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We study the minimal excitations of fractional quantum Hall edges, extending the notion of levitons to
interacting systems. Using both perturbative and exact calculations, we show that they arise in response to a
Lorentzian potential with quantized flux. They carry an integer charge, thus involving several Laughlin
quasiparticles, and leave a Poissonian signature in a Hanbury Brown–Twiss partition noise measurement at
low transparency. This makes them readily accessible experimentally, ultimately offering the opportunity to
study real-time transport of Abelian and non-Abelian excitations.
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Because of its potential application to quantum infor-
mation processing, time-dependent quantum transport in
open coherent nanostructures attracts prodigious attention.
Recent years have seen the emergence of several attempts
to manipulate elementary charges in quantum conductors
[1–4]. This opened the way to the field of electron quantum
optics [5] characterized by the preparation, manipulation,
and measurement of single-particle excitations in ballistic
conductors.
In this context, levitons—the time-resolved minimal

excitation states of a Fermi sea—were recently created
and detected in two-dimensional electron gas [4,6], 20 years
after being theoretically proposed [7–9]. These many-body
states are characterized by a single particle excited above
Fermi level, devoid of accompanying particle-hole pairs
[10]. The generation of levitons via voltage pulses does not
require delicate circuitry and has thus been put forward as a
solid candidate for quantum bit applications, in particular,
the realization of electron flying qubits [11,12].
Interaction and quantum fluctuations strongly affect low-

dimensional systems leading to dramatic effects like spin-
charge separation and fractionalization [13–15]. These
remarkable features were investigated by looking at both
time-resolved current [16–18] and noise measurements
[19–23]. While the emergence of many-body physics
and the inclusion of interactions [24–27] was recently
addressed in the framework of electron quantum optics, a
conceptual gap still remains when it comes to generating
minimal excitations. This is particularly true when the
ground state is a strongly correlated state, as are the edge
channels of a fractional quantum Hall (FQH) system [28], a
situation which has remained largely unexplored so far for
time-dependent drives [29]. The building blocks of such
chiral conductors are no longer electrons but instead
anyons, which have a fractional charge and statistics
[30]. For Laughlin filling factors [31], these anyons are
Abelian quasiparticles, but more exotic situations involving
non-Abelian anyons [32] are predicted. Our understanding

of these nontrivial objects would benefit from being able to
excite only a few anyons at a time [33], allowing us to study
their transport and exchange properties, and to combine
them through interferometric setups. This calls for the
characterization of minimal excitations in the FQH regime.
In this Letter, we study levitons in the edge channels of the

fractional quantum Hall regime by analyzing the partition
noise at the output of a quantum point contact (QPC). Our
results rely on a dual approach combining perturbative and
exact calculations of the noise in a Hanbury Brown–Twiss
[34,35] configuration. We also provide results in the time
domain, investigating leviton collisions with Hong-Ou-
Mandel (HOM) [4,36] interferometry.
Consider a FQH bar (see Fig. 1) with Laughlin filling

factor ν ¼ 1=ð2nþ 1Þ (n ∈ N), described in terms of a
hydrodynamical model [37] by the Hamiltonian (ℏ ¼ 1),

H ¼ vF
4π

Z
dx

� X
μ¼R;L

ð∂xϕμÞ2 −
2e

ffiffiffi
ν

p
vF

Vðx; tÞ∂xϕR

�
; ð1Þ

where the bosonic fields ϕR;L propagate along the edge with
velocity vF and are related to the quasiparticle annihilation
operator as ψR;LðxÞ¼ðUR;L=

ffiffiffiffiffiffiffiffi
2πa

p Þe�ikFxe−i
ffiffi
ν

p
ϕR;LðxÞ (with

FIG. 1. Main setup. A quantum Hall bar equipped with a QPC
connecting the chiral edge states of the fractional quantum Hall
effect (FQHE). The left-moving incoming edge is grounded at
contact 2 while the right-moving one is biased at contact 1 with a
time-dependent potential VðtÞ.

PRL 118, 076801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

0031-9007=17=118(7)=076801(6) 076801-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.118.076801
http://dx.doi.org/10.1103/PhysRevLett.118.076801
http://dx.doi.org/10.1103/PhysRevLett.118.076801
http://dx.doi.org/10.1103/PhysRevLett.118.076801


a a cutoff parameter and U a Klein factor), and Vðx; tÞ is an
external potential applied to the upper edge at contact 1.
Working out the equation of motion for the field ϕR,

ð∂t þ vF∂xÞϕRðx; tÞ ¼ e
ffiffiffi
ν

p
Vðx; tÞ, one can relate it to the

unbiased case using the transformation

ϕRðx; tÞ ¼ ϕð0Þ
R ðx; tÞ þ e

ffiffiffi
ν

p Z
t

−∞
dt0Vðx0; t0Þ; ð2Þ

with x0 ¼ x − vFðt − t0Þ, and ϕð0Þ
R is the free chiral field,

ϕð0Þ
R ðx; tÞ ¼ ϕð0Þ

R ðx − vt; 0Þ. Focusing first on the regime of
weak backscattering (WB), the tunneling Hamiltonian
describing the scattering between counterpropagating edges
at the QPC can bewritten, in terms of the transformed fields,
Eq. (2), as HT ¼ ΓðtÞψ†

Rð0ÞψLð0Þ þ H:c:, where we intro-
duced ΓðtÞ ¼ Γ0 exp½ie�

R
t
−∞ dt0Vðt0Þ� [38], with the bare

tunneling constant Γ0, the fractional charge e� ¼ νe, and
assuming a voltage VðtÞ applied over a long contact, in
accordance with the experimental setup [4], allowing us to
simplify

R
t
−∞dt0V½vFðt0−tÞ;t0�≃R

t
−∞dt0Vðt0Þ.

The applied time-dependent voltage consists of an ac and
a dc part VðtÞ ¼ Vdc þ VacðtÞ, where by definition Vac
averages to zero over one period T ¼ 2π=Ω. The dc part
indicates the amount of charge propagating along the edge
due to the drive. The total excited chargeQ over one period
is then

Q ¼
Z

T

0

dthIðtÞi ¼ ν
e2

2π

Z
T

0

dtVðtÞ ¼ qe; ð3Þ

where the fractional conductance quantum is G0 ¼ νe2=2π
and the number of electrons per pulse is q ¼ ðe�Vdc=ΩÞ.
The ac voltage generates the accumulated phase experi-
enced by the quasiparticles φðtÞ ¼ e�

R
t
−∞ dt0Vacðt0Þ, char-

acterized by the Fourier components pl of e−iφðtÞ.
In a 1D Fermi liquid, the number of electron-hole

excitations resulting from an applied time-dependent volt-
age bias is connected to the current noise created by the
pulse scattering on a QPC [7,9,39], which acts as a beam
splitter, as in a Hanbury Brown–Twiss setup [34,35]. For
FQH edge states, however, scattering at the QPC is strongly
nonlinear as it is affected by interactions. Special care is
thus needed for the treatment of the point contact, and the
definition of the excess noise giving access to the number
of excitations.
The quantity of interest is the photoassisted shot noise

(PASN), i.e., the zero-frequency current noise measured
from contact 3, and defined as

S ¼ 2

Z
dτ

Z
T

0

dt̄
T

�
δI3

�
t̄þ τ

2

�
δI3

�
t̄ −

τ

2

��
; ð4Þ

where δI3ðtÞ ¼ I3ðtÞ − hI3ðtÞi and the output current I3ðtÞ
reduces, since contact 2 is grounded, to the backscattered
current IBðtÞ, readily obtained from the tunnel Hamiltonian:

IBðtÞ ¼ ie�½ΓðtÞψ†
Rð0; tÞψLð0; tÞ − H:c:�: ð5Þ

When conditions for minimal excitations are achieved in
the perturbative regime, excitations should be transmitted
independently, leading to Poissonian noise. It is thus
natural to characterize minimal excitations as those giving
a vanishing excess noise at zero temperature:

ΔS ¼ S − 2e�hIBðtÞi; ð6Þ
where hIBðtÞi is the backscattered current averaged over
one period.
Using the zero-temperature bosonic correlation function

hϕR=LðτÞϕR=Lð0Þic ¼ − log ð1þ iΛτÞ, this excess noise is
computed perturbatively up to order Γ2

0, yielding [38]

ΔS ¼ 2

T

�
e�Γ0

vF

�
2
�
Ω
Λ

�
2ν−2 1

Γð2νÞ
×
X
l

Pljlþ qj2ν−1½1 − sgnðlþ qÞ�; ð7Þ

where Λ ¼ vF=a is a high-energy cutoff and Pl ¼ jplj2 is
the probability for a quasiparticle to absorb (l > 0) or emit
(l < 0) l photons, which depends on the considered drive
[38]. These probabilities Pl also depend on q, as the ac and
dc components of the voltage are not independent. Indeed,
we are interested here in a periodic voltage VðtÞ consisting
of a series of identical pulses, with VðtÞ close to 0 near the
beginning and the end of each period. This implies that the
ac amplitude is close to the dc one. Our formalism could
also be used to perform a more general analysis by
changing these contributions independently. In particular,
fixing the dc voltage and changing the ac amplitude allows
us to perform a spectroscopy of the probabilities them-
selves. Conversely, changing the dc voltage at fixed ac
amplitudes, we can reconstruct the tunneling rate associ-
ated with each photoassisted process [10] in the same spirit
as finite frequency noise calculations [40]. However, this
broader phenomenology does not provide any additional
information concerning the possibility of creating minimal
excitation by applying periodic pulses.
In Fig. 2, we show the variation of the excess noise as a

function of q, for several external drives at ν ¼ 1=3 and
various reduced temperatures θ ¼ kBΘ=Ω (Θ is the elec-
tronic temperature). At θ ¼ 0, only the periodic Lorentzian
drive leads to a vanishing excess noise, and only for integer
values of q. This confirms that as mentioned in earlier work
[9], optimal pulses have a quantized flux and correspond
to Lorentzians of area

R
dtV ¼ m2π=e� (with m an integer

number of fractional flux quanta). More intriguingly,
however, this vanishing of ΔS occurs for specific values
of q: while levitons in the FQH are also minimal excita-
tions, they do not carry a fractional charge and instead
correspond to an integer number of electrons. This shows
that integer levitons are minimal excitation states even in the
presence of strong electron-electron interactions, and that it is

PRL 118, 076801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

076801-2



not possible to excite individual fractional quasiparticles
using a properly quantized Lorentzian voltage pulse
in time. Indeed, it is easy to note that, under these conditions,
at q ¼ ν (single quasiparticle charge pulse) no specific
feature appears in the noise and ΔS ≠ 0. While fractional
minimal excitations may exist, they cannot be generated
using either Lorentzian, sine, or square voltage drives.
Close to integer q the behavior of ΔS is strongly

asymmetric. While a slightly larger than integer value leads
to vanishingly small excess noise, a slightly lower one
produces a seemingly diverging contribution. Indeed, excit-
ing less than a full electronic charge produces a strong
disturbance of the ground state, and ultimately leads to the
generationof infinitelymanyparticle-hole excitations,which
is reminiscent of the orthogonality catastrophe [7,39,41].
For comparison with experiments, we compute the

excess noise at θ ≠ 0. This calls for a modified definition
of ΔS (in order to discard thermal excitations):

ΔS ¼ S − 2e�hIBðtÞi coth
�
q
2θ

�
; ð8Þ

which coincides with Eq. (6) in the θ → 0 limit. The finite
temperature results (see Fig. 2) cure some inherent limi-
tations of the perturbative treatment at θ ¼ 0 (diverging
behavior close to integer q). The noiseless status of the
Lorentzian drive is confirmed, as ΔS ≃ 0 at low enough
temperature for some values of q (yet shifted compared to
the θ ¼ 0 ones).
Our perturbative analysis is valid when the differential

conductance is smaller than G0. This condition can be
achieved on average (Γ0 is then bounded from above), but it

is not fulfilled in general when the voltage drops near zero
because of known divergences at zero temperature. In order
to go beyond this WB picture, we now turn to an exact
nonperturbative approach for the special filling ν ¼ 1=2.
While this case does not correspond to an incompressible
quantum Hall state, it nevertheless provides important
insights concerning the behavior of physical values of ν
beyond the WB regime. The agreement between the two
methods in the regime where both are valid makes our
results trustworthy.
We thus extend the refermionization approach for filling

factor ν ¼ 1=2 [42,43] to a generic ac drive [38]. Starting
from the full Hamiltonian expressed in terms of bosonic
fields, one can now write the tunneling contribution
introducing a new fermionic entity, ψðx; tÞ ∝
ei½ϕRðx;tÞþϕLðx;tÞ�=

ffiffi
2

p
. Solving the equation of motion for

ψðx; tÞ near x ¼ 0, one can define a relation between this
new field taken before (ψb) and after (ψa) the QPC,

ψaðtÞ ¼ ψbðtÞ − γΩeiφðtÞþiqΩt
Z

t

−∞
dt0e−γΩðt−t0Þ

× ½e−iφðt0Þ−iqΩt0ψbðt0Þ − H:c:�; ð9Þ
allowing us to treat the scattering at the QPC at all orders.
Expressing the current and noise in terms of ψa and ψb, and
using the standard correlation function hψ†

bðtÞψbðt0Þi ¼R ðdω=2πvFÞeiωðt−t0ÞfðωÞ (with f the Fermi function), we
derive an exact solution for both the backscattered current
and PASN. As the dc noise at a QPC does not remain
Poissonian when its transmission increases, our definition
of ΔS is further extended to treat the nonperturbative
regime. In the ν ¼ 1 case, where an exact solution exists, it
is standard to compare the PASN to its equivalent dc
counterpart [4,9] obtained with the same Vdc, and Vac ¼ 0.
Here, in order to account for the nontrivial physics involved
at the QPC in the FQH, it makes sense to compare our
PASN to the dc noise which one obtains for the same
charge transferred at the QPC, over one period of the ac
drive. At zero temperature, ΔS is redefined as

ΔS ¼ S − 2e�hIBi þ
ðe�Þ2
T

2γ sin

�
T
γe�

hIBi
�
; ð10Þ

where e� ¼ νe ¼ e=2, and γ ¼ ðjΓ0j2=πavFΩÞ is the
dimensionless tunneling parameter. This definition coin-
cides with the Poissonian one Eq. (6) at low γ, in that it
vanishes for the same values of q.
Results for ΔS at ν ¼ 1=2 are presented in Fig. 3. At low

γ, structures appear as a function of q, which are very
similar to the perturbative calculation (Fig. 2). For the
Lorentzian drive only, the excess noise approaches zero
close to integer values of q in the tunneling regime γ ≪ 1.
When increasing γ the position of these minima gets shifted
and the excess noise eventually becomes featureless,
independently of the ac drive. In the γ → þ∞ limit

FIG. 2. Excess noise in units ofS0¼ð2=TÞðe�Γ0=vFÞ2ðΩ=ΛÞ2ν−2
as a function of the number of electrons per pulse q, for different
reduced temperatures θ and filling factor ν ¼ 1=3, in the case of a
square (bottom), a cosine (middle), and a periodic Lorentzian drive
with half width at half maximum η ¼ W=T ¼ 0.1 (top).
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(not shown), the Lorentzian drive shows signatures of
Poissonian electron tunneling at the QPC occurring at q
multiples of ν, consistent with the duality property of the
FQH regime [42]. This Poissonian behavior, not observed
for other drives, is also confirmed by the strong back-
scattering perturbative treatment. At finite temperature, our
results are almost unaffected for θ ≲ γ, while larger temper-
atures tend to smear any variations in q.
Levitons can also be explored in the time domain through

electronicHong-Ou-Mandel interferometry [4,6]. Bydriving
both incoming channels, one can study the collision of
synchronized excitations onto a beam splitter, as two-particle
interferences reduce the current noise at the output, leading to
a Pauli-like dip. Figure 4 shows the normalized HOM noise
ΔQ [24] as a function of the time delay τ between applied
drives.While this does not constitute a diagnosis for minimal
excitations, it reveals the special nature of levitons in theWB
regime, as the normalized HOM noise is independent of
temperature and filling factor [38,44], reducing at q ¼ 1 to
the universal form:

ΔQðτÞ ¼ sin2ðπτT Þ
sin2ðπτT Þ þ sinh2 ð2πηÞ : ð11Þ

The same universal behavior is also obtained for fractional
q ¼ ν in the strong backscattering regime (tunneling of
electrons at the QPC). Interestingly, although the HOM noise
and the PASN are very different from their Fermi liquid
counterparts, an identical expression for ΔQðτÞ was also

obtained in this case [10] (where it is viewed as the overlap of
leviton wave packets).
Finally, in addition to the excess noise, the time-averaged

backscattering current hIBðtÞi also bears peculiar features.
In contrast to the Ohmic behavior observed in the Fermi
liquid case, hIBðtÞi shows large dips for integer values of q
(see Fig. 5). These dips are present for all types of periodic
drives, and cannot be used to detect minimal excitations.
However, the spacing between these dips provides an
alternative diagnosis (from dc shot noise [19,20]) to access
the fractional charge e� of Laughlin quasiparticles, as q is
known from the drive frequency and the amplitudeVdc [45].
Real-time quasiparticle wave packet emission has thus

been studied in a strongly correlated system, showing the
existence of minimal excitations (levitons) in edge states of
the FQH. These occur when applying a periodic Lorentzian
drive with quantized flux, and can be detected as they
produce Poissonian noise at the output of a Hanbury
Brown–Twiss setup in the weak backscattering regime.

FIG. 3. Rescaled excess noise ΔS=γ in units of ðe2=TÞ as a
function of the number of electrons per pulse q, for different
values of the dimensionless tunneling parameter γ ¼
ðjΓ0j2=πavFΩÞ. Results are obtained at zero temperature, with
filling factor ν ¼ 1=2, in the case of a square (bottom), a cosine
(middle), and a periodic Lorentzian drive with η ¼ 0.1 (top).

FIG. 4. Normalized HOM noise ΔQ at q ¼ 1, as a function of
the time delay τ between pulses. Results are presented in the WB
case at ν ¼ 1=3 and θ ¼ 0.1, for a square, a cosine, and a periodic
Lorentzian drive with η ¼ 0.1. Inset: HOM setup with applied
drives on both incoming arms.

FIG. 5. Averaged backscattered current hIBðtÞi as a function of
the number of electrons per pulse q, in the case of a square,
cosine, and periodic Lorentzian drive with η ¼ 0.1 and θ ¼ 0.1.
Results are presented for ν ¼ 1=3 in the perturbative regime in
units of I0 ¼ e�

T ðΓ0=vFÞ2ðΩ=ΛÞ2ν−2 (top) and for the exact
treatment at ν ¼ 1=2 in units of ðe=TÞ (bottom).
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Although FQH quasiparticles typically carry a fractional
charge, the charge of these noiseless excitations generated
through Lorentzian voltage pulse corresponds to an integer
number of e. Furthermore, our findings are confirmed for
arbitrary tunneling using an exact refermionization scheme.
Remarkably enough, in spite of the strong interaction, two
FQH leviton collisions bear a universal Hong-Ou-Mandel
signature identical to their Fermi liquid analog. Possible
extensions of this work could address more involved
interferometry of minimal excitations as well as their
generalization to non-Abelian states.
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Note added in proofs—.Recently, it came to our attention
that a simple argument can rule out the possibility of
minimal excitations beyond the results presented here.
Starting from Eq. (7), one readily sees that a minimal
excitation (ΔS ¼ 0) can only be realized if Pl ¼ 0 for all
l ≤ −q, independently of the filling factor. At ν ¼ 1, it was
shown [7–9] that minimal excitations were associated with
quantized Lorentzian pulses, so that this type of drive is the
only one satisfying the constraint of vanishing Pl. Since
this condition is independent of ν, it follows that also at
fractional filling, minimal excitations can only be generated
using Lorentzian drives with quantized charge q ∈ N.
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