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Hong-Ou-Mandel heat noise in the quantum Hall regime
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We investigate heat current fluctuations induced by a periodic train of Lorentzian-shaped pulses, carrying an
integer number of electronic charges, in a Hong-Ou-Mandel (HOM) interferometer implemented in a quantum
Hall bar in the Laughlin sequence. We demonstrate that the noise in this collisional experiment cannot be
reproduced in a setup with an effective single drive, in contrast to what is observed in the charge noise case.
Nevertheless, the simultaneous collision of two identical levitons always leads to a total suppression even for
the HOM heat noise at all filling factors, despite the presence of emergent anyonic quasiparticle excitations in
the fractional regime. Interestingly, the strong correlations characterizing the fractional phase are responsible for
a remarkable oscillating pattern in the HOM heat noise, which is completely absent in the integer case. These
oscillations may be related to the recently predicted crystallization of levitons in the fractional quantum Hall
regime.
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I. INTRODUCTION

The recent progress in generating and controlling coherent
few-particle excitations in quantum conductors paved the way
for a new research field, known as electron quantum optics
(EQO) [1,2]. The main purpose of EQO is to reconsider
conventional optics experiments in the realm of condensed-
matter physics, where propagating electronic wave packets
are used instead of photons traveling along waveguides. In
addition to the intrinsic interest in exploring the effect of
Fermi statistics on traditional optical setups, EQO brings into
play new physics linked to electron-electron interactions that
is totally absent in the context of photonic quantum optics.

In this context, a remarkable effort has been put forth by
the condensed-matter community to implement on-demand
sources of electronic wave packets in mesoscopic systems.
After seminal theoretical works and groundbreaking experi-
mental results, two main methods to realize single-electron
sources assumed a prominent role in the field of EQO [3–7].
The first injection protocol relies on the periodic driving
of the discrete energy spectrum of a quantum dot, which plays
the role of a mesoscopic capacitor [8–10]. In this way, it is
possible to achieve the periodic injection of an electron and a
hole along the ballistic channels of a system coupled to this
mesoscopic capacitor through a quantum point contact (QPC)
[11–14].

A second major step has been the recent realization of an
on-demand source of electrons through the application of a
time-dependent voltage to a quantum conductor [5,6,15–19].
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The main challenge to face, in this case, has been that an
ac voltage would generally excite unwanted neutral electron-
hole pairs, thus spoiling at its heart the idea of a single-
electron source. The turning point to overcome this issue was
the theoretical prediction by Levitov and co-workers that a
periodic train of quantized Lorentzian-shaped pulses, carrying
an integer number of particles per period, is able to inject
minimal single-electron excitations devoid of any additional
electron-hole pair, then termed levitons [20–22]. Indeed, this
kind of single-electron source is simple to realize and operate,
since it relies on usual electronic components, and potentially
provides a high level of miniaturization and scalability. For
their fascinating properties [23], levitons have been proposed
as flying qubits [24] and as a source of entanglement [25–28]
with appealing applications for quantum-information process-
ing. Moreover, quantum tomography protocols able to recon-
struct their single-electron wave functions have been proposed
[29–31] and experimentally realized [32].

While the implementation of single-electron sources has
not been a trivial task, the condensed-matter analogs of other
quantum optics experimental components can be found in
a more natural way. The waveguides for photons can be
replaced by the ballistic edge channels of mesoscopic de-
vices, such as quantum Hall systems. Moreover, the role of
electronic beam splitter, which should mimic the half-silvered
mirror of conventional optics, can be played by a QPC, where
electrons are reflected or transmitted with a tunable proba-
bility, which is typically assumed as energy-independent. By
combining these elements with the single-electron sources
previously described, interferometric setups, originally con-
ceived for optics experiments, can be implemented also in
the condensed-matter realm [33,34]. One famous example is
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the Hanbury-Brown-Twiss (HBT) interferometer [35], where
a stream of electronic wave packets is excited along ballistic
channels and partitioned against a QPC [12]. The shot noise
signal, generated due to the granular nature of electrons
[36,37], was employed to probe the single-electron nature
of levitons in a noninteracting two-dimensional electron gas
[15,38]. Its extension to the fractional quantum Hall regime
was considered in Ref. [39], where it was shown that levi-
tons are minimal excitations also in strongly correlated edge
channels.

A fundamental achievement of EQO has been the im-
plementation of the Hong-Ou-Mandel (HOM) interferometer
[40], where electrons impinge on the opposite side of a QPC
with a tunable delay [6,38,41]. By performing this kind of
collisional experiment, it is possible to gather information
about the forms of the impinging electronic wave packets and
to measure their degree of indistinguishability by accessing
the zero-frequency noise [14,16,42], namely without resort-
ing to more complicated time-resolved, i.e., high-frequency
measurements. For instance, when two indistinguishable and
coherent electronic states collide simultaneously (zero time
delay) at the QPC, charge current fluctuations are known
to vanish at zero temperature, thus showing the so called
Pauli dip [6,38,43]. This dip can be interpreted in terms
of antibunching effects related to the Fermi statistics of
electrons. HOM experiments can thus be employed to test
whether decoherence and dephasing, induced by electron-
electron interactions, reduce the degree of indistinguishability
of colliding electrons [31,44–48].

As discussed above, the main driving force behind EQO
has been to properly revise quantum optics experiments fo-
cusing on charge transport properties of single-electron ex-
citations. Nevertheless, some recent groundbreaking exper-
iments have spurred the investigation also in the direction
of heat transport at the nanoscale [49–54]. In this context,
the coherent transport and manipulation of heat fluxes have
been reported in Josephson junctions [55–57] and quantum
Hall systems [58–60]. Intriguingly, the quantization of heat
conductance has been observed in integer [61] and fractional
quantum Hall systems [62–64], which were already known
for the extremely precise quantization of their charge conduc-
tance. In this way, ample and valuable information about these
peculiar states of matter, which was not accessible by charge
measurement, is now available with interesting implications
also for quantum computation [65–68]. New intriguing chal-
lenges posed by extending concepts such as energy harvesting
[69–75], driven heat and energy transport [76–80], energy
exchange in open systems [81,82], and fluctuation-dissipation
theorems [83–86] to the quantum realm resulted in a great deal
of progress in the field of quantum thermodynamics.

A new perspective on EQO has also been triggered by the
rising interest in heat transport properties of single-electron
excitations. For instance, heat current was revealed as a use-
ful resource for the full reconstruction of a single-electron
wave function [87]. Intriguingly, also fluctuations of heat
transport properties, such as mixed-charge correlators [88–90]
and heat current noise [91,92], were investigated in the case
of single-electron sources, and, in particular, it was shown
that levitons are minimal excitations also for heat transport
[93]. Even though an experimental observation of heat current

FIG. 1. Four-terminal setup for Hong-Ou-Mandel interferometry
in the FQH regime. Contacts 1 and 4 are used as input terminals,
while contacts 2 and 3 are the output terminals. The latter are
connected to detectors where current and noise are measured.

fluctuations is still lacking, an experimental protocol has been
recently proposed in order to access this quantity through
temperature fluctuations [94].

Motivated by these recent developments, we address the
problem of the heat noise generated by levitons injected in a
HOM interferometer in the fractional quantum Hall regime.
We consider a four-terminal quantum Hall bar in the Laugh-
lin sequence [95], where a single channel arises on each
edge. Two terminals are contacted to time-dependent voltages,
namely V1 and V4. Tunneling processes of quasiparticles are
allowed by the presence of a QPC connecting the two edge
states. In this case, charge noise generated in the HOM setup
is identical to the one generated in an effective single-drive
setup driven by the voltage V1 − V4. Interestingly, we prove
that this does not hold true anymore for heat noise, since
it is possible to identify a contribution to HOM heat noise,
which is absent in an interferometer driven by the effective
single-drive V1 − V4. In addition, we prove that the HOM
heat noise always vanishes for a zero delay between the
driving voltage, both for integer and fractional filling factors.
Finally, we focus on the case of Lorentzian-shaped voltage
carrying an integer number of electrons, and we show that
the HOM heat noise displays unexpected side dips in the
fractional quantum Hall regime, which have no parallel in
the integer regime. Intriguingly, the number of these side dips
increases with the number of levitons injected per period. This
result is consistent with the recently predicted phenomenon
of charge crystallization of levitons in the fractional quantum
Hall regime [96].

The paper is organized as follows. In Sec. II, we introduce
the model and the setup. Then, we evaluate charge and heat
noises in Sec. III. In Sec. IV, we present our results focusing
on the peculiar case of levitons. Finally, we draw the conclu-
sions in Sec. V. Three Appendixes are devoted to the technical
aspects.

II. MODEL

A quantum Hall bar in a four-terminal geometry is depicted
in Fig. 1. In the Laughlin sequence ν = 1

2n+1 , with integer
n � 0, a single chiral mode arises on each edge [95,97].
In the special case of the integer quantum Hall effect at
ν = 1 (n = 0), the system is composed of ordinary fermions
and the chiral edge states are one-dimensional Fermi liquids.
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This description fails for other filling factors, where the exci-
tations are quasiparticles with fractional charge −νe (with e >

0). The low-energy properties of the Laughlin states are well
captured by a hydrodynamical model formulated in terms of
right-moving and left-moving bosonic edge modes �R/L(x),
which satisfy commutation relations [�R/L(x),�R/L(y)] =
±iπ sgn(x − y). The free Hamiltonian of these edge modes
is (we set h̄ = 1 throughout the paper) [98]

H0 = v

4π

∫
dx

∑
r=R,L

[∂x�r (x)]2, (1)

where v is the velocity of propagation of right- and left-
moving bosonic modes.

Terminals 1 and 4 are assumed to be connected to external
time-dependent drives, while the remaining terminals are used
to perform measurements. The charge densities, defined as

ρR/L (x) = ±e
√

ν

2π
∂x�R/L(x), (2)

are capacitively coupled to the gate potentials V1/4(x, t )
through the following gate Hamiltonian [99–101]:

Hg =
∫

dx {V1(x, t )ρR(x) + V4(x, t )ρL(x)}. (3)

The spatial dependence of the potentials is restricted to the
region containing the semi-infinite contacts 1 (R) and 4 (L) by
putting V1(x, t ) = �( − (x + d ))V1(t ) and V4(x, t ) = �(x −
d )V4(t ) (with d > 0). Here, V1/4(t ) = V1/4,dc + V1/4,ac(t ) are
periodic voltages, where V1/4,dc are time-independent dc com-
ponents and V1/4,ac are pure periodic ac signals with period

T = 2π
ω

, such that
∫ T

0
dt
T V1/4(t ) = V1/4,dc. We remark that

such modelization of the electromagnetic coupling between
gate voltages and Hall bar occurs for gauge fixing with zero
vector potential.

Since backscattering between the two edges is exponen-
tially suppressed, we introduce a quantum point contact
(QPC) at x = 0, as shown in Fig. 1, in order to allow for
tunneling events between right- and left-moving excitations.
The assumption of a pointlike, i.e., energy-independent, scat-
terer is motivated by realistic experiments, where additional
nonlinearities are usually avoided [38,41], and by their excel-
lent agreement with an energy-independent scattering matrix
approach [3]. We suppose that the QPC is tuned to a very
low reflectivity, i.e., in the weak backscattering regime, where
the tunneling of fractional quasiparticles is the only relevant
process [102–104]. The corresponding additional term in the
Hamiltonian is

Ht = 	

†
R(0)
L(0) + H.c., (4)

where we introduced the quasiparticle fields represented by
the bosonization identity [36,105,106]


R/L(x) = FR/L√
2πa

e−i
√

ν�R/L (x), (5)

with FR/L the so-called Klein factor, necessary for the proper
anticommutation relations, and a is the short-length cutoff.

III. NOISES IN THE DOUBLE-DRIVE CONFIGURATION

The random partitioning, due to the Poissonian tunneling at
the QPC, generates fluctuations in the currents flowing along
the quantum Hall bar. In this section, we derive the expres-
sions for charge and heat current noise in the double-drive
configuration introduced in Sec. II, focusing on the regions
downstream of the voltage contacts, namely −d � x � d .

A. Charge noise

We start by recalling the calculations for charge noise
[3,15,39]. Charge current operators entering reservoirs 2 and 3
(located in x = −d and x = d , respectively) can be expressed,
due to chirality of Laughlin edge states, in terms of charge
densities in Eq. (2),

j2/3(t ) = ±vρR/L (±d, t ). (6)

The zero-frequency cross-correlated charge noise is

SC =
∫ T

0

dt

T

∫ +∞

−∞
dt ′[〈 j2(t ′) j3(t )〉 − 〈 j2(t ′)〉〈 j3(t )〉], (7)

where the thermal average is performed over the initial equi-
librium density matrix, in the absence of tunneling and driv-
ing voltage. In the weak backscattering regime, the standard
perturbative approach in the tunneling Hamiltonian will be
used. The total time evolution of charge current operators with
respect to H0 + Hg + Ht can then be constructed in terms of
powers of 	 and reads

j2/3(t ) = j (0)
2/3(t ) + j (1)

2/3(t ) + j (2)
2/3(t ) + O(|	|3), (8)

with

j (0)
2/3(t ) = ±vρ

(0)
R/L (±d, t ), (9)

j (1)
2/3(t ) = ±iv

∫ t

−∞
dt ′[Ht (t

′), ρ (0)
R/L (±d, t )

]
, (10)

j (2)
2/3(t )

= ±(i)2v

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′[Ht (t

′′),
[
Ht (t

′), ρ (0)
R/L (±d, t )

]]
,

(11)

where the tunneling Hamiltonian Ht (t ) and the charge densi-
ties ρ

(0)
R/L(x, t ) evolve in the interaction picture with respect

to H0 + Hg. To make explicit the form of ρ
(0)
R/L(x, t ), it is

sufficient to solve the equations of motion for the bosonic
fields �R/L with respect to H0 + Hg, i.e., in the absence of
tunneling. The solutions read

�R/L(x, t ) = φR/L(x, t ) − e
√

ν

∫ t∓ x
v
− d

v

0
dsV1/4(s), (12)

where φR/L(x, t ) = φR/L(x ∓ vt ) are the chiral bosonic fields
at equilibrium (zero applied drive).

By exploiting the commutator

[
Ht (t

′), ρ (0)
R/L (x, t )

] = −δ
(

t ′ −
(

t ∓ x

v

))
ṄR/L (x, t ), (13)
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where

ṄR(x, t ) = iνe	

†
R(x − vt, 0)
L (x − vt, 0) + H.c., (14)

ṄL(x, t ) = −iνe	

†
R(x + vt, 0)
L (x + vt, 0) + H.c. (15)

Equations (10) and (11) can be further recast as

j (1)
2/3(t ) = ṄR/L (±d, t ), (16)

j (2)
2/3(t ) = i

∫ t− d
v

−∞
dt ′′[Ht (t

′′), ṄR/L (±d, t )]. (17)

In these expressions, we introduced the time evolution of
quasiparticle fields with respect to H0 + Hg, which can be
obtained from Eq. (12) using the bosonization identity


R,L(x, t ) = FR/L√
2πa

e−i
√

νφR/L (x,t )eiνe
∫ t∓ x

v − d
v

0 dt ′V1/4(t ′ ). (18)

The current noise can be obtained from Eqs. (9) and (10):
the only nonvanishing contribution to second order in 	

comes from j (1)
2 (t + τ ) j (1)

3 (t ), with terms j (0)
2 (t + τ ) j (2)

3 (t )
and j (2)

2 (t + τ ) j (0)
3 (t ) averaging to zero.

By introducing the correlator (kB = 1)

P2ν (t ′ − t ) = (〈ei
√

νφR/L (0,t ′ )e−i
√

νφR/L (0,t )〉)2

=
[

πθ (t ′ − t )

sinh [πθ (t ′ − t )][1 + iωc(t ′ − t )]

]2ν

, (19)

with θ the temperature and ωc = v/a the high-energy cutoff,
one finds (λ = 	

2πa )

SC = −2(νe)2|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt ′

× cos

{
νe

∫ t ′

t
V−(τ )dτ

}
P2ν (t ′ − t ), (20)

where V− = V1 − V4.
Even though this charge noise is generated in a double-

drive configuration, it is interesting to point out that it actually
depends only on the single effective drive V−(t ). The configu-
ration with a single drive is usually termed in the literature the
Hanbury-Brown-Twiss (HBT) setup [12,35,38,107].

Therefore, the charge noise presented in Eq. (20) is the
same as that generated in a single-drive configuration, where
reservoir 4 is grounded [V4(t ) = 0] and reservoir 1 is con-
tacted to the periodic voltage V−(t ), such that

SC (V1,V4) = SC (V−, 0). (21)

Here, the arguments in parentheses indicate the voltage ap-
plied to reservoirs 1 and 4, respectively.

One might consider Eq. (21) as a consequence of a triv-
ial shift of both voltages by a value corresponding to V4.
Nevertheless, such a result cannot be obtained by means
of a gauge transformation (see Appendix A). In this sense,
Eq. (21) implies that the charge noise incidentally acquires the
same expression in these two physically distinct experimental
setups. As will be clearer in the following, for the charge
case this is a consequence of the presence of a single local
(energy-independent) QPC. Generally, we expect that the

double-drive and the single-drive [V1(t ) = V−(t ) and V4(t ) =
0] configurations return different outcomes for other physical
observables, such as heat noise, as discussed in the next part.

B. Heat noise

In the following, we evaluate the correlation noise of
heat current between terminals 2 and 3 in the double-drive
configuration. The heat current operators of terminals 2 and 3
can be expressed in terms of heat density operators [108]

QR/L (x, t ) = v

4π
[∂x�R/L(x, t )]2 (22)

as

J2/3(t ) = ±vQR/L(±d, t ), (23)

due to the chirality of Laughlin edge states.
Then, we can define the cross-correlated heat noise as

SQ =
∫ T

0

dt

T

∫
dt ′{〈J2(t ′)J3(t )〉 − 〈J2(t ′)〉 〈J3(t )〉}. (24)

Analogously to charge current, one can expand heat current
operators in power of the tunneling amplitude 	, thus obtain-
ing

J2/3(t ) = J (0)
2/3(t ) + J (1)

2/3(t ) + J (2)
2/3(t ) + O(|	|3), (25)

where

J (0)
2/3(t ) = ±vQ(0)

R/L (±d, t ), (26)

J (1)
2/3(t ) = ±iv

∫ t

−∞
dt ′[Ht (t

′),Q(0)
R/L (±d, t )

]
, (27)

J (2)
2/3(t )

= ±i2v

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′[Ht (t

′′),
[
Ht (t

′),Q(0)
R/L (±d, t )

]]
.

(28)

In the above equations, we have denoted with Q(0)(x, t ) the
time evolution of heat density in the absence of tunneling,
which can be obtained from the time evolution of bosonic
fields in Eq. (12), and it reads

Q(0)
R/L(x, t ) = v

4π

[
(∂xφR/L(x, t ))2

±e
√

ν∂xφR/L(x, t )V1/4

(
t ∓ x

v

)

+ e2ν

v
V 2

1/4

(
t ∓ x

v

)]
. (29)

Let us notice that the expectation value at zero temperature
for such an operator (i.e., the heat current generated in a
translationally invariant edge state due to the application of
a voltage bias) is given by

〈
Q(0)

R/L (x, t )
〉 = e2ν

4π
V 2

1/4

(
t ∓ x

v

)
= G0

2
V 2

1/4

(
t ∓ x

v

)
, (30)

where G0 = νe2/(2π ) is the Hall conductance (h̄ being set to
1). This term is quadratic in V1/4, as one would indeed expect
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from Joule’s law. A linear term in V1/4 would actually corre-
spond to a thermoelectric generation of heat into the topolog-
ical edge state (as reported, for instance, in Refs. [109,110]),
which is, however, not the case for the present model. This
means that the flow of heat current cannot be reversed by
reversing the sign of V1/4, i.e., heat will always flow from the
contact to the QPC.

The commutator[
Ht (t

′),Q(0)
R/L (x, t )

] = −iδ
(

t ′ −
(

t ∓ x

v

))
Q̇R/L(x, t ), (31)

where

Q̇R(x, t ) = v	(∂x

†
R(x, t ))
L(x, t ) + H.c., (32)

Q̇L(x, t ) = −v	

†
R(x, t )[∂x
L(x, t )] + H.c., (33)

can be used to recast Eqs. (27) and (28),

J (1)
2/3(t ) = ±Q̇R/L(±d, t ), (34)

J (2)
2/3(t ) = ±i

∫ t− d
v

−∞
dt ′′[Ht (t

′′), Q̇R/L (±d, t )]. (35)

The perturbative expansion of the heat current operator in
Eq. (25) allows us to express heat correlation noise to lowest
order as

SQ = S (02)
Q + S (20)

Q + S (11)
Q + O(|	|3), (36)

where

S (i j)
Q =

∫ T

0

dt

T

∫
dt ′{〈J (i)

2 (t ′)J ( j)
3 (t )

〉 − 〈
J (i)

2 (t ′)
〉〈
J ( j)

3 (t )
〉}

.

(37)

Now, we can perform standard calculations, whose details
are given in Appendix B, in order to evaluate all the terms
appearing in Eq. (36). By using the result of this calculation,
it is possible to check whether an expression analogous to
Eq. (21) holds true also for heat noise. Interestingly, one finds
that

SQ(V1,V4) = SQ(V−, 0) + �SQ(V1,V4), (38)

thus showing that, in contrast with the charge sector, heat
fluctuations generated in the double-drive or in the single-
drive configurations are different. The two contributions in
Eq. (38) are

SQ(V−, 0)

= |λ|2
∫ T

0

dt

T

∫
dt ′

{
cos

(
νe

∫ t ′

t
dτV−(τ )

)

× Re
[
Pν (t ′ − t )∂2

t Pν (t ′ − t )
]

+ νev

π

∫
dt ′′V−(t ′)K

(
t ′, t, t ′′) sin

(
νe

∫ t ′

t
dτ V−(τ )

)

× Im[∂t ′′P2ν (t ′′ − t )]

}
, (39)

�SQ(V1,V4) = ν2e2|λ|2
∫ T

0

dt

T

∫
dt ′ cos

(
νe

∫ t ′

t
dτV−(τ )

)

× (αRL(t, t ′)Re[P2ν (t ′ − t )] + βRL(t, t ′)

× Im[P2ν (t ′ − t )]), (40)

where we defined the following functions:

K(t ′, t, t ′′) =
∫

dτ P2(t ′ − τ )[�(τ − t ′′) − �(τ − t )]

= πθ

v

sinh[πθ (t − t ′′)]
sinh [πθ (t ′ − t )] sinh [πθ (t ′ − t ′′)]

, (41)

αRL(t, t ′) = [V1(t )V4(t ′) − V4(t )V1(t ′)], (42)

βRL = v

π

∫
dt ′′K(t ′′, t, t ′)V1(t ′′)[V4(t ′) − V4(t )]. (43)

The result of Eq. (38) arises because heat noise is sensi-
tive to the energy distribution of the injected particles, thus
leading to different outcomes in the single- and double-drive
configurations. In this light, we expect this to hold true for
general energy-dependent phenomena occurring at the QPC.
For instance, any similarity between charge noises generated
in the two setups discussed previously would disappear for
more complicated tunneling geometry, such as multiple QPC
or extended contacts, where transmission functions become
energy-dependent [109–113]. Nevertheless, the presence of
an extended scattering region would modify at its core the
concept of a HOM interferometer, since the simultaneous
collision of identical incoming particles cannot be guaranteed
anymore. Consequently, even though charge current noise due
to an energy-dependent scatterer is expected to share some
similarities with heat current noise in our setup, it is only the
latter quantity that can be interpreted as generated in a proper
HOM interferometer.

Equation (38) further indicates that the double-drive and
the single-drive configurations are completely distinct setups
and that the relation in Eq. (21) is solely a contingent effect
of the single local QPC geometry. It is useful to express heat
correlation noise in energy space by introducing the following
Fourier series:

νeV1/4(t ) =
∑

k

ck,R/Leikωt , (44)

e−iνe
∫ t

0 dτ V−(τ ) =
∑

l

p̃l e
−i(l+q1−q4 )ωt , (45)

where we defined also the number of particles excited by V1/4

along the system in a period

q1/4 = νe

2π

∫ T

0
dt V1/4(t ) = νeV1/4,dc

ω
, (46)

and the Fourier transform of Pg(t ) in Eq. (19)

P̃g(E ) =
∫

dt Pg(t )eiEt

=
(

2πθ

ωc

)g−1 e
E
2θ

�(g)ωc

∣∣∣∣�
(

g

2
− i

E

2πθ

)∣∣∣∣
2

. (47)
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By exploiting these results, the two contributions to SQ become

SQ(V−, 0) = −|λ|2
∑

l

{
2ν2π2θ2 + (1 + ν)[(l + q1 − q4)ω]2

1 + 2ν
| p̃l |2P̃2ν[(l + q1 − q4)ω]

− 1

4

∑
k �=0

(ck,1 − ck,4)( p̃l−k p̃∗
l − p̃l p̃∗

l+k )(l + q1 − q4)ω coth
kω

2θ
(P̃2ν[(l + q1 − q4)ω] − P̃2ν[−(l + q1 − q4)ω])

}
,

(48)

�SQ(V1,V4) = |λ|2
2

∑
k,p,l

(ck,1cp,4 − ck,4cp,1) p̃l+k+p p̃∗
l

W(l+q1−q4 ),k,p + W(l+q1−q4 ),p,k

2
, (49)

where the coefficients Wl,k,p encode all the effects due to temperature and interaction on �SQ and read

Wl,k,p = ωc

4π

∫
dE

2π
{P̃1(E )P̃1(kω − E )[P̃2ν−1(E − lω) + P̃2ν−1[−E − (l + k + p)ω] + P̃2ν−1(−E + lω)]

+ P̃2ν−1[E + (l + k + p)ω]} − 1

2
(P̃2ν[(l + k)ω] + P̃2ν[−(l + k)]). (50)

Let us observe that the contribution �SQ exists only in the double-drive configurations. Indeed, in the configuration with a single
drive, where V4 = 0, one obtains that ck,4 = 0 for each k, and the contribution in Eq. (49) vanishes.

Before concluding this section, we also provide the expression of the HOM heat noise in the fermionic case at ν = 1. In this
case, Eqs. (48) and (49) read

SQ(V−, 0) = −|λ|2
∑

l

{
2π2θ2 + 2[(l + q1 − q4)ω]2

3
| p̃l |2P̃2[(l + q1 − q4)ω] −

∑
k �=0

ck,−c−k,−kω coth

(
kω

2θ

)}
, (51)

�SQ(V1,V4) = |λ|2
4

∑
k

(ck,+c−k,+ − ck,−c−k,−)P̃2(kω)

−
∑
k,q,l

(ck,+cq,+ − ck,−cq,−) p̃l+k+q p̃∗
l−k (P̃2[(l + q1 − q4)ω] + P̃2[−(l + q1 − q4)ω]). (52)

We observe that the two terms appearing in Eq. (51) cor-
respond to the ones evaluated in Ref. [92] resorting to the
Floquet scattering matrix formalism in the presence of a single
external drive. In this case, the two terms can be respectively
linked to transport of particles between different reservoirs
and to scattering between different energy states in the same
reservoir [90,92]. According to these considerations, the first
term in Eq. (48) can be easily identified as quasiparticle
transport across the sample for a generic filling factors, due
to the similarity with the transport contribution in Eq. (51).
Nevertheless, the second term in Eq. (48) displays a much
more complex structure in the presence of a fractional filling
factor, thus complicating its interpretation as a simple reser-
voir contribution.

C. Hong-Ou-Mandel noises

Among all the possible choices for the configuration in-
volving the two voltages V1 and V4, one of the most interesting,
even from the experimental point of view, is the Hong-Ou-
Mandel (HOM) setup, where two identical voltage drives
are applied to reservoirs 1 and 4 and delayed by a constant
time tD. This experimental configuration corresponds to set
V1(t ) = V (t ) and V4(t ) = V (t + tD) in Eq. (20), with V (t ) a
generic periodic drive. In this situation the charges excited

by each drive along the edge channels are equal, such that
q1 = q4 = q.

For notational convenience, we define the single-drive heat
noise and the HOM charge and heat noises as

Ssd
Q = SQ(V−(t ), 0), (53)

SHOM
C/Q = SC/Q(V (t ),V (t + tD)). (54)

Let us notice that in the equations above, Ssd
Q represents the

heat noise generated when the voltage V−(t ) = V1(t ) − V4(t )
is applied to terminal 1, while SHOM

C/Q are charge and heat
noises when both terminals 1 and 4 are driven by V1(t ) =
V (t ) and V4 = V (t + tD), respectively. According to Eq. (38)
and using the above definitions, the HOM heat noise can be
expressed as

SHOM
Q = Ssd

Q + �SQ. (55)

From the existing literature [3,39,96], it is well established
that charge HOM noise reduces to its equilibrium value for
null time delay. Before entering into the details of our discus-
sion, we would like to prove analytically that the same holds
true for HOM heat noise SHOM

Q , independently of the choice
of any parameter. The photoassisted amplitude in Eq. (45) re-
duces to p̃l = δl,0 and the Fourier coefficients ck,− vanish for
all k. Let us start by looking at the single-drive contribution.
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By substituting this analytical simplification in Eq. (48), we
obtain

Ssd
Q (tD = 0) = −|λ|2 ν2π2θ2

1 + 2ν
≡ Svac

Q , (56)

which is independent of the injected particles and corresponds
simply to the equilibrium noise Svac

Q due to thermal fluc-
tuations. This can be clearly understood given the fact that
V−(t ) = 0 for tD = 0 and the single-drive contribution corre-
sponds to the noise generated in a driveless configuration.

Concerning the remaining part in Eq. (55), one has
for tD = 0

�SQ = |λ|2
4

∑
k

ck,1c−k,1(W0,k,−k + W0,−k,k ), (57)

where

W0,k,−k = P̃2ν (kω) − P̃2ν (−kω)

2
. (58)

From Eq. (58), we can clearly deduce that W0,k,−k =
−W0,−k,k , which enforces the vanishing of �SQ in Eq. (57).
This is enough to prove that HOM heat noise always reaches
its equilibrium value at tD = 0, such that

SHOM
Q (tD = 0) = Ssd

Q (tD = 0) = Svac
Q . (59)

Let us note that this is not a trivial result since SHOM
Q does not

depend effectively on the effective single drive V− as Ssd
Q , but

on both V1 and V4, and even at tD = 0 the system is still driven
by these two voltages.

IV. RESULTS AND DISCUSSIONS

In this section, we discuss the results concerning the heat
correlation noises in the HOM interferometer. In particular,
we focus our discussion on a specific driving voltage, namely
a periodic train of Lorentzian pulses

VLor(t ) = V0

π

+∞∑
k=−∞

W

W 2 + (t − kT )2
. (60)

A Lorentzian-shaped drive, which satisfy the additional quan-
tization condition

νe
∫ T

0
dt VLor(t ) = 2πq, (61)

with q an integer number, constitutes the optimal driving able
to inject clean pulses devoid of any additional electron-hole
pairs. The minimal excitations thus emitted into the quantum
Hall channels are the aforementioned levitons [20,22]. The
Fourier coefficients for this specific drive are given in Ap-
pendix C.

In the HOM setup previously described, a state composed
by q4 = q1 = q levitons [114] is injected by each driven
contact and collide at the QPC, separated by a controllable
time delay.

In analogy with the previous literature on charge noise, we
introduce the following ratio [30,39,44,46]:

RHOM
C/Q = SHOM

C/Q − Svac
C/Q

2SR
C/Q − 2Svac

C/Q

, (62)

where we subtracted the equilibrium noise Svac
C/Q and we nor-

malize with respect to SR
C/Q ≡ SC/Q(V1, 0), which are charge

and heat noises expected for the random partitioning of a sin-
gle source of levitons, i.e., when V1(t ) = VLor(t ) and V4(t ) =
0. The expressions for Svac

C and SR
C are well-known and have

been derived in previous papers [3,39,93]. The expression for
SR

Q can be obtained from our results in Sec. III B and reads

SR
Q = −|λ|2

∑
l

{
2ν2π2θ2 + (1 + ν)(lω)2

1 + 2ν
|pl |2P̃2ν[(l + q)ω]

−
∑
k �=0

ck (pl−k p∗
l − pl p∗

l+k )(l + q)ω
P̃2(kω)

2kω

× (P̃2ν[(l + q)ω] − P̃2ν[−(l + q)ω])

}
, (63)

where ck = νe
∫ T

0
dt
T VLor(t )eikωt are the Fourier

coefficients for a single Lorentzian voltage and pl =∫ T
0

dt
T e−iνe

∫ t
0 dτVLor(τ )ei(l+q)ωt (see Appendix C).

Let us notice that, according to Eq. (59), RHOM
Q vanishes

for tD = 0. In the specific case of levitons, which are single-
electron excitations, at ν = 1 the physical explanation for the
total dip at tD = 0 involves the antibunching effect of identical
fermions: electronlike excitations colliding at the QPC at the
same time are forced to escape on opposite channels, thus
leading to a total suppression of fluctuations at tD = 0 and
generating the so called Pauli dip [12,38,42]. For fractional
filling factors, it is remarkable that this total dip is still present
despite the presence of anyonic quasiparticles in the system,
which do not obey Fermi-Pauli statistics [16,39]. Anyway, this
single QPC geometry does not allow for the braiding of one
quasiparticle around the other, thus excluding any possible
effect due to fractional statistics.

In the following, we exploit the full generality of our
derivation by performing the analysis for different values
of q.

We start by considering the regime where thermal and
quantum fluctuations are comparable. First, we focus on the
relevant case of q = 1, where states formed by a single leviton
are injected from both sources [87]. The collision of identical
single-leviton states is very interesting because previous work
on fluctuations of charge current proved that in this case the
ratio of HOM charge noise is independent of filling factors
and temperatures, acquiring an universal analytical expression
[15,39]. To perform a similar comparison for the heat noise,
we present in Fig. 2 the HOM heat ratio considering two
temperatures θ = 0.25ω (solid line) and θ = 0.5ω (dashed
lines) for both the integer and the fractional case. Contrary
to the charge case, these curves are all clearly distinct. This
means that the universality in the analytical expression does
not extend also to heat fluctuations. This fact can be explained
by the dependence of heat HOM noise on the energy dis-
tribution of particles injected by the drives, which in turn is
significantly affected by the temperature and by the strength
of correlations encoded in the filling factor ν. In particular, as
the temperature is further increased, the thermal fluctuations
tend to hide the effect of the voltages, resulting in a reduction
of RHOM

Q for both filling factors.
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FIG. 2. HOM heat ratio RHOM
Q as a function of the time delay

tD for q = 1 and temperatures θ = 0.25ω (solid lines) and θ = 0.5ω

(dashed lines). The integer case (left panel) and the fractional case
for ν = 1

3 (right panel) are compared. The other parameters are
W = 0.1T and ω = 0.01ωc.

In Fig. 3, we start by looking at the collision of states
composed of multiple levitons, and we compare HOM charge
and heat ratios (solid and dashed lines, respectively) for q = 2
and 4. In the fermionic case, presented in the two upper
panels, both charge and heat ratio show a single smooth dip

FIG. 3. HOM heat ratio RHOM
Q (solid lines) and HOM charge

ratio RHOM
C (dashed lines) as a function of the time delay tD for q = 2

and 4. The integer case (upper panels) and the fractional case for
ν = 1

3 (lower panels) are compared. Black vertical lines demonstrate
the exact correspondence of side peaks appearing in a charge and
heat ratio. The other parameters are W = 0.1T , θ = 0.25ω, and
ω = 0.01ωc.

at tD = 0, without additional side features. Interestingly, heat
fluctuations are enhanced with respect to charge: in particular,
heat HOM ratios saturate to their asymptotic value for smaller
values of time delay compared to charge ratio. Again, the
enhancement of heat fluctuations can be related to the fact that
heat is not constrained by any conservation law, in contrast to
the case of charge.

Very remarkably, the curves for the HOM ratio in the
fractional case display instead some unexpected side peaks
and dips in addition to the central dip. In particular, the
number of these maxima and minima increases for states
composed of more levitons. A recent paper by the authors
explained this intriguing result for charge HOM noise in terms
of a crystallization process induced by strong correlation on
the charge density of q levitons, i.e., a rearrangement of the
density into an oscillating and ordered pattern with a number
of peaks related to q [96,115]. Black vertical lines in the lower
panel of Fig. 3 demonstrate the exact correspondence of side
peaks appearing in charge and heat ratio as a function of time
delay. Based on this argument, we can infer that the HOM
heat noise is affected by the crystallization induced in the
propagating levitons, thus giving rise to the features observed
in the lower panel of Fig. 3. While the oscillating pattern of
RHOM

Q remarkably matches with that of RHOM
C , the amplitude

oscillations are widely enhanced for heat fluctuations, in par-
ticular for the peaks occurring at small values of time delay.

We conclude by noticing that strong correlation of the
fractional regime can increase the value of the HOM heat ratio
even above 1. Once again, since this is not the case for the
single-drive contribution, this is due to the presence of �SQ,
which is peculiar to collision between levitons incoming from
different reservoirs.

Now, we consider the regime of very low temperature
θ � ω, where the quantum effects should be largely enhanced
with respect to the thermal fluctuations. Having established
from the previous discussion the connection between �SQ

and SHOM
Q in the fractional regime, we focus only on the HOM

heat ratio RHOM
Q .

The plots for RHOM
Q in the integer and in the fractional

case are compared in Fig. 4 for different values of q. In the
integer case, a single smooth dip is present for all the values
of q, confirming the phenomenology described for the finite-
temperature case. For the strongly correlated case, at q = 1
one observes a smooth profile, except for a small decrease
close to tD = 0.5. Intriguingly, the oscillations observed in
Fig. 3 for q > 1 are widely enhanced in this regime, such that
the HOM ratio displays zeros, whose number increases with
q, in addition to the central one, and it can also reach negative
values. We emphasize that the change of sign in RHOM

Q is
entirely due to SHOM

Q , since Svac
Q is negligible at very low

temperature [see Eqs. (56) and (62)]. This is a remarkable
difference with respect to the charge noise generated in the
same configurations, since charge conservation fixes the sign
of current-current correlations. On the contrary, it should be
pointed out that the sign of heat noise is not constrained by
any conservation law [85].

To complete our discussion, it is interesting to show that
heat noise in a HOM setup, where both terminals 1 and 4 are
driven, cannot be reproduced in a setup where a single-drive
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FIG. 4. HOM heat ratio RHOM
Q as a function of the time delay

tD for q = 1, 2, 3, and 4. The integer case (dashed lines) and the
fractional case for ν = 1

3 (solid lines) are compared. The other
parameters are W = 0.1T , θ = 10−4ω, and ω = 0.01ωc.

V−(t ) = V (t ) − V (t + tD) is applied exclusively to terminal 1.
For this reason, we define an analogous ratio for single-drive
heat noise as

Rsd
Q = Ssd

Q − Svac
Q

2SR
Q − 2Svac

Q

. (64)

We recall that by the notation Ssd
Q we label heat fluctuations

generated in the specific setup where V−(t ) is applied to a
terminal and the other one is grounded.

In the upper panel of Fig. 5, Rsd
Q is presented for q = 1

for two filling factors ν = 1 and 1
3 . Both temperature regimes,

namely θ ∼ ω and θ � ω, are taken into account. Clearly,
these plots are completely different from the ones shown in
Fig. 2, further demonstrating that, in contrast to the charge
case, heat noise generated in a HOM setup is not equivalent
to the one generated in the presence of an effective single
drive V−(t ). In passing, let us also note that, as discussed for
the HOM heat ratio, Rsd

Q is not universal in temperature or
filling factor, thus displaying another remarkable difference
with respect to HOM charge noise.

Interestingly, we also note that single-drive ratio can switch
sign as tD is tuned, independently of the filling factor. Since SR

Q

and Svac
Q are independent of tD, the change of sign of Rsd

Q is
entirely due to Ssd

Q itself. This result implies that Ssd
Q can reach

values below the equilibrium heat noise Svac
Q [see Eq. (64)],

but it does not tell anything about the change of sign of Ssd
Q

itself. To acquire information about this point, in the lower

FIG. 5. Single-drive heat ratio Rsd
Q (upper panel) and single-drive

heat noise Ssd
Q rescaled with respect to 2Ssd

Q − 2Svac
Q , as a function

of the time delay tD for q = 1 and temperatures θ = 0.25ω (solid
lines) and θ = 0.5ω (dashed lines). The integer case (left panel) and
the fractional case for ν = 1

3 (right panel) are compared. The other
parameters are W = 0.1T and ω = 0.01ωc. In the lower panel, green

and blue horizontal solid lines correspond to the values of
Svac

Q

2Ssd
Q −2Svac

Q

for θ = 0.5ω at filling factors ν = 1 and 1
3 , respectively.

panel of Fig. 5 we show the plots for
Ssd

Q

2Ssd
Q −2Svac

Q
with the same

parameters as the upper panel. One has to distinguish between
the two temperature regimes. When θ ∼ ω, the contribution
of the equilibrium heat noise (solid green and blue horizon-
tal lines) is still significant. As a consequence, single-drive
heat noise is always positive, even though it goes below the
equilibrium value for certain ranges of time delay. On the
contrary, when θ � ω, Svac

Q is negligible with respect to other
contributions, and the sign of Ssd

Q itself can be reversed by
tuning the delay tD.

V. CONCLUSION

In this work, we investigated charge and heat current fluc-
tuations in an HOM interferometer in the fractional quantum
Hall regime. Here, two identical leviton excitations impinge
at a QPC with a given time delay. We started by evaluating
zero-frequency cross-correlated charge and heat noises in
the presence of two generic driving voltage V1 and V4. We
demonstrated that heat noise in this double-drive configura-
tion depends on both V+ = V4 + V1 and V− = V1 − V4 and
thus cannot be reproduced in a single-drive setup driven by
the voltage V− only. In particular, this implies that the single-
drive configuration and the HOM interferometer implemented
with voltage sources are two physically distinct experimental
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configurations. Moreover, we proved that the HOM heat ratio
vanishes for a null time delay for both integer and frac-
tional filling factors, despite the presence, in the latter case,
of emergent fractionally charged quasiparticles. Finally, we
investigated the form of HOM heat ratio for different regimes
of temperatures. Interestingly, unexpected side dips emerged
only in the fractional regime, which can be related to the
crystallization mechanism recently predicted for levitons [96].
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APPENDIX A: COUPLING TO THE GATE

In this Appendix, we show that there is no gauge transfor-
mation able to link the equations of motion for the configura-
tions with two driving voltages V1 and V4 and the configuration
with an effective single drive V− = V1 − V4, presented in the
main text.

In the double-drive setup, a voltage drive is applied both
to right-moving and left-moving excitations. We consider a
situation in which the vector potentials AR/L(x, t ) are absent.
The Lagrangian density is

L = 1

4π

{
− ∂x�R(x, t )[∂t�R(x, t ) + v∂x�R(x, t )]

+ ∂x�L(x, t )[∂t�L(x, t ) − v∂x�L(x, t )]

}

+ e
√

ν

2π
[∂x�R(x, t )V1(x, t ) − ∂x�L(x, t )V4(x, t )].

(A1)

The Euler-Lagrange equations

∂t
δL

δ∂t�α

+ ∂x
δL

δ∂x�α

− δL
δ�α

= 0, (A2)

with α = R, L, give rise to the following equation of motions
for the bosonic fields:

(∂t + v∂x )�R(x, t ) = e
√

νV1(x, t ), (A3)

(∂t − v∂x )�L(x, t ) = e
√

νV4(x, t ). (A4)

To model the system presented in Sec. II, the form for the
voltage drives is

V1(x, t ) = fR(x)V1(t ), (A5)

V4(x, t ) = fL(x)V4(t ), (A6)

where fR/L(x) are time-independent, while V1/4(t ) are space-
independent. In this case, the equations of motion for the
double-drive setup are

(∂t + v∂x )�R(x, t ) = e
√

ν fR(x)V1(t ), (A7a)

(∂t − v∂x )�L(x, t ) = e
√

ν fL(x)V4(t ). (A7b)

We also consider a single-drive setup with an effective volt-
age drive V1(x, t ) = fR(x)[V1(t ) − V4(t )] on the right side,
and the left side grounded [V4(x, t ) = 0]. We still con-
sider that the magnetic potential is zero on both edges.
It can be immediately seen that the equations of motion
are now

(∂t + v∂x )�R(x, t ) = e
√

ν fR(x)[V1(t ) − V4(t )], (A8a)

(∂t − v∂x )�L(x, t ) = 0. (A8b)

1. Applying gauge transformations to the HOM setup

Here we show that a gauge transformation that operates in
the following way on the voltage drives:

{
V1(x, t ) = fR(x)V1(t ),
V4(x, t ) = fL(x)V4(t ), −→

{
V ′

R(x, t ) = fR(x)[V1(t ) − V4(t )],
V ′

L(x, t ) = 0,
(A9)

does not transform Eqs. (A7) into Eqs. (A8), but leaves them
unchanged.

We recall that a general gauge transformation that leaves
invariant an electromagnetic field is given by

V ′
R/L(x, t ) = V1/4(x, t ) − ∂tχR(x, t ), (A10)

A′
R/L(x, t ) = AR/L(x, t ) + ∂xχR(x, t ), (A11)

with χR/L(x, t ) a scalar function.

In our particular case, voltage potentials are required to
transform as

V ′
R(x, t ) = fR(x)V1(x) − ∂tχR(x, t ) = fR(x)[V1(t ) − V4(t )],

(A12)

V ′
L(x, t ) = fL(x)V4(x) − ∂tχL(x, t ) = 0 (A13)

for the right-moving and left-moving sector, respec-
tively. The transformation is evidently implemented by the
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choice

χR(x, t ) = fR(x)
∫ t

0
dτ V4(τ ), (A14a)

χL(x, t ) = fL(x)
∫ t

0
dτ V4(τ ). (A14b)

Since these equations involve spatial-dependent functions,
we expect that nonzero magnetic potentials arise as a con-
sequence of the gauge transformation. In the new gauge, we
get nonzero magnetic potentials given by (in our initial gauge
choice AR/L = 0)

A′
R(x, t ) = ∂x fR(x)

∫ t

0
dτ V4(τ ), (A15)

A′
L(x, t ) = ∂x fL(x)

∫ t

0
dτ V4(τ ), (A16)

and the Lagrangian density now reads

L′ = 1

4π
{−∂x�R(x, t )[∂t�R(x, t ) + v∂x�R(x, t )]

+ ∂x�L(x, t )[∂t�L(x, t ) − v∂x�L(x, t )]}

+ e
√

ν

2π

{
∂x�R(x, t ) fR(x)[V1(t ) − V4(t )]

+ [∂t�R(x, t )∂x fR(x) − ∂t�L(x, t )∂x fL(x)
]

×
∫ t

t0

dτV4(τ )

}
, (A17)

where the last term accounts for the presence of A′
R(x, t ) and

A′
L(x, t ). We now look for the equations of motion in this new

configuration. From Euler-Lagrange equations, one gets

(∂t + v∂x )�R(x, t )

= e
√

ν fR(x)[V1(t ) − V4(t )] + e
√

ν fR(x)V4(t )

= e
√

ν fR(x)V1(t ), (A18)

(∂t − v∂x )�L(x, t ) = e
√

ν fL(x)V4(t ). (A19)

Note that we have not recovered the equation of motions
for the effective single drive setup, Eqs. (A8), as one may
naively expect. On the contrary, we have found the equations
of motion for the double-drive setup, Eqs. (A7).

APPENDIX B: HEAT NOISE

In this Appendix, we give more details about the calcula-
tion of heat noise presented in Sec. III. Before starting with the
derivation of heat noise, we give some formulas that would be
useful in the following parts.

1. Useful formulas

In the following, we derive some results that would be
useful for the evaluation of heat current fluctuations. In par-
ticular, our goal is to evaluate the following average values
(for simplicity, we drop all the low indices R or L):

C1(t1, t2, t3) = 〈∂t1φ(t1)ei
√

νφ(t2 )e−i
√

νφ(t3 )〉, (B1)

C2(t1, t2, t3) = 〈ei
√

νφ(t1 )e−i
√

νφ(t2 )∂t3φ(t3)〉, (B2)

D1(t1, t2, t3) = 〈[∂t1φ(t1)]2ei
√

νφ(t2 )e−i
√

νφ(t3 )〉, (B3)

D2(t1, t2, t3) = 〈ei
√

νφ(t1 )e−i
√

νφ(t2 )[∂t3φ(t3)]2〉, (B4)

where the thermal average is performed over the initial equi-
librium density matrix, in the absence of tunneling, and the
driving voltage and bosonic fields evolve according to the
edge Hamiltonian H0. To evaluate C1 and C2, we start by
considering the following general average value:

E1(ε1, ε2, ε3; t1, t2, t3) = 〈e−iε1φ(t1 )e−iε2φ(t2 )e−iε3φ(t3 )〉, (B5)

which is connected to C1 and C2 by this relation,

C1(t1, t2, t3)

= i∂t1

{
lim
ε1→0

∂ε1 E1(ε1, ε2, ε3; t1, t2, t3)

}
ε2 = −√

ν

ε3 = √
ν

, (B6)

C2(t1, t2, t3)

= i∂t3

{
lim
ε3→0

∂ε3 E1(ε1, ε2, ε3; t1, t2, t3)

}
ε1 = −√

ν

ε2 = √
ν

. (B7)

By using [116]

〈eχ (t1 )eχ (t2 )eχ (t3 )〉 = e
1
2

∑3
i=1〈χ (ti )2〉e

∑
i< j〈χ (ti )χ (t j )〉, (B8)

we obtain from Eq. (B5)

E1(ε1, ε2, ε3; x1, x2, x3) = e− 1
2

∑3
i=1〈ε2

i φ2(xi )〉

× e−{ε1ε2〈φ(x1 )φ(x2 )〉+ε1ε3〈φ(x1 )φ(x3 )〉+ε2ε3〈φ(x2 )φ(x3 )〉}. (B9)

Finally, we use Eqs. (B6) and (B7) to find C1 and C2,

C1(t1, t2, t3) = −i
√

νK(t1, t2, t3)Pν (t2 − t3), (B10)

C2(t1, t2, t3) = −i
√

νK(−t3,−t1,−t2)Pν (t1 − t2), (B11)

where we defined [see Eq. (19) in the main text]

Pg(t ′ − t ) = 〈ei
√

gφR/L (0,t ′ )e−i
√

gφR/L (0,t )〉

=
[

πθτ

sinh (πθτ )(1 + iωcτ )

]g

(B12)

and

K(t1, t2, t3) = ∂t1{〈φ(t1)φ(t3)〉 − 〈φ(t1)φ(t2)〉}

=
∫

dτP2(t1 − τ )[�(τ − t3) − �(τ − t2)].

(B13)

One could also obtain the following similar relations:

〈∂t1φ(t1)e−i
√

νφ(t2 )ei
√

νφ(t3 )〉 = i
√

νK(t1, t2, t3)Pν (t2 − t3),

(B14)

〈e−i
√

νφ(t1 )ei
√

νφ(t2 )∂t3 φ(t3 )〉 = i
√

νK(−t3,−t1,−t2)Pν (t1 − t2).

(B15)

Exploiting the following average:

〈∂t1φ(t1)∂tφ(t )〉 = − π2θ2

v2 sinh2 [πθ (t1 − t )]
(B16)
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the function K can be further evaluated by using

∂t1〈φ(t1)φ(t2)〉 =
∫ t2

−∞
dt〈∂t1φ(t1)∂tφ(t )〉 = πθ

v
{coth [πθ (t1 − t2)] − 1}. (B17)

By using this result, one finds

K(t1, t2, t3) = πθ

v
{coth [πθ (t1 − t3)] − coth [πθ (t1 − t2)]} = πθ

v

sinh [πθ (t2 − t3)]

sinh [πθ (t1 − t3)] sinh [πθ (t1 − t2)]
. (B18)

To evaluate D1 and D2, we start by considering the following general average value:

E2(ε1, ε2, ε3, ε4; t1, t2, t3, t4) = 〈e−iε1φ(t1 )e−iε2φ(t2 )e−iε3φ(t3 )e−iε4φ(t4 )〉, (B19)

which is connected to D1 and D2 by these relations,

D1(t1, t2, t3) = −∂t1∂t ′
1

{
lim

ε1→0,ε2→0
∂ε1∂ε2 E2(ε1, ε2, ε3, ε4; t1, t ′

1, t2, t3)

}
ε1 = −ε2 = −√

ν

t ′
1 = t1

, (B20)

D2(t1, t2, t3) = −∂t3∂t ′
3

{
lim

ε1→0,ε2→0
∂ε3∂ε4 E2(ε1, ε2, ε3, ε4; t1, t2, t3, t ′

3)

}
ε4 = −ε3 = √

ν

t ′
3 = t3

. (B21)

By using Eq. (B8), we obtain from Eq. (B5)

E2(ε1, ε2, ε3, ε4; t1, t2, t3, t4)

= e− 1
2

∑4
i=1 ε2

i 〈φ2(ti )〉e−{ε1ε2〈φ(t1 )φ(t2 )〉+ε1ε3〈φ(t1 )φ(t3 )〉+ε1ε4〈φ(t1 )φ(t4 )〉+ε2ε3〈φ(t2 )φ(t3 )〉+ε2ε4〈φ(t2 )φ(t4 )〉+ε3ε4〈φ(t3 )φ(t4 )〉}. (B22)

Finally, we use Eqs. (B20) and (B21) to find D1 and D2,[
∂t1φ(t1)

]2
ei

√
νφ(t2 )e−i

√
νφ(t3 )〉 = {〈[

∂t1φ(t1)
]2〉 − ν[K(t1, t2, t3)]2}Pν (t2 − t3), (B23)〈

ei
√

νφ(t1 )e−i
√

νφ(t2 )[∂t3φ(t3)
]2〉 = {〈[

∂t3φ(t3)
]2〉 − ν[K(−t3,−t1,−t2)]2}Pν (t1 − t2). (B24)

By carrying on a similar calculation, one can find also the analogous quantities[
∂t1φ(t1)

]2
e−i

√
νφ(t2 )ei

√
νφ(t3 )

〉 = {〈[
∂t1φ(t1)

]2〉 − ν[K(t1, t2, t3)]2
}
Pν (t2 − t3), (B25)〈

e−i
√

νφ(t1 )ei
√

νφ(t2 )
[
∂t3φ(t3)

]2〉 = {〈[
∂t3φ(t3)

]2〉 − ν[K(−t3,−t1,−t2)]2
}
Pν (t1 − t2). (B26)

2. Calculations of heat noise

Our starting point is the perturbative expression of heat noise given in the main text [see Eq. (25)],

SQ = S (02)
Q + S (20)

Q + S (11)
Q + O(|	|3). (B27)

First, we derive the term S (11)
Q , which reads

S (11)
Q =

∫ T

0

dt

T

∫
dt ′{〈∂t ′


†
R(0, t ′)
L(0, t ′)∂t


†
L (0, t )
R(0, t )〉 + 〈
†

L (0, t ′)∂t ′
R(0, t ′)
†
R(0, t )∂t
L(0, t )〉}, (B28)

since 〈J (1)
2/3(t )〉 = 0 [see Eq. (34) in the main text]. We recall that the time evolution of quasiparticle fields is


R,L(x, t ) = FR/L√
2πa

e−i
√

νφR/L (x,t )eiνe
∫ t∓ x

v − d
v

t0
dt ′V1/4(t ′ )

. (B29)

We can further express the average in the above equation as

S (11)
Q = 2|λ|2

∫ T

0

dt

T

∫
dt ′

{
cos

(
νe

∫ t

t ′
dt ′′V1(t ′′) − V4(t ′′)

)
∂ ′

tPν (t ′ − t )∂tPν (t ′ − t )

+ νeV1(t ′) sin

(
νe

∫ t

t ′
dt ′′V1(t ′′) − V4(t ′′)

)
1

2
∂tP2ν (t ′ − t ) + νeV4(t ) sin

(
νe

∫ t

t ′
dt ′′V1(t ′′) − V4(t ′′)

)
1

2
∂t ′P2ν (t ′ − t )

− ν2e2V1(t ′)V4(t ) cos

(
νe

∫ t

t ′
dt ′′V1(t ′′) − V4(t ′′)

)
P2ν (t ′ − t )

}
, (B30)
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where the function Pg(t ) is defined in Eq. (B12) and λ ≡ 	
2πa . The integration by parts of the second and third line of Eq. (B30)

provides some useful eliminations, providing the final expression for this contribution,

S (11)
Q = 2|λ|2

∫ T

0

dt

T

∫
dt ′

{
cos

(
νe

∫ t

t ′
dt ′′[V1(t ′′) − V4(t ′′)]

)
∂ ′

tPν (t ′ − t )∂tPν (t ′ − t )

− 1

2
ν2e2[V1(t ′)V1(t ) + V4(t ′)V4(t )] cos

(
νe

∫ t

t ′
dt ′′[V1(t ′′) − V4(t ′′)]

)
P2ν (t ′ − t )

}
. (B31)

We focus on the remaining contributions, starting from S (02)
Q : the calculations for the other term would be analogous. By plugging

Eqs. (26) and (28) in the definition of S (02)
Q , one finds

S (02)
Q = −i

|λ|2
4π

∫
dt

∫ T

0

dt ′

T

∫
dt ′′θ (t ′ − t ′′){〈[∂tφR(0, t )]2[
†

R(0, t ′′)
L(0, t ′′), ∂t ′

†
L (0, t ′)
R(0, t ′)]〉

− 2νeV1(t )〈∂tφR(0, t )[
†
R(0, t ′′)
L(0, t ′′), ∂t ′


†
L (0, t ′)
R(0, t ′)]〉

− 〈[∂tφR(0, t )]2〉〈[
†
R(0, t ′′)
L(0, t ′′), ∂t ′


†
L (0, t ′)
R(0, t ′)]〉}. (B32)

The averages involving the commutators can be performed by using the expression in Eq. (18) for the time evolution of
quasiparticle fields and by resorting to the formulas in Eqs (B10), (B14), (B23), and (B24) derived in the Appendix B 1. Indeed,
one finds

S (02)
(Q) = −i

|λ|2
4π

∫
dt

∫ T

0

dt ′

T

∫
dt ′′ �

(
t ′ − t ′′){ −

[
ν∂t ′K2(t, t ′, t ′′) cos

(
νe

∫ t ′

t ′′
dτV−(τ )

)
[P2ν (t ′′ − t ′) − P2ν (t ′ − t ′′)]

+ νeV4(t ′)K2(t, t ′, t ′′)[P2ν (t ′′ − t ′) − P2ν (t ′ − t ′′)] sin

(
νe

∫ t ′

t ′′
dτV−(τ )

)]

+K(t, t ′, t ′′)
[

2νeV1(t ) sin

(
νe

∫ t ′

t ′′
dτV−(τ )

)
∂t ′ [P2ν (t ′′ − t ′) − P2ν (t ′ − t ′′)]

− 4ν2e2V1(t )V4(t ′) cos

(
νe

∫ t ′

t ′′
dτV−(τ )

)
[P2ν (t ′′ − t ′) − P2ν (t ′ − t ′′)]

]}
.

A similar calculation leads to the expression for the last contribution, given by

S (20)
(Q) = −i

|λ|2
4π

∫
dt

∫ T

0

dt ′

T

∫
dt ′′ �(t ′ − t ′′)

{[
ν∂t ′K2(t, t ′, t ′′) cos

(
νe

∫ t ′

t ′′
dτV−(τ )

)
[P2ν (t ′′ − t ′) − P2ν (t ′ − t ′′)]

+ νeV4(t ′)K2(t, t ′, t ′′)[P2ν (t ′′ − t ′) − P2ν (t ′ − t ′′)] sin

(
νe

∫ t ′

t ′′
dτV−(τ )

)]

+K(t, t ′′, t ′)
[

2νeV4(t ) sin

(
νe

∫ t ′

t ′′
dτV−(τ )

)
∂t ′[P2ν (t ′′ − t ′) − P2ν (t ′ − t ′′)]

+ 4ν2e2V1(t )V4(t ′′) cos

(
νe

∫ t ′

t ′′
dτV−(τ )

)
[P2ν (t ′′ − t ′) − P2ν (t ′ − t ′′)]

]}
.

By summing up the two contributions, one can see that the first lines cancel out and the remaining two lines add up in a way that
allows us to get rid of the function �(t ′ − t ′′), thus obtaining

S (02)
(Q) + S (20)

(Q) = −i
|λ|2
4π

∫
dt

∫ T

0

dt ′

T

∫
dt ′′

{
K(t, t ′′, t ′)

[
2νeV−(t ) sin

(
νe

∫ t ′

t ′′
dτV−(τ )

)
∂t ′ [P2ν (t ′′ − t ′) − P2ν (t ′ − t ′′)]

− 4ν2e2V1(t )V4(t ′′) cos

(
νe

∫ t ′

t ′′
dτ V−(τ )

)
[P2ν (t ′′ − t ′) − P2ν (t ′ − t ′′)]

]}
.

Now, summing all the contributions according to Eq. (38), it is possible to obtain the result presented in the main text, which
reads

SQ(V1,V4) = SQ(V−, 0) + �SQ(V1,V4), (B33)
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with

SQ(V−, 0) = |λ|2
∫ T

0

dt

T

∫
dt ′

{
cos

(
νe

∫ t ′

t
dτV−(τ )

)
Re[Pν (t ′ − t )∂2

t Pν (t ′ − t )]

+ νev

π

∫
dt ′′V−(t ′)K(t ′, t, t ′′) sin

(
νe

∫ t ′

t
dτV−(τ )

)
Im[∂t ′′P2ν (t ′′ − t )]

}
, (B34)

�SQ(V1,V4) = ν2e2|λ|2
∫ T

0

dt

T

∫
dt ′ cos

(
νe

∫ t ′

t
dτV−(τ )

)
(αRL(t, t ′)Re[P2ν (t ′ − t )] + βRL(t, t ′)Im[P2ν (t ′ − t )]), (B35)

where we defined the following functions:

αRL(t, t ′) = [V1(t )V4(t ′) − V4(t )V1(t ′)], (B36)

βRL = v

π

∫
dt ′′K(t ′′, t, t ′)V1(t ′′)[V4(t ′) − V4(t )]. (B37)

APPENDIX C: FOURIER COEFFICIENTS

This Appendix is devoted to the Fourier analysis of
the Lorentzian periodic signal VLor(t ) and of the phase

e−iνe
∫ t

t0
dt ′VLor (t ′ ), where

VLor(t ) = V0

π

+∞∑
k=−∞

W

W 2 + (t − kT )2
, (C1)

where T is the periodic, V0 the amplitude, and W the half-
width at half-maximum.

The coefficients for the Fourier series of the expression
νeVLor(t ) = ∑

k ckeikωt are

ck = qωe−2π W
T |k|, (C2)

with q = νe
2π

∫ T
0 dt VLor(t ) = νeV0

ω
.

We also note that, for the time-delayed voltage VLor(t + tD),
the coefficients become c′

k = cke−ikωtD .

The Fourier series e−iνe
∫ t

0 dt ′[VLor (t ′ )−V0] = ∑
l pl e−ilωt al-

lows us to deal with the time-dependent problem as a

superposition of time-independent configurations, with en-
ergy shifted by an integer amount of energy quanta ω. For
the Lorentzian case, it is convenient to switch to a complex
representation in terms of the variable z = eiωt . After some
algebra and introducing γ = e−2πη, one finds [3,4]

pl = 1

2π i

∮
|z|=1

dz zl+q−1

(
1 − zγ

z − γ

)q

. (C3)

From Eq. (C3) one can make use of complex binomial series
and Cauchy’s integral theorem [117,118] to finally get

pl = qγ l
∞∑

s=0

(−1)s �(l + s + q)

�(1 + q − s)

γ 2s

s!(s + l )!
. (C4)

Finally, the Fourier coefficients p̃l for the voltage phase
e−iνe

∫ t
0 dτ [VLor(τ )−VLor (τ+tD )] in the HOM configuration are given

by

p̃l =
∫ T

0

dt

T eilωt e−iνe
∫ t

0 dτ [VLor(τ )−VLor (τ+tD )], (C5)

which can be calculated in terms of the coefficient pl of an
effective single drive as

p̃l =
∑

m

p∗
m pm+l e

−imωtD . (C6)
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