ultra low tem-
peratures, an extended interaction va(z) converges toward zero
for g > 1, while it becomes a delta function scalar poten-
tial for repulsive interactions. While this result is somewhat
expected, to our knowledge no indication or proof of such
statement was presented so far in a quantitative manner in the
literature.

The second general comment that one can make is that,
even when the renormalization is pushed to moderate val-
ues of the ratio of the running cutoff to its initial value (say
r ∼ 0.1), the interaction landscape is already drastically mod-
ified, severely departing from its initial Gaussian shape of
equation (16). Interacting electrons thus experience a relative
interaction va(z) which is strongly altered, bearing new max-
ima and minima as a function of the relative distance z. As a
guide to the eye, we have indicated in figure 3 with red lines
the amplitude of va(z) for three values of the LL parameter:
g = +∞, g = 1, and g = 0.5. This confirms in particular that
for a Fermi liquid (g = 1), no renormalization occurs. Con-
versely, g = +∞ yields a straight line signaling the full sup-
pression of va(z), while for repulsive interactions (g = 0.5) the
oscillations associated with α(g,Λ, z) are clearly visible.

As a final comment, let us emphasize that we could check
that these results are qualitatively robust when using smooth
cutoff functions, in the spirit of [28]. Details of the calculations
and results are provided in appendix D. This procedure does
not significantly affect our results, the main difference appear-
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Figure 3. Three-dimensional evolution of the non-local part of a relative Gaussian backscattering interaction va(z) with typical width
a = 10 (all length scales in units of Λ−1) as a function of the relative coordinate z and the inverse LL parameter 1/g. The quantity r on each
graph represents the ratio of the running cutoff to the initial cutoff. 1/g < 1 corresponds to attractive interactions, while 1/g > 1
corresponds to repulsive interactions in the LL. The central red line at g = 1 is here to illustrate that no renormalization occurs for the
non-interacting case g = 1, as expected.

ing in the case of a soft cutoff function being the washing out
of the oscillations observed in figure 3.

As the interpretation of the 3D plots may be confusing,
and in order to simplify the comparison with other instances
of extended potential, we also provide in figure 4 a two-
dimensional version of the results of figure 3. At r = 0.69,
one still identifies the general Gaussian shape of the relative
interaction, except for the fact that va(z) has almost completely
vanished for 1/g < 0.2 (attractive LL parameter), while a
clear maximum develops for 1/g > 1 (repulsive LL param-
eter). Continuing the renormalization procedure to r = 0.37,
one notices that the amplitude of va(z) is further modified,
as features away from z = 0 have somewhat faded, while a
sharp central peak at z = 0 emerges for 1/g > 1, being the
only surviving feature when ultimately reaching r = 0.06. Fur-
thermore, the presence of oscillations in z for a given value of
the LL parameter clearly appears in figure 4, where one recog-
nizes, e.g. a double barrier structure for 1/g ∼ 0.5 (attractive
interactions) or a triple peak structure for 1/g > 1.3 (repul-
sive interactions). It is important to stress out that this renor-
malized interaction va(z) should in principle be used to com-
pute transport properties such as the electric current and noise
characteristics, which may have significant consequences if
the experimental constraints require to stop the renormaliza-
tion procedure at intermediate values of r. In the discussion
of section 6, we examine physical systems and experimental
conditions which justify stopping the renormalization proce-
dure around r ∼ 0.06, thus highlighting the relevance of the
present study.

Figure 4. Two-dimensional plot of the relative Gaussian interaction
va(z), as a function of the relative coordinate z and the inverse LL
parameter 1/g, for r = 1.0, 0.69, 0.37, 0.06.

4.2. Application to an extended double barrier
backscattering interaction

For completeness, we also consider the evolution under renor-
malization of a relative hopping interaction va(z) which has

6
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Figure 5. Two-dimensional plot of the evolution of the amplitude of
the non-local part of a relative hopping interaction va(z) which
consists of two well separated Gaussians, equation (17). Units and
parameters are chosen to be the same as in figure 4.

Figure 6. Two-dimensional (left) and three-dimensional (right)
plots of the amplitude of the relative double Gaussian XBH
amplitude va(z) [see equation (17)] after substantial renormalization
has been operated, r = 0.003. Units and parameters are chosen to be
the same as in figure 4. The red line at g = 1 indicates that no
renormalization occurs for the Fermi liquid case.

maxima away from z = 0. The corresponding results are dis-
played in figure 5. We choose for specificity a profile of
va(z) which consists of a superposition of two Gaussians, with
maxima shifted at ±2a (keeping a = 10Λ−1):

va(z) =
(
2πa2

)−1/2 [
exp

(
−(z + 2a)2/2a2

)
+ exp

(
−(z − 2a)2/2a2

)]
. (17)

Such a hopping interaction could in principle represent the
XBH components of the double saddle point Hamiltonian of a
double QPC.

We observe that upon renormalization, the evolution of the
double barrier relative interaction is quite slow compared to
the one of the single Gaussian of figure 4. This is because the
amplitude va(z) is small but non-zero close to z = 0 due to
the double barrier structure. However, for rather small values

of 1/g (attractive interaction) the relative XBH amplitude is
suppressed, as expected from the structure at the same param-
eters in figure 2. One has to push the renormalization to a
ratio r = 0.06 (about 1/16th of the initial momentum cut-
off) in order to distinguish the rise of a delta-like potential at
z = 0 and g < 1. At this step of the renormalization, the initial
double barrier potential va(z) has evolved into a triple barrier
structure, with a central and dominant peak at z = 0.

For illustrative purposes, we display in figure 6 the evolu-
tion of va(z) once r = 0.003 has been reached. The profile is,
as expected, dominated by a delta-like peak at z = 0 with much
suppressed side peaks at z 
= 0. For 1/g < 1, one still recog-
nizes the reminiscence of a double barrier XBH, albeit with
reduced amplitude.

5. Perturbative calculation of the current

Previous works on extended impurities in the FQHE, mod-
eled as a chiral LL [20], have shown that they typically lead
to significant changes in the transport properties. The same
kind of behavior is expected here in the case of non-chiral
LL. Indeed, we showed in the previous sections that in the
limit of a fully converged flow the XBH reduces to a delta-like
scalar potential, therefore leading back to the standard power-
law dependence [6]. However, at an intermediate step of the
RG flow, we expect to see a non-universal behavior departing
from these power-law results, and depending on the details of
the extended backscattering potential. We thus propose some
steps for the perturbative calculation of the current in the pres-
ence of an arbitrary XBH. We will stay general in this section
and restrict ourselves to the principle of the calculation.

The total current corresponds to the maximal current
Imax ≡ e2 gV/h of a pure LL, from which one subtracts the
backscattering current IB which we compute here. In order to
include the bias potential difference between the two extrem-
ities of the wire, the impurity action is modified in order to
include a ‘vector potential’ A(τ ) (the real time voltage being
given by V(t) = ∂tA(t)):

Simp =

∫
dτ dxG dz η−1V̄(xG, z) cos

{√
π
[
θ
(
xG + z/2, τ

)
+ θ(xG − z/2, τ ) + φ

(
xG + z/2, τ

)
− φ

(
xG − z/2, τ

)]
+ 2kFxG + gA(τ )

}
, (18)

where the prefactor g in front of A(τ ) originates from the
fact that the backscattering occurs in a correlated state of
matter [5, 6].

We follow closely the approach described in the appendix
of [6], which expands the imaginary time partition function in
terms of powers of the backscattering Hamiltonian. We define
the zeroth (Z0), first (Z1) and second order (Z2) terms of this
expansion by

Z =
〈
e−(S0+Simp)

〉
=

〈
e−S0

〉
+ 〈−Simp〉0 +

1
2!
〈SimpSimp〉0 + · · ·

= Z0 + Z1 + Z2 + · · · (19)

7



J. Phys.: Condens. Matter 33 (2021) 115602 A Popoff et al

The calculation of Z1 follows closely the calculation per-
formed in the perturbative RG treatment, except that instead
of integrating over the fast degrees of freedom only, one
integrates over all fields:

Z1 = −
∫

dτ dxG dz η−1V̄(xG, z) cos [2kF xG + gA(τ )]

× e
−π

[
Gθθ(0,0)+Gφφ(0,0)+Gθθ(z,0)−Gφφ(z,0)

]
. (20)

In appendix C we show that the argument of the exponential
is −∞, so that Z1 = 0. This result is indeed consistent with
the perturbative result of [6] for the delta function impurity
potential.

Next, we focus on Z2, which we write in the following form:

Z2 =
1
8

∫
dτ dxG dz dτ ′ dx′G dz′ η−2V̄(xG, z)V̄(x′G, z′)

×
∑

σ,σ′=±

〈
eiσ

√
π[θ(xG+z/2,τ)+θ(xG−z/2,τ)+φ(xG+z/2,τ)−φ(xG−z/2,τ)]

× e
iσ′

√
π
[
θ
(

x′G+z′/2,τ ′
)
+θ(xG−z′/2,τ ′)+φ

(
x′G+z′/2,τ ′

)
−φ

(
x′G−z′/2,τ ′

)]

× eiσ(2kF xG+gA(τ ))e
iσ′

(
2kF x′G+gA(τ ′)

)〉
. (21)

In appendix C, we show that only σ = −σ′ gives a non-zero
contribution. The Gaussian integrals over exponentiated fields
are computed in a similar manner as for the integration of the
fast degrees of freedom and the details of this calculation are
provided in the appendix. We thus obtain the final result for
Z2:

Z2 =
1
4

∫
dτ dxG dz dτ ′ dx′G dz′ η−2V̄(xG, z)V̄(x′G, z′)

× J−(xG, x′G, z, z′, τ − τ ′)

× cos
[
2kF(xG − x′G) + gA(τ ) − gA(τ ′)

]
, (22)

where J−(xG, x′G, z, z′, τ − τ ′) is computed in appendix C.
The (imaginary time) backscattering current is then

obtained by taking derivatives of Z2 with respect to the vector
potential A(τ ):

IB(τ ) =
g
2

∫
dτ ′ dxG dz dx′G dz′ η−2V̄(xG, z)V̄(x′G, z′)

× J−(xG, x′G, z, z′, τ − τ ′) sin
[
2kF(xG − x′G)

+ gA(τ ) − gA(τ ′)
]
. (23)

In the case of a localized impurity where V̄(xG, z) =
Wδ(xG)δ(z) with constant amplitude W , the backscattering
current in real time reduces to

IB(t) =
g
2

W2
∫ t

−∞
dt′ η−2 sin

[
gA(t) − gA(t′)

]

× P>(t − t′) − P<(t − t′)
i

, (24)

where P>(<)(t − t′) is the analytic continuation of
J−(0, 0, 0, 0, τ − τ ′) for τ = +(−)it, in accordance with
[6].

For a general form of the impurity potential, the real time
current can be obtained by changing the contour of the imag-
inary time integral in equation (23) to the new contour for
t′ = −iτ ′ running from −∞ to t, then back to −∞+ iβ. We
thus obtain a general expression for the current in real time

IB(t) =
g
2

∫ t

−∞
dt′ dxG dz dx′G dz′ η−2V̄(xG, z)V̄(x′G, z′)

× sin
[
2kF(xG − x′G) + gA(t) − gA(t′)

]
× P>(xG, x′G, z, z′, t − t′) − P<(xG, x′G, z, z′, t − t′)

i
,

(25)

where P>(<)(xG, x′G, z, z′, t − t′) is the analytic continuation of
J−(xG, x′G, z, z′, τ − τ ′) for τ = +(−)it.

In the event that the renormalization procedure has to be
stopped because a cutoff such as the lowest Matsubara fre-
quency has been reached, one should in principle insert the
renormalized relative XBH obtained in section 4, into the per-
turbative calculation of the current [see equation (25)] in order
to make experimental contact. Such a calculation would also
involve an analytic continuation procedure, likely to require
advanced numerical techniques such as maximum entropy
methods, which go beyond the scope of this paper.

6. Discussion

The main motivation of this study was to inquire whether the
shape of the XBH amplitude at intermediate steps of the renor-
malization procedure should be kept as a possible input for
the calculation of the current when physical or experimental
reasons command to stop the renormalization procedure.

As indicated in most textbooks dealing with this method, a
possible lower cutoff is the lowest Matsubara frequency 2πT0,
where T0 is the temperature at which the transport experi-
ment is carried out. As we wish to stay in the quantum coher-
ent regime, we choose an optimistic upper bound T0 = 1 K.
For the one-dimensional system under study, we can con-
sider either atomically defined wires such as metallic carbon
nanotubes (for which the Fermi wave vector is proportional
to the inverse of the lattice spacing), or artificially designed
nanowires consisting of semiconductors (grown, etched, or 2D
electron gases defined by neighboring metallic gates).

Nanotubes have a rather large Fermi energy (as it is related
to the lattice constant), which means that the ratio r between
the lower cutoff T0 and the initial cutoff could be as small as
10−2 − 10−3. Unless the renormalization procedure has to be
stopped imperatively for physical reasons, or unless the extent
of the relative XBH is quite large (a ∼ 100Λ−1), it is there-
fore less likely that the evolution of the relative XBH yields
something much different than a delta function peak as these
two energy scales are far apart. However, for metallic carbon
nanotubes, an XBH can be generated when such nanotubes
have a ‘bend’ in a specific location, as illustrated in figure 7
[21]. When the radius of curvature of the nanotube is of the
order of the lattice constant, this sharp bend represents a local-
ized impurity scalar potential, where the results of [4–6] apply.

8
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Figure 7. Schematic representation of a section of a carbon nanotube
bent at a specific location, with a radius of curvature Rc. The bent
region corresponds typically to the range of the XBH of our study.

However, if the radius of curvature Rc of this bend is sev-
eral orders of magnitude larger than the lattice constant, one
expects that the conditions for realizing an XBH are satisfied,
pointing out to the relevance of this study.

On the other hand, semiconductor wires have a much
smaller Fermi energy (corresponding to a temperature of a few
hundred Kelvins) which can in principle be controlled by a
back gate, allowing to lower the electron density. For these
semiconductor nanowire systems, the momentum cutoff of the
LL theory should correspond to the energy interval where the
linear dispersion is valid. We thus choose for such systems an
initial cutoff of the order of 100 K. This means that the ratio
between the final and initial energy cutoff could be somewhat
low, but not so low as to blur the structures of the renormal-
ized XBH. In our plots describing the evolution of the relative
XBH amplitude, we concluded that even if a ratio r = 0.06 is
reached—a ratio which is consistent with the above estimate
of the initial and final cutoff choices—the relative XBH ampli-
tude still contains non-trivial spatial structures when the renor-
malization procedure has to be stopped. Moreover, as semicon-
ductor wires (which may have several conduction channels)
are expected to have an LL parameter g > 0.5 (as opposed
to an LL parameter g ∼ 0.3 for carbon nanotubes) we antic-
ipate that when realistic lower momentum/frequency cutoffs
are reached, the complex structures found for the renormal-
ized XBH V̄(xG, z) should constitute a realistic input for the
computation of transport properties.

For simplicity, we chose to present our results in the case
of a spinless LL. However, one may argue that realistic experi-
mental devices are more likely to be spinful. We want to stress
out here that our derivation can be naturally extended to treat
spinful LLs. In this situation, one needs to introduce a sepa-
rate interaction parameter for the spin and charge sector: gs and
gc (note that following [6], non-interacting electrons now cor-
respond to gc = gs = 2). Our derivations can be reproduced,
leading to similar expressions upon replacing g → gc+gs

4 and
g−1 → g−1

c + g−1
s . In particular, in the (most common) SU(2)

symmetric case where one has gs = 2, our central result of
equation (14) becomes

αspinful(g,Λ, z) =
1
2
− g−1

c +
g−1

c − gc
4

2

[
1 + J0(Λ|z|)

]
, (26)

This, however, has no significant effect on our results which
stay qualitatively robust.

The last part of this work was devoted to the perturbative
calculation of the current, which has the benefit of using the
same formalism as the renormalization procedure. We were

able to isolate the contributions to the imaginary time cur-
rent, and to show that in the limit of a short ranged poten-
tial the result of [6] is recovered. For the case of an extended
potential, the ultimate step for obtaining the current, and pos-
sibly the power law behavior of the conductance, is to perform
an analytic continuation of the impurity correlator Kernel of
equation (C.16). This allows in principle to compute the trans-
port properties—such as the real time current, the conduc-
tance, and possibly the noise—corresponding to the relative
XBH that is obtained when the renormalization procedure has
to be stopped, invoking experimental conditions.

Note that there are some restrictions about the range of
V̄(xG, z), which by construction describes an instantaneous
transfer of right/left moving fermions into left/right moving
fermions. The distance z which separates the electron destruc-
tion and creation location can of course be larger than the lat-
tice constant, but physically should be smaller than the product
of the Fermi velocity with the tunneling time (associated with
backscattering) of such electron transfer processes [29].

7. Conclusion

In this work, we have revisited a ‘classic’ problem of trans-
port in one-dimensional strongly correlated systems, albeit in
the presence of an XBH. To our knowledge, studies have so
far mostly focused on short-ranged, delta-like impurity poten-
tials. In this different situation, say, a right moving electron
at location x can be converted into a left moving electron at
a nearby location x′ at a distance corresponding to several
inverse Fermi momenta. We focused on kinetic hopping inter-
actions which can be cast in full generality into functions of
a center of mass coordinate xG = (x + x′)/2 (XBH center of
mass with extent L) and of a relative coordinate z = x − x′

(XBH relative coordinate with extent a). We used a momen-
tum shell RG treatment of the impurity action which shows
that while V̄(xG, z) is unchanged with respect to xG, the relative
z-dependence of this XBH is modified under renormalization.
Fundamental changes in shape are described by a renormal-
ization flow equation involving the relative coordinate z with a
strong dependence on the repulsive/attractive nature of the LL.
This constitutes the core result of this study.

We illustrated this result by monitoring the evolution of
the interaction with respect to this relative coordinate, starting
from a relative XBH with a single maximum at z = 0 which
is typically much wider than the inverse momentum cutoff
(which would also correspond to a length scale of the order
of the lattice constant). We confirmed the conjecture stating
that if the renormalization procedure is pursued until zero tem-
perature (or a very small momentum cutoff) is reached, the
initial relative XBH amplitude becomes ultimately a delta-like
function peak centered at z = 0. This turns out to be true even
when the relative XBH has no initial maximum at this loca-
tion, as illustrated with a double barrier relative XBH ampli-
tude which contains two well separated maxima symmetrically
placed around z = 0.

There are many interesting extensions of our present work.
First, a natural direction to explore would be to incorporate
higher order contributions to the RG flow. Indeed, we expect
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that, unlike local impurity potentials which do not lead to
a renormalization of bulk quantities, the presence of a spa-
tially extended potential might lead to a renormalization of the
LL parameter, involving contributions at higher order, beyond
what we considered here.

Second, it would be interesting to extend the present for-
malism to chiral LLs, used to describe the edge states of the
FQHE [30–32]. There, for simple Laughlin fractions, the chi-
ral excitations which propagate on opposite edges of the quan-
tum Hall bar give rise to the tunneling of Laughlin quasipar-
ticles—rather than that of electrons—from one edge to the
other, at the location of the QPC. As mentioned in the intro-
duction, the calculation of the current and noise can be per-
formed in the presence of an XBH in the Poissonian limit [20].
However, it would also be informative here to perform a RG
treatment of the XBH in this context, which amounts to study-
ing the scaling dimension of the tunneling operator, the latter
being expressed as exponentials of the difference between the
two chiral LL bosonic fields.

Finally, in [4–6] a duality correspondence between weak
backscattering and strong backscattering (where the LL wire
is effectively split into two semi-infinite LL wires, with a single
tunneling location between the two extremities) was identi-
fied. The simultaneous exchange of the bosonic fields θ and
φ, with the replacement g by 1/g allows to extract directly all
information for the strong backscattering case from the weak
backscattering results. One could possibly exploit this dual-
ity once again to treat electron tunneling between two semi-
infinite LLs over an extended tunneling region (where fermion
creation/destruction locations are distributed in the vicinity of
the two contacts), in an analogous manner as the present study
for weak backscattering, using the same duality transformation
as in references [4–6].
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Appendix A. Detailed renormalization procedure

The first step of the renormalization procedure consists in
decomposing the fields φ and θ in their fast and slow compo-
nents: φ = φ′ + φ̃ and θ = θ′ + θ̃, in such a way that the fast
components φ̃ and θ̃ are non-zero forΛ/b � |p| � Λ, and zero
otherwise. The free action then becomes

S0(φ, θ) = S0(φ′, θ′) + S0(φ̃, θ̃). (A.1)

The technical aspect of averaging the impurity action over fast
degrees of freedom reduces to the calculation of Gaussian inte-
grals over the fields θ and φ. This is explained in appendix B.

We obtain the following results:〈
exp ±

(
i
√
π
[
θ̃
(

xG + z/2, τ
)
+ θ̃

(
xG − z/2, τ

)
+ φ

(
xG + z/2, τ

)
− φ

(
xG − z/2, τ

) ])〉
= exp

(
−π

[
G̃θθ(0, 0) + G̃φφ(0, 0) + G̃θθ(z, 0)

− G̃φφ(z, 0)
])

, (A.2)

where we introduced the fast modes Green’s functions as
follows:

G̃φφ(z, 0) =
∫

Λ/b�|p|�Λ

d2 p
(2π)2

Gφφ(p) eiqz, (A.3)

and similarly for G̃θθ. This allows to write the backscattering
action after integration of the fast degrees of freedom:

〈Simp〉 f =

∫
dτ dxG dz η−1VL(xG)va(z) exp

(
−π

[
G̃θθ(0, 0)

+ G̃φφ(0, 0) + G̃θθ(z, 0) − G̃φφ(z, 0)
])

× cos
(√

π
[
θ′(xG + z/2, τ ) + θ′(xG − z/2, τ )

+ φ′(xG + z/2, τ ) − φ′(xG − z/2, τ )
]
+ 2kF xG

)
.

(A.4)

The last step of the renormalization procedure consists in
a rescaling step allowing to recover the initial cutoff. The free
action S0 is taken as a reference and one wishes that it remains
invariant, thus specifying the rescaling of parameters.

The integrals in equation (A.4) are defined for |τ | > bΛτ ,
|x| > bΛx and |z| > bΛz where the cutoffs Λτ ,Λx ,Λz corre-
spond to the variables τ , x, z.

In order to reestablish the initial cutoffs, we proceed to a
rescaling of the variables:

τ ′ = b−1τ , x′ = b−1x, z′ = b−1z, (A.5)

as well as the parameters a, L and η. As the product p · x
is dimensionless, the momentum/frequency vector p = (q,ω)
becomes p′ = bp, in particular kF is rescaled. As we wish to
conserve the algebraic structure of the cosine, the fields θ and
φ are not rescaled themselves, and the rescaling occurs only
through their arguments:

θ′′(τ ′, x′) := θ′(τ , x) = θ′(bτ ′, bx′). (A.6)

The impurity action then becomes:

〈Simp〉 f =

∫
dτ ′ dx′G dz′ b2η−1VbL′(bx′G)vba′(bz′)

× exp
(
−π

[
G̃θ′′θ′′(0, 0) + G̃φ′′φ′′ (0, 0)

+ G̃θ′′θ′′(z′, 0) − G̃φ′′φ′′ (z′, 0)
])

× cos
(√

π
[
θ′′(x′G + z′/2, τ ′) + θ′′(x′G − z′/2, τ ′)

+ φ′′(x′G + z′/2, τ ′) − φ′′(x′G − z′/2, τ ′)
]
+ 2k′Fx′G

)
.

(A.7)
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The fast modes Green’s functions are also modified, for
instance G̃φφ becomes after rescaling:

G̃φ′′φ′′ (z′, τ ′) =
∫

Λ�|p′ |�bΛ

d2 p′

(2π)2

g−1

p′2 eip′·z′ . (A.8)

Focusing now solely on the relative interaction va(z), its renor-
malized version va′(z′, b) reads:

va′ (z
′, b) = bvba′(bz′) exp

(
−π

[
G̃θ′′θ′′(0, 0) + G̃φ′′φ′′ (0, 0)

+ G̃θ′′θ′′ (z′, 0) − G̃φ′′φ′′ (z′, 0)
])

. (A.9)

For a given |z′| and b = 1 + ε (with 0 < ε � 1), assuming a
Gaussian form for vba′(bz′) as in equation (16), one then has

bvba′(bz′) =
1√

2πa′2
exp

(
− z′2

2a′2

)
. (A.10)

The fast modes Green’s functions G̃ can be expressed as Bessel
functions by performing the Fourier integration in polar coor-
dinates. They are integrated on the shell Λ � |p| � bΛ. The
following integral representation of the zeroth order Bessel
function

J0(z) =
1
π

∫ π

0
dϕ cos(z cos ϕ), (A.11)

leads to

G̃φ′′φ′′ (z′, 0) =
g−1

2π

∫ bΛ

Λ

dp
J0(p|z′|)

p
(A.12)

G̃θ′′θ′′(z′, 0) =
g

2π

∫ bΛ

Λ

dp
J0(p|z′|)

p
(A.13)

G̃φ′′φ′′(0, 0) =
g−1

2π
ln b (A.14)

G̃θ′′θ′′(0, 0) =
g

2π
ln b. (A.15)

This yields:

va′(z
′, b) = va′(z

′)b−1/g exp

×
(

g−1 − g
2

∫ b

1
dx

1 + J0(Λ|z′|x)
x

)
.

(A.16)

Defining the new relative interaction

ṽa′(z
′, b) := bva′(z

′, b), (A.17)

and keeping only linear terms in ε in equation (A.16), one
obtains

ṽa′(z′, b) − ṽa′(z′, 1)
ε

= ṽa′(z
′, 1)

[
1 − g−1 +

g−1 − g
2

×
(
1 + J0(Λ|z′|)

) ]
. (A.18)

By defining a fictitious time variable t = log b which runs from
0 to ∞, the evolution equation becomes

1
ṽa′(z′, t)

dṽa′

dt
(z′, t) = 1 − g−1 +

g−1 − g
2

(
1 + J0(Λ|z′|)

)
.

(A.19)
With the initial condition ṽa′(z′, t = 0) = va′(z′), we get:

ṽa′(z
′, t) = va′ (z

′) exp

(
t

{
1 − g−1 +

g−1 − g
2

×
[
1 + J0(Λ|z′|)

]})
. (A.20)

One recovers the result that for non-interacting fermions
(g = 1), the relative XBH amplitude is not renormalized, as
expected. When the relative XBH amplitude is short ranged,
which amounts to taking z′ = 0, one finds ṽ = v e(1−g) ln b =
vb1−g which leads back to the localized impurity case of [4–6].

Appendix B. Averages of exponentials

In this section, one computes the average of exponentials (over
the free action) of linear combinations of θ andφ fields in terms
of the four Green’s functions in space and time. This is partic-
ularly relevant in the perturbative RG treatment of the relative
XBH amplitude va(z) in section 3 and appendix A, but also in
the perturbative calculation of the current of section 5.

B.1. Gaussian integrals

Defining p = (q,ω), we wish to compute the following aver-
age:

I =

〈
exp

(
±
∑

p

[
Apφp + A∗

pφ
∗
p + Bpθp + B∗

pθ
∗
p

])〉
.

(B.1)
We use the notation A∗

p = A−p by analogy to φ∗
p = φ−p. How-

ever, while φ∗ in the complex conjugate of φ, no such require-
ment exists for A∗ and A (nor for B∗ and B). In the following,
we use a shorthand notation without the indices p. The average
of an operator O reads

〈O〉 = Z−1
0

∫
DφDθ e−S0(φ,θ)O, (B.2)

where S0(φ, θ) is the bare Euclidean action of the LL wire
equation (8). Its shorthand notation reads

S0 =
∑[

aφ∗φ+ bθ∗θ + c(φ∗θ + θ∗φ)
]

, (B.3)

where a = q2g
2 , b = q2g−1

2 and c = − iωq
2 .

Performing linear transformations of the fields θ, φ, and
computing the relevant Gaussian integrals, one obtains:

I = exp

(
−

∑[
AA∗a−1 +

(B − Aca−1)(B∗ − A∗ca−1)
b − c2a−1

])
.

(B.4)

11
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B.2. Applications

The two following averages turn out to be relevant for our
study

Is =
〈
sin

(√
π
[
θ(x + z/2, τ ) + θ(x − z/2, τ )

+ φ(x + z/2, τ ) − φ(x − z/2, τ )
])〉

(B.5)

Ic =
〈
cos

(√
π
[
θ(x + z/2, τ ) + θ(x − z/2, τ )

+ φ(x + z/2, τ ) − φ(x − z/2, τ )
])〉

. (B.6)

We identify for this case the coefficients A, A∗, B, B∗ by
using the Fourier transforms of the fields. One thus obtains the
following relations:

i
√
π
(
φ(x + z/2, τ ) − φ(x − z/2, τ )

)
=

∑
p

Apφp + A∗
pφ

∗
p

(B.7)

i
√
π
(
θ(x + z/2, τ ) + θ(x − z/2, τ )

)
=

∑
p

Bpθp + B∗
pθ

∗
p,

(B.8)

with Ap = A∗
−p = −

√
π sin(qz/2)ei(qx+ωτ ) and Bp = B∗

−p =

i
√
π cos(qz/2)ei(qx+ωτ ).
One can then apply the Gaussian integral result. In the case

of a sine: Is = 0, (B.9)

because of the symmetry properties of the exponent under sign
reversal of A and B. For a cosine, we obtain:

Ic =

〈
exp

(∑
p

[
Apφp + A−pφ

∗
p + Bpθp + B−pθ

∗
p

])〉
,

(B.10)
which has precisely the form of equation (B.1). In order to
apply the result of equation (B.4), we need the following
identities:

b − c2a−1 =
q2 + ω2

2g
=

p2

2g
, (B.11)

ApA−pa−1 = − 2π
q2g

sin2(qz/2), (B.12)

BpB−p + ApA−pc2a−2 − B−pApca−1 − BpA−pca−1

= −π cos2(qz/2) +
πω2

q2g2
sin2(qz/2). (B.13)

Using the Fourier transform version of the Green’s functions
equation (9), we obtain the argument of the exponential in
terms of space and imaginary time Green’s functions:∑

AA∗a−1 + (B − Aca−1)(B∗ − A∗ca−1)(b − c2a−1)−1

= π
[
Gθθ(0, 0) + Gφφ(0, 0) + Gθθ(z, 0) − Gφφ(z, 0)

]
.

(B.14)

With equation (B.4), we conclude that:

Ic = e−π
[

Gθθ (0,0)+Gφφ(0,0)+Gθθ (z,0)−Gφφ(z,0)
]
. (B.15)

This is precisely the functional integral that we need to com-
pute when integrating the fast degrees of freedom in the pertur-
bative RG procedure in section 3: there, Gθθ, Gφφ are replaced
by their fast versions G̃θθ, G̃φφ. This is also the same functional
integral that we need for computing Z1 in section 5.

Appendix C. Perturbative calculation of the
partition function

We first show that Z1 = 0. As shown in appendix B, the argu-
ment of the exponential contains both sums and differences of
Green’s functions in imaginary time and space as is obvious
from equations (20) and (B.15).

Let α denote the large momentum cutoff [α ∝ η−1, with η
the short wave length cutoff introduced in equation (1)] and ε
denote an infrared cutoff. We use the notation x = (z, τ ). From
[33], after regularization of the integrals defining the Green’s
functions, one finds:

Gθθ(x) =

⎧⎪⎪⎨
⎪⎪⎩

g
2π

(ln α− ln ε) if |x| = 0

g
2π

[
− ln

ε|x|
2

− γ+

∫ ε|x|

0
dp

1 − J0(p)
p

]
if |x| 
= 0.

(C.1)
Therefore the difference between two Green’s functions have
the form:

Gφφ(0, 0) − Gφφ(0, 0) :=0 (C.2)

Gφφ(0, 0) − Gφφ(x) =
g−1

2π

[
ln α+ ln

|x|
2

+ γ

]
(C.3)

Gφφ(x) − Gφφ(y) =
g−1

2π
ln

|y|
|x| , (C.4)

where |x| and |y| are non-zero. The same results are obtained
for Gθθ by operating the substitution g → g−1. This gives a
finite result when x = y = 0, when |x| 
= 0 and |y| 
= 0, and
a positive infinite result for the case of equation (C.3) if we let
α be infinite. In the following, we keep the cutoff dependent
expression of equation (C.3).

On the other hand the sum of two Green’s functions read:

Gθθ(0, 0) + Gθθ(0, 0) =
2g
2π

(ln α− ln ε) (C.5)

Gθθ(0, 0) + Gθθ(x) =
g

2π

[
ln α− 2 ln ε− ln

|x|
2

− γ

+

∫ ε|x|

0
dp

1 − J0(p)
p

]
(C.6)

12
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Gθθ(x) + Gθθ(y) =
g

2π

[
−2 ln ε− ln

|x‖y|
4

− 2γ +

∫ ε|x|

0
dp

× 1 − J0(p)
p

+

∫ ε|y|

0
dp

1 − J0(p)
p

]
,

(C.7)

where |x| and |y| are non-zero. We conclude that all sums
of Green’s functions (regardless of zero or non-zero argu-
ments)give a positive infinite result as the infrared cutoff ε
tends to zero. Z1 is therefore the exponential of a negative
infinite constant, so that Z1 = 0.

The calculation of Z2 involves the average of the prod-
uct of two exponentials, see equation (21). We thus study the
following average:

Jσ =
〈

ei
√
π[θ(1,τ )+θ(2,τ )+φ(1,τ )−φ(2,τ )]

× eiσ
√
π[θ(1′,τ ′)+θ(2′,τ ′)+φ(1′,τ ′)−φ(2′,τ ′)]

〉
, (C.8)

where we use the shorthand notations δτ = τ − τ ′, ‘1’ =
x + z/2, ‘2’ = x − z/2, ‘1′’ = x′ + z′/2, ‘2′’ = x′ − z′/2 and
σ = ±. Further defining ‘kx’ = qx + ωτ , ‘kx′’ = qx′ + ωτ ′,
s = sin qz/2, s′ = sin qz′/2, c = cos qz/2 and c′ = cos qz′/2.

We then notice that the expression for Jσ in equation (C.8)
has the same form as the average equation (B.1) with the
redefinition of the parameters:

Ap = −
√
πs eikx − σ

√
πs′ eikx′ (C.9)

A−p =
√
πs e−ikx + σ

√
πs′ e−ikx′ (C.10)

Bp = i
√
πc eikx + σi

√
πc′ eikx′ (C.11)

B−p = i
√
πc e−ikx + σi

√
πc′ e−ikx′ . (C.12)

After some tedious algebra we thus get the result:

Jσ = exp
(
−π

{
Gθθ(0) + Gφφ(0) + Gθθ(z, 0) − Gφφ(z, 0)

+ Gθθ(0) + Gφφ(0) + Gθθ(z′, 0) − Gφφ(z′, 0)

+ σ
[
Gθθ(1 − 1′, δτ ) + Gφφ(1 − 1′, δτ ) + Gθθ(1 − 2′, δτ )

−Gφφ(1 − 2′, δτ )
]
+ σ

[
Gθθ(2 − 2′, δτ )

+Gφφ(2 − 2′, δτ ) + Gθθ(2 − 1′, δτ ) − Gφφ(2 − 1′, δτ )
]

+2σ
[
Gθφ(1 − 1′, δτ ) − Gθφ(2 − 2′, δτ )

]})
. (C.13)

We now make the following statements. First, the exponential
of mixed Green functions Gθφ corresponds to a phase factor
since such Green’s functions are specified as follows:

Gθφ(x, τ ) =
∫

d2 p
(2π)2

iω/q
ω2 + q2

eiqx+iωτ

=
−i
2π

arctan(x/τ ) [Θ(τ ) +Θ(−τ )] ,

(C.14)

where Θ is the Heaviside function. Second, using the previous
results concerning the sum and difference of Green’s func-
tions Gθθ (or Gφφ), one can show that J+ = 0. Indeed, with
the above result concerning mixed Green’s functions, we see
that the modulus of J+ equals zero (it is the exponential of a
negative infinite constant):

|J+| = exp
(
−π

[
Gθθ(0) + Gφφ(0) + Gθθ(z, 0) − Gφφ(z, 0)

+ Gθθ(0) + Gφφ(0) + Gθθ(z′, 0) − Gφφ(z′, 0)

+ Gθθ(1 − 1′, δτ ) + Gφφ(1 − 1′, δτ ) + Gθθ(1 − 2′, δτ )

− Gφφ(1 − 2′, δτ ) + Gθθ(2 − 2′, δτ ) + Gφφ(2 − 2′, δτ )

+ Gθθ(2 − 1′, δτ ) − Gφφ(2 − 1′, δτ )
])

= 0. (C.15)

We conclude that the only non-vanishing contribution to Z2 in
equation (21) is J−:

J− = exp
(
−π

[
Gθθ(0) + Gφφ(0) + Gθθ(z, 0) − Gφφ(z, 0)

+ Gθθ(0) + Gφφ(0) + Gθθ(z′, 0) − Gφφ(z′, 0)

− Gθθ(1 − 1′, δτ ) − Gφφ(1 − 1′, δτ ) − Gθθ(1 − 2′, δτ )

+ Gφφ(1 − 2′, δτ ) − Gθθ(2 − 2′, δτ ) − Gφφ(2 − 2′, δτ )

− Gθθ(2 − 1′, δτ ) + Gφφ(2 − 1′, δτ )

− 2Gθφ(1 − 1′, δτ ) + 2Gθφ(2 − 2′, δτ )
])

. (C.16)

It is expressed as the exponential of differences of diagonal

Green’s functions Gθθ and Gφφ, along with a phase factor [the
last line of equation (C.16)]. This completes the details of the
perturbative analysis.

Appendix D. Smooth cutoff functions

The oscillations in the non-local part of a relative Gaus-
sian backscattering interaction va(z) is due to the hard cut-
off in the integrals defining the Green’s functions. We can
introduce smooth cutoff functions f where we basically
want 0 � f(p;Λ) � 1 for all p, f(p;Λ) = 1 if 0 � p � Λ
and f(p;Λ) = 0 if p � Λ. Then we make the substitution∫ Λ

0 dp→
∫∞

0 dpf (p;Λ) so that, for example, for b = 1 + ε

with 0 < ε � 1, the Green’s function G̃θ′′θ′′(z′, 0) now reads

G̃θ′′θ′′(z′, 0) =
g

2π

∫ bΛ

Λ

dp
J0(p|z′|)

p

=
g

2π

∫ ∞

0
dp [ f (p; bΛ) − f (p;Λ)]

J0(p|z′|)
p

= ε
g

2π

∫ ∞

0
dp ∂b f (p; bΛ)|b=1

J0(p|z′|)
p

. (D.1)

Following the same procedure as before, we obtain

13
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Figure D1. Three-dimensional evolution of the non-local part of a relative Gaussian backscattering interaction va(z) with typical width
a = 10 (all length scales in units of Λ−1) as a function of the relative coordinate z and the inverse LL parameter 1/g. The quantity r on each
graph represents the ratio of the running cutoff to the initial cutoff. Here, a smooth cutoff function is used which removes the oscillation of
the Bessel function J0. Qualitatively, the same phenomenon occurs: if 1/g < 1 the RG flow suppresses the interaction; if 1/g > 1 the
interaction evolves as a Dirac-delta like function and the line at 1/g = 1 is kept approximately invariant with 1 � eα(g=1,Λ,z)t < 1.000 26 for
all t that are considered here.

α(g,Λ, z) = 1 − g + g−1

2

∫ ∞

0
dp

∂b f (p; bΛ)|b=1

p

− g − g−1

2

∫ ∞

0
dp ∂b f (p; bΛ)|b=1

J0(p|z′|)
p

.

(D.2)

For example, the following cutoff function f(p;Λ) =
Λ2/(p2 + Λ2) is used in the RG procedure as shown
in figure D1. Another possibility is to use f (p;Λ) =
exp

(
1 − 1/(1 − p2/Λ2)

)
if |p| < Λ and 0 if |p| � Λ. This

cutoff function leads to the same qualitative behavior (not
shown): the quasi-suppression of the oscillations.
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[23] Crépieux A, Guyon R, Devillard P and Martin T 2003 Phys. Rev.
B 67 205408
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