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We propose an all-superconducting three-terminal setup consisting in a carbon nanotube (or semiconducting
nanowire) contacted to three superconducting leads. The resulting device, referred to as a “biSQUID,” is made of
four quantum dots arranged in two loops of different surface area. We show how this biSQUID can prove a useful
tool to probe nonlocal quantum phenomena in an interferometry setup. We study the measured critical current as
a function of the applied magnetic field, which shows peaks in its Fourier spectrum, providing clear signatures of
multipair Josephson processes. The device does not require any specific fine-tuning as these features are observed
for a wide range of microscopic parameters—albeit with a nontrivial dependence. Competing effects which may
play a significant role in actual experimental realizations are also explored.
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I. INTRODUCTION

Multiterminal setups offer a great way to explore nonlocal
quantum effects as well as entanglement in condensed matter
devices, attracting both experimental and theoretical attention.
Recently, these efforts have focused on all-superconducting
hybrid structures, involving quantum dots or metallic islands
connected to multiple superconducting leads [1–5]. In particu-
lar, the prediction of nonlocal quartet production [6], that is the
emission of spatially correlated pairs of Cooper pairs, opens
new perspectives in the realization of electronic entanglers.

Motivated by this, a recent work [7] considered an all-
superconducting bijunction consisting of a central super-
conductor coupled via gate-controllable quantum dots to
two lateral voltage-biased superconductors. It uncovered the
presence of a coherent transport mechanism away from equi-
librium, manifesting as multipair phase-coherent Josephson
resonances in the current, appearing on top of the usual local
dissipative transport of quasiparticles. Similarly, experimental
work performed on a three-terminal voltage-biased Josephson
junction involving a central T-shaped metallic region revealed
features in the electronic subgap transport consistent with the
production of nonlocal quartets [8] though an unequivocal sig-
nature is still lacking at the moment. In this context, alternative
ways of detecting such nonlocal multipair processes are highly
desirable, in particular in the coherent dissipationless regime,
a route that could be provided by an interferometric setup, such
as a SQUID.

A superconductor quantum interference device, or SQUID,
consists in a superconducting loop, defining two paths each
interrupted by a Josephson junction. As a direct consequence
of phase coherence, the Cooper pairs flowing along these two
paths interfere, in a way that is controlled by the magnetic
flux through the loop. In a recent achievement of molecular
electronics, a carbon nanotube SQUID has been realized
experimentally [9]. There, the two constitutive Josephson
junctions are both made of a nanotube quantum dot, allowing
one to tune their transparency with the help of an external
gate voltage, therefore providing a new generation of versatile

sensors. Interestingly, similar carbon nanotube (or nanowire)
devices have been used as Cooper pair beam splitters [10–14],
a source of entangled electron pairs [15–17] where the
quasi-one-dimensional nanostructure is contacted to a central
superconducting source and two metallic drains. These rely
on a specific nonlocal process, referred to as CAR for crossed
Andreev reflection [18–22], which amounts to separating the
constituents of a Cooper pair into spatially distinct contacts
(provided they are within a distance set by the coherence
length).

It is therefore only natural to devise a setup bringing
together the interferometric properties of the SQUID with the
nonlocal aspects associated with CAR processes. Such a setup
could be constructed from a carbon nanotube with readily
accessible technology, as illustrated by the many examples of
multiterminal nanotube-based devices now available [23–26].

In this paper, we propose such a device, dubbed a biSQUID,
consisting of two twinned SQUIDs, where the superconduct-
ing contact which emits the multiple pairs is common to
both loops in order to reveal multipair processes through
interferometry. The two loops realize a three-terminal structure
made of a single carbon nanotube (or nanowire) contacted
to three superconducting leads (see Fig. 1), delimiting four
quantum dots which are controlled by external gate voltages.
The device is ideally operated by fixing the total current
flowing through, which we express in terms of the magnetic
fluxes piercing the two loops.

Recently, a two-terminal SQUID geometry involving two
loops was realized experimentally using superconductor–
normal metal–superconductor junctions [27]. While somewhat
similar in spirit to the present proposal, this setup was
specifically designed for sensing applications rather than to
explore nonlocal effects. It shows, however, that not only the
actual realization of these systems is within our grasp but also
that such superconducting nanodevices constitute an active
field of research.

The outline of the paper is as follows. In Sec. II, we in-
troduce the setup and present a first simple phenomenological
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FIG. 1. (Color online) Artistic view of the biSQUID setup where
a single nanotube or nanowire is contacted to three superconducting
electrodes (all at the same potential), with magnetic field biasing.

approach. We then derive the expression for the critical current
in Sec. III, starting from a microscopic description of the
setup. Section IV is devoted to our results, where we show
and analyze the dependence of the critical current on the
external magnetic field, and comment on the robustness of the
observed features. Finally, in Sec. V, we explore the competing
effects which might spoil the expected signatures of pure CAR
processes, before concluding in Sec. VI.

II. SETUP AND PHENOMENOLOGY

The biSQUID setup is presented in Fig. 2. It basically
amounts to twinning two nanotube-based SQUIDs by a
common central electrode whose width is smaller than the
coherence length, in order to support nonlocal Andreev
scattering processes.1 A carbon nanotube (or nanowire) is
contacted with three superconducting electrodes, referred to
as Sa , S0, and Sb. This defines four quantum dots, labeled
a1, a2, b1, and b2, controllable via nearby electrostatic gates.
The area of the two resulting SQUID loops (denoted A and B,
respectively) are chosen different, so as to ensure that electrons
feel different magnetic fluxes depending on the loop they flow
through.

In order to make the upcoming discussion as clear as
possible, it is important to properly define the various su-
perconducting phases involved in this setup. A phase ϕs is
attributed to the central superconducting finger, while the other
two superconducting electrodes are characterized respectively
by a phase ϕa and ϕb. Furthermore, the magnetic fluxes
through the two loops A and B are defined as �A = BSA
and �B = BSB, where Sj is the surface area enclosed by
loop j .

It follows from flux quantization that the phase differences
seen by each quantum dot Josephson junction are given

1For simplicity, the other two electrodes Sa and Sb are chosen wide
enough so as to avoid nonlocal effects.

FIG. 2. (Color online) biSQUID setup as modeled here. Three
superconducting terminals and four quantum dots (originating from a
single nanotube or nanowire) define a two-loop system with enclosed
areas of different sizes. Each dot Josephson junction sees a phase
difference labeled δϕα combining the phases of each superconducting
electrode as well as the enclosed magnetic fluxes. The arrows near
each junction set the conventions for the flowing currents and phase
differences.

by

δϕa1 = ϕs − ϕa, (1)

δϕb1 = ϕs − ϕb, (2)

δϕa2 = ϕs − ϕa − 2π
�A
�0

, (3)

δϕb2 = ϕs − ϕb + 2π
�B
�0

, (4)

where �0 = h/(2e) is the flux quantum. The biSQUID is
controlled by fixing the total current I = Ia + Ib measured
from the common output, which depends on all of these
four phase differences, or alternatively on the superconducting
phases ϕa and ϕb as well as the magnetic fluxes through the
loops �A and �B (from this point on, we set ϕs = 0 as the
reference for the superconducting phases).

A key quantity of interest for such a superconducting
interferometer is the flux-dependent critical current, i.e., the
maximum dissipationless current which can flow through the
device, defined here as

Ic (�A,�B) = max
ϕa,ϕb

|I (δϕa1,δϕb1,δϕa2,δϕb2)| . (5)

Out of the four quantum-dot based junctions, only a1 and
b1 are coupled by nonlocal effects, leading to signatures in
the critical current involving specific combinations of the
external fluxes, which can be revealed through a simple
phenomenological approach.

In the limit of low transparency, we can perform a simple
perturbative treatment in the Cooper pair tunneling. Processes
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involving a single pair contribute to the total current I

measured from S0 in the standard Josephson form of a
sinusoidal current-phase relationship for each of the four
junctions, leading to

I1P = IJ[sin δϕa1 + sin δϕb1 + sin δϕa2 + sin δϕb2]. (6)

Processes involving two pairs all lead to second-order harmon-
ics of the Josephson current. However, one must distinguish
between two different contributions. Local processes, amount-
ing to two pairs crossing any given junction, involve twice the
phase difference seen by each quantum dot:

I2P,local = IJJ[sin(2δϕa1) + sin(2δϕb1)

+ sin(2δϕa2) + sin(2δϕb2)]. (7)

In addition to these, the present device allows the possibility
for nonlocal processes, and one thus needs to consider the so-
called pair cotunneling and quartet supercurrents [6]. The latter
corresponds to the splitting of two correlated pairs from S0

into Sa and Sb, which leads to a Josephson-like current-phase
relationship involving both the phase difference between S0

and Sa , and the one between S0 and Sb, namely

I2P,quartet = IQ sin(δϕa1 + δϕb1). (8)

Due to the exchange process intrinsic to quartet emission,
we expect IQ to be negative [7]. This nonlocal process relies
on crossed Andreev reflection through S0, which naturally
coexists with normal transmission through the central super-
conducting electrode without electron-hole conversion, the
so-called elastic cotunneling. It follows that the quartet process
comes with a similar partner corresponding to the exchange of
a pair from Sa to Sb via double elastic cotunneling through S0,
therefore contributing to the supercurrent as

I2P,pair cotunneling = IPC sin(δϕa1 − δϕb1), (9)

where the various current scales introduced above satisfy
|IPC|,|IQ|,|IJJ| � IJ, as a consequence of the low transparency
of the junctions.

Combining Eqs. (1) though (9), one obtains the following
expression for the total critical current, up to second order in
the pair tunneling:

Ic(�A,�B) = max
ϕa,ϕb

|2IJ sin(ϕa + π�̃A) cos(π�̃A)

+ 2IJ sin(ϕb − π�̃B) cos(π�̃B)

+ 2IJJ sin(2ϕa + 2π�̃A) cos(2π�̃A)

+ 2IJJ sin(2ϕb − 2π�̃B) cos(2π�̃B)

+ IQ sin(ϕa + ϕb) + IPC sin(ϕa − ϕb)|, (10)

where �̃j = �j/�0 is the magnetic flux through loop j , in
units of the flux quantum. Apart from small regions near
integer values of �̃A,B (where the single pair Josephson current
is near suppression), the critical current can readily be obtained
without any further calculation in most of the (�A,�B) plane,
and takes the form

Ic(�A,�B) = 2IJ[|cos(π�̃A)| + |cos(π�̃B)|]
+ |IQ||sin(π�̃A − π�̃B)|
+ |IPC||sin(π�̃A + π�̃B)|. (11)

There, the first term corresponds to the critical current in the
absence of a quartet supercurrent. The two loops are decoupled
in this case and Ic (�A,�B) splits into two independent
contributions corresponding to the simultaneous maximization
of Ia and Ib. Interestingly, quartet and pair cotunneling
processes are responsible for an extra contribution to the
critical current with a very specific flux dependence, leading to
a macroscopic manifestation of nonlocal effects. In particular,
this simple calculation points out that a measurement of the
quartet current is possible by detecting the flux periodicity of
the biSQUID critical current.

III. MICROSCOPIC THEORY

This section is devoted to a microscopic calculation of
the current through the biSQUID. Our goal is to justify the
expression (11) obtained from our simple phenomenological
approach, to generalize it to more transparent junctions, and
to show that the energy levels in the dots can be chosen such
as to promote multipair transport, and in particular reveal the
presence of a quartet resonance.

A. Hamiltonian

The model Hamiltonian for the biSQUID setup is expressed
as the sum of three contributions

H =
∑

j=a,0,b

HS,j +
∑

α = a1,a2,

b1,b2

HD,α + HT . (12)

Here HS,j is the Hamiltonian associated with the supercon-
ducting lead Sj (j = a,0,b), which is given by the following
compact form:

HS,j =
∑

k

�
†
jk(ξkσz + 
jσx)�jk, (13)

where ξk = k2

2m
− μ and 
j is the superconducting gap of lead

j . Each quantum dot α (α = a1,a2,b1,b2) is modeled by a
single noninteracting level, with energy εα , described by the
Hamiltonian

HD,α = εαd†
ασzdα. (14)

In both these expressions, we used Pauli matrices acting in
Nambu space, and introduced Nambu spinors for the lead and
dot electrons, defined respectively as

�jk =
(

ψj,k,↑
ψ

†
j,−k,↓

)
, dα =

(
dα↑
d
†
α↓

)
. (15)

Introducing a tunneling amplitude tjα between lead j and dot
α, and performing a gauge transformation to incorporate the
superconducting phases ϕj in the tunneling term, one has for
the tunneling part of the Hamiltonian

HT =
∑

k

(�†
jkTjkαdα + H.c.), (16)

where, in absence of external magnetic field, we have Tjkα =
tjαe−ikrjα σze

iσzϕj /2, rjα being the position of lead j where
tunneling to/from dot α occurs.

The resulting Hamiltonian is fully quadratic in terms of
both the leads and the dot electrons. It is therefore convenient
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to integrate out the leads degrees of freedom and derive an
effective theory involving only the dot electrons.

This is achieved through standard techniques, starting from
the partition function

Z =
∫

D[ψ̄,ψ,d̄,d]e−S[ψ̄,ψ,d̄,d], (17)

with action

S =
∫ β

0
dτ

∑
j,k

�̄jk(τ )(Dτ + ξkσz + 
jσx)�jk(τ )

+
∫ β

0
dτ

∑
α

d̄α(τ ) (Dτ + εασz) dα(τ )

+
∫ β

0
dτ

∑
j,α,k

[�̄jk(τ )Tjkαdα(τ ) + d̄α(τ )T ∗
jkα�jk(τ )],

(18)

where Dτ is defined in Nambu space as

Dτ =
(→

∂ τ 0

0 −
←
∂ τ

)
.

Carrying out the integration over the (ψ̄,ψ) Grassmann
fields, one is left with an effective action of the form

Seff =
∫ β

0
dτ

∑
α

d̄α(τ ) (Dτ + εασz) dα(τ )

+
∫ β

0
dτ dτ ′ ∑

α,γ

d̄α(τ )�αγ (τ − τ ′)dγ (τ ′), (19)

where we introduced the tunneling self-energy

�αγ (τ ) =
∑
j,k

T ∗
jkαGj,k(τ )Tjkγ , (20)

which depends on the lead electrons Green’s function, defined
in Matsubara frequency space as

Gj,k(iωn) = (iωn1 − ξkσz − 
jσx)−1. (21)

It follows that the effective field theory, quadratic in (d̄,d),
can be described uniquely in terms of the Matsubara Green’s
function Ĝ(iωn) for the dot electrons, which takes the form of
an 8×8 matrix in Nambu-dot space given by

Ĝ−1(iωn) =

⎛
⎜⎜⎜⎝

ga2,a(iωn,�A) 0 0 0

0 ga1,a(iωn,0) f (iωn) 0

0 f (iωn) gb1,b(iωn,0) 0

0 0 0 gb2,b(iωn, − �B)

⎞
⎟⎟⎟⎠, (22)

where

gα,j (iωn,�) =

⎛
⎜⎝iωn

[
1 + πν(0)√

ω2
n+
2

(
t2
0,α + t2

j,α

)] − εα −
ei�
(
t2
0,α + t2

j,αeiδϕα
)

πν(0)√
ω2

n+
2

−
e−i�
(
t2
0,α + t2

j,αe−iδϕα
)

πν(0)√
ω2

n+
2
iωn

[
1 + πν(0)√

ω2
n+
2

(
t2
0,α + t2

j,α

)] + εα

⎞
⎟⎠, (23)

f (iωn) = πν(0)t0,a1t0,b1e
−R/ξ (ωn)

⎛
⎝ iωn√

ω2
n+
2

cos(kF R) − sin(kF R) − 
√
ω2

n+
2
cos(kF R)

− 
√
ω2

n+
2
cos(kF R) iωn√

ω2
n+
2

cos(kF R) + sin(kF R)

⎞
⎠, (24)

where we introduced the width R of the central superconduct-
ing lead, and assumed all superconducting electrodes to have
the same gap energy 
j = 
, and density of states at the Fermi
level ν(0). The energy-dependent coherence length is defined
as ξ (ωn) = ξ0
/

√
ω2

n + 
2.

B. Current

The current through a given quantum dot Josephson
junction α can be readily expressed as the time derivative of the
number of electrons out of the superconducting reservoir, and
as such can be related to the phase derivative of the tunneling
Hamiltonian. In particular, the average current through dot α

reads

Iα = 2e

�

〈
∂HT

∂δϕα

〉
= 2e

�

∂F

∂δϕα

, (25)

where F = −kBT log Z is the free energy.

Keeping in mind that the effective theory contains all the
relevant phase-dependent degrees of freedom, this can be
further simplified as

Iα = − 2e

β�

∂ log Zeff

∂δϕα

= − 2e

β�

∂

∂δϕα

∑
n

log[detĜ−1(iωn)], (26)

where we performed explicitly the integration over the
Grassmann fields (d̄,d). The current through any given
junction can thus be obtained from Eq. (22), after performing
a Matsubara frequency summation. The total current through
the device is readily obtained by summing up the contribution
coming from each junction.

The width R of the central superconducting lead, which
corresponds to the separation between tunneling points from
dot a1 to S0 and dot b1 to S0, enters the above expression
for the current in two important ways. First, the total current
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contains terms which decrease exponentially with R. These
correspond to nonlocal contributions which expectedly van-
ish if the separation between tunneling points exceeds the
superconducting coherence length, therefore setting a typical
order of magnitude for R. Second, some of these terms are
also oscillating on a scale set by the Fermi wavelength λF .
Since λF is typically several orders of magnitude smaller
than the superconducting coherence length, these contributions
are rapidly oscillating as a function of R. It is thus natural
to average over these rapid oscillations, assuming that the
separation between tunneling points is susceptible to fluctuate
slightly on a scale given by a few Fermi wavelengths. Defining
R = R0 + r , where R0 is a fraction of the coherence length ξ0

and r is of the order of the Fermi wavelength, we introduce
the r-averaged total current as

Ītot = 1

2λF

∫ λF

−λF

dr
−2e

β�

∑
n

∑
α

∂ log[detĜ−1(iωn)]

∂δϕα

. (27)

Considering the maximization with respect to the supercon-
ducting phases, the critical current through the device is now
expressed in terms of the microscopic parameters as

Ic(�A,�B) = max
ϕa,ϕb

|Ītot(δϕa1,δϕb1,δϕa2,δϕb2)|, (28)

where one needs to replace all phase differences δϕα by their
expression, Eqs. (1)–(4), prior to evaluating the maximum.

C. Low transparency expansion

It is possible at this stage to provide a firmer basis for
our earlier phenomenological treatment. Indeed, starting from
Eq. (26), one can perform a perturbative expansion of the
total current I coming out of S0 in powers of the tunneling
amplitude.

Focusing on the simpler case of equivalent junctions, i.e.,
assuming constant tunneling amplitude t0, and considering all
dot energies to be the same (up to a possible sign, εα = ±ε),
one can show analytically that the total current takes the form

Ītot = IJ[sin δϕa1 + sin δϕb1 + sin δϕa2 + sin δϕb2]

+ IJJ[sin(2δϕa1) + sin(2δϕb1) + sin(2δϕa2)

+ sin(2δϕb2)] + IQ sin(δϕa1 + δϕb1), (29)

when expanding up to fourth order in the tunneling rate � =
2πν(0)t2

0 , which amounts to taking into account processes
involving up to two Cooper pairs. The various contributions are
expressed in terms of the microscopic parameters introduced
in Sec. III A as

IJ = e

β�

∑
n


2(

2 + ω2

n

)(
ε2 + ω2

n

)�2 
 e

�

�2

2ε
, (30)

IJJ = e

β�

∑
n

−
4�4

4
(

2 + ω2

n

)2(
ε2 + ω2

n

)2 
 − e

�

�4

16ε3
, (31)

IQ = e

β�

∑
n

−
4�4

2
(

2 + ω2

n

)2(
ε2 + ω2

n

)2 cos2(kF R)e−2R/ξ


 − e

�

�4

16ε3
e−2R0/ξ0 , (32)

where we only kept the leading order contribution to IJ

(discarding the third and fourth order corrections) and provided
simplified forms valid in the large-gap, low-temperature limit

 � ε � �,β−1. At this level of approximation, the quartet
component is of the same order of magnitude as the Josephson
second harmonics (up to the nonlocal prefactor in R0) and
does not depend on the specific arrangement of the dots
energy levels (IQ is unchanged whether εa1 = εb1 or εa1 =
−εb1). These properties are specific to the present perturbative
treatment and generally not expected to remain valid once
one includes contributions from all orders in tunneling. The
result of Eq. (32) also reveals that the amplitude of the quartet
current is negative. This π -type behavior has been observed in
Ref. [7] for multipair dc resonances in an out-of-equilibrium
voltage-biased bijunction. It can be attributed to the internal
structure of a Cooper pair via the antisymmetry of its wave
function.

Interestingly, there is no trace of the pair cotunneling current
in this derivation. This is an artifact of the low-order expansion,
combined with the symmetry of the limit considered here.
Indeed, a pair cotunneling current of the order of IQ×( ε



)2

does appear, arising from both Sa and Sb, but these two terms
end up contributing to the total current with an opposite sign.

This calculation not only validates the phenomenologi-
cal form proposed in Sec. II, but also justifies that IJ �
|IJJ|,|IQ|,|IPC|, as assumed in our discussion of the critical
current.

IV. CRITICAL CURRENT

We now make use of the general expression (28) of the
critical current of the device in order to explore its evolution
for a broad range of parameters, going beyond the low
transparency regime.

As argued from our simple phenomenological treatment
presented in Sec. II, we expect quartets (and more generally all
multipair processes) to lead to specific signatures in the critical
current of the biSQUID, identifiable through their periodicity
in the magnetic flux. In what follows, we thus focus on the
Fourier spectrum of the critical current.

A. Signatures in Fourier space

The critical current can be written in a very general way in
terms of its harmonics in �A and �B, namely

Ic (�A,�B) =
+∞∑

n=−∞

+∞∑
m=−∞

In,me
i2nπ

�A
�0 e

i2mπ
�B
�0 . (33)

While we could study independently the variations of the
critical current with respect to �A and �B, it makes more
sense at this stage to introduce a new set of variables. Indeed,
in practice, the magnetic flux through the device is provided by
an external homogeneous magnetic field, which affects both
�A and �B in a correlated way. The magnetic fluxes through
loops A and B are therefore proportional to one another and
only differ as a result of the different surface area enclosed by
each loop, so that one can write

�A,B = � (1 ∓ η) , (34)
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where we introduced the average magnetic flux � and an
asymmetry parameter η defined as

� = �A + �B
2

, (35)

η = SB − SA
SB + SA

. (36)

In terms of these new variables, the expansion of the critical
current Ic takes the form

Ic(�) =
+∞∑

n=−∞

+∞∑
m=−∞

In,me
2iπ �

�0
[n(1−η)+m(1+η)]

. (37)

The most convenient way to probe for these harmonics is to
introduce the Fourier transform with respect to the average
phase accumulated around the loops ϕ = 2π�/�0, which is
defined as

Ĩc(N ) = 1

�0

∫
d� Ic(�)e−2iπN �

�0

=
+∞∑

n=−∞

+∞∑
m=−∞

In,mδ(n(1 − η) + m(1 + η) − N ). (38)

It follows that the Fourier-transformed critical current Ĩc(N )
is given by a set of peaks, located at N = m + n + (m −
n)η, whose height is related to the amplitude of the (n,m)
harmonics. Identifying which of these features are present in
the spectrum provides a direct and clear indication of what
processes are at play in the biSQUID setup. Since the critical
current is real and even in �, so is its Fourier transform. The
Fourier spectrum is thus even in N , and we focus only on
positive N .

As a first step, we consider the simplifying approximation
of identical junctions. This gives us an opportunity to discuss
the typical signatures observed and dress up a physical picture,
without obscuring it by dealing with too many parameters.

B. Identical junctions

We treat here the case of identical junctions, characterized
by the same dot-lead tunneling rate �. For simplicity, we
assume that the energy levels εα of the dots can only take two
values, either +ε or −ε, and distinguish various scenarios,
based on the possible arrangements of these levels.

We focus on the low-temperature regime (β = 100/
)
and set the attenuation factor e−R0/ξ0 = 0.9, compatible with
current experimental realizations.

1. Nonresonant case

We consider first the nonresonant case, for which the energy
levels of the dots are nonzero, i.e., detuned with respect to the
chemical potential in the superconducting leads. The results
are summarized in Fig. 4.

In particular, we focused on two situations: (a) a symmetric
arrangement of the energy levels of the dots involved in the
two loops (all chosen equal, εα = ε) and (b) an antisymmetric
arrangement of the energy levels between the two loops
(where εa1 = εa2 = ε while εb1 = εb2 = −ε). Surprisingly,
the obtained Fourier profiles are strictly identical for the

symmetric and antisymmetric cases, signaling that the r-
averaged critical current is insensitive to the arrangement of the
dots energy levels, even beyond the low-transparency regime
for which we could establish this property semianalytically.
The energy level symmetry has no influence on the Fourier
spectrum, which one might interpret as a consequence of some
kind of induced particle-hole symmetry, due to the proximity
effect from the neighboring superconducting electrodes the
dots are in contact with. In particular, this means that the
quantum dots no longer play the role of an energy filter, as they
typically do in hybrid normal metal–superconductor–normal
metal structures, such as the Cooper-pair beam splitter [10],
where it allows one to favor crossed Andreev reflection over
pair cotunneling processes.

In the low transparency regime, the nonlocal effects are
not strong enough to be readily identified and one expects
the critical current to be insensitive to the arrangement of
the energy levels. Indeed, in both cases, the Fourier profile is
largely dominated by the usual Josephson current associated
to two independent loops. The Fourier spectrum is composed
of two sets of peaks, located at multiples of 1 − η and 1 + η,
respectively. These correspond to harmonics in �A and �B
[of order (n,0) and (0,m), respectively] and can be readily
associated with the usual Josephson current flowing through
loopsA andB in the absence of any nonlocal coupling between
the two. Indeed, in the case of independent loops, one expects
the critical current to be of the form 2IJ

∑
j | cos(π�̃j )|. This,

in turn, leads to a characteristic evolution of the Fourier profile,
which we could compare to the one obtained in the present
low-transparency regime. In Fig. 3, we show that the weights
associated with the different harmonics follow the predicted
behavior, confirming that the critical current is dominated by
the usual local harmonic Josephson component.

As the transparency is increased, new structures appear in
addition to the ones already observed in multiples of 1 ± η

(see Fig. 4). Observing components which involve the fluxes
associated with each loop (i.e., with both n and m nonzero)

FIG. 3. (Color online) Relative weight of the numerically ob-
tained Fourier components (in N space) of the critical current in the
low transparency regime (� = 0.01
), for identical loops (η = 0)
at low temperature, β = 100/
. This is compared to the analytic
solution corresponding to the usual harmonic Josephson current
(dotted line).
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FIG. 4. (Color online) (Left) Relative weight of the absolute-valued Fourier components (in N space) of the critical current as a function
of �, for a symmetric arrangement of the energy levels εα = ε = 0.1
 (and η = 0.1,β = 100/
,e−R0/ξ0 = 0.9). (Right) Same relative weight
in the specific case of high transparency, � = 0.8
. There we also restored the sign of the various Fourier amplitudes and identified those in
terms of a pair of integers (n,m) corresponding to the periodicity n�A + m�B of the critical current.

signals the presence of nonlocal processes contributing to the
critical current. They are relatively faint for low values of �,
but increase as one goes into the high transparency regime. For
the highest value of the tunneling amplitude considered here
(� = 0.8
) these nonlocal contributions represent an appre-
ciable total weight of about 30% of the signal.

Out of these new features, the most pronounced one—
a peak in N = 2η—corresponds to a component of the
x r-averaged critical current with a periodicity (n = −1,m =
1) in the fluxes, i.e., periodic in �A − �B. Since it depends
on both fluxes, this contribution can only arise from a process
involving both the exchange of pairs between S0 and Sa as well
as between S0 and Sb. Moreover, the periodicity in �A − �B
requires such an exchange to be correlated, and to occur in the
same direction, that is from S0 to Sa,b or the other way around.
This is precisely the microscopic definition of the so-called
quartet process, an exchange of two correlated pairs from the
central superconducting electrode S0 to Sa and Sb. The quartet
contribution increases rapidly with �, and becomes substantial
in the limit � � ε, representing close to 10% of relative
weight, much more than any other components (apart from
the leading harmonics in �A and �B). The physical nature
of this structure is further confirmed by analyzing the sign of
its amplitude (Fig. 4, right), which turns out to be negative, as
expected for the quartet contribution.2 In the nonresonant case,
the biSQUID thus seems a promising candidate to observe
signatures of the quartet current, by monitoring the periodicity
of the critical current in the total flux, i.e., as a function of the
external magnetic field.

2This negative sign is however unrelated to the expected π -type
behavior of the quartet current, as the sign of the Fourier amplitudes
of the critical current is not directly related to the sign of the different
contributions to the total current.

Note that other, much weaker signatures are also present
with a periodicity in both fluxes. These could be attributed
to either anharmonicities of the quartet current (which would
be expected for such high transparency) or to higher order
multipair contributions.

It seems that the nonlocal effects are more pronounced
when � > ε, which naturally takes us to the regime where this
condition is most strongly fulfilled: the resonant case.

2. Resonant case

We now turn to the resonant case, where all energy levels are
chosen equal to the chemical potential in the superconducting
leads (set to zero by convention). The results are summarized
in Fig. 5.

The low transparency regime is again largely dominated
by the local harmonic Josephson current, and absent of any
nonlocal signatures. As a result, while the global prefactor
IJ might differ, the Fourier spectrum of the critical current is
identical to the one obtained in the nonresonant case.

Contributions associated with nonlocal processes appear
rapidly, and already represent about 20% of the signal for
tunneling amplitudes as low as � = 0.1
. As the transparency
is further increased, the nonlocal components get stronger,
totaling about half of the signal once one reaches � ∼ 
.

As in the nonresonant case, there is a proliferation of
signatures corresponding to various periodicities in the fluxes
�A and �B [identified through the pair of integers (n,m)].
The strongest of these nonlocal components is again observed
at N = 2η and corresponds to the quartet current. This
contribution grows much more rapidly as a function of �,
compared to the nonresonant case, and ends up being twice
as large for a comparable value of the tunneling rate. This is
consistent with the results obtained in the previous section; as
the regime � > ε proved to be the most suitable to observe
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FIG. 5. (Color online) (Left) Relative weight of the absolute-valued Fourier components (in N space) of the critical current as a function
of �, for a resonant arrangement of the energy levels εα = ε = 0 (and η = 0.1,β = 100/
,e−R0/ξ0 = 0.9). (Right) Same relative weight in the
specific case of high transparency, � = 0.8
. There we also restored the sign of the various Fourier amplitudes and identified those in terms
of a pair of integers (n,m) corresponding to the periodicity n�A + m�B of the critical current.

signatures of multipair processes, it was to be expected that
the resonant case would strengthen this trend further.

Along with the main harmonics (1,0) and (0,1), and the
quartet component (−1,1), the Fourier-transformed critical
current also shows a substantial contribution for N = 2,
corresponding to the periodicity �A + �B (n = 1,m = 1).
Like the quartet component, this contribution also increases
with the transparency, and while it was only marginally present
in the nonresonant case, it becomes significant at resonance.
This feature can be attributed to the pair cotunneling process,
which amounts to sending a Cooper pair from Sa to Sb through
the central superconducting electrode S0. As argued in Ref. [6],
the pair cotunneling process goes hand in hand with the quartet
process, and it is not surprising that they appear side by side
and behave in a somewhat similar way. As opposed to the
low transparency expansion presented in Sec. III C where it
vanished for symmetry reasons, the pair cotunneling contribu-
tion is not negligible here, despite the apparent symmetry of
the setup. This reveals the importance of high-order tunneling
processes, not accounted for in the low-� expansion, which
involve the fluxes enclosed in the two loops, thus breaking the
symmetry between the two branches of the setup.

The presence of particularly strong quartet signatures
makes this resonant case the best candidate to observe such
nonlocal contributions to the critical current. We thus continue
our study of the resonant case but move on to a more realistic
scenario of different junctions in order to determine to what
extent our results are robust.

C. Robustness of the results

The results of the previous section were obtained in the
simpler case of identical junctions, and one might thus argue
that they require some specific fine tuning in order to be

observed. While the presence of external gates enables a rather
precise control of the energy levels of the four quantum dots,
the tunneling rates of the junctions depend on the sample
design and cannot be manipulated. In particular, making four
identical highly transparent Josephson junctions constitutes an
experimental challenge.

We therefore focus now on a more realistic situation, where
we set the dots to be resonant with the superconducting
electrodes, but do not make any assumptions concerning the
tunneling parameters. To take this even further, we contemplate
the possibility of having different tunneling amplitudes tjα for
each dot-lead junction. We compute the critical current as a
function of the average flux for 1000 different realizations of
the setup, each corresponding to a random pick of the eight
tunneling amplitudes, chosen following a uniform distribution
over the range [0; 
]. From the resulting Fourier spectra,
we monitor the fate of the four most prominent features
identified earlier, namely the main harmonics in �A and �B
[corresponding to the features in (1,0) and (0,1)], as well as
the quartet and pair cotunneling contributions [corresponding
to (−1,1) and (1,1), respectively]. In Figs. 6 and 7, we show
histograms representing the probability of occurrence of each
of these contributions as a function of the relative weight they
represent in the Fourier spectrum.

From Fig. 6, one sees that the main harmonics in �A and �B
follow a very similar distribution. These are clearly the leading
contributions to the critical current averaging a relative weight
of about 30% each, while together they add up to over 50% of
the signal in about half the realizations.

The results compiled in Fig. 7 suggest that the quartet
and the pair cotunneling contributions bear some striking
similarities when it comes to their weight distribution, further
underlining the deep connection between the two processes.
Focusing on the quartet component, one readily sees that for
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FIG. 6. (Color online) Probability of occurrence of the main
harmonics and in �A (top) and �B (bottom) as a function of
the relative weight they represent in the Fourier spectrum. These
were obtained by computing the critical current for 1000 different
realizations of the setup with resonant dots (εα = 0) and randomly
chosen tunneling amplitudes tjα between 0 and 
.

a completely random selection of the tunneling amplitudes,
the probability of observing a strong quartet signal is rather
weak, as less than 60 out of the 1000 realizations show a
relative weight beyond 10%. However, the quartet signature
is more often present than not, its relative weight reaching
over 3% for more than half the realizations. On average, the
contribution to the critical current associated with quartets
culminates a little above 4%. To put things into perspective, in
the resonant case considered in the previous section, a junction
transparency of � = 0.08
 was sufficient to reach the same
kind of values, stressing the importance of making the four
junctions as identical as possible in practice.

While on average the quartet signature is small, it is still
detectable and could be further enhanced by filtering out the
main Josephson harmonics in �A and �B which are easily
identifiable. One also has to keep in mind that the situation
considered here is among the most unfavorable ones, and while
practical realizations should be tailored to promote nonlocal
multipair processes, even a random realization still has a solid
chance of revealing their specific signatures.

V. COMPETING EFFECTS

Various physical phenomena can be responsible for a
coupling between degrees of freedom from the two loops,

FIG. 7. (Color online) Probability of occurrence of the quartet
(top) and pair cotunneling contributions (bottom) as a function of
the relative weight they represent in the Fourier spectrum. These
were obtained by computing the critical current for 1000 different
realizations of the setup with resonant dots and randomly chosen
tunneling amplitudes tjα .

leading to nonlocal effects whose signatures might mask a
pure quartet signal. We hereby consider two of the most likely
candidates susceptible to appear in our biSQUID device.

A. Mutual inductance

The setup under consideration is comprised of two loops
where current can flow, so that one should take into account
the geometrical inductance of such a circuit. While there could
be both local and mutual inductances at play in the setup, the
latter is the most likely to lead to strong nonlocal signatures as
it couples the currents of pairs flowing through junctions a1
and b1. We could check that the presence of a self-inductance
only marginally modifies our results and thus decided, for
simplicity, to focus on the effect of the mutual inductance
alone.

Due to the mutual geometrical inductance M between loops
A and B, the fluxes felt by the electrons circulating in the
circuit is no longer set by the external magnetic field alone.
Instead, there exists an additional contribution on top of this
external flux (hereby labeled �ext

A,B), which depends on the
current flowing in the nearby loop. Following the conventions
introduced in Fig. 2 and Eqs. (1)–(4) for the currents and fluxes,
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FIG. 8. (Color online) Relative weight of the Fourier components
of the critical current as a function of the mutual inductance M

between loops [expressed in units of M0 = �
2/(e2
)], in the resonant

(ε = 0) highly transparent regime (� = 0.8
). All other parameters
have been chosen identical to Figs. 4 and 5, apart from the attenuation
factor, e−R0/ξ0 = 0.

we write

�A = �ext
A − M (Ib1 − Ib2) , (39)

�B = �ext
B − M (Ia2 − Ia1) , (40)

where the mutual inductance M is positive.
Since some of the junction currents Iα depend explicitly

on the fluxes, it is obvious from Eqs. (39) and (40) that
the total current through the device now has to be computed
self-consistently. Performing this self-consistent treatment in
addition to the r averaging and on top of the maximization
(in order to extract the critical current) makes the numerical
calculation a lot more demanding. In order to estimate the
competing effects associated with the mutual inductance, we
thus consider the simpler case of two disconnected loops
(i.e., without any microscopic nonlocal coupling) and turn on
the mutual inductance progressively, monitoring the Fourier-
transformed critical current. The results are provided in Fig. 8,
where for illustrative purposes, we focused on the resonant
highly transparent regime.

Whereas there are no noticeable modifications of the
Fourier spectrum for weak values of the mutual inductance,
new signatures start appearing beyond 0.1M0 [where M0 =
�

2/(e2
)], a threshold which tends to increase as the tunneling
rate � is reduced (not shown).

These signatures grow rapidly with M and are mainly
located at N = 2 and N = 2η [i.e., the (1,1) and (−1,1) com-
ponents, respectively]. Unlike the general situation considered
in the previous section, the most pronounced component
involving both fluxes corresponds here to (1,1) rather than
(−1,1), a characteristic specific to the presence of mutual
inductance, which could be used in actual experiments to detect
the presence of such effects. Indeed, this can be explained
by noticing that the mutual inductance tends to anticorrelate
the currents in branches a1 and b1 in order to decrease

the total current in the central electrode. On the contrary,
the quartet mechanism tends to correlate the currents Ia1

and Ib1 reinforcing the current in the central electrode. The
antagonistic effects of quartets and mutual inductance allows
one to discriminate both mechanisms. For the largest value of
the mutual inductance considered here, this structure at N = 2
even becomes the leading component of the Fourier signal,
overcoming the contributions which depend on only one of the
two fluxes. While a peak at N = 2η is visible (and, as such,
could be mistaken with signatures from the quartet process),
it stays relatively weak (5% at best) and even decreases back
for large values of M .

In the end, although mutual inductance leads to structures
in the critical current located at the same position in N space,
the behavior of these new features is specific enough to not be
confused with quartet and pair cotunneling processes. Still,
the mutual inductance needs to be carefully estimated in
experimental setups3 and taken into account when attempting
to fit the data.

B. Direct tunneling

Although absent from nanowire-based systems, direct
tunneling between quantum dots is known to occur in carbon
nanotubes. This generates a new contribution to the bare dot
Hamiltonian, of the form

HD,direct = tdd†
a1σzdb1 + H.c., (41)

where td is the direct tunneling amplitude between dots a1 and
b1. This term opens a new channel for current to flow between
the two loops, competing with the nonlocal exchange of pairs
through S0.

To get a flavor of the effect of direct tunneling, let
us compute the critical current as a function of td in the
simpler case where the nonlocal coupling through the central
superconducting electrode has been turned off. The new term
that now appears in the total Hamiltonian changes the form
of the Matsubara Green’s function for the dot electrons by
affecting its anomalous part f (iωn), which becomes

f (iωn) =
(−td 0

0 td

)
. (42)

The critical current is then obtained from Eqs. (27) and (28) as
before. The Fourier-transformed critical current as a function
of the direct tunneling td is presented in Fig. 9 for the resonant
highly transparent case.

As it turns out, direct tunneling can lead to signatures
that are very similar to nonlocal multipair processes. In
the resonant case considered here, even for rather small
values of td (say, 0.1
) new peaks appear in the Fourier
spectrum corresponding precisely to the contributions of
interest, namely (−1,1) and (1,1) (associated earlier to quartet
and pair cotunneling processes). Moreover, these features
grow rapidly as td is increased, and for a typical value
of only td = 0.4
, the resulting Fourier-transformed critical

3For a gap energy 
 ∼ 100 μeV, the mutual inductance considered
here is between 50 and 500 pH, which should be a reasonable order
of magnitude of what is realized in actual setups.
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FIG. 9. (Color online) Relative weight of the Fourier components
of the critical current as a function of the direct tunneling amplitude
td , in the resonant (ε = 0) highly transparent regime (� = 0.8
). All
other parameters have been chosen identical to Figs. 4 and 5, apart
from the attenuation factor, e−R0/ξ0 = 0.

current looks almost identical to the one obtained in Fig. 5 in
the presence of nonlocal crossed Andreev reflection (same
set of harmonics with similar weights, only the ones in
the vicinity of N = 4 differ). Indeed, from inspecting the
anomalous Green’s functions in the presence of a coupling
through S0, Eq. (24), and in the presence of direct tunneling,
Eq. (42), one readily sees that td roughly assumes the same
role as the prefactor �e−R0/ξ0/2 (up to complications related
to r averaging). Indeed, direct interdot tunneling offers an
alternative channel for the production of correlated pairs, as
shown in Refs. [11,12]. Yet, it is interesting to discriminate this
mechanism from the quartet one, for instance, by synchronous
detection while slowly varying one key parameter of the setup.

VI. SUMMARY AND CONCLUSION

To summarize, our main results are as follows.
(a) The phenomenological model is sufficient to capture the

main ingredients of the physics involved in this system in the
low transparency regime.

(b) Studying the flux dependence of the critical current
through a full microscopic calculation leads, for identical
junctions in the nonresonant regime, to new signatures. These
could be attributed to nonlocal multipair processes.

(c) In the case of resonant dots, and for highly transparent
junctions, these quartet signatures become particularly strong
(of the same order as the Josephson contribution) making this
regime the most promising to investigate multipair production.

(d) Our results are robust against strong variations of
tunneling amplitude throughout the setup. Even in the worst
case scenario of eight very different tunneling parameters,
there is a strong probability of observing a quartet signal.

(e) The most likely competing effects either lead to
qualitatively different signatures or open a new channel that

contributes to the formation of correlated pairs, in addition to
the standard crossed Andreev reflection.

This work thus provides an alternative experimental setup
for the observation of nonlocal multipair processes. Unlike pre-
vious work on a voltage-biased all-superconducting bijunction
[7], the current study focuses on an equilibrium situation, in the
coherent dissipationless regime. Making use of interferometry,
this allows for the observation of specific features associated
with quartet processes that do not require one to study intricate
phase and voltage dependences, and hopefully provides an
unequivocal experimental signature of these phenomena.

In conclusion, we proposed a setup consisting of four
Josephson junctions, defining two twinned loops in a nanotube
(or nanowire) based system connected to three superconduct-
ing electrodes, which we dubbed a biSQUID. We presented
a phenomenological argument to motivate our analysis, then
derived a microscopic theory allowing a careful description
of the setup in the full parameter space. We showed that by
measuring the critical current as a function of the average flux
through the loops (i.e., the external magnetic field), the device
could reveal signatures associated with nonlocal multipair
contributions, in particular the so-called quartet process, thus
making them experimentally observable in an equilibrium
situation. We also suggested that potential experimental
realizations pay specific attention to some competing effects
which might interfere with these very signatures.

A natural extension of the present work consists in taking
into account local Coulomb interaction on the dots. This consti-
tutes a real challenge, which could be tackled through various
approximate treatments, such as perturbative diagrammatic
resummation or self-consistent mean-field approaches [28].
Interactions are expected to be particularly relevant when
dealing with closed dots, with weak tunneling amplitudes to the
leads. We showed, however, that the most interesting regime to
observe quartet signatures in the biSQUID setup corresponds
to the opposite case of large values of the tunneling rate �, for
which Coulomb interactions play a more limited role. As long
as one stays away from the deep Kondo regime (for which the
occupation of the dots is close to 1 at all times), we therefore
do not expect any dramatic qualitative change of our results
due to Coulomb interactions.
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APPENDIX: TUNNELING SELF-ENERGY

The tunneling self-energy introduced in the
text is given, in terms of Matsubara frequency,
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by

�αγ (iωn) =
∑

j

tjγ t∗jασze
−iσzϕj /2

[∑
k

(iωn1 − ξkσz − 
jσx)−1eik(rjα−rjγ )

]
σze

iσzϕj /2, (A1)

where we substituted in Eq. (20) the expression for the lead electrons Green’s function, and the tunneling parameters.
Performing the k integral requires information on the dimensionality of the system. It is believed [12] that the contact between

dots and superconducting leads actually occurs within the carbon nanotube, between an electrostatically confined region (the dot)
and a proximity-induced superconducting region, which then acts as an effective 1D superconductor. Within this assumption, the
integral over momentum reduces to

∑
k

(iωn1 − ξkσz − 
jσx)−1eik(rjα−rjγ ) =
∑

k

−eik(rjα−rjγ )

ω2
n + 
2

j + ξ 2
k

(iωn1 + ξkσz + 
jσx)

= ν(0)
∫

dε

cos
(
kF

√
1 + ε

μ
(rjα − rjγ )

)
ε2 + ω2

n + 
2
j

(iωn1 + εσz + 
jσx)


 πν(0)e−Rj,αγ /ξ (iωn)

[
cos kF Rj,αγ√

ω2
n + 
2

(iωn1 + 
jσx) − sin kF Rj,αγ σz

]
, (A2)

where we introduced Rj,αγ = |rjα − rjγ | as well as ξ (iωn) = ξ0
√

2+ω2

n

. Here ν(ε) is the density of states of the superconducting

region, which we assumed to be constant close to the Fermi level.
Substituting this result back into Eq. (A1), one has, for the tunneling self-energy in Matsubara frequency space,

�αγ (iωn) = πν(0)
∑

j

tjγ t∗jαe−Rj,αγ /ξ (iωn)

[
cos kF Rj,αγ√

ω2
n + 
2

(
iωn1 − 
je

−iσzϕj σx

) − sin kF Rj,αγ σz

]
. (A3)

In practice, the only nonlocal terms allowed by the tunneling amplitudes involve coupling between dots a1 and b1 through lead
S0. Therefore, we only need to introduce one length scale Rj,αγ corresponding to R0;a1,b1 = R0;b1,a1 = R.
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