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Finite frequency noise in a normal metal–topological superconductor junction
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A topological superconductor nanowire bears a Majorana bound state at each of its ends, leading to unique
transport properties. As a way to probe these, we study the finite frequency noise of a biased junction between
a normal metal and a topological superconductor nanowire. We use the nonequilibrium Keldysh formalism to
compute the finite frequency emission and absorption noise to all order in the tunneling amplitude, for bias
voltages below and above the superconducting gap. We observe noticeable structures in the absorption and
emission noise, which we can relate to simple transport processes. The presence of the Majorana bound state
is directly related to a characteristic behavior of the noise spectrum at low frequency. We further compute the
noise measurable with a realistic setup, based on the inductive coupling to a resonant LC circuit, and discuss
the impact of the detector temperature. We have also computed the emission noise for a nontopological system
with a resonant level, exhibiting a zero-energy Andreev bound state, to show the specificities of the topological
case. Our results offer an original tool for the further characterization of the presence of Majorana bound states
in condensed matter systems.
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I. INTRODUCTION

The search for Majorana fermions [1]—particles that are
their own antiparticles—has been an active field of study in
hig- energy physics, with no conclusive/definite evidence of
their finding. Since the last decades, the Majorana paradigm
has now entered condensed matter physics thanks to the
pioneering work of Kitaev [2]. In this context, rather than
being elementary particles, Majorana fermions emerge from
the collective behavior of a many-electron system. This Kitaev
toy model consists of a tight-binding chain of electrons living
on lattice sites, which includes hopping and superconduct-
ing (p-wave) pairing between neighboring sites. Majorana
fermions exist at the boundaries of this one-dimensional chain
provided that certain conditions on the hopping parameter, the
gap parameter, and the chemical potential are met. In this
so-called topological phase, the ground state of the system
is degenerate, opening the possibility to realize a quantum
bit which could be, in principle, immune from decoherence
effects, with applications to quantum information schemes.

In quantum nanophysics, a huge effort has been devoted
to finding a realistic experimental equivalent of the Kitaev
model. One possibility is to realize a topological supercon-
ductor (TS) nanowire by inducing s-wave superconductivity
in a semiconducting nanowire subject to both Rashba spin-
orbit coupling and a Zeeman magnetic field [3–8]. Other
proposals where a chain of magnetic atoms are deposited on
a superconducting substrate have also been studied [9]. Many
theoretical proposals for the detection of Majorana fermions
relying on quantum transport setups have been published
over the past few years [10–15], but despite the significant
experimental progress, an unequivocal signature [16,17] of
these Majorana bound states (MBSs) is still lacking. While
some elements point in the right direction (the detection of

the zero-bias anomaly in the differential conductance, and
quite recently a claim that the quantized zero bias conductance
has been observed [18]), it is clear that the definite discovery
of Majorana fermions will require more experimental tests
for this finding to be firmly established. This is especially
important to exploit the properties of these objects in the
future, such as the generation of a Majorana qubit, and the
braiding of Majorana fermions, with applications to quantum
computing.

In this paper, the physics of a normal metal–topological
superconductor (NTS) junction (see Fig. 1) is revisited. While
the nonequilibrium electronic current and the zero-frequency
noise are perfectly understood by now [19], the finite fre-
quency noise characteristic of a NTS junction has so far
not been considered. Finite frequency noise has been studied
extensively in more conventional materials in the context of
quantum mesoscopic physics and nanophysics, both theoreti-
cally and experimentally. On the theoretical side, it has been
argued [20–22] that since the two current operators entering
the noise correlator are evaluated at different times, one can
introduce two quantities—the emission and the absorption
noise. A noise detector should, in principle, be described on
the same quantum footing as the nanodevice under study. In
full generality, the Fourier transform of the real-time noise
correlators can be a complex function of the frequency. The
measured signal by the quantum detector, which is a real
number, should thus be a combination of such emission and
absorption quantities. This has been experimentally verified
in pioneering finite frequency measurement experiments per-
formed in Deflt [23], in Orsay [24–26], and in Saclay [27–29]
in different contexts. In a previous paper, one of us [30,31]
computed the finite frequency noise of a normal metal–BCS
superconductor junction, and found cusps of singularities
at specific frequencies corresponding to different transport
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FIG. 1. Top: Schematic view of a junction between a normal
metal (yellow dots) and a topological superconductor (red-green
dots, with a red Majorana bound state at its end); the normal metal is
biased at voltage V . Bottom left: Topological superconductor density
of states, with a central peak at zero energy due to the Majorana
bound state, and square-root behavior outside the gap. Bottom right:
The principle of the noise detection, using the inductive coupling to
a RLC circuit [20].

processes. However, these results are not expected to survive
in the case of the NTS junction, as the density of states
(DOS) of the topological superconductor differs substantially
from its conventional BCS counterpart. The BCS DOS is zero
inside the gap, and bears inverse square-root divergences at
the gap edges. On the opposite, the DOS of a TS wire has a
square-root behavior outside the gap and a so-called Majorana
peak at zero energy (see Fig. 1).

Using a continuous model describing a semi-infinite Kitaev
chain, we derive the finite frequency noise to all orders in the
tunnel coupling parameter of the NTS junction (recovering in
the process known results for the current and zero-frequency
noise [19]). Within our framework, the current and noise can
be expressed in terms of dressed Keldysh Green’s functions
(using Wick’s theorem for the noise, as the Hamiltonian is
quadratic). Solving Dyson’s equation exactly, one reaches
analytical expressions for these two quantities in terms of the
known bare boundary Green’s functions of the two leads. The
finite frequency emission and absorption noises are then com-
puted for voltages above and below the superconducting gap,
showing plateaus—with a specific frequency width—where
the latter quantities are essentially constant. We interpret such
features as emission and absorption processes which couple
the constant DOS of a normal metal with the sharp peak in
the TS DOS associated with the MBS. For completeness, we
further use a generic model for the quantum detector—an
LC circuit which can absorb or emit photons from or to the
nanodevice [20,22,32]—and compute the measurable noise at
the resonant frequency of the LC detector.

To illustrate the added value of using finite frequency noise
over other quantities relying on DOS, like the differential
conductance, we have also computed the transport properties
of a nontopological N-dot-S system, where S is a standard
BCS superconductor. Indeed, this system bears a zero-energy

Andreev bound state (ABS), with a sharp peak in the DOS,
which is susceptible to yield similar differential conductance
and finite frequency noise profiles. With the right parameters,
this system presents a conductance peak similar to the one
of a MBS, which shows that the conductance alone is not
enough to characterize a MBS. However, the emission noise
shows a distinctive dip near zero frequency in this system,
which is absent for the NTS junction. We thus believe that the
finite frequency noise characteristics of an NTS junction can
bring unique, additional information about Majorana fermions
in experiments. This constitutes the main motivation of this
paper.

The paper is organized as follows. Section II introduces
the microscopic model Hamiltonian and defines the Keldysh
Green’s functions. The Dyson’s equations which are relevant
for the current and noise calculations are specified in Sec. III.
The noise is computed in Sec. IV (real time correlator, emis-
sion, and absorption noise) and detailed results are discussed
in Sec. V. Section VI shows the calculations and the results
for the emission noise of an N-dot-S system, with a BCS
superconductor. We conclude this work with Sec. VII. In the
whole following text, we fix the value of h̄ to 1.

II. MODEL

A semi-infinite topological superconductor wire is a single-
channel p-wave superconductor with spin-momentum lock-
ing, described from the continuous version of the Kitaev chain
[2] by the helical superconductor Hamiltonian,

Hj =
∫ +∞

0
dx ψ

†
j (x)(−ivF ∂xσ3 + �σ2)ψ j (x) , (1)

where vF is the Fermi velocity, � is the superconducting gap,
and σ1,2,3 are Pauli matrices in Nambu space. Here, we refer
to j = 0 for the TS nanowire and j = 1 for the (spinless)
normal metal lead, whose Hamiltonian has the same form,
with the gap parameter set to zero. These lead Hamiltonians
are conveniently written in terms of the fermionic Nambu
spinor ψ j defined as

ψ j =
(

cR j

c†
L j

)
, (2)

which combines left- and right-moving fermion operators
cR/L, j .

The Hamiltonian describing the tunnel coupling between
the two leads has the form (in the absence of applied bias)

HT = λc†
0c1 + H.c., (3)

where c0 and c1 are boundary fermions built simply from
the sum of the left and right fermionic fields entering the
Nambu spinor, evaluated at the location x = 0 of the NTS
junction, so c j = cR j (0) + cL j (0). It is also convenient to
write this tunnel Hamiltonian in the Nambu representation.
The formalism can be generalized to an arbitrary number M of
tunnel-coupled conductors as in Ref. [33]. For this, we define
a tunneling matrix W in lead space, whose diagonal elements
vanish: Wj j′ = λσ3(1 − δ j j′ ). Then, in Nambu representation,
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the tunneling Hamiltonian takes the form

HT = 1

2

M∑
j j′

�
†
j Wj j′� j′ , � j =

(
c j

c†
j

)
. (4)

The operator accounting for the current flowing through
lead j, is derived from the tunneling Hamiltonian Eqs. (4) as

I j = ie
∑
j′ �= j

�
†
j σ3Wj j′� j′ . (5)

An essential tool for this study is the Keldysh Green’s func-
tion for the boundary fermions. It is defined as G̃ηη′

jk (t, t ′) =
−i〈TK c j (tη )c†

k (tη′ )〉, where η = ± denotes the Keldysh time
index which specifies the position of times on the Keldysh
contour. It is represented by the (4 by 4) matrix in Keldysh-
Nambu space:

G̃ j j′ =
(

G++
j j′ G+−

j j′

G−+
j j′ G−−

j j′

)
= L̃

(
0 Ga

j j′

Gr
j j′ GK

j j′

)
L̃−1, (6)

where Ga, Gr, GK are the advanced, retarded, and Keldysh
components in Nambu space, and the unitary transform
L̃ = (1/

√
2)(τ0+iτ2) ⊗ σ0 (τ j are Pauli matrices in Keldysh

space).
We wish to express the average current in terms of such

Green’s functions. For this, we write explicitly the expression
of the off-diagonal Keldysh Green’s functions:

G−+
j j′ (t, t ′) = −i

(〈c j (t )c†
j′ (t

′)〉 〈c j (t )c j′ (t ′)〉
〈c†

j (t )c†
j′ (t

′)〉 〈c†
j (t )c j′ (t ′)〉

)
, (7)

G+−
j j′ (t, t ′) = +i

(〈c†
j′ (t

′)c j (t )〉 〈c j′ (t ′)c j (t )〉
〈c†

j′ (t
′)c†

j (t )〉 〈c j′ (t ′)c†
j (t )〉

)
. (8)

The average current can then be recast [19] in the form
of a Nambu trace containing the Keldysh Green’s function
GK

j j′ (t, t ′) = G+−
j j′ (t, t ′)+G−+

j j′ (t, t ′),

〈I j〉 = e

2

∑
j′ �= j

TrN
[
σ3Wj j′G

K
j′ j (t, t )

]
, (9)

which reads, in Fourier space, for the two-lead geometry
chosen here

I (V ) = eλ

2

∫ +∞

−∞

dω

2π
TrNGK

01(ω), (10)

where we used that, in this case, the tunneling matrix reduces
to W01 = W10 = λσ3.

III. DYSON’S EQUATIONS AND AVERAGE CURRENT

The Dyson’s equation is readily expressed in Keldysh-
Nambu-lead space as

Ǧ = [ǧ−1 − W̌ ]−1, (11)

where we have

Ǧ =
(

G̃00 G̃01

G̃10 G̃11

)
, W̌ =

(
W̃00 W̃01

W̃10 W̃11

)
, (12)

and the tunneling self-energy W̃j j′ is a diagonal matrix of the
form W̃j j′ = diag(Wj j′ ,−Wj j′ ).

Using Eq. (6), this can be further expressed into a set of
equations for the advanced, retarded, and Keldysh Green’s
functions as

Ĝr/a = ĝr/a + ĝr/aŴ Ĝr/a, (13)

ĜK = (
1̂ + ĜrŴ

)
ĝK

(
1̂ + Ŵ Ĝa

)
, (14)

where we used that the Keldysh component associated with
the tunneling self-energy vanishes and introduced the notation
·̂ for matrices in Nambu-lead space.

To compute the current, we thus need to know the full
expression of the dressed Green’s function GK

01. The Dyson’s
equation allows us to express this Keldysh component in terms
of the advanced and retarded dressed Green’s functions as
well as the bare Keldysh Green’s function and the tunneling
self-energy. One has

GK
01 =(

σ0 + Gr
01W10

)
gK

00W01Ga
11 + Gr

00W01gK
11

(
σ0+W10Ga

01

)
.

(15)

A. Bare Green’s functions

As a first step, we need to specify gK
00 and gK

11. The pro-
cedure to obtain the boundary Green’s function for the uncou-
pled semi-infinite TS wire has been described carefully in Ref.
[19]. Following this derivation, the various components of
the bare Green’s functions for the topological superconductor
then read

gK
00(ω) = [1 − 2nF (ω)]

[
gr

00(ω) − ga
00(ω)

]
, (16)

gr/a
00 (ω) =

√
�2 − (ω ± i0+)2σ0 + �σ1

ω ± i0+ , (17)

where nF (ω) is the Fermi function and 0+ an infinitesimal
introduced to properly define the square root in the complex
plane.

The Keldysh, retarded, and advanced bare Green’s func-
tions for the metallic lead are readily obtained by setting
� = 0 in the results above, so

gK
11(ω) = −2iF1, (18)

gr/a
11 (ω) = ∓iσ0. (19)

There we have introduced the matrix F1 as

F1 =
(

1 − 2nF (ω − eV) 0

0 1 − 2nF (ω+eV)

)
. (20)

Note that the top and bottom diagonal elements, respectively,
have an electronlike and holelike character, thus leading to
opposite signs for the voltage.
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Introducing the Heaviside distribution (|ω| − �), the
boundary Keldysh Green’s function on the TS side becomes

gK
00(ω) = 2i tanh

(
βω

2

)

×
[
π�(σ0 + σ1)δ(ω) +

√
ω2 − �2

|ω| (|ω| −�)σ0

]
,

(21)

where β is the inverse temperature.

B. Average current

To write the average current, we then need the expression
for the dressed Green’s functions Gr/a

00 , Ga
11, and Gr

00. Using
Dyson’s equation for the full advanced and retarded Green’s
function, Eq. (13), it is convenient to express Gr/a

01 , Gr/a
10 , and

Gr/a
11 in terms of Gr/a

00 as

Gr/a
01 (ω) = ∓iλGr/a

00 (ω)σ3, (22)

Gr/a
10 (ω) = ∓iλσ3Gr/a

00 (ω), (23)

Gr/a
11 (ω) = ∓iσ0 − λ2σ3Gr/a

00 (ω)σ3. (24)

It follows that the Keldysh component of the dressed Green’s
function which enters the current average can be written as

GK
01 = iλ

(
σ0 − iλ2Gr

00

)
gK

00

(
σ0 + iλ2Ga

00

)
σ3

− 2iλGr
00F1

(
σ0 + iλ2Ga

00

)
σ3, (25)

where Gr/a
00 is also obtained from the Dyson’s equation, and

reads

Gr/a
00 = [−σ3gr/a

00 σ3 ± iλ2σ0
]−1

. (26)

One readily sees that Gr/a
00 is a linear combination of σ0 and σ1

Pauli matrices

Gr/a
00 (ω) = αr/a(ω)σ0 + γ r/a(ω)σ1, (27)

where, denoting ω± = (ω ± i0+),

αr/a(ω) =
(√

�2 − ω2± ∓ iλ2ω±
)
ω±

�2 − (√
�2 − ω2± ∓ iλ2ω±

)2
, (28)

γ r/a(ω) = �ω±

�2 − (√
�2 − ω2± ∓ iλ2ω±

)2
. (29)

Note that αr = (αa)∗ and γ r = (γ a)∗.
Keeping in mind that gK

00 is also a linear combination of σ0

and σ1, one can significantly simplify the Nambu trace needed
for the current:

TrNGK
01(ω) = −2iλTrN

[
Gr

00F1
(
σ0 + iλ2Ga

00

)
σ3

]
. (30)

Inserting all these expressions in the trace formula for the
current Eq. (10), the result is, introducing nF (ω ± eV) ≡ n(±)

F

and δnF = n(+)
F − n(−)

F :

I (V )=−2ieλ2
∫ +∞

−∞

dω

2π
[αr +iλ2(|αr |2−|γ r |2)]δnF . (31)

This is identified as a Landauer formula,

I = e

2π

∫ +∞

−∞
dω RA(ω)(n(−)

F − n(+)
F ), (32)

with the (real valued) Andreev reflection probability

RA(ω) = −2λ2[Im(αr ) + λ2(|αr |2 − |γ r |2)], (33)

whose expression matches exactly with the one of the spectral
current density J (ω) obtained in Eq. (35) of Ref. [19].

IV. FINITE FREQUENCY NOISE

A. Real-time noise correlator

The real -time noise correlator in a multilead geometry is
defined as

S jl (t, t ′) = 〈I j (t )Il (t
′)〉 − 〈I j (t )〉〈Il (t

′)〉, (34)

where I j (t ) is defined by Eq. (5). As the Hamiltonian is
quadratic in the fermionic degrees of freedom, we can use
Wick’s theorem to express the four fermion operator averages
in terms of products of off-diagonal Keldysh Green’s func-
tions, again in the form of a Nambu trace:

S jl (t, t ′) = e2TrN[σ3(Ŵ Ĝ−+(t, t ′)Ŵ ) jlσ3 G+−
l j (t ′, t )]

− e2TrN[σ3(Ŵ Ĝ−+(t, t ′)) jlσ3(Ŵ Ĝ+−(t ′, t ))l j],
(35)

where we recall that ·̂ corresponds to matrices in Nambu-lead
space.

In our two-terminal geometry, this simplifies as

S11(t, t ′) = λ2e2TrN[G−+
00 (t, t ′)G+−

11 (t ′, t )

− G−+
01 (t, t ′)G+−

01 (t ′, t )]. (36)

These Green’s functions are related to the retarded, ad-
vanced, and Keldysh components according to

Ĝ+− = 1
2 (Ĝa − Ĝr + ĜK ), (37)

Ĝ−+ = 1
2 (Ĝr − Ĝa + ĜK ). (38)

Writing explicitly the Keldysh component of the Dyson’s
equation, Eq. (14), for all combination of leads, one has

GK
00 = (

σ0 − iλ2Gr
00

)
gK

00

(
σ0 + iλ2Ga

00

) − 2iλ2Gr
00F1Ga

00,

(39)

GK
11 = (

σ3 − iλ2σ3Gr
00

)(
λ2gK

00 − 2iF1
)(

σ3 + iλ2Ga
00σ3

)
.

(40)

The four Green’s functions G−+
00 , G−+

01 , G+−
01 , G+−

11 which
enter the real-time noise correlator are ultimately obtained
from the above Keldysh components:

G−+
00 = 1

2

[
Gr

00 − Ga
00 − 2iλ2Gr

00F1Ga
00 + H

]
, (41)

G+−
11 = i(σ0 − F1) + λ2

2
σ3

(
Gr

00 − Ga
00

)
σ3

− λ2σ3Gr
00σ3F1+λ2F1σ3Ga

00σ3

− iλ4σ3Gr
00F1Ga

00σ3+1

2
λ2σ3Hσ3, (42)

104502-4



FINITE FREQUENCY NOISE IN A NORMAL METAL– … PHYSICAL REVIEW B 99, 104502 (2019)

G−+
01 = −i

λ

2

(
Gr

00 + Ga
00

)
σ3 − iλGr

00σ3F1

+ λ3Gr
00F1Ga

00σ3 + i
λ

2
Hσ3, (43)

G+−
01 = i

λ

2

(
Gr

00 + Ga
00

)
σ3 − iλGr

00σ3F1

+ λ3Gr
00F1Ga

00σ3 + i
λ

2
Hσ3, (44)

where we introduced the new matrix

H (ω) =(
σ0 − iλ2Gr

00

)
gK

00

(
σ0 + iλ2Ga

00

)
. (45)

Substituting these back into the expression for the real-time
current correlator allows one to derive an exact, albeit cum-
bersome, analytic expression for S11.

B. Emission, absorption, and measurable noise

In full generality, one may consider that the Green’s func-
tions depend on two times, t and t ′. In the specific setup under
consideration, we are in a stationary situation as there is only
one superconductor in the system. It follows that the time
dependence reduces to a single variable, more precisely the
time difference τ = t − t ′. We thus consider the two distinct
correlators:

S+(τ ) = S11(0, τ ) = λ2e2TrN[G−+
00 (−τ )G+−

11 (τ )

− G−+
01 (−τ )G+−

01 (τ )], (46)

S−(τ ) = S11(τ, 0) = λ2e2TrN[G−+
00 (τ )G+−

11 (−τ )

− G−+
01 (τ )G+−

01 (−τ )]. (47)

Their Fourier transforms define the emission and absorption
noise as

S+(�) =
∫ +∞

−∞
dt 〈δI (0)δI (t )〉 ei�t , (48)

S−(�) =
∫ +∞

−∞
dt 〈δI (t )δI (0)〉 ei�t , (49)

which are conveniently rewritten using the Fourier-
transformed Green’s functions as

S+(�) = λ2e2
∫ +∞

−∞

dω

2π
TrN[G−+

00 (ω)G+−
11 (ω + �)

− G−+
01 (ω)G+−

01 (ω + �)], (50)

S−(�) = λ2e2
∫ +∞

−∞

dω

2π
TrN[G−+

00 (ω)G+−
11 (ω − �)

− G−+
01 (ω)G+−

01 (ω − �)]. (51)

It is clear from these expressions that emission and absorption
noises are trivially related when flipping the sign of the
probing frequency, namely S+(�) = S−(−�). It follows that
to describe the whole range of physical parameters, we can
safely focus on positive frequencies for both noise spectra.

To connect with potential experimental works looking to
investigate the finite-frequency noise of the NTS junction,
we also compute the noise expected to be measured from a

generic quantum detector consisting of a resonant LC circuit,
inductively coupled to the NTS junction (see Fig. 1). This
measured noise is the result of repeated measurements of the
charge at the capacitor plates. For the present setup, we use
an expression formulated in Refs. [20,32] to predict the result
of such a measurement. This so-called measurable noise is
given by

Smeas(�) = K{S+(�) + N (�)[S+(�) − S−(�)]}, (52)

where N (�) = [exp(h̄�/kBTLC) − 1]−1 is the Bose-Einstein
distribution associated with the oscillator modes, and K is
the effective coupling constant of the quantum wire with the
resonator whose expression reads

K =
( α

2L

)2 1

2η
. (53)

L and α, respectively, stand for the inductance of the resonant
circuit and the inductive coupling, while η is the width of
the resonance. This last parameter depends on the dissipative
environment surrounding the LC circuit [32] and is typically
small but its inverse is kept finite. Note that in full generality,
this measurable noise is a combination of emission and ab-
sorption noise, weighted by the Bose- Einstein distribution.
The temperature of the noise detector TLC can in general
be different from that of the electrons flowing in the NTS
junction.

V. RESULTS

In this section, we start by briefly recalling the known
results for the conductance and the zero frequency noise, as
both these quantities serve as a useful benchmark for our
approach. We then move on to the determination of the finite
frequency emission, absorption, and measurable noises at low
temperature.

The NTS junction is characterized by its transparency τ

(0 � τ � 1), which is defined from the tunneling amplitude λ

as τ = 4λ2/(1+λ2)2. We use units such that kB = h̄ = 1. We
adopt the convention that the TS wire is grounded, the voltage
drive being applied to the normal metallic lead.

A. Differential conductance

We hereby recover important results which were already
obtained in a previous study [19]. At zero temperature, the
differential conductance is directly given by the reflection
probability G = 2e2

h RA(eV) [see Eq. (32). At subgap voltages,
this takes a very simple form since in this case

RA(eV) = 1

1+(
eV
�

)2 , (54)

leading to the predicted Majorana zero-bias peak with quan-
tized height 2e2/h and width � = τ�/2

√
1 − τ due to res-

onant Andreev reflection. As one approaches perfect trans-
mission τ → 1, the strong NTS hybridization turns this peak
into a plateau at G = 2e2/h, extending over the whole subgap
regime, |eV| < � (although the Majorana state is ill-defined
due to this very same hybridization). Moreover, setting �=0,
one recovers the behavior of a spin-polarized N-N junction
with a Landauer conductance GNN = τe2

h . Adding a finite
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temperature to the system does not substantially change the
results and only tends to smooth out the curves, as expected.

B. Zero-frequency noise

We now turn to the shot noise S11 = S±(� = 0), and more
specifically the Fano factor, defined as the ratio of the zero-
frequency noise to the average current, F = S11/eI1.

In the subgap regime, as predicted in Ref. [19], this Fano
factor vanishes at perfect transparency (τ = 1), and increases
when the transparency decreases, following

F = 1 − 1

arctan
(

eV
�

) eV
�

1 + (
eV
�

)2 . (55)

Above the gap, even at τ = 1, the Fano factor F is finite
due to the concomitant presence of both Andreev reflexion
and quasiparticle processes.

For a normal-normal junction, i.e., in the limit � = 0, the
zero-frequency noise at zero temperature shows, as expected
[34,35], a linear behavior with respect to the bias voltage and
reduces to S11 = (e2/h)τ (1 − τ )eV.

C. Finite-frequency noise

The finite-frequency noise has so far been absent in the
investigations of the transport characteristics of topological
superconductors. The results for the emission noise S+(�)
and the absorption noise S−(�), obtained from a numerical
evaluation of Eqs. (50) and (51), are shown in this section.
Only their real parts are discussed here, as their imaginary
parts yield vanishing contributions within numerical accuracy.

The noise at finite frequency � is created by fluctuations of
current processes which are accompanied by the emission or
absorption of a photon at the frequency �. Understanding the
basic process which contributes to the current with emission
or absorption of a photon, while conserving the total energy,
can give us a qualitative understanding of the finite-frequency
noise features.

As a warm-up, let us first recall what happens in the most
simple situation of a junction between two normal metallic
electrodes (corresponding to taking the limit � → 0). There,
electronic transport occurs if occupied electron states from
one lead have enough energy to reach the empty states of
the other. This results in a decreasing linear behavior of
the emission noise S+(�) for frequencies � ∈ [0, eV] and a
vanishing emission noise for higher frequencies due to Pauli
blocking [35]. In the meantime, the absorption noise S−(�)
increases linearly with �, since the bigger the frequency, the
more electrons can be transferred between leads.

When we replace the normal lead by a topological su-
perconducting wire, the noise spectrum changes drastically.
These changes can be understood qualitatively by taking into
account the DOS of the topological superconductor, which is
gapped for energies |E | < �, except for a single narrow peak
at zero energy due to the MBS (see Fig. 1).

1. Qualitative picture

The qualitative picture showing the basic processes con-
tributing to the finite-frequency noise are shown in Fig. 2. The
two processes of the top row [Figs. 2(a) and 2(b)] describe

(a)

eV
Δ

(b)

eV
Δ

(c)

eV
Δ

(d)

eV
Δ

(e)

eV
Δ

(f)

eV
Δ

FIG. 2. Energy diagram of a NTS junction. In medium grey are
represented the occupied electronic states and in light grey the empty
states. (a), (b) Emission processes; (b) is not available for a bias eV
below the gap �. (c), (d) Absorption processes involving a transition
from the metal to the superconductor. (e), (f) Absorption processes
with transitions to the metal. Straight lines correspond to the transfer
of electrons while wiggly lines are associated with the absorption or
emission of photons.

emission noise, while the four other processes describe ab-
sorption noise. Note that we can choose eV > 0 without loss
of generality, thanks to the electron-hole symmetry.

When the bias voltage is smaller than the gap, eV < �,
there is only one process contributing to the emission noise,
which is shown in Fig. 2(a). Electrons in the normal metal
with energies in the interval [0, eV] may hop to the Majorana
state by emitting a photon of energy � = eV [see Fig. 2(a)].
Since the width of the Majorana peak in the DOS is extremely
small, and the DOS of the normal metal is constant, this
emission process only shows a negligible dependence on the
frequency.

For voltages larger than the gap, another emission process
kicks in: Electrons from the normal metal can be transferred
to the empty states above the TS gap and emit a photon with
� in the range [0, eV − �] [see Fig. 2(b)]. The frequency
dependence of this process will reflect the energy dependence
of the TS DOS above the gap.

Absorption processes similar to the emission processes
discussed above can also be realized. These are shown in
Figs. 2(c) and 2(d), and are expected to show similar fre-
quency dependence as their emission counterparts. In the case
of Fig. 2(c), an electron from the normal metal absorbs a
photon to be transmitted to the Majorana state. Figure 2(d) is
the equivalent of Fig. 2(b) for photon absorption: An electron
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FIG. 3. Emission noise S+(�) (top) and absorption noise S−(�)
(bottom) as a function of frequency � (in units of �) at low
transparency (τ = 0.02) computed in the subgap regime |eV| < �

for three different values of the voltage bias (eV = 0.3�, 0.6�, and
0.9�) and expressed in units of e2�/h.

from the normal metal absorbs a photon and is transmitted to
an empty state above the TS gap. Note, however, that while
processes in Figs. 2(a) and 2(c) exist for any voltages, the
emission process of Fig. 2(b) can only occur for voltages
beyond the gap.

Finally, the absorption of photons also allows processes
where an electron is transmitted from the topological su-
perconductor to the normal metal, for frequencies � ∈
[eV,+∞]. Figures 2(e) and 2(f) show the corresponding
processes, where the TS electron is transmitted to a normal
metal empty state, either from the Majorana state [Fig. 2(e)]
or from the occupied states below the gap [Fig. 2(f)].

2. Results for eV < �

We now show the results for the finite frequency emission
noise S+(�) and absorption noise S−(�) obtained at low tem-
perature Te = 0.01� for different values of the transparency τ

and the voltage V (applied on the normal lead, the TS wire is
assumed to be grounded).

The emission noise in the subgap regime eV < � is shown
in Fig. 3 (top), at low transparency τ = 0.02 for three different
values of the voltage. For each curve, we observe a plateau
that extends up to � = eV, followed by a sharp drop to zero.
This plateau corresponds to the process (a) of Fig. 2 and exists
only for frequencies � < eV, hence the observed drop. The
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FIG. 4. Emission noise S+(�) (top) and absorption noise S−(�)
(bottom) as a function of frequency � (in units of �) at low trans-
parency (τ = 0.02) computed beyond the gap |eV| > � for three
different values of the voltage bias (eV = 1.2�, 1.5� and 1.8�),
and expressed in units of e2�/h.

absorption noise for the same parameters is shown on Fig. 3
(bottom). The most visible feature is a sharp step at � = eV,
which corresponds to the onset of the process from Fig. 2(e),
whose contribution is independent of frequency.

Smaller structures can be observed at frequency � = � −
eV and � = � + eV, corresponding, respectively, to the onset
of processes in Figs. 2(d) and 2(f). Interestingly, a fourth
process also contributes to the absorption noise, namely, the
process in Fig. 2(c). However, the latter cannot be associated
with any visible feature as it leads to a constant contribution
for all positive frequency �, thus resulting in a finite back-
ground contribution to the absorption noise.

3. Results for eV > �

We now turn to the low-temperature results for the noise
at voltages eV > � and in the same low transparency regime
(τ = 0.02).

The emission noise S+(�) is shown in Fig. 4 (top), for
three different voltages beyond the gap. As in the subgap
regime, the main feature of the emission noise is the presence
of a well-defined plateau extending from � = eV − � all the
way up to � = eV, which ends with a sharp drop to zero.
Again, this plateau is fully compatible with the process shown
in Fig. 2(a), as it is expected to lead to a constant contribution
and can only occur for frequencies � < eV (since there
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FIG. 5. Emission noise S+(�) and absorption noise S−(�) (in
units of e2�/h) as a function of frequency � (in units of �) at
transparency τ = 0.4 beyond the gap |eV| > �, for three different
values of the voltage bias (eV = 1.2�, 1.5�, and 1.8�).

are no occupied electronic states at higher energy). While
this contribution is still present at very low frequency, it is
supplemented by another one arising from the process [see
Fig. 2(b)], leading to a new structure in the noise. Indeed,
for frequencies � < eV − �, electrons close to the metallic
Fermi level can be transferred to the empty states above the
TS gap while emitting a low-energy photon. The resulting
frequency dependence of the emission noise is directly related
to the energy dependence of the TS DOS above the gap.

The absorption noise for eV > � is shown in Fig. 4
(bottom). The main feature is again a sharp step for � = eV,
associated with the process presented in Fig. 2(e). A smaller
structure is visible at � = � + eV, and can be directly tied
to the onset of the process in Fig. 2(f). Processes in Figs. 2(c)
and 2(d) also contribute to the absorption noise, being present
at all frequencies and leading, respectively, to a constant
background contribution and to a steady increase of the noise.

It follows from the inspection of the finite-frequency noise,
for voltages both above and below the TS gap, that the
presence of a MBS leads to a plateau in the emission noise
as a function of frequency, accompanied by a sharp drop to
zero at � = eV.

At this point, it is interesting to relax the constraint of low
transparency and study the impact of a higher value of τ .
This is shown in Fig. 5, where an intermediate value of the
transparency, τ = 0.4, has been used.
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FIG. 6. Measurable noise (in units of e2K�/h) as a function
of frequency � (in units of �) at low transparency (τ = 0.02) for
electron and detector temperatures Te = TLC = 0.01�.

One can readily see that increasing the transparency tends
to smooth out all the structures visible in the noise and
discussed above. Further increasing the transparency and ulti-
mately approaching τ = 1 (not shown) makes all features in
the noise spectrum disappear. The best opportunity to identify
the noise plateau associated with the MBS is thus to focus
on the case of tunnel junctions.

D. Measurable noise

We end this paper with a short discussion of the prediction
of the measurable noise. To this end, we choose the inductive
coupling scheme introduced in Ref. [20], which involves an
LC circuit in the vicinity of the NTS junction (see Fig. 1). This
protocol relies on repeated measurements of the charge on the
plates of the capacitor of the LC resonant circuit. We aim
at investigating the results of the measurable noise Smeas(�)
as a function of the frequency �, as defined in Eq. (52),
which corresponds to the measurable response of this resonant
circuit.

Following our investigations on the emission and absorp-
tion noise, we focus here on the low transparency regime,
as this is the most likely candidate to observe meaningful
signatures of the MBS. The new crucial parameter which dra-
matically influences the measurable noise is the temperature
TLC of the detector.

In the low-temperature regime for the detector, TLC � �,
the measurable noise, presented in Fig. 6 for voltages beyond
the gap, closely resembles the emission noise obtained earlier
for the same set of parameters, showing in particular the
characteristic low-frequency behavior of the noise which we
could associate with the presence of a MBS. This is easily
understood from the very definition of the measurable noise,
Eq. (52). Indeed, in this low-temperature regime, the Bose-
Einstein distribution becomes vanishingly small, so that the
measurable noise reduces to

Smeas(� � TLC) � KS+(�). (56)

As one increases the detector temperature (see Fig. 7
obtained for TLC = �), this connection with the emission
noise is progressively altered, ultimately leading to the disap-
pearance of any meaningful signatures. However, the typical
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FIG. 7. Measurable noise (in units of e2K�/h) as a function
of frequency � (in units of �) at low transparency (τ = 0.02)
for an electron temperature Te = 0.01� and a detector temperature
TLC = �.

onsets of the various processes stay unaffected, leading to
structures in the measurable noise at frequencies � = eV − �

and � = eV. In particular, the measurable noise shows a
sudden change of sign near � = eV, a feature inherited from
the sharp drop in the emission noise, which is also directly
connected to the presence of the Majorana peak in the TS
DOS. It follows that even in this high-temperature regime of
the detector, the measurable noise can still be used as a tool to
uncover signatures of the MBS.

VI. COMPARISON WITH AN N-DOT-S SYSTEM

A remaining question is to inquire whether a nontopo-
logical superconductor/normal metal junction bearing zero-
energy ABS, which also exhibits a zero bias peak in the
differential conductance, is likely to produce the same finite-
frequency noise characteristics as the NTS junction, which
constitutes the focus of this paper. We thus consider here a
system where a standard BCS superconductor is connected
to a normal lead via a single quantum dot. We compute the
finite frequency noise in a regime where the quantum dot has
signatures close to a MBS when looking at the conductance
only. This will allow us to point out the unique information
obtained by considering the finite-frequency noise, which
permits us to make a clear distinction between a real MBS in a

topological superconductor and the presence of an accidental
bound state at zero energy close to the junction.

The Hamiltonian of the system is

H = HD +
∑

j=S,N

Hj + HT , (57)

where HD is the Hamiltonian of the dot level at energy ε:

HD = ε
∑

σ=↑,↓
d†

σ dσ , (58)

Hj ( j = S, N) are the Hamiltonians of the BCS superconduc-
tor and of the normal lead:

Hj =
∑

k

�
†
j,k (ξkσz + � jσx )� j,k, (59)

where �S = � is the superconducting gap and �N = 0. � j,k

is a Nambu spinor,

� j,k = (ψ j,k,↑ ψ
†
j,−k,↓)T , (60)

ξk = k2/(2m) − μ, and σx and σz are Pauli matrices in Nambu
space. Finally, HT is the tunneling Hamiltonian between the
leads and the dots:

HT =
∑

jk

�
†
jkT j (t )d + H.c., (61)

where d = (d↑ d†
↓)T is a Nambu spinor for the dot electrons.

T j is the tunneling amplitude between lead j and the dot,
where the constant voltage Vj has been included via a Peierls
substitution:

T j (t ) = t jσzexp(iσzVjt ). (62)

The tunneling rate between the dot and lead j is further
defined as � j = πν0t2

j , where ν0 is the DOS of the metal at
Fermi energy.

Calculation of the average current and current correlations
is carried out using the Keldysh Green function formalism,
and has already been presented for a similar system in
Ref. [36]. The formula for the mean current to lead j is

〈I j〉=eTrN

{
σ3

∫
dω

2π
Re[Gr (ω)�K (ω) + GK (ω)�a(ω)]

}
,

(63)

where the trace is performed in Nambu space, G is the full dot
Green’s function (including the coupling to the leads), and � j

is the self-energy for lead j. The superscripts r, a, K refer to
the retarded, advanced, and Keldysh components.

Similarly, the formula for the current autocorrelations at finite frequency � is

S j (�) = −e2

2
Re

∫
dω

2π
TrN

{
σ3

[
�K

j Ga + �r
jGK − �a

jGa + �r
jGr

]
ω
σ3

[
�K

j Ga + �r
jGK + �a

jGa − �r
jGr

]
ω+�

− σ3
[
�r

jGr�K
j + �K

j Ga�a
j + �r

jGK�a
j − �a

jGa�a
j + �r

jGr�r
j

]
ω
σ3[GK + Ga − Gr]ω+�

}
− e2

4
Re

∫
dω

2π
TrN

{
σ3

[
�a

j −�r
j − �K

j

]
ω
σ3[Ga−Gr +GK ]ω+�+σ3[Gr −Ga+GK ]ωσ3

[
�r

j −�a
j −�K

j

]
ω+�

}
. (64)

Note that there is an extra term compared to Eq. (51)
of Ref. [36], as we are not computing the current

cross-correlations between different leads, but instead the
autocorrelations. For � > 0 (respectively, � < 0), Eq. (64)
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FIG. 8. Differential conductance G = dIN/dV , for the current
to the normal lead IN , in an N-dot-S junction, with symmetric
couplings (�N = �S = 0.02, full line) and asymmetric couplings
(�N = 0.02, �S = 3�N , dotted line), as a function of the voltage
of the normal lead. Other parameters: ε = 0, 1/(kBT ) = 300. The
superconducting gap � is the unit of energy.

gives the emission noise S+(�) [respectively, the absorption
noise S−(�)]—to be compared with Eqs. (50) and (51) for the
NTS case.

We now turn to the results obtained with Eqs. (63) and
(64). As a first step, we need to specify the parameters of
the N-dot-S system for which the conductance is similar to
the one obtained for a NTS junction due to the presence of
the MBS. This means a conductance peak at zero energy, as
shown by Eq. (54). This can be obtained here if two conditions
are satisfied: setting the energy ε of the dot to zero, and using
symmetrical couplings (�N = �S). While the first condition is
obvious, the second one is illustrated in Fig. 8, which shows
the differential conductance G = dIN/dV as a function of the
voltage V applied to the normal lead. There, we consider
the case of a symmetric junction with �N = �S = 0.02 (full
line), as well as the situation of an asymmetric junction with
�N = 0.02 and �S = 3 �N (dotted line). The other parameters
are ε = 0, and 1/(kBT ) = 300, while the superconducting gap
� is the unit of energy. One can see that while the symmetric
junction leads to a conductance peak which is identical to the
one of a NTS junction, the asymmetric one shows a splitting
of the conductance peak.

Focusing then on a symmetric junction with a dot at zero
energy (ε = 0), we now plot the emission noise. Figure 9
shows S+(�) for three values of the voltage below the gap
(V = 0.3�, 0.6�, and 0.9�), while Fig. 10 focuses on volt-
ages above the gap (V = 1.2�, 1.5�, and 1.8�), with cou-
plings �N = �S = 0.02 in both cases. These figures should
be compared with their NTS equivalent, Figs. 3 and 4,
respectively.

We see that, as in the case of the NTS junction, there is
a clear plateau in the emission noise, which extends up to
� = eV. This plateau is the manifestation of the discrete level
(here the dot level), which is associated with a narrow peak in
the DOS. However, an important difference with respect to the
NTS case is also visible in Figs. 9 and 10: At small frequency
�, there is a dip in the emission noise, with a value at � = 0
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FIG. 9. Emission noise S+(�) for a symmetric N-dot-S junction
with �N = 0.02, at voltages V = 0.3�, 0.6�, and 0.9� (indicated
by dashed vertical lines). Compare with Fig. 3 for the case of a NTS
junction.

which is exactly half that of the plateau. When probed on
a very long timescale (as in the zero frequency noise), the
current fluctuations are reduced by a factor 1/2 due to the
double-barrier structure with symmetric couplings. When
the timescale is reduced to a time smaller than the average
transfer time of an electron between an electrode and the dot
level (∼1/�), then the double-barrier nature of the setup has
no impact on the current fluctuations, which explains why the
dip in S+(�) has a width ∼�. This factor 1/2 for the contrast
of the observed dip corresponds to the well-known Fano factor
reduction in double-barrier symmetric junctions [35]. Interest-
ingly, this dip in the emission noise is completely absent in the
case of a NTS junction, because the MBS is an intrinsic part of
the superconductor and is not separated by a barrier. It follows
that, unlike the differential conductance, the low-frequency
behavior of the emission noise is able to discriminate between
the NTS and the N-dot-S system. Granted, our comparison
between the noise characteristics of the NTS junction and this
system containing a zero energy ABS is specific to the N-dot-
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FIG. 10. Emission noise S+(�) for a symmetric N-dot-S junc-
tion with �N = 0.02, at voltages V = 1.2�, 1.5�, and 1.8� (indi-
cated by dashed vertical lines). Compare with Fig. 4 for the case of a
NTS junction.
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S model we have adopted here. More generally, zero energy
ABSs can be generated in the contact region due to disorder
and/or to multiple subbands in the nanowire. Studying this
more general situation in detail goes well beyond the scope of
the present paper. At this point, we cannot absolutely rule out
that such an embedded ABS in the superconductor would lead
to a frequency noise characteristics similar to that of the NTS
junction. We therefore cannot claim that the frequency noise
characteristics obtained in this work can uniquely be attributed
to the presence of the Majorana fermion in the NTS junction.

VII. CONCLUSION AND PERSPECTIVES

The hunt for Majorana fermions continues to be an active
field of research. Besides the zero voltage anomaly which
was predicted, and in principle measured, by several experi-
mental and theoretical groups, more signatures of these man-
ifestations of collective electronic excitations are desperately
needed.

In this paper, we focused on a normal metal/topological
superconductor junction subjected to a constant voltage bias
using the nonequilibrium Keldysh formalism. Starting from
the boundary Green’s functions describing the two isolated
parts, we were able to express the average current and noise in
terms of dressed Green’s functions, accounting for tunneling
between the leads at all orders. This allows us to investigate
the stationary current, the zero frequency noise and, the main
result of this analysis, the finite-frequency emission, and
absorption noise.

Computed for various voltages at small and intermediate
transparency, the finite-frequency noise S+(�) and S−(�) for
the NTS junction show various structures, which can be tied
to different emission or absorption processes. In particular, the
distinctive feature associated with the presence of the MBS is
a plateau in the noise, extending all the way from � = 0 up to
a sharp step at frequency � = eV for voltages in the subgap
regime. The presence of such a plateau is a general feature of a
system with a discrete level, which is here the MBS. However,
for a nontopological system with an accidental discrete level
at zero energy, we have shown by computing the emission
noise in a N-dot-S system that the double barrier nature of the

setup imposes a dip in the plateau at low frequency �, which is
absent for the NTS junction. In this particular N-dot-S system,
the observation of the plateau for the whole frequency range
could thus be used to discriminate between an accidental
zero-energy ABS, and a real MBS. Nevertheless, this still
leaves open the possibility that more general superconducting
systems which bear ABS embedded in the superconductor
would generate the same differential conductance and noise
signals as the NTS junction. In any case, tunnel junctions
should still be favored, as these characteristic structures are
more prominent in the limit of small tunneling amplitudes,
and get smoothed out when the transparency is increased.

Finally, we used a generic model for measuring noise
consisting of an LC circuit inductively coupled to the normal
metal/topological superconductor junction under study. In
actual experiments, the temperature of this LC circuit is not
necessarily the same as the electronic temperature of the
junction. We see that when the temperature of the detection
(LC) circuit is comparable to that of the electronic temperature
of the NTS junction, we recover the same features as the ones
observed in the emission and absorption noise. While higher
temperatures of the detection circuit slightly blur the quality
of this diagnosis, there still remain specific signatures which
can be tied to tunneling processes involving the MBS. Our
results therefore suggest that finite-frequency noise measure-
ments offer a complementary diagnostic of the presence of
Majorana fermions in condensed matter systems. Extensions
could include taking into account the finite length of the TS
wire where the two MBSs located at each end hybridize, or
changing the chemical potential of the continuum version of
the Kitaev chain model used here to trigger a transition to
the nontopological phase. Using a more realistic model for
the topological superconductor, including the electron spin,
induced superconductivity, etc., is another notable extension
in view of a quantitative comparison with experiments [37].
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