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The clear-cut experimental identification of Majorana bound states in transport measurements still poses
experimental challenges. We here show that the zero-energy Majorana state formed at a junction of three
topological superconductor wires is directly responsible for giant shot noise amplitudes, in particular at low
voltages and for small contact transparency. The only intrinsic noise limitation comes from the current-
induced dephasing rate due to multiple Andreev reflection processes.
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Introduction.—Majorana fermions have emerged as
quasiparticles of central importance in modern condensed
matter physics, e.g., for topological superconductors (TSs)
and in exotic phases with intrinsic topological order [1–7].
In one-dimensional TS wires, spatially localized Majorana
bound states (MBSs) are formed at the wire boundaries.
The corresponding Majorana operator represents a quasi-
particle that equals its own antiparticle. MBSs are asso-
ciated with non-Abelian braiding statistics, and a pair of
well-separated MBSs defines a nonlocal zero-energy fer-
mion state. Apart from the obvious fundamental interest,
stable and robust realizations of zero-energy MBSs would
also enable powerful topologically protected quantum
information processing schemes [1,5,8–11]. Over the past
few years, many experiments have reported evidence for
MBSs either through the observation of conductance peaks
in transport spectroscopy (with normal probe leads tunnel
coupled to MBSs) [12–21] or from signatures of the 4π
periodic Josephson current-phase relation in TS-TS junc-
tions [22–25]. However, in principle both types of experi-
ments are not able to firmly rule out alternative physical
mechanisms. In fact, zero-bias anomalies are ubiquitous
and could arise from many sources, e.g., subgap Andreev
states [26,27] or disorder [28,29]. Moreover, various types
of topologically trivial Josephson junctions can also pro-
duce 4π periodic current-phase relations [30–33].
Fortunately, by investigating only slightly more elabo-

rate devices, experiments could be in a position to detect
very clear MBS signals that are much harder to fake. For
instance, in mesoscopic TS devices characterized by a
strong Coulomb charging energy, highly nonlocal con-
ductance phenomena are predicted for very low temper-
atures in the presence of zero-energy MBSs [34–37].
On the other hand, transport in a three-terminal device
composed of a TS wire and two normal wires should
yield characteristic MBS features in the current-current

cross-correlations between the normal wires [38–44]:
While shot noise in two-terminal setups also carries
interesting information [45–50], in the three-terminal
case already its sign has an unconventional voltage
dependence given by −sgnðV1V2Þ, where voltages V1

and V2 are applied between the TS and the respective
normal wire [38–42]. A different—and even more
distinct—Majorana manifestation in shot noise properties
of topological trijunctions is described below.
We here point out that an experimentally identifiable and

quite dramatic consequence of zero-energy MBSs arises
when probing shot noise in a trijunction of three TS wires;
see Fig. 1 for a schematic sketch. In this setup, an unpaired
zero-energy MBS must exist on general grounds [9]. We
show below that this MBS is directly responsible for giant
shot noise levels. We here define the shot noise amplitude
from the current-current correlations measured in the left
or right (TS1, TS2) wires in Fig. 1, which are biased at
voltages V1 and V2 against the central (TS0) wire, respec-
tively. The precise values of V1 and V2 are not crucial, and
giant noise levels are found at least for all commensurate
cases, pV1 ¼ qV2 with integer p, q [51]. (The case of
noncommensurate voltages is more complex and cannot be
accessed with the methods used below.) We provide an
intuitive explanation for the mechanism behind the giant
noise levels by studying the atomic limit, where the TS gap
Δ represents the largest energy scale. Calculations then
simplify substantially and allow for an analytical under-
standing. By including above-gap continuum quasipar-
ticles, we next show that the shot noise amplitude is
limited by a current-induced dephasing rate due to multiple
Andreev reflection (MAR) processes. The noise features
are most pronounced at low voltage and small contact
transparency, where the subgap current, and hence also the
dephasing rate, is small. While the current shows similar
MAR features as in TS-TS junctions [54–56], our results
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suggest that shot noise experiments for the setup in Fig. 1
should readily find clear MBS signatures.
Model.—The system is modeled by a generic low-energy

Hamiltonian, H ¼ P
ν¼0;1;2 HTSν þHt, where each TS

wire corresponds to (we often put e ¼ ℏ ¼ vF ¼ 1) [2]

HTSν ¼
Z

∞

0

dxΨ†
νðxÞð−i∂xσz þ ΔσyÞΨνðxÞ; ð1Þ

withNambu spinorsΨν ¼ ðcR;ν; c†L;νÞT and assuming chemi-
cal potential μ ¼ 0. Here, cL=R;ν are left- or right-moving,
effectively spinless fermion operators in the TSν wire, and
Pauli matrices σx;y;z (identity σ0) act in Nambu space. For
notational simplicity, the gap Δ is assumed real and identical
for all wires. The boundaries of the three wires at x ¼ 0
are connected by the tunneling Hamiltonian Ht. With
applied voltages Vj¼1;2, gauge-invariant phase differences
are given by φjðtÞ ¼ 2Vjtþ φjð0Þ. We put φjð0Þ ¼ 0, but
constant phase offsets could take into account, e.g., initial
conditions or tunneling phase shifts. We choose a gauge
where the φjðtÞ appear only in Ht [42,54],

Ht ¼
X
j¼1;2

λjðeiφjðtÞ=2c†jc0 þ H:c:Þ; ð2Þ

with cν ¼ ½cL;ν þ cR;ν�ðx ¼ 0Þ. In our units, λj are dimen-
sionless real tunneling amplitudes,

λ1 ¼ λ cos χ; λ2 ¼ λ sin χ; 0 ≤ λ ≤ 1; ð3Þ
and the normal-state total transmission probability (“trans-
parency”) between TS0 and TS1, TS2 is [42]

τ ¼ 4λ2

ð1þ λ2Þ2 : ð4Þ

Keldysh approach.—We solve this problem by using the
Keldysh boundary Green’s function (BGF) formalism
[42,54]. The Keldysh BGF of the uncoupled TSν wire is
given by ǧνðt − t0Þ ¼ −ihT CΨνðtÞΨ†

νðt0Þi, with the boun-
dary Nambu spinor Ψν ¼ ðcν; c†νÞT and the Keldysh time
ordering operator T C. Retarded or advanced components of
ǧν follow in frequency representation as [54]

gR=Aν ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ðω� i0þÞ2

p
σ0 þ Δσx

ω� i0þ
: ð5Þ

The ω ¼ 0 pole in Eq. (5) describes the zero-energy
MBS. Continuum quasiparticles appear at jωj > Δ, with
boundary density of states ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − Δ2

p
=jωj [54]. Physical

quantities are expressed in terms of the full Keldysh BGF,
Ǧ, which in turn follows by solving the Dyson equation,
Ǧ ¼ ðǧ−1 − W̌Þ−1, where ǧ ¼ diagLðǧ0; ǧ1; ǧ2Þ is diagonal
in lead space. The tunneling matrix, W̌ ¼ diagKðW;−WÞ,
is diagonal in Keldysh space, where Eq. (2) yields the
nonvanishing entries

W0;j¼1;2ðtÞ ¼ λjσzeiσzφjðtÞ=2; Wj;0ðtÞ ¼ W†
0;jðtÞ: ð6Þ

The time-dependent current flowing through TSj, oriented
toward the junction, corresponds to the Heisenberg oper-
ator

ÎjðtÞ ¼ 2
∂HðtÞ
∂φjðtÞ

¼ iΨ†
jðtÞσzWj;0ðtÞΨ0ðtÞ: ð7Þ

With the average current IjðtÞ ¼ hÎjðtÞi, current-current
correlations for the TSj¼1;2 wires are defined as

Sjj0 ðt; t0Þ ¼ hÎjðtÞÎj0 ðt0Þi − IjðtÞIj0 ðt0Þ: ð8Þ

Below we discuss the zero-frequency noise, Sjj0 ≡
Sjj0 ðω ¼ 0Þ. For clarity, we focus on the case V1 ¼ −V2 ¼
V from now on (but see Ref. [51]). However, the atomic
limit results below are identical for V1 ¼ V2 ¼ V.
Numerical results.—After a double Fourier transform

along with a summation over discrete frequency domains of
width V, the Dyson equation reduces to a matrix inversion
problem which we have solved numerically, cf. Ref. [57].
Given the solution for Ǧ, we directly obtain the current-
voltage characteristics as well as the zero-frequency shot
noise amplitude. Figure 2 shows numerical results for the
current-voltage characteristics, with qualitatively similar
features as for TS-TS junctions [54–56]. In particular,
MAR onsets are visible at V ¼ Δ=n (integer n), and for low
transparency and small V, the current becomes very small.
Figure 3 illustrates our numerical shot noise results for
S11ðVÞ. In contrast with the current, shot noise behaves in a
totally different manner as compared to TS-TS junctions
[6,56]. Taking note of the logarithmic noise scale in Fig. 3,

FIG. 1. Junction of three TS wires. The central wire (TS0) with
Majorana operator γ0 is tunnel coupled with amplitude λ1 (λ2) to
the left, TS1 (right, TS2) wire with corresponding Majorana
operator γ1 (γ2). A voltage V1 (V2) is applied between TS1 (TS2)
and TS0. MBSs at the far ends are also indicated.
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we observe giant noise levels which are particularly
pronounced near MAR onsets. Remarkably, in contrast
to the average current, the noise amplitude shows an overall
increase when reducing the transparency τ. The inset of
Fig. 3 demonstrates that these features are directly related to
MBSs: The Fano factor, F ¼ S11=ð2eI1Þ, becomes small
when one lead (here TS2) exits the topological regime
jμj=t0 < 1 upon changing its chemical potential μ (with
μ ¼ 0 in the other wires). Using the BGFs in Ref. [42], we
find very large F for all jμj=t0 < 1 (especially at small τ),
with an abrupt drop down to F ≃ 1 for jμj=t0 > 1. We next
show analytically that the giant noise levels are tied to the
existence of an unpaired zero-energy MBS.
Atomic limit.—Since the features in Fig. 3 are most

pronounced for small V and low transparency, we consider

the atomic limit where Δ represents the largest energy scale
and the BGF Eq. (5) simplifies to

gR=Aν ðωÞ ¼ Δ
ω� iη

�
1 1

1 1

�
: ð9Þ

The small parameter η > 0 represents a finite parity
relaxation rate (see below). By construction, the simplified
BGF Eq. (9) neglects above-gap continuum states.
Boundary fermions are thus projected to the Majorana
sector, cν →

ffiffiffiffi
Δ

p
γν, where Majorana operators, γν ¼ γ†ν,

satisfy the anticommutation relations fγν; γν0 g ¼ δνν0 . The
atomic limit Hamiltonian for an arbitrary trijunction
thereby follows from the full HðtÞ as, see Eq. (3),

HatðtÞ ¼ 2iΩðtÞ½cosðχÞγ1 − sinðχÞγ2�γ0;
ΩðtÞ ¼ λΔ sin ðVtÞ: ð10Þ

By passing to a rotated Majorana basis,

γ− ¼ cosðχÞγ1 − sinðχÞγ2;
γþ ¼ sinðχÞγ1 þ cosðχÞγ2; ð11Þ

and combining γ− and γ0 to a complex fermion, d ¼
ðγ− þ iγ0Þ=

ffiffiffi
2

p
, one can solve the problem in an elementary

manner. Indeed, iγ−γ0 ¼ d†d − 1=2 is the only combina-
tion of Majorana operators appearing in Hat, and Eq. (10)
thus affords the alternative representation,

HatðtÞ ¼ 2iΩðtÞγ−γ0 ¼ ΩðtÞð2d†d − 1Þ; ð12Þ

where the parity ð−1Þd†d is always conserved. The
Majorana operator γþ, on the other hand, does not show
up in the Hamiltonian and represents the zero-energy MBS
of the trijunction. Expressing γþ ¼ ðf þ f†Þ= ffiffiffi

2
p

in terms
of a zero-energy fermion f, the current operator Eq. (7)
takes the form (say, for TS1)

Î1ðtÞ ¼ 2iλ1Δ cosðVtÞ½cosðχÞγ− þ sinðχÞγþ�γ0
¼ λ1Δ cosðVtÞ½cos χð2d†d − 1Þ
þ sin χðf þ f†Þðd − d†Þ�: ð13Þ

The nontrivial coupling between the d fermion and the
zero-mode fermion f in Eq. (13) is ultimately responsible
for giant noise levels. Although f does not appear in the
Hamiltonian, it affects the current operator when all three
TS wires are coupled together.
In (d, f) fermion representation, physical steady-state

density matrices must commute with Hat and therefore
have the form ρs¼

P
n;m¼0;1wnmjnmihnmj, where wnm ≥ 0

with
P

nm wnm ¼ 1 is the statistical weight of the state
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FIG. 2. Numerical results for the current I1 (in units of eΔ=h)
versus voltage V (in Δ=e) for different transparencies τ, see
Eq. (4), in a symmetric junction (λ1 ¼ λ2) with V1 ¼ −V2 ¼ V.
For better visibility, I1 is divided by τ.
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FIG. 3. Numerical results for shot noise S11 (in units of e2Δ=h)
versus voltage V (in Δ=e) for different transparencies τ in a
symmetric trijunction, cf. Fig. 2. Dashed vertical lines mark MAR
onsets, V ¼ eΔ=n with n ¼ 2; 3;…; 6. Inset: Fano factor F (on
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jnmi ¼ ðd†Þnðf†Þmj0i. For a symmetric trijunction, we
then obtain the average current in the atomic limit as

IðatÞ1 ðtÞ ¼ λΔ cosðVtÞðhd†di − 1=2Þ: ð14Þ

As for a TS-TS junction [6], only the ac current with
frequency ω ¼ V can be finite. For the shot noise, with
Eq. (13) and the Bessel J1 function, we find [51]

SðatÞ11 ¼ λ2Δ2

4η
J21ð2λΔ=VÞ; ð15Þ

which is limited only by the parity relaxation time 1=η.
Examples for Eq. (15) are shown in Fig. 4 and, for small V,
agree rather well with the full numerics. For larger V, the
complex peak structure in S11ðVÞ is missed by Eq. (15) and
the noise level is overestimated. Figure 4 also shows a
marked noise minimum at low voltage which shifts to
smaller V as τ decreases. The position of the minimum
corresponds to the first zero of the Bessel function in
Eq. (15). Similar noise dips are also observable in the full
numerical results in Fig. 3.
Discussion.—The giant noise features are deeply related

to the existence of the zero mode γþ, which also implies

that the current operator and the Hamiltonian do not
commute. One can understand the giant noise as a generic
feature of periodically driven two-level systems. To that end,
we note that three Majorana operators, γ0;1;2, can equiv-
alently be represented in terms of Pauli matrices. Choosing

τz ¼ 2iγ1γ0; τx ¼ 2iγ0γ2; ð16Þ

we obtain the current operator, Eq. (13), in diagonal form,
Î1ðtÞ ¼ λ1Δ cosðVtÞτz. However, in this basis, HatðtÞ ¼
ΩðtÞ½cosðχÞτz þ sinðχÞτx� is not diagonal anymore. Since
the τx part in Hat coherently rotates τz and hence Î1ðtÞ, we
directly encounter a coherent current switch which has
divergent shot noise in the absence of relaxation channels.
Moreover, since a zero-energy MBS always exists in a TS
trijunction [9], the giant noise features are robust when
adding a finite hybridization between γ1 and γ2.
A complementary viewpoint follows by noting that the

uncoupled system has three MBSs at the junction, where γ0
resides at energy E ¼ 0 while γ1 (γ2) correspond to E ¼ V
(E ¼ −V). Including the tunnel couplings, a resonant
process similar to crossed Andreev reflection exists where
two electrons are emitted from TS0. One of them enters TS1
through γ1, the other TS2 via γ2. In a sequential tunneling
picture, the rate for this process is

Γ ¼ λ2Δ2

Z
dE

�
η

ðE − VÞ2 þ η2

�
2 λ2Δ2

E2 þ η2
: ð17Þ

The first factor in the integrand comes from the density
of states for the MBSs γ1 and γ2, while the second is due to
the probability for a crossed Andreev reflection process. To
leading order in 1=η, Eq. (17) yields Γ ¼ λ4Δ4=ð4ηV2Þ.
The sequential tunneling result for S11 then coincides with
Eq. (15) to lowest order in λΔ=V [51]. We remark that in
fully transparent S-S junctions, thermal noise exhibits a
similar phenomenon [58,59]. Since MBSs are equal-
probability superpositions of electrons and holes, the
corresponding hole process also exists. We thus encounter
no average dc current yet have giant shot noise.
MAR effects.—Finally, we take into account continuum

states [51]. To that end, we split the boundary fermion
as cν ¼

ffiffiffiffi
Δ

p
γν þ aν, with the Majorana part as before but

now supplemented by above-gap fermions (aν). Ht then
includes (i) MBS-MBS couplings as in Eq. (10), (ii) MBS-
continuum couplings, and (iii) continuum-continuum
terms. The latter terms are irrelevant for V ≪ Δ and low
transparency, while type (ii) terms, which correspond to
MAR processes, can change the parity ð−1Þd†d. This
implies a loss of coherence for the d fermion dynamics.
The average time between two tunneling processes of type
(ii) defines a long-time cutoff, TMAR, limiting the integra-
tion of current correlations. A good approximation is given
by TMARðVÞ ¼ N1=I1ðVÞ, where N1 ¼ 1þ bΔ=Vc is
the number of electrons transferred in one MAR process.
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FIG. 4. Shot noise S11 versus voltage V for τ ¼ 0.2 (top) and
τ ¼ 0.3 (bottom) in a symmetric trijunction. The atomic limit
prediction Eq. (15) is shown for η ¼ 10−5Δ as blue dotted curve,
full numerical results as solid red curves. Black dashed curves
include MAR effects; see Eqs. (15) and (18).
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The dominant MAR effects on shot noise can then be taken
into account by replacing η in Eq. (15) by a voltage-
dependent effective parity relaxation rate,

η → ηeffðVÞ ¼ maxðT−1
MARðVÞ; ηÞ; ð18Þ

where η is here due to additional parity relaxation channels
and “parity” refers to the Majorana sector only. Results
obtained from Eq. (18) are shown in Fig. 4 and exhibit
quantitative agreement with our full numerics. In particular,
the peak pattern is now correctly reproduced without a
fitting parameter. The agreement is not quantitative when
TMAR ≈ 1=η, where Eq. (18) is too simplistic, cf. the case
τ ¼ 0.2 in Fig. 4.
Conclusions.—The topological trijunction in Fig. 1 pro-

vides an attractive setup for experimental studies: an
unpaired zero-energy MBS is directly responsible for giant
shot noise. Moreover, by measuring the detailed voltage
dependence of the shot noise, precious information on
parity relaxation rates can be obtained. If the MBSs are
tunnel coupled to additional low-energy states, e.g.,
because of finite wire length or due to fermion states
localized near the junction, we expect a partial suppression
of the shot noise amplitudes [51]. However, extrinsic noise
sources are at odds with the predicted MAR features and
can easily be ruled out. Finally, let us note that similar giant
shot noise might be obtained in systems containing more
than 3 TS electrodes—in particular, for an odd number of
TSs (e.g., 5) one expects that a zero mode should always be
present. However, the strong robustness with respect to the
parameters might be specific to the 3 TS case, which is also
the most accessible experimentally.
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