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Abstract.  We consider the electronic analog of the Hong–Ou–Mandel (HOM) 
interferometer from quantum optics. In this realistic condensed matter device, 
single electrons are injected and travel along opposite chiral edge states of the 
integer quantum Hall eect, colliding at a quantum point contact (QPC). We 
monitor the fate of the colliding excitations by calculating zero-frequency current 
correlations at the output of the QPC. In the simpler case of filling factor 1ν = , 
we recover the standard result of a dip in the current noise as a function of the 
time delay between electron injections. For simultaneous injection, the current 
correlations exactly vanish, as dictated by the Pauli principle. This picture is 
however dramatically modified when interactions are present, as we show in 
the case of a filling factor 2ν = . There, each edge state is made out of two 
co-propagating channels, leading to charge fractionalization, and ultimately to 
decoherence. The latter phenomenon reduces the degree of indistinguishability 
between the two electron wavepackets, yielding a reduced contrast in the HOM 
signal. This naturally brings about the question of stronger interaction, oering 
a natural extension of the present work to the case of the fractional quantum 
Hall eect where many open and fascinating questions remain.
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1.  Introduction

Electron quantum optics (EQO) aims at transposing quantum optics experiments, allow-
ing for the controlled preparation, manipulation and measurement of single electronic 
excitations in ballistic quantum conductors. One may expect fundamental departures 
from their photon counterpart, as electrons are not only subject to Coulomb interac-
tions, but they also obey the fermionic statistics. While the control of single photons—a 
key ingredient of quantum optics experiments—was mastered long ago [1], such a feat 
was only achieved recently in condensed matter devices [2–7].
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High-mobility 2D electron gases are a perfect testbed for conducting EQO experi-
ments as several building blocks of quantum optics can readily be recreated in this 
context. First, the phase-coherent ballistic propagation of electrons is ensured by chiral 
edge states of the integer quantum Hall eect (IQHE). After propagation, these elec-
trons collide at a quantum point contact (QPC), a tunable tunnel barrier mimicking a 
beamsplitter. The only missing ingredient finally appeared recently in the form of an 
on-demand single electron source (SES), opening the way to all sorts of interference 
experiments [2].

Among those, the Hong–Ou–Mandel [8, 9] (HOM) interferometer is a celebrated 
tool of quantum optics. It allows to probe the degree of indistinguishability of two pho-
tons sent on a beamsplitter, by measuring the coincidence rate between the two output 
channels. When identical photons are sent on the two input channels of a beamsplitter, 
and collide at the same time, they exit in the same outgoing channel, showing a sudden 
vanishing of the output coincidence rate (see figure 1). This bunching phenomenon is a 
direct consequence of the bosonic statistics. Moreover, measuring this dip gives access 
to the size of the photon wavepacket and the time delay between photon emissions.

The electronic analog of the HOM experiment in condensed matter goes beyond the 
simple transposition of an optics setup as several major dierences exist between pho-
tons and electrons. In particular, electrons dier because of the presence of the Fermi 
sea and the possibility of creating electron vacancies—i.e. holes—but also electrons 
are susceptible to interact with each other leading to new and interesting eects that 
have no equivalent with photons. This device has so far eluded a complete theoretical 
description [10–14].

Here we study, from a theoretical standpoint, the outcome of this electronic HOM 
interferometry experiment, where two independently emitted electrons travel along 
counter-propagating opposite edge states and meet at a QPC, in the integer quantum 
Hall regime at both filling factor 1ν =  and 2ν = . The latter case allows us to not only 
investigate the eect of Coulomb interactions along the propagation but also to provide 
a theoretical framework for recent experimental results obtained at 1ν>  [15].

This article is organized as follows. In section  2, we present the derivation and 
main results in the 1ν =  IQH case, insisting on the two possible cases of two-fermion 
interferences. We then develop in section 3 the formalism allowing us to incorporate 
inter-channel interaction, and argue that an interaction-based decoherence scenario can 
explain the recent experimental results. This model is further refined in section 4, in 
order to provide a basis for quantitative comparison with future experiments. In sec-
tion 5, we present the challenges to overcome in order to extend the idea of an HOM 
interferometry setup to the more complicated but fascinating case of the fractional 
quantum Hall regime. Finally section 6 is devoted to the conclusion.

2. HOM interferometer at filling factor 1ν =

2.1. Setup

The electronic HOM interferometer involves two counter-propagating chiral edge states 
which meet at a QPC. In the case of filling factor 1ν = , each edge is made of a single 
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channel for electrons to propagate. Single electrons can be emitted into the system 
with a tunable time dierence thanks to single electron sources which are connected to 
each incoming edge states. The current is measured at each output channel, and one 
can compute current correlations which are conveniently expressed as a function of the 
time delay between injected electrons. A schematic setup is presented in figure 2.

Valuable physics is encoded in the noise properties of the system, and in particular 
the quantity of interest for us is the zero-frequency current correlations at the output 
of the QPC, which read

∫= −′ ′ ′S t t I t I t I t I td d ,RL
out

R
out

L
out

R
out

L
out[〈 ( ) ( )〉 〈 ( )〉〈 ( )〉]� (1)

where I tR
out( ) and I tL

out( ) are the currents in the two output channels (R/L being right- 
and left-movers).

2.2. Formalism

Using the linear dispersion of the chiral edge states, it turns out that the currents only 
depend on x v tF−  (vF being the Fermi velocity along the edge). It follows that the zero-
frequency current correlations can be expressed in terms of the current at the immedi-
ate output of the QPC. The latter is written in terms of the outgoing fermionic fields as

( ) ( ( )) ( )†ψ ψ= −µ µ µI t v t te : :,out
F

out out
� (2)

where : ... : stands for normal ordering.
The quantum point contact is modeled using a scattering matrix [16] which couples 
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Figure 1.  Schematic view of the HOM collision where two incoming objects 
scatter on a beam splitter (in blue). In the bosonic case (left), two bosons exit 
in the same output leading to two dierent possible outcomes and the vanishing 
of the coincidence count between the two output channels. In the fermionic case 
(right), the two fermions exit in dierent output channel, leading to a unique 
possible outcome and thus to a vanishing of the current fluctuations at the exit 
from the beam splitter. This shows the clear link between the outcome of the HOM 
interferometry experiment and the bunching or antibunching properties of the 
colliding objects, and thus their statistics.

a) Bosons b) Fermions
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where the transmission and reflexion probabilities are given by T  and 1= −R T  
respectively.

This allows us to write the outgoing currents in terms of incoming fermion fields, 
whose correlation functions are known

I t I t I t ev tiR
out

R L F R L L R( ) ( ) ( ) ( )( )† †ψ ψ ψ ψ= + − −T R RT� (4)

I t I t I t ev tiL
out

R L F R L L R( ) ( ) ( ) ( )( )† †ψ ψ ψ ψ= + + −R T RT� (5)

where for notational convenience, we dropped the ‘in’ superscript. Substituting these 
expressions back into the definition of the current noise, one is left with

RT {〈 ( ) ( )〉 〈 ( ) ( )〉

[〈 ( ) ( )〉〈 ( ) ( )〉 ]}† †

∫
ψ ψ ψ ψ

= +

− +

′ ′ ′

′ ′

S t t I t I t I t I t

e v t t t t

d d

h.c. .

RL
out

R R L L

2
F
2

R R L L

�
(6)

In order to perform analytic calculations, we need to resort to a simplified model for 
the emission of electrons. We thus consider the injection of single electrons with a given 
exponential wavepacket added to each edge, in close similarity to the state of the sys-
tem when the single electron source is operated in its optimal regime.

The states describing each edge are then given by the application of a fermionic 
operator with a given envelope, namely

x x xd 0 ,e h e h e h⟩ ( ) ( ) ⟩/ / /∫ φ ψ|Ψ = |µ µ µ� (7)

where 0⟩|  stands for the Fermi sea at temperature Θ, and e †ψ ψ=  corresponds to inject-
ing a single electron while hψ ψ=  corresponds to a single hole. All averages in equa-

tion (6) have to be evaluated over this prepared state, which corresponds to the state 
of the system after injection on a given edge.

2.3. Symmetric electron–electron collisions

We first consider the case of a symmetric electron–electron collision, where identical 
electronic wavepackets (corresponding to x x xR L( ) ( ) ( )φ φ φ= = ) reach the QPC with 

Figure 2.  Schematic view of the HOM setup. Two counter-propagating edge 
states, each equipped with a single electron source, are coupled at a quantum point 
contact. Correlations between the output currents ( )I tR  and ( )I tL  are calculated as 
a function of the time dierence between electron emissions.

IR

IL

injected
packet

SES
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a time dierence tδ . Working out the algebra, the expression for the current cross-
correlations reduces to

S t k k f

k k f2
1

d e 1

d 1
,

k t
k

k

RL
out

HBT

0

2 i 2

0

2 2

2

( ) ( ) ( )

( ) ( )
∫

∫

δ φ

φ
= −

| | −

| | −

δ∞ −

∞S
� (8)

where k( )φ  is the wavefunction in momentum space related to the injected electron, and 

f 1 1 ek
v k kF F/( )( )/= + − Θ  corresponds to the Fermi distribution (from here we set k 1B = ). 

A natural reference for the HOM noise corresponds to the value S tRL
out( )δ  for very large 

time delay t →δ ∞, thus representing the noise of two incoming electrons which do 
not interfere at the QPC. This quantity is tied to the so-called Hanbury-Brown Twiss 
(HBT) contribution to the noise HBTS  [17, 18]. This corresponds in the presented setup 
to the situation where a single source operates, and HBTS  thus reduces to the partition 
noise of a single injected electron after it collides on the QPC. Here we have to count 
this contribution twice in order to account for the two injected electrons.

Already at this stage, the expression for the noise shows some interesting behavior 
in a few limiting cases, independently of the actual wavepacket emitted. First, for large 

values of the time dierence tδ  between electrons, the ratio 
S t

2
RL
out

HBT

( )δ
S

 saturates to 1. Indeed, 

if tδ  is larger than the spread of the wavepacket in time, the two electrons no longer 
interfere at the QPC and the noise reduces to the contributions from the two electrons 
taken independently. On the opposite, for simultaneous injections, the noise shows a 
dip and vanishes exactly at t 0δ = , as expected from Pauli principle since there is only 
one possible outcome for the two outgoing electrons.

More specifically, we now focus on the case of exponential wavepackets. These cor-
respond to the behavior of the experimental single electron source in its optimal regime 
of operation. Indeed in this case, the source can be viewed as a single energy level 
coupled to a continuum and driven by a square voltage centered around the Fermi 
energy. This leads to a packet with a Lorentzian energy profile, which in turn has a 
real space profile of the form

x
v

x
2

e e ,x v x v

F

i 0 F F( ) ( )/ /φ θ=
Γ

−Γε
� (9)

characterized by the set of parameters ,0{ }Γε  corresponding respectively to the energy 
of emission and width in energy of the packet. At low temperature, this exponential 
wavepacket leads to

S t

2
1 e .tRL

out

HBT

2( )δ
= − δ− Γ| |

S
� (10)

Interestingly, this means that the shape of the dip contains relevant information on the 
properties of the incoming electron packet.

These results can be compared with a Floquet calculation which includes the actual 
emission process from the SES. A complete detailed description of the source and the 
corresponding Floquet scattering theory is available in [19, 20].

http://dx.doi.org/10.1088/1742-5468/2016/05/054008
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Figure 3 compares the results of the Floquet calculation for the HOM dip with 
the analytical formula of equation  (8). There, the period of the voltage applied to 
the emitters is T 4000

1= ∆− , and the temperature is 0.01Θ = ∆, where ∆ is the energy 
at which electrons are emitted into the system. We considered three dierent val-
ues of the transparency D for the SES, corresponding to an electron emission time 
τ π= ∆ −D2 / 1/ 1/2w ( )( ) [20] itself connected to the width in energy ( )τΓ = 1/ 2 w . We 
observe an HOM dip with dierent width but maximum contrast (i.e. reaching the 
minimum zero value at t 0δ = ) for all three transparencies. Our results show excellent 
agreement, without any fitting parameters, especially in the low transparency regime 
where true single electron emission is achieved [16, 21]. The small oscillations present 
in the Floquet results are typically associated with the ramping up time of the applied 
square voltage, and are therefore not present in our model of injection.

2.4. Asymmetry and electron–hole collisions

The previous results can be easily extended to electron–electron collisions of dierent 
wavepackets. In particular, in the low temperature limit, the expression for the noise 
dramatically simplifies, and can be written in terms of the overlap of the two incoming 
wavepackets

S

( )
( ) ( )∫

δ
φ φ δ= − +∗S t

x x x v t
2

1 d ,RL
out

HBT
R L F

2

� (11)

where we assumed for simplicity that the energy content of the wavepacket is above 
the Fermi level, i.e. k k k kF( ) ( ) ( )φ θ φ− = . This last expression is very similar to the one 
obtained in quantum optics, where the self-convolution of the photon wavepackets sets 
the shape of the HOM dip [8].

For two exponential wavepackets with dierent characteristic scales ,( )Γµ µε , one has 
at low temperature

S t
t t

2
1

4
e e ,t tRL

out

HBT

R L

R L
2

R L
2

2 2R L
( )

( ) ( )
[ ( ) ( ) ]

δ
θ δ θ δ= −

Γ Γ
Γ + Γ + −

+ −δ δ− Γ Γ

ε εS
� (12)

Figure 3.  Comparison of the HOM dips obtained as a function of the time dierence 
δt from either our analytical calculation (dashed line) or Floquet scattering theory 
(full line) for dierent values of the emitter transparency in the case of identical 
sources.
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Like in the symmetric case considered before, this HOM dip has an exponential 
profile, only with dierent time constants depending on the sign of tδ . This leads 
to an asymmetric dip which is moreover characterized by a non-optimal contrast 
4 R L R L

2
R L

2/ [( ) ( ) ]Γ Γ Γ + Γ + −ε ε , smaller than 1. Such an asymmetry is only possible 
if the wavepackets have no mirror symmetry in real space. Again, comparison with 
Floquet scattering theory leads to a very good agreement, as can be seen from figure 4, 
both for the overall asymmetric shape and the value of the contrast.

Hong–Ou–Mandel interferometry in condensed matter devices also oers the intrigu-
ing possibility of studying electron–hole collisions, which has no counterpart in regular 
quantum optics. Injecting a single electron on one incoming edge, and a single hole on 
the other one, our calculations lead to the following expression for the noise

RT( )
( ) ( )

( ) ( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

∫

∫

∫

∫

∫

∫ ∫

δ
φ

φ

φ

φ

φ φ

φ φ

= −
| | −

| | −
+

| |

| |

+
−

| | − | |′ ′

δ

∞

∞

∞

∞

∞ ∗ −

∞ ∞
′

⎡

⎣

⎢
⎢
⎢

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
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⎜

⎞

⎠
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⎤
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,
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2

0
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0

2

2

0

i
2

0

2

0

2

�

(13)

where the first two terms correspond respectively to the HBT contribution of the single 
electron and the single hole, while the last term is related to interferences between the 
injected electron and hole.

Several comments are in order at this stage. First, unlike electron–electron col
lisions, electron–hole interferences contribute positively to the noise, thus leading to 
an HOM peak rather than a dip. Then, this peak height is conditioned not only upon 

the overlap of the electron and hole wavepackets through the term k ke h( ) ( )φ φ∗ , but also 
upon the product ( )−f f1k k . This means that the HOM peak vanishes as 0→Θ , but also 
that it requires a substantial overlap between electron and hole wavepackets close to 
the Fermi level in an energy window set by temperature. In particular, the observation 
of such an HOM peak should require a specific tuning of the source if operated in its 
optimal regime, or would call for the SES to be driven adiabatically [22].

Figure 4.  Comparison of the HOM dips obtained as a function of the time dierence 
δt from either our analytical calculation (dashed line) or Floquet scattering theory 
(full line) in the asymmetric case of sources with dierent transparencies.
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2.5. Experimental results

The experimental realization of an electronic HOM interferometer in the IQHE occurred 
recently [15] albeit performed in the slightly dierent regime of filling factor 1ν> , due 
to technical constraints related to the quantum point contact. The results have several 
common features with the ones exposed here. Actually, one clearly sees the occurrence 
of an HOM dip associated with electron–electron collision, and the presence of a flat 
background contribution (the so-called HBT contribution) that persists for large time 
dierence between emitted electrons. The puzzle with these results is that although one 
clearly observes an HOM dip, it does not vanish at t 0δ =  as predicted for 1ν = , there-
fore signaling interesting eects happening beyond this simple non-interacting picture.

Indeed, another important dierence between photons and electrons is the presence 
of interactions, and electron quantum optics oers a fascinating playground to explore 
the emergence of many-body physics. Recent works suggested that interactions may 
dramatically impact the nature of excitations in integer Hall systems [23–32]. This 
encouraged us to study the case of higher filling factor in the integer quantum Hall 
regime, and investigate the eect of interactions in the HOM interferometry.

3. HOM interferometer at filling factor 2ν =

In order to provide a theoretical framework for the experiment, and to further our 
understanding of the eects of interaction in electronic interferometric setups, we con-
sider now a quantum Hall bar at 2ν = , in the strong coupling regime and at finite 
temperature. There, each edge state is made out of two co-propagating channels cou-
pled via Coulomb interaction. This is expected to lead to energy exchange between 
channels, and to charge fractionalization. The two possible setups, referred to as setup 
1 and setup 2, correspond respectively to the partitioning of the inner or the outer 
channel, as shown in figure 5.

Figure 5.  The two possible setups at ν = 2: two opposite edge states, each 
made out of two interacting co-propagating channels, meet at a QPC, and an 
electronic wavepacket is injected on both incoming outer channels. For setup 1 
(left), backscattering occurs for outer channels, as in the experimental device, 
whereas for setup 2 (right) only inner channels can scatter at the QPC. The 
fractionalized injected wavepacket is schematically represented through its 
electron density, revealing the presence of two modes which are each made out of 
two �/⊕ -excitations.

I1

I2

Setup 1

I1

I2

Setup 2
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3.1. Model and derivation

Our quantity of interest is the current correlations [33, 34] measured on the partitioned 
channel at zero-frequency

[〈 ( ) ( )〉 〈 ( )〉〈 ( )〉]∫= −′ ′ ′S t t I t I t I t I td d ,s s s s
out out out out out

� (14)

where s  =  1, 2 corresponds to the setup considered. Here we used the linear dispersion 
of the edges, which allows us to compute the noise and thus the outgoing currents at 
the immediate output of the QPC, without loss of generality.

Our noise calculations rely on an accurate model of the injection of electrons, their 
propagation along the edges, and their scattering at the QPC.

3.1.1.  Injection  The SES is modeled by considering the injection of a single electron 
in the form of a wavepacket with a definite envelope. Following the lines of our 1ν =  
treatment, the injection is dealt with by introducing a prepared state similar to the one 
defined in equation (7), and compute all average values over this particular state. This 
consists in a single exponential wavepacket deposited on the outer channel, at a given 
distance from the QPC, thus mimicking the experimental single electron source in its 
optimal regime of operation. It is characterized by its injection energy 0ε  and energy 
width Γ, and is given by equation (9). Note that the injection always occurs on the 
outer channel, as this is the most experimentally relevant situation.

3.1.2. Propagation  Each edge (labeled r  =  R and L) is made out of two co-propagating 
channels. These are coupled via Coulomb interaction, which we model as a short-range 
interaction. The outer and inner channels are identified by labels j  =  1 and 2 respec-
tively. Electrons traveling along the edges are more conveniently described in terms 
of collective bosonic degrees of freedom, following the bosonization formalism [35]. It 
follows that the fermionic annihilation operator ( )ψ x t,j r,  is written as

x t U a, 2 e ,j r r
x t

,
i ,j r,( ) / ( )ψ π= ϕ

� (15)

where Ur is a Klein factor and a a short distance cuto parameter, while x t,j r, ( )ϕ  is the 
chiral Luttinger bosonic field.

This allows to describe each edge as a chiral Luttinger liquid, with both intra- 
and inter-channel interactions. The latter can be viewed as a local capacitive cou-
pling between co-propagating channels. The Hamiltonian is then given by the form 
H H H0 kin int= + , where

H v xd
j

j

r R L

x j rkin

1,2 ,
,

2( )∫∑ ∑π
ϕ= ∂

= =

�
� (16)

∫∑π
ϕ ϕ= ∂ ∂

=
H u x2 d

r R L

x r x rint

,
1, 2,

� ( ) ( )� (17)
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Here u corresponds to the inter-channel interaction strength, while the intra-channel 
interaction U has been included in the redefinition of the propagation velocity along 

the edge, v v Uj j
0( )= + .

Upon diagonalization, the fully interacting problem can be recast into a much 
simpler form using a rotation of angle θ defined as u v vtan 2 2 1 2( ) /( )θ = − . In what 
follows, we focus on the so-called strong-coupling regime as it seems to be the most 
relevant case from the experimental standpoint [36]. It corresponds to 4/θ π=  and 
thus to v v v1 2= = . Indeed, in the case of equal velocities, a propagating electron 
leads to interaction-induced perturbations traveling at the same velocity, which then 
aect the propagating electron, ultimately maximizing the eect of the interaction. The 

rotated fields are then given by 2r r r, 2, 1,( )/ϕ ϕ ϕ= ±±  and the eigenvelocities reduce to 

v v u= ±±  so that the full Hamiltonian reads

∫∑π
ϕ ϕ= ∂ + ∂

=
+ + − −H x v vd .

r R L

x r x r0

,
,

2
,

2� [ ( ) ( ) ]� (18)

This Hamiltonian naturally describes two freely propagating collective modes: a fast 
charged mode and a slow neutral one, traveling along the edge with velocity v+ and v− 
respectively. These modes can each be viewed as two separate excitations propagating 
on the inner and outer channels, and characterized by the charge they carry (⊕ or �).

3.1.3.  Scattering  The scattering at the QPC is described using a microscopic tunnel-
ing Hamiltonian, which for setup 1 takes the form

[ ( ) ( ) ( ) ( )]† †ψ ψ ψ ψ= Γ +H 0 0 0 0 .R L L Rtun 0 1, 1, 1, 1,� (19)

The full Hamiltonian H H H0 tun= +  which includes the kinetic, interaction and tun-
neling parts can be diagonalized [37] by introducing a new set of fermions pΨ ± (p  =  A, S )  
derived from a refermionization of the bosonic theory as

x
U

a2
e ,p

p xi p( ) ( )

π
Ψ = ϕ

±
±

±� (20)

where pϕ ± are linear combinations of the bosonic fields introduced in equation (15)

ϕ
ϕ ϕ ϕ ϕ

= ±
− ± −

±
2

A
R L R L1, 1, 2, 2,( ) ( )

� (21)

ϕ
ϕ ϕ ϕ ϕ

= ±
+ ± +

±
2

S
R L R L1, 1, 2, 2,( ) ( )

� (22)

When expressed in terms of this new set of fermions, the full Hamiltonian H appears 
quadratic, thus describing a system of non-interacting fermions. This allows us to 
treat the tunneling at the QPC using a scattering matrix which couples the A+  and 
A−  channels:
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� (23)

where the transmission and reflexion amplitudes t0 and r0 are obtained from the micro-
scopic parameters as t sin0 ϕ=  and r cos0 ϕ= , with v v0/( )ϕ = −Γ + −� .

Starting from the expression in terms of the outgoing fermionic degrees of freedom, 
and using bosonization, refermionization and the scattering matrix of equation (23), the 
current at the output of the QPC can be rewritten as

ψ ψ ψ ψ= − +

= − Ψ Ψ − Ψ Ψ

+ − Ψ Ψ + − Ψ Ψ

− + Ψ Ψ − Ψ Ψ

+ + + − − −

+ − + + + − − −

+ − + − − +

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

I t v u t

e
v v

t v r v r v t v

r t v v t
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2
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1,
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F 1,
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0
2

0
2 in in
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{
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( ) ( )

( )
( )

( )

( )
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( ) ( )

† †
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† †

† †

�

(24)

which is in turn recast in terms of the incoming fermionic degrees of freedom as

T

R

RT }

( ) ( )
( ) ( )

( ) ( )

( )

( )

† †

† †

† †

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

= − +

+ +

+ −

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎧
⎨
⎩I t v u

v u
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F 1,
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1,
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1,
in

1,
in

�

(25)

where we defined the reflexion and transmission probabilities r0
2=R  and t0

2=T .
After some algebra, this allows us to rewrite the current correlations of equation (14) 

in terms of the incoming fermionic degrees of freedom as

∫ ψ ψ ψ ψ

ψ ψ ψ ψ

= −

+

′ ′ ′

′ ′

S e v T t t t t t t

t t t t

d d

,

s R s R s L s L

s L s L s R s R

out 2 2
, , , ,

, , , ,

R [〈 ( ) ( )〉〈 ( ) ( )〉

〈 ( ) ( )〉〈 ( ) ( )〉]

† †

† †�
(26)

where we generalized the approach to both setups s  =  1, 2.
Interestingly, this same result can be obtained using a simpler scattering matrix 

approach, similar to the one used in the previous section for the non-interacting 1ν =  
case (see section 2.2). While such an approach is technically not applicable for interact-
ing fermion fields, it is valid in the present case because both the interaction and the 
tunneling are purely local [38].

3.2. Main results

We now have all the ingredients to compute the noise associated with the HOM 
configuration, i.e. when injecting a single electron on each incoming outer channel. For 
sake of simplicity, we proceed with injections at symmetric positions L±  with respect 
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to the QPC, and consider identical wavepackets on the right and left edge with a time 
dierence tδ . Working out explicitly the averages over the prepared state, the expres-
sion (26) for the noise becomes

∫

∫ ∫

∫

δ
π

φ φ

φ φ τ τ

τ
τ δ
δ

= − − − −

+ + − ×

+
+ − − −

− − −
−
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⎥
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�

(27)

with the wavepacket envelope x xe e
v

x v x v2 i 0( ) ( )/ /φ θ= −Γ Γε , and normalization ⟨ ⟩φ φ= |N . 

The functions g and hs are obtained from the Green’s function of the bosonic rϕ±  fields, 
and are defined as
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where s  =  1, 2 is the setup considered. The noise is obtained numerically via multidi-
mensional integration handled with a quasi Monte Carlo algorithm using importance 
sampling [39].

Our computations of the output current correlations as a function of the time delay 
between right- and left-moving injected electrons reveal three characteristic signatures. 

Figure 6. Ratio of HOM to HBT noise as a function of the time delay δt, for setup 
1, and two dierent wavepackets. (Left) Packets wide in energy with injection energy 

=ε 1750  mK and energy width Γ = 175 mK. (Right) Energy-resolved packets with 
injection energy =ε 0.70  K and energy width Γ = 87.5 mK. In both plots, u  =  0.5 v,  
Θ = 0.1 K, and we considered two dierent value of the propagation distance L.
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Away from these three features, SHOM saturates at twice the HBT noise SHBT as the 
electrons injected on the two incoming arms scatter independently at the QPC with-
out interfering. The interference patterns are provided in figures 6 (for setup 1) and 7  
(for setup 2) for a given set of parameters, and the various structures can be interpreted 
in terms of the dierent excitations propagating along the partitioned edge channel. 
Indeed, after being injected, the electron fractionalizes into a fast and a slow mode. The 
fast mode is charged and made out of two ⊕ excitations. The slow mode, on the other 
hand, is neutral and composed of a ⊕ excitation propagating along the outer channel 
and a � excitation traveling along the inner one.

The most striking signature appears at a time delay t 0δ =  in the form of a central 
dip. This dip probes the interference of both fast and slow right-moving excitations with 
their left-moving counterparts, i.e. of colliding excitations which have the same velocity 
and charge. These interfere destructively, resulting in a reduction of the noise (in abso-
lute value) and thus a dip. While its depth strongly correlates with the energy resolution 
of the injected wavepackets, the dip depends very little on the setup considered, which 
suggests that the interference mechanism is the same for ⊕ ⊕/  and � �/  collisions.

As observed in the experiment, the central dip never quite reaches zero in our 
calculations, in striking contrast with the 1ν =  case [15]. This is actually a probing tool 
of the degree of indistinguishability of the excitations colliding at the QPC. Because 
of the strong inter-channel interaction, some coherence of the injected object is lost 
in the co-propagating channels which do not scatter, and this Coulomb-induced deco-
herence is responsible for the dramatic reduction of contrast of the HOM dip. For a 
fixed injection energy, this eect becomes more pronounced as the energy width of the 
wavepacket is reduced (or alternatively as the emission time increases), as depicted in 
figure 8. Indeed, the more resolved in energy a wavepacket is, the more it is subject to 
decoherence [42], leading to a net reduction of the contrast.

Smaller satellite structures also appear in the noise, but at finite delay tδ . These 
emerge symmetrically with respect to the central dip at positions ( )δ = ± −t Lu v u2 / 2 2 . 
The shape and depth of these features depend on the energy resolution of the wave-
packet and vary critically between setups, manifesting as dips for setup 1, but peaks for 

Figure 7.  Ratio of HOM to HBT noise as a function of the time delay δt, for 
setup 2, and two dierent wavepackets. (Left) Packets wide in energy with 
injection energy =ε 1750  mK and energy width Γ = 175 mK. (Right) Energy-
resolved packets with injection energy =ε 0.70  K and energy width Γ = 87.5 mK. 
In both plots, u  =  0.5 v, Θ = 0.1 K, and we considered two dierent value of the 
propagation distance L.
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setup 2. They show a non-trivial dependence on the wavepacket energy content, being 
more pronounced for packets wide in energy but vanishingly small for well-resolved ones.

These structures appear as a consequence of interference between excitations that 
have dierent velocities, when a fast and a slow-moving excitations reach the QPC at 
the same time. For setup 1, this corresponds to two colliding ⊕ excitations, which inter-
fere destructively resulting in dips. For setup 2, however, the satellite peaks are associ-
ated with the collision of oppositely charged excitations, which leads to constructive 
interference, and thus to a peak. This is reminiscent of the electron–hole interferometry 
considered in the 1ν =  case in section 2.4.

The lateral dips are asymmetric with a depth less than half the one of the central 
dip. These properties of asymmetry and reduced contrast are reminiscent of the behavior 
encountered in the non-interacting 1ν =  case when colliding packets of dierent shapes 
(see figure  4). Here, it is a consequence of the velocity mismatch between interfering 
excitations.

Finally, our approach can also be extended to the case of electron–hole collisions. 
As in the electron–electron interferometry, this leads to three signatures in the noise 
(see figure 9). First, a central peak appears at t 0δ =  for both setups, corresponding to 
the constructive interference of a ⊕ with a � excitation. Then, satellite features are also 
present, manifesting as peaks for setup 1 (produced by interfering oppositely charged 
excitations) and dips for setup 2 (probing the interference of same charge excitations).

4. Toward a more quantitative comparison

Our model for the 2ν =  HOM interferometer captures the essential qualitative ele-
ments observed in the experiment. Here we propose a more accurate description of the 
injection mechanism which should allow for a more direct, quantitative comparison 
with forthcoming experimental results.

Figure 8.  Comparison of the HBT contribution with the HOM noise at zero 
time delay as a function of the energy width of the incoming wavepackets. Here 
the injection energy is =ε 0.70  K, the interaction parameter u  =  0.5 v and the 
temperature Θ = 0.1 K. The HBT contribution is almost constant as a result of the 
competition between the creation of particle-hole pairs (favored as the resolution 
increases [40]) and their anti-bunching with thermal excitations at the output of 
the QPC [41].
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4.1. Refining our model of the source

Current experimental setups rely on a single electron source which, in its optimal 
regime of operation, emits rather broad electronic wavepackets into the edge state, 
characterized by a typical scale larger or comparable to the distance between the source 
and the QPC.

In our model of injection, described in section 3.1.1, we assume the electronic wave-
packet is deposited as a whole onto the outer channel of the edge state at a given 
distance from the QPC. As a result, the front of the wavepacket experiences the 
interaction with the nearby copropagating channel over a shorter distance than the 
tail of the same wavepacket (see left panel of figure 10). While for thin wavepackets 

Figure 10.  (Left) In its optimal regime of operation, the experimental SES emits a 
single wavepacket which then travels toward the QPC, experiencing the eects of 
interaction over a distance L (a). While this is also the case for thin wavepackets 
in our original model (b), broader wavepackets are deformed as the front and 
tail feel the interaction over very dierent scales (c). (Right) Fictitious setup 
considered here in order to mimic the injection mechanism from the experiment. 
The interaction between copropagating channels is only present over a finite region 
in space, extending over a distance L from the QPC in both directions. Here we 
focus on setup 1, which is the most relevant experimentally.

Source

QPC

Propagation length L

a)

QPC

Propagation length L

b)

QPC

Propagation length L

Propagation length L vF τw

c)

L L

I1

I2

Figure 9.  Electron–hole HOM interference: an electron has been injected on the 
right moving arm and a hole on the left moving one. Noise obtained for symmetric 
wavepackets with injection energy ε = ±1750  mK, energy width Γ = 175 mK, 
interaction parameter u  =  0.5 v and temperature Θ = 0.1 K.
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(compared to the distance to the QPC), this hardly has any eect, for broad packets it 
amounts to important quantitative changes of our results.

In order to circumvent this issue and be as close as possible to the experimental 
situation, we consider a system where the interaction does not extend all the way 
to infinity but instead is only present over a fixed region of space (see right panel of 
figure  10). This finite extension L corresponds to the actual propagation length of 
the experimental setup. Indeed a wavepacket deposited in the non-interacting region 
propagates unaected toward the QPC, then after entering the interacting region, it 
experiences the interaction over a distance L.

4.2. Contrast

This modified model only marginally aects our expressions for the noise, and interest-
ingly allows us to express it as a function of fewer parameters, namely
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where again the wavepacket envelope x xe e
v

x v x v2 i 2 w0( ) ( )/ /( )φ θ= −τΓ ε , and normalization 

reads ⟨ ⟩φ φ= |N . The functions g̃ and h̃ are defined as

g t x,
sinh i

sinh
,

a

v

a vt x

v

i

( )
( )˜( )

/

=

π
β

β π
+ −� (31)

=
β π

β π

τ
β π

τ
β π

− +

+ −

− + +

+ − −

−
φ

φ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

h t x y; ,
sinh

sinh

sinh

sinh
.

a vt x

v

a vt y

v

a vt x v

v

a vt y v

v

s
i

/

i

/

1
2 i

/

i

/

3
2( )

( )
( )
( )

˜( )� (32)

As it turns out, the dependence on the interaction is now fully contained in a new 
key parameter, the time scale τφ defined as

L
v v

1 1⎛
⎝
⎜

⎞
⎠
⎟τ = −φ

− +
� (33)

This corresponds to the time delay between the fast and the slow mode after propagat-
ing over a length L. While measuring the velocities of the dierent modes proves to be 
a challenge (especially the one of the fast mode v+ ), this time scale has been successfully 
accessed experimentally in 2ν =  quantum Hall systems [36]. This opens the way to a 
direct comparison of our results with the experiment, with no adjustable parameters.
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For the remainder of this section, we focus on the contrast of the interferometer, 
which is defined as the normalized HOM noise at zero time delay as

S t
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and study its dependence on various parameters.

4.2.1. Emission time and contrast  The injected wavepacket is characterized by two 
parameters: the injection energy 0ε  and the broadening in energy Γ. Experimentally, the 
former is related to the spacing between quantized energy levels in the source, while 
the latter is obtained from the transparency of the source-edge contact, and is more 
conveniently expressed in terms of the emission time, i.e. the width � /( )τ = Γ2w  of the 
wavepacket in time.

As already observed in the previous section for an infinite extension of the interac-
tion, the contrast decays rapidly as the emission time increases (alternatively as the 
broadening in energy decreases). This happens over a scale which seems to depend on 

Figure 11.  Contrast η as a function of the emission time τw for dierent values of 
the time delay τφ between modes (signature of the inter-channel interaction). The 
injection energy is =ε 0.70  K and the temperature Θ = 100 mK.

Figure 12.  Contrast η as a function of the injection energy εR for a fixed value of 
=ε 0.7L  K, and dierent values of the emission time delay τw. Here we used the 

values Θ = 100 mK and τ =φ 70 ps, and focused on the case of filling factor ν = 2 
(left) and ν = 1 (right).
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the interaction (see figure 11). Indeed, stronger interaction leads to larger values of the 
time delay τφ, which in turns yields a faster decrease of the contrast.

4.2.2. Energy dependence of the contrast  It is interesting to look at the special situ-
ation of asymmetric injection, namely of wavepackets with similar broadening but 
dierent injection energy (see figure 12). In the 1ν =  case where the contrast is directly 
related to the overlap of the colliding wavepackets (see equation (8)), η shows a rapid 
decay as one departs from R L=ε ε . On the contrary, in the case of filling factor 2ν = , 
the contrast is almost independent of the energy detuning between the colliding wave-
packets. This naturally brings about the question of the content in energy of the excita-
tions colliding at the QPC, and the nature of the many-body state resulting from the 
interaction.

5. Beyond the integer case: unsolved problems

Interactions dramatically change the nature of the excitations, and the HOM interfer-
ometry oers the possibility to probe the incoherent mixture of fractionalized electronic 
excitations induced by Coulomb interactions. A natural extension of this work consists 
in studying a system where the ground state itself is a strongly correlated state of mat-
ter: the fractional quantum Hall eect (FQHE). There, one would be dealing not with 
electrons, but with single quasiparticles with fractional charge and statistics which 
should lead to dramatically new physics.

This constitutes a challenge at various levels, as a lot of open and fascinating ques-
tions remain.

5.1. Can we emit controlled single quasiparticles in the system?

This is a fundamental prerequisite for the realization of HOM interferometry. The cur
rent design of single electron source cannot be readily extended to emit quasiparticles 
in the FQHE. Indeed such a setup requires a weak coupling between the driven dot and 
the edge state to operate the source in its optimal regime. Transposed to the fractional 
case, this would lead to a depleted region between the source and the dot, so that one 
could only operate in the strong backscattering regime, therefore emitting electrons 
rather than quasiparticles.

A completely new design is required in order to perform single quasiparticle injec-
tion into a fractional edge state. Recently, some of us proposed an antidot-based device 
susceptible to work as an on-demand single quasiparticle source with little to no charge 
fluctuations [43]. This constitutes a promising new step but an experimental realization 
of such a device is still lacking.

Another possible direction to explore is the one of voltage pulses applied to the edge 
in order to create propagating excitations out of the vacuum, as proposed in [44] for 
electrons in the integer case and quasiparticles in the fractional one. This technique is 
readily available experimentally in the integer quantum Hall regime [7] and could be 
extended to the FQHE with minimal hassle. Unlike the results presented here in the 
integer case, this would amount to injecting a periodic train of excitations rather than 
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single shot emission, so that a true HOM collision is never quite achieved (a gauge 
transformation always reduces the system to a single applied drive).

5.2.  Is a perturbative treatment in tunneling sucient?

In the fractional case, the QPC can no longer be considered as a simple beam-splitter 
for quasiparticles and there are no simple scattering matrix description of the tunnel-
ing. Standard calculations implying a QPC in the fractional regime thus typically rely 
on a perturbative treatment in powers of the tunneling constant (generally up to second 
order). Whether such calculations would be sucient to capture the physics involved 
in fractional HOM interferometry deserves to be investigated, and dierent directions 
should be explored.

There are involved calculations [45] allowing to compute non-perturbatively the 
current and noise through a contact coupling two Luttinger liquids when a DC bias is 
applied. One could envision an extension of this work to either a periodic drive or to 
single shot injection.

Another interesting possibility is oered by the generalization of non-equilibrium 
fluctuation-dissipation relation [46]. This allows to perturbatively compute finite fre-
quency noise by relating it to non-equilibrium DC current. Again, extending such an 
approach to the present case of quasiparticle injection could allow to go beyond the 
standard second-order in tunneling calculations available thus far.

5.3. Are there signatures of non-trivial statistics in the HOM noise signal?

The link between the measurement of low frequency noise correlations and the statis-
tics of the carriers is well known. HOM interferometry with photons or electrons allows 
to probe the statistics through second order coherence, whether this is also enough to 
access the fractional statistics of quasiparticles is still under debate.

On the one hand, fractional statistics implies that the exchange of two quasipar-
ticles is accompanied by a non-trivial phase (the so-called statistical angle). However, 
in order to perform such an exchange of two quasiparticles from independent edges, one 
needs a setup consisting in at least two quantum point contacts [47]. This means that 
the current setup involving a single QPC does not allow to directly observe braiding 
statistics.

On the other hand, that same setup can clearly discriminate between fermionic 
and bosonic statistics (as suggested by its realization in both quantum optics and 
condensed matter contexts), and other types of signatures in the HOM noise are not 
to be excluded.

6. Conclusions

To conclude, we studied the HOM interferometer in the integer quantum Hall regime. 
In the non-interacting 1ν =  case, we proved that the zero-frequency current correla-
tions exhibit a dip when two electrons collide or a peak for electron–hole collisions, 
with a shape tied to the characteristics of the injected wavepackets. Our analytic 
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calculations agreed well with Floquet scattering theory which allows to consider more 
accurately the experimental single electron source.

In the 2ν =  case, we showed that the HOM dip survives but that the strong coupling 
between co-propagating channels accounts for a sensible loss of contrast, as observed 
in the experiment. This reduction is a direct consequence of decoherence and strongly 
depends on the energy content of the colliding electronic wavepackets. Moreover, this 
situation leads to a richer interference pattern, with the presence of asymmetric side 
dips and peaks related to the interference of fast and slow modes. This model can be 
further refined to better account for the specificity of the experiment.

In a natural extension of this work, we discussed the case of fractional HOM inter-
ferometry, pointing out the main unsolved problems and open questions that need to 
be tackled before such a fascinating possibility can be explored.
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