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We study the current correlations of fractional quantum Hall edges at the output of a quantum point
contact subjected to a temperature gradient. This out-of-equilibrium situation gives rise to a form of
temperature-activated shot noise, dubbed delta-T noise. We show that the tunneling of Laughlin
quasiparticles leads to a negative delta-T noise, in stark contrast with electron tunneling. Moreover,
varying the transmission of the quantum point contact or applying a voltage bias across the Hall bar may
flip the sign of this noise contribution, yielding signatures that can be accessed experimentally.
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Introduction.—Noise is a fundamentally inescapable
ingredient of any electronic device. While at first it may
be regarded as a nuisance, it has now been broadly accepted
as a key tool to improve our understanding of nanoscale
conductors. Electronic noise is typically broken down into
two contributions associated with different underlying
physical phenomena. Thermal (or Johnson-Nyquist) noise
is an equilibrium property, arising at a finite temperature
from the thermal motion of electrons [1,2]. Shot noise
manifests itself in a nonequilibrium situation, when current
flows through a conductor, as a consequence of electrons
being transmitted or reflected predominantly on a given
side of the device [3].
Shot noise has taken a massive role in quantum

mesoscopic physics, where it is commonly used to extract
a great deal of information on the mechanisms of charge
transfer (for a review see, e.g., [4,5]). While this non-
equilibrium situation is typically achieved by imposing a
bias voltage on the device, an intriguing alternative was
recently uncovered. Indeed, one can in principle work at
zero voltage bias and instead connect the sample to two
reservoirs at different temperatures. This was realized
experimentally using atomic-scale metallic junctions [6],
where the authors showed that, while no net current was
flowing through the device, as expected, a finite non-
equilibrium noise signal was measured, which they
dubbed “delta-T noise.” This previously undocumented
source of noise, distinct from thermoelectric effects,
actually corresponds to some form of temperature-
activated shot noise: it is purely thermal in origin, but
only generated in a nonequilibrium situation. Its pro-
perties also present the same hybrid character, as this
positive contribution to the total noise scales like the
square of the temperature difference, while exhibiting the
same dependence on the conductance as shot noise.
Temperature-activated shot noise was exploited earlier
to realize a local noise measurement in a current biased
metallic conductor [7].

As it turns out, delta-T noise is accurately described by
the standard quantum theory of charge transport [6].
Remarkably, the scattering theory [8] does predict the
appearance of this overlooked source of noise when a
temperature difference alone is applied across a metallic
junction. However, while the Fermi statistics of the charge
carriers is accounted for within this formalism, interaction
effects between electrons are discarded. We show here that
delta-T noise can be a unique tool to explore the properties
of the charge carriers in a system where interactions and
statistics play a significant role.
We propose to investigate the fate of delta-T noise in a

prototypical strongly correlated state, namely the edge
states of the fractional quantum Hall effect (FQHE) [9–11].
In this system, excitations propagate along chiral edge
modes, while the bulk is gapped. Transport through
fractional quantum Hall edges has been extensively studied
over the past few decades, both theoretically and experi-
mentally. This interest is in part related to the bulk-
boundary correspondence, as edge transport reflects the
topological nature of the bulk, revealing nontrivial pro-
perties unreachable through direct measurements. In parti-
cular, noise measurements in quantum point contact
geometries (QPC) have been used experimentally to
identify the fractional charge of the quasiparticle excita-
tions in the bulk [12–14], and several proposals of
more elaborate interferometric devices have been put
forward as a way to probe their fractional statistics
[15–23] with promising recent experimental results
[24,25]. These considerations make the edge states of
the FQHE a perfect testbed to examine delta-T noise.
Beyond the inherent interest in studying delta-T noise in
such systems, it may help better understanding charge and
heat transport in situations where strong electronic corre-
lations are operating [26]. The present Letter is an essential
first step before more involved setups are considered,
including, e.g., edge states involving neutral modes
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[27,28] or more exotic fractions, where intriguing transport
properties associated with thermal effects have been
uncovered recently [29,30].
Here we show that, for Laughlin fractions, the delta-T

noise signal is negative in the weak backscattering regime,
a result which arises from the interplay of strong correla-
tions and fractional statistics, and is directly accessible in
modern experiments.
Delta-T noise.—We start by recalling results concerning

delta-T noise in noninteracting fermionic systems [6].
Consider a system of two fermionic reservoirs (with
Fermi distribution f1 and f2, respectively) separated by
a barrier of transmission T . The fluctuations δÎ ¼ Î − hÎi
of the current operator away from its average value are
monitored using the zero-frequency current noise, defined
as S ¼ 2

R
dthδÎðtÞδÎð0Þi. Within scattering theory, this

quantity assumes a very general form [4]

S ¼ e2

π

Z
dEfT ½f1ð1 − f1Þ þ f2ð1 − f2Þ�

þT ð1 − T Þðf1 − f2Þ2g; ð1Þ

where we considered for simplicity a single conduction
channel and approximated the transmission coefficient by
assuming it to be energy independent (setting ℏ ¼ 1 from
this point onward). The first term corresponds to thermal-
like noise, while the last one is a nonequilibrium contri-
bution. Let us now focus on the situation where no voltage
bias is applied but the reservoirs are at different tempe-
ratures, yielding a temperature difference ΔT, with an
average temperature T̄. Expanding for a small temperature
difference leads to the following approximate expression
for the current noise [6]

S ≈ 2
e2

π

�
T T̄ þ T ð1 − T Þ π

2 − 6

9

�
ΔT
2T̄

�
2

T̄

�
; ð2Þ

where, along with the equilibrium thermal noise, another
nonequilibrium component arises as a result of the temper-
ature difference across the junction: delta-T noise [31].
While these results apply to a very broad range of

noninteracting devices, scattering theory is expected to fail
in the fractional case calling for another formalism. It
should, however, provide an accurate description of the
properties of the system in the Fermi liquid regime, i.e., at
filling factor ν ¼ 1, or for a two-dimensional electron gas in
the absence of a strong magnetic field (like the setup
considered in [32] in the context of electron quantum
optics). Our present derivation bridges the gap in providing
a formalism that not only recovers the above Fermi-liquid
result in the proper limit but also extends it to the case of
quasiparticle tunneling.
Model.—The system considered here is a Hall bar (see

Fig. 1), in the fractional quantum Hall regime, with a filling
factor in the Laughlin sequence, i.e., ν ¼ 1=ð2nþ 1Þ

(n ∈ N). The edge states of such a sample are described
in terms of a hydrodynamical model [33] by a chiral
Luttinger liquid Hamiltonian of the form

H0 ¼
vF
4π

Z
dx½ð∂xϕRÞ2 þ ð∂xϕLÞ2�; ð3Þ

where ϕR=L are bosonic fields describing the right and left
moving modes traveling along the edge with velocity vF.
They satisfy a Kac-Moody commutation relation of the
form ½ϕR=LðxÞ;ϕR=LðyÞ� ¼ �iπSgnðx − yÞ. These fields
are directly related to the quasiparticle creation and
annihilation operators through the bosonization identity,
ψR=Lðx; tÞ ¼ ðUR=L=

ffiffiffiffiffiffiffiffi
2πa

p Þe�ikFxe−i
ffiffi
ν

p
ϕR=Lðx;tÞ, where a is

a short distance cutoff (typically the magnetic length),
kF is the Fermi momentum, and UR=L are Klein factors.
In particular, this identity gives us a direct connection
between the bosonic fields and the quasiparticle
density operator (and hence the current), as ρR=LðxÞ ¼
�eð ffiffiffi

ν
p

=2πÞ∂xϕR=LðxÞ.
The Hall bar is further equipped with a quantum point

contact, placed at position x ¼ 0, which allows tunneling
between counterpropagating edges. In the weak back-
scattering regime, where quasiparticles are permitted to
tunnel from one edge to the other through the bulk at the
position of the QPC, this amounts to supplementing our
Hamiltonian description with a tunneling term of the form

HWB ¼ Γ0ψ
†
Rð0ÞψLð0Þ þ H:c:; ð4Þ

where we introduced the bare tunneling constant Γ0.
Deriving current and noise.—We are primarily interested

in the fluctuations of the current flowing between the edge
states: the backscattered current IBðtÞ. The latter is readily
obtained from the tunneling Hamiltonian, Eq. (4), as the
operator satisfying

IBðtÞ ¼ −e _NR ¼ ie�Γ0ψ
†
Rð0; tÞψLð0; tÞ þ H:c:; ð5Þ

FIG. 1. Main setup: a quantum Hall bar equipped with a QPC
connecting the chiral edge states of the FQH. The left-moving
incoming edge is grounded at contact 2, with a temperature TL
while the right-moving one is heated by contact 1, reaching a
temperature TR. Relevant output currents are measured from
contacts 3 and 4.
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with the effective charge e� ¼ νe. Since no voltage bias is
applied across the Hall bar, it is easy to convince oneself
[31] that no current flows between the counterpropa-
gating edge states, i.e., hIBðtÞi ¼ 0, independently of the
respective temperature of the two edges.
Current-current correlations, however, do not vanish, as

the finite temperature always lead to a nonzero contribution
to the noise, through thermal fluctuations. More precisely,
one can express the fluctuations of the backscattered
current via the zero-frequency noise defined as

SB ¼ 2

Z þ∞

−∞
dτ½hIBðτÞIBð0Þi − hIBðτÞihIBð0Þi�: ð6Þ

Using the Keldysh formalism, and relying on an expansion
to the second order in the tunneling Hamiltonian, the zero-
frequency noise can be written as [31]

SB ¼
�
e�Γ0

πa

�
2
Z þ∞

−∞
dτ exp ½νGRðτÞ þ νGLðτÞ�; ð7Þ

where we introduced the bosonic Green’s functions GR=LðτÞ
typical of the chiral Luttinger liquid model of the FQHE
edge states [5].
Let us now specifically consider the situation of a

temperature gradient between the two input ports of the
QPC. There, the above expression for the noise does not
lead to a tractable analytic form as a function of the two
relevant temperatures. Instead, we resort to a perturbative
expansion in the temperature difference, in the spirit of the
scattering theory results [6]. Following the parametrization
in temperature TR=L ¼ T̄ � ðΔT=2Þ, we then expand the
result of Eq. (7) in powers of ΔT, noticing that, by
symmetry under the exchange of reservoirs, the expansion
contains no odd terms in the temperature difference. Up to
fourth order in ΔT, one has, after performing explicitly the
resulting integrals

SB ¼ S0
WB

�
1þ Cð2Þν

�
ΔT
2T̄

�
2

þ Cð4Þν

�
ΔT
2T̄

�
4
�
; ð8Þ

where S0
WB is the usual thermal noise in the weak back-

scattering limit [up to order OðΓ2
0Þ] at temperature T̄, while

Cð2Þν and Cð4Þν are numerical coefficients [31] depending only
on the filling factor ν. In particular, the leading order
contribution has a prefactor

Cð2Þν ¼ ν

�
ν

2νþ 1

�
π2

2
− ψ 0ðνþ 1Þ

�
− 1

�
; ð9Þ

where ψ 0ðxÞ is the first derivative of the digamma function.
Similarly, a closed analytic expression for the coefficient
Cð4Þν is provided in the Supplemental Material [31].
Main results.—As it happens, in the special situation of a

Hall system at filling factor ν ¼ 1, our derivation yields

Cð2Þν¼1 ¼ ðπ2 − 6Þ=9, which matches with the noninteracting
result obtained within scattering theory, and measured in
metallic break junctions [6].
Our main results concern the fractional filling factors in

the Laughlin sequence. We show in Fig. 2 the evolution of
Cð2Þν (main figure) and Cð4Þν (inset) as a function of the filling
factor ν. From this, one readily sees that the second order
term in the ΔT noise dominates over the fourth order one
for all practical purposes, signaling that the expansion in
ΔT is well controlled, despite the exotic power laws typical
of the FQHE.
More importantly, our results presented in Fig. 2 suggest

that the delta-T noise is a negative contribution at leading
order in ΔT for all filling factors in the Laughlin series. This
represents a drastic difference, one of fundamental origin,
with the noninteracting results where a positive correction
was predicted and measured. Indeed, such negative contri-
bution implies a reduction of the noise, which constitutes an
intriguing result as noise sources typically tend to add up. A
decrease in fluctuations signals a key role from interactions,
suggesting that such negative delta-T noise contribution is a
direct signature of the correlation effects characteristic of the
edge states of the FQHE.
Moreover, our results can be extended to the opposite

regime of strong backscattering. This situation corresponds
to a QPC near pinch-off, where the underlying Hall fluid is
so depleted that only electrons can tunnel between the two
halves of the Hall bar. We can repeat our derivation in this
case [31] and show that it satisfies a duality transformation.
The expression for the noise, Eq. (8), is thus only slightly
altered as

SB ¼ S0
SB

�
1þ Cð2Þ1=ν

�
ΔT
2T̄

�
2

þ Cð4Þ1=ν

�
ΔT
2T̄

�
4
�
; ð10Þ

FIG. 2. Coefficients Cð2Þν (main) and Cð4Þν (inset) of the expa-
nsion of the noise in powers of the temperature difference [see
Eq. (8)] as a function of the filling factor ν. The circles correspond
to the Laughlin fractions ν ¼ 1=ð2nþ 1Þ for the first few values
of n ¼ 0; 1;…; 8.
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where Cð2Þ1=ν and Cð4Þ1=ν are readily obtained from the weak
backscattering expressions upon substituting ν → 1=ν, for
fractional filling factors within the Laughlin sequence
ν ¼ 1=ð2nþ 1Þ. In particular, this means that in this regime
of electron tunneling at the QPC, one recovers a positive
signal for the delta-T noise contribution, like in the non-
interacting case albeit with very different coefficients.
This is important in two ways. First, this makes a

potential detection all the more easy from an experimental
standpoint, as the delta-T noise component flips its sign
when one adjusts the transmission of the QPC between the
weak and the strong backscattering regimes. Second, this
result may have significant implications for the physics at
play here. Our results suggest that negative delta-T noise
can be directly tied to the tunneling of quasiparticles, as the
sign of this noise contribution reverts back to the non-
interacting case when electrons tunnel through the QPC.
Similarly, one can show following somewhat similar
calculations [31] that weakly coupled nonchiral Luttinger
liquids (e.g., coupled nanowires or crossed nanotubes)
cannot lead to negative backscattered noise when biased
with a temperature difference. This underlines the impor-
tance of anyonic effects in the occurrence of negative delta-
T noise, which cannot be viewed as purely due to
interactions. Instead, this effect has more to do with the
interplay of strong interaction and the fractional statistics of
the anyons exchanged at the QPC. Actually, the appearance
of negative current correlations in other setups involving
fractional edge states has been associated with anyonic
statistics [34,35]. In Ref. [35], it was argued that negative
excess shot noise was associated with so-called topological
vaccuum bubbles, an anyon process that has no counterpart
for fermions. A similar mechanism involving the exchange
of thermally excited anyons between the two edges at the
QPC could be at play in the present device. Such a
connection constitutes a fascinating incentive for future
work in this direction.
Incidentally, in the (somewhat fictitious) situation of the

filling factor ν ¼ 1=2, one can show that all coefficients

CðnÞν¼1=2 reduce to zero, so that the delta-T noise seems to
exactly vanish in this case. This is actually an artifact of the
weak backscattering limit. Using a refermionization
approach [36,37], one can account for the tunneling at
the QPC at all orders in Γ0, and show that the lowest order
contribution to the delta-T noise is actually of order Γ4

0,
falling beyond our present perturbative treatment.
Voltage dependence.—For completeness, we now

consider the case where both a bias voltage and a tempe-
rature difference are applied across the Hall bar. Here, one
can still expand in powers of the temperature difference,
generalizing the expression obtained in Eq. (8) to account
for the finite voltage. In particular, the prefactor is now
given by the voltage-dependent noise S0

WBðVÞ, which
coincides with the expected backscattering noise of a
QPC at temperature T̄ in the presence of a voltage bias

V [36,38]. Similarly, the coefficients of the expansion
in ΔT must now be replaced with voltage-dependent

coefficients Cð2Þν ðVÞ and Cð4Þν ðVÞ.
We show in Fig. 3 the evolution of the coefficients

Cð2Þ1=3ðVÞ and Cð2Þ1 ðVÞ of the leading contribution to the delta-
T noise, obtained as a function of voltage for filling factor
ν ¼ 1=3 and ν ¼ 1, respectively. Not only do these results
recover the previously obtained values in the limit of
vanishingly small voltage (compare with Fig. 2), they also
predict that the coefficients of the expansion should tend
toward zero for a large enough voltage bias, as expected.
Even more importantly, this shows that while, in the

noninteracting case, the sign of Cð2Þ1 ðVÞ is fixed positive
(as can be verified from the analytic expression [31]), in the
fractional case, there exists a voltage scale where the

coefficient Cð2Þ1=3ðVÞ changes sign.
Experimental realization.—We now look more carefully

at a potential experimental realization that could reveal our
results concerning the delta-T noise. The considered setup
would be a four-terminal device similar to the one sche-
matically represented in Fig. 1. The working principle of
such a device would be to heat up contact 1, while leaving
contact 2 at base temperature, and ensuring that no net
current flows between edge states.
Experimentally, there is no way to directly access the

fluctuations of the backscattered current. Instead, the
measurement is performed on contacts 3 and 4, allowing
us to probe the output currents I3 and I4 as well as the
autocorrelations S33 and S44 and the cross-correlations S34.
The latter should be favored since cross-correlations of the
currents vanish at equilibrium, thus increasing the visibility
of the relevant signal. Following standard calculations [39],
one can show that the zero-frequency crossed correlations
can be related to the backscattered noise [31], allowing us
to introduce the reduced noise S̃ ¼ S34 − 4T̄G4 ¼ −SB,

FIG. 3. Coefficients Cð2Þ1=3ðVÞ and Cð2Þ1 ðVÞ of the expansion of
the noise in powers of the temperature difference represented as a
function of the applied bias across the Hall bar.

PHYSICAL REVIEW LETTERS 125, 086801 (2020)

086801-4



where G4 ¼ ð∂I4=∂VÞ is the differential conductance
measured from contact 4.
In practice, the average temperature T̄ is not the most

convenient quantity from an experimental standpoint. To
circumvent this, it may be useful to slightly alter our
parametrization, introducing instead TL ¼ Tcold and
TR ¼ Tcold þ ΔT, and measure the reduced noise in excess
compared to the equilibrium situation. Rewriting our
results with this prescription, we have, up to second order
in ΔT,

ΔS̃ ¼ S̃ − S̃eq ¼ S̃eqð2ν − 1Þ ΔT
2Tcold

×

�
1þ

�
ν − 1þ Cð2Þν

2ν − 1

�
ΔT

2Tcold

�
; ð11Þ

where S̃eq ¼ −4TcoldG0
4 (as Seq

34 ¼ 0) and G0
4 is the diffe-

rential conductance in the absence of a temperature bias.
This allows to extract the coefficient Cð2Þν directly from the
experimental measurement of cross-correlations and
conductance, with and without the temperature gradient.
In all generality, delta-T noise may be partly eclipsed by

thermoelectric effects. Indeed, as a result of a temperature
difference, an electric current may develop even in the
absence of any applied voltage, a phenomenon known as
the Seebeck effect [40]. This thermally induced current can,
in turn, lead to conventional shot noise. Following the
results displayed in Fig. 3, for such thermoelectric effects to
overshadow the negative contribution in ΔT, one would
need to generate a rather large voltage difference V,
satisfying e�V ≳ 2.2T̄. This is, however, unlikely to happen
in quantum Hall devices. Not only is the bulk incompre-
ssible, and therefore expected not to contribute substan-
tially to any relevant thermoelectric properties, but the edge
states are also chiral and can only overlap at a single
pointlike QPC, thus preserving particle-hole symmetry.
Moreover, no equilibration is expected to take place over
small enough distances (a few microns in relevant experi-
ments) and the heat leakage into the bulk is similarly
negligible for short enough edges, thus ruling out the
impact of thermoelectric effects in realistic setups. Finally,
it is also worth pointing out that in recent experiments on
metallic break junctions [6], the thermoelectric contribution
was shown to be orders of magnitude smaller than the delta-
T noise.
Conclusions.—We have studied the peculiar signatures

of a temperature difference across a QPC, showing that it
leads to a negative contribution to the noise associated with
the tunneling of Laughlin quasiparticles. We have chara-
cterized this so-called delta-T noise in the weak and strong
backscattering regimes and investigated its dependence on
voltage bias. We argued that it is readily accessible in
current experiments involving fractional edge states.
This work offers many interesting perspectives, account-

ing more carefully for equilibration (important for long
edges) or thermoelectric effects (e.g., associated with an

extended QPC [41]). The most intriguing one concerns the
extension to more exotic states, beyond the Laughlin filling
factors, where many new fascinating effects should occur
as a consequence of the more complex structure of the
edge states (and in particular, the presence of neutral
modes [28,42]).
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