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Josephson effect through an anisotropic magnetic molecule
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3Université de la Méditérannée, F-13288 Marseille Cedex 9, France
4Department of Applied Physics, College of Applied Science, Kyung Hee University, Yongin 446-701, Korea

5Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST),
and JST-CREST, Tsukuba, Ibaraki 305-8568, Japan

(Received 21 June 2011; revised manuscript received 5 September 2011; published 14 November 2011)

We study the Josephson effect through a magnetic molecule with anisotropic properties. Performing
calculations in the tunneling regime, we show that the exchange coupling between the electron spin on the
molecule and the molecular spin can trigger a transition from the π state to the 0 state, and we study how the spin
anisotropy affects this transition. We show that the behavior of the critical current as a function of an external
magnetic field can give access to valuable information about the spin anisotropy of the molecule.
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I. INTRODUCTION

The Josephson effect1,2 is a striking manifestation of
many-body physics and macroscopic quantum coherence in
condensed-matter systems. While early investigations con-
cerned mainly bulk superconducting junctions separated by
an insulating barrier, in the last decades it has become a very
active field of study in the context of mesoscopic physics.
Indeed the insulating barrier can be replaced by a conductor
or a nanodevice that can be as small as a quantum dot or
a single molecule. In this sense the study of the Josephson
current can provide a novel way to investigate the electronic
properties of the nano-object, which is sandwiched between
the superconducting electrodes. More than a decade ago, it
was predicted using the Krein theorem3–5 that when a singly
occupied quantum dot in the Coulomb blockade regime is
inserted between the superconductors, the Josephson current
phase relation acquires a π shift, i.e., the critical current has
the opposite sign from that of a tunnel junction. A phase
diagram of the π -0 phase transition was derived later on
for contacts with arbitrary transparency using a combination
of Hubbard-Stratonovich and saddle-point approximation.6

Experimentally (for nanoscale devices) it was measured
in superconductor-nanotube-superconductor systems.7 This
picture gets more complicated when the Kondo temperature
is lower than the superconducting gap: a 0-junction state is
restored,8,9 albeit with a different current phase relationship.

In recent years theoretical and experimental studies have
addressed transport geometries where a molecule—artificial
or otherwise—is inserted between two electrodes.10–15 This
goes one step beyond the study of transport through quantum
dots because the molecule has internal degrees of freedom
(such as vibrations and possibly spin). On the one hand, such
degrees of freedom have an effect on the electronic current, on
the other hand, the current itself can be considered as a probe
of the inherent mechanisms of the molecule.

A subfield of molecular electronics is called molecular
spintronics: it focuses on molecules which have an intrinsic
spin,16,17 and it is expected that electron transfer through the
molecule can trigger changes in the molecule spin because of
the existence of an exchange coupling with the electron spin.
Such molecules (such as a buckminsterfullerene doped with

a magnetic atom) may have an isotropic spin, or otherwise
the spin may have a preferred direction due to the crystalline
structure of the molecule (this is the case of Mn12 acetate).
Recently, there have been some efforts to describe and/or
measure transport through molecular spintronics devices with
normal metal or ferromagnetic leads,18–21 with an emphasis
on master equations approach on the theoretical side. Nev-
ertheless, efforts in the field of molecular spintronics with
superconducting electrodes are still at their beginning stage.

A recent theoretical work focused on the Josephson current
through an isotropic magnetic molecule, via perturbative
calculations in the tunneling Hamiltonian as well as numerical
renormalization-group calculations.22 It allowed us to draw
a complete phase diagram of the π -0 phase transition. An
equivalent study of supercurrent through molecules which
have an anisotropic spin, which magnetization can tunnel, and
which are subject to a (weak) external magnetic field is still
lacking. This is precisely the focus of the present work. One
of the challenges of this work is that we have to deal with a
large number of parameters: the exchange coupling J between
the dot electron spin and the molecule spin, the anisotropy
constant D, and the coefficient B2 for quantum tunneling of
magnetization of the molecule, the dependence on external
magnetic field B as well as the dot level εd, which can be
adjusted by a gate voltage. Note that it is now experimentally
possible to manipulate the anisotropy parameters of magnetic
molecules.23,24 One of our goals is to determine to what extent
the measurement of the critical current can provide information
of the sign or magnitude of such parameters. For simplicity, we
focus on the regime where the superconducting gap is much
larger than the Kondo temperature, which allows us to focus
on weak-coupling (small tunneling Hamiltonian) calculations.
Also, we restrict the analysis on the simplest case of a molecule
spin S = 1 to demonstrate the effect where the two main
contributions due to spin anisotropy (easy axis anisotropy and
quantum tunneling of magnetization) are present.

The outline of the paper is as follows. In Sec. II, we
introduce the model for the magnetic molecule connected to
two superconducting leads and we compute the expression
of the Josephson current through this molecule. In Sec. III,
we study the effect of the anisotropic parameters and of the
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adjustable experimental parameters on the sign of the critical
current. Finally, we conclude in Sec. IV.

II. MODEL

A. Hamiltonian

The total Hamiltonian of the system (see Fig. 1) consists
of the three terms Ĥ = Ĥd + Ĥs + Ĥt. The first one is the
Hamiltonian of the molecule,

Ĥd = Ĥm + εd

∑
σ

d̂†
σ d̂σ + Ud̂

†
↑d̂↑d̂

†
↓d̂↓, (1)

where εd is the electronic level of the molecule implied in the
transport, and U is the Coulomb interaction strength. The d̂†

σ

and d̂σ are electronic creation and annihilation operators on
the electronic level in the molecule. Since U is typically much
larger than the other energies in the system, we consider the
limit of infinite Coulomb interaction U → ∞, thus only one
electron is allowed to occupy the dot. With this assumption, the
Hamiltonian Ĥm, which characterizes the magnetic properties
of the dot, reads

Ĥm = −DŜ2
z + B(Ŝz + ŝz) − B2

2
(Ŝ2

+ + Ŝ2
−) + J Ŝŝ, (2)

where Sz is the molecular spin and sz the spin of the electron
on the molecule (if present). J is the exchange coupling
between molecular and electronic spin, D > 0 is the easy axis
anisotropy constant, B2 is the coefficient of quantum tunneling
of magnetization (QTM), and B is the external magnetic field.
Figure 2 shows how these terms couple the states of the
molecule in the case of a spin S = 1. In order to avoid a too
large number of parameters, we have made some simplifying
assumptions when writing this Hamiltonian: the anisotropy
terms are not affected by the charge of the dot level (this should
be the case for systems like M@C80, but not for molecules
like Mn12),25 the magnetic field is taken parallel to the spin
anisotropy,26 and higher-order terms (−B2n/2)(Ŝ2n

+ + Ŝ2n
− ) are

neglected (they are usually small).
The second term corresponds to the superconducting parts,

described by the BCS Hamiltonian

Ĥs =
∑
�,k,σ

εkĉ
†
�,k,σ ĉ�,k,σ −

∑
�,k

��,k

[
ĉ
†
�,k,↑ĉ

†
�,−k,↓ + H.c.

]
,

(3)

tL tR

M@C80 Mn12

SS

FIG. 1. (Color online) A magnetic molecule (e.g., M@C80, Mn12,
. . .) connecting two superconductors via tunnel barriers tL and tR. The
exchange coupling between the molecular spin and the electronic spin
can strongly modify the Josephson current.

|0 m

| − 1 m|1 m

J , B

B2

J , B

FIG. 2. (Color online) Spin states for S = 1 spin, and coupling
between these states due to the different terms of the Hamiltonian.
B2 induces tunneling between |1〉m and |−1〉m states; J and B induce
|1〉m ↔ |0〉m and |0〉m ↔ |−1〉m tunnelings.

where εk = h̄2k2/2m − EF is the dispersion relation for free
electrons, ĉ

†
�,k,σ and ĉ�,k,σ are electronic creation and anni-

hilation operators in the superconductors, � enumerates left
(� = L) and right (� = R) leads, �L(R),k = �e±iϕ/2, with �

the superconducting gap and ϕ the superconducting phase
difference along the junction.

The last term is the tunnel Hamiltonian between the leads
and the molecule

Ĥt =
∑
�,k,σ

[
t�,kd̂

†
σ ĉ�,k,σ + H.c.

]
, (4)

where t�,k are the tunneling amplitudes. By performing a
gauge transformation for t̃L,k = tL,ke

iϕ/4, t̃R,k = tR,ke
−iϕ/4 and

simultaneously for ˜̂cL,k,σ = ˜̂cL,k,σ e−iϕ/4, ˜̂cR,k,σ = ˜̂cR,k,σ eiϕ/4,
one can “move” the dependence on ϕ from ��,k to t�,k and
ĉ�,k,σ in Eqs. (3) and (4).3 We also perform a Bogoliubov
transformation2 to diagonalize the BCS Hamiltonian, which
takes the following form:

Ĥs =
∑
�,k,σ

Ekγ̂
†
�,k,σ γ̂�,k,σ , (5)

and the tunneling Hamiltonian reads

Ĥt =
∑
�,k,σ

[
t̃�,kd̂

†
σ

(
ukγ̂�,k,σ + σ vkγ̂

†
�,k,−σ

) + H.c.
]
, (6)

where γ̂
†
�,k,σ and γ̂�,k,σ are the quasiparticle creation

and annihilation operators, uk = √
(1 + εk/Ek)/2 and vk =√

(1 − εk/Ek)/2 are the electron and hole coefficients, and
Ek = √

ε2
k + �2 is the energy dispersion. In the following

calculations we will consider for simplicity the case of
symmetric contacts, thus tL,k = tR,k = tk .

B. Specific Hamiltonian for the S = 1 case

In the following, we will for simplicity restrict our calcula-
tions to the case of a molecular spin with S = 1, which is the
smallest value where easy axis anisotropy (parameter D) and
QTM (parameter B2) are nontrivial. As the electron occupation
of the level is restricted to 0 or 1, let us write explicitly the
molecule Hamiltonian in each case [see Eqs. (1) and (2)].

For the empty electronic level, we have Hd = Hm,0, and
we use the basis {|0〉e|1〉m, |0〉e|0〉m, |0〉e|−1〉m}, where |0〉e

represents the empty electronic state and |Sz〉m the states of
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the molecule with spin projections Sz = 1,0, −1. The matrix
elements of Hm are

Hm,0 =
⎡
⎣B − D 0 −B2

0 0 0
−B2 0 −B − D

⎤
⎦. (7)

The eigenvalues are noted E0,i (i = 1,2,3), and the corre-
sponding eigenvectors are bi . Below we will use the matrix
bij = [b1, b2, b3], which consists of columns of eigenvectors
(first index enumerates columns, the secondenumerates rows),
and the inverse matrix b̃ij = (bij )−1.

When the electronic level is occupied by one electron,
we have Hd,1 = Hm,1 + εd, and we use the uncoupled spin
basis |s〉e|Sz〉m (with s = ↑,↓ and Sz = +1,0,−1). The matrix
representation of Hm,1 can then be decomposed as two
independent 3 × 3 submatrices:27 Hm,1 = diag{H+

m,1,H−
m,1},

with

H+
m,1 =

⎡
⎣3B/2 + J/2 − D 0 −B2

0 −B/2 J/
√

2
−B2 J/

√
2 −B/2 − J/2 − D

⎤
⎦

(8)

in the basis {|↑〉e|1〉m, |↓〉e|0〉m, |↑〉e|−1〉m} and

H−
m,1 =

⎡
⎣B/2 − J/2 − D J/

√
2 −B2

J/
√

2 B/2 0
−B2 0 −3B/2 + J/2 − D

⎤
⎦

(9)

in the basis {|↓〉e|1〉m, |↑〉e|0〉m, |↓〉e|−1〉m}. These matrices
have eigenvalues E+

1,i , E−
1,i and corresponding eigenvectors

a+
i , a−

i . As previously, we define matrices a±
ij = [a±

1 , a±
2 , a±

3 ],
and inverse matrices ã±

ij = (a±
ij )−1.

C. Josephson current

The Josephson current through the molecule can be calcu-
lated using perturbation theory in the tunneling Hamiltonian

Ĥt;3 the first nonvanishing term is given by

I = 2e

h̄

∂

∂ϕ
〈gs|Ĥt(Egs − Ĥ0)−1Ĥt(Egs − Ĥ0)−1

× Ĥt(Egs − Ĥ0)−1Ĥt|gs〉, (10)

where Ĥ0 = Ĥd + Ĥs. The ground state |gs〉 is the occupied
state with lowest energy, thus it has energy Egs = min{E±

1,i},
and |gs〉 = |aζ

i 〉, where i = 1,2,3 specifies the state number
and ζ = ± is the block index. Note that the dot-lead coupling
induces energy shifts for the occupied states of the dot, starting
at order 2 in Ĥt. However, we do not need to compute these
shifts, as they will be identical for the two single occupied
states, and they can be included in the value of εd (see Ref. 28
for a multilevel case where these shifts have to be computed).

As was shown in Ref. 3, in the absence of coupling to
a molecular spin, the perturbative approach allows us to
understand the π state due to large Coulomb interaction
on the dot: the order of the electrons of a Cooper pair is
necessarily reversed during tunneling through the dot, which
gives opposite sign for the current due to the singlet nature
of the Cooper pair. Here, the exchange coupling between the
electron spin and a molecular spin means that the occupied
state of the dot is a linear combination of states involving
in general both |↑〉 and |↓〉 states of the electron spin. This
creates the possibility of spin-flip processes: a spin-up electron
tunneling in the dot can tunnel out as a spin-down electron, for
example. With such a spin flip, it is now possible for a Cooper
pair to tunnel through the dot without reversing the order of
electrons, thus contributing to positive current. In the presence
of exchange coupling with a molecular spin, one can thus
expect that, among all the lowest-order processes contributing
to the Josephson current, some of them will contribute to
negative current, and some others to positive current. The
global sign of the current will thus depend on the relative
weight of the different processes, which are a function of the
parameters of the molecule Hamiltonian.

Expressing in Eq. (10) the action of the tunneling Hamil-
tonian on the eigenstates introduced in the previous section, a
lengthy but straightforward calculation gives eventually

I = −4e

h̄
sin ϕ

∑
k,k′

t2
L,kt

2
R,k′ukvkuk′vk′

∑
j

{
A

ζ∗
j,k′B

ζ

j,k + B
ζ∗
j,k′A

ζ

j,k

Ek + Ek′ + E
ζ

1,j − Egs

+ A
ζ̄∗
j,k′A

ζ̄

j,k + B
ζ̄∗
j,k′B

ζ̄

j,k

Ek + Ek′ + E
ζ̄

1,j − Egs

}
. (11)

Here

A±
j,k = ± (ãgs,1b11 + ãgs,3b31)(b̃11a

±
1j + b̃13a

±
3j )

Ek + E0,1 − Egs − εd
± (ãgs,1b13 + ãgs,3b33)(b̃31a

±
1j + b̃33a

±
3j )

Ek + E0,3 − Egs − εd
, (12)

B±
j,k = ∓ ãgs,2a

±
2j

Ek + E0,2 − Egs − εd
, (13)

where A±∗
j,k ≡ (A±

j,k)∗ and ζ̄ = −ζ . Equations (11)–(13) represent the main results of this paper. Because we have performed a
lowest-order tunneling calculation, we get a simple I = Ic sin ϕ dependence of the current. However, the study of value of the
critical current Ic (in addition to its sign) will give us precious information on the system. At zero temperature the sums over k

and k′ should be taken over the energy region εk,εk′ > 0. Both summations over k can be replaced by the integration over energy
ε:

∑
k → ∫

dερ(ε), where ρ(ε) is a density of states.
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Our formulas of course contain the known result for the case where there is no molecular spin and no magnetic field
(B = B2 = J = D = 0):29 we obtain a π junction with negative critical current,

I (0)
c = −4e

h̄

∑
k,k′

t2
L,kt

2
R,k′ukvkuk′vk′

(Ek + Ek′)(Ek − εd)(Ek′ − εd)

= −4e

h̄

�L�R�
2

4π2

∫ ∞

0

dε1dε2

E1E2(E1 + E2)(E1 − εd)(E2 − εd)
, (14)

where we assume constant density of states ρ(ε) =
ρ0 = 2m/πh̄2, tunneling rates �L(R) = πρ0t

2
L(R), and E1(2) =√

�2 + ε2
1(2).

In the next section we analyze the dependence of the
dimensionless critical current ic = Ic/|I (0)

c | on the magnetic
molecule parameters J , D, B2, dot energy εd, and external
magnetic field B. Positive ic > 0 corresponds to the 0-junction
phase, negative ic < 0 corresponds to the π -junction phase.

III. RESULTS AND DISCUSSION

For reference, we start by analyzing Eq. (11) as a function
of exchange coupling J , when no anisotropy is present
(D = B2 = 0) and without magnetic field (B = 0). As shown
in Fig. 3(a), the current is suppressed both by negative and
positive J . For negative J (ferromagnetic coupling) the system
always remains in the π state (ic < 0). For positive J (antifer-
romagnetic coupling) a π -0 transition occurs for J/� ∼ 10
(the precise value is slowly varying with εd). This behavior
can be understood by looking at the formula for the current,22

I = −4e

h̄
sin ϕ

∑
k,k′

t2
L,kt

2
R,k′ukvkuk′vk′

× 1

3EkEk′

{
4

3J/2 + Ek + Ek′
− 1

Ek + Ek′

}
, (15)

where Ek = Ek + J − εd. The first term depicts the transfer
of a Cooper pair involving a change of the total coupled spin
(electronic and molecule) during the intermediate state [e.g.,
see Fig. 4(a)], while the second term corresponds to a Cooper
pair without change of total spin during the intermediate
state [e.g., see Fig. 4(b)]. For large positive J , the first term
becomes smaller than the second one, and the sign of the
current changes, which explains the π -0 transition.

Note that there is no change of ground state associated with
this transition occurring for large positive J , hence the critical

−50 0 50

0

0.5

1

J/Δ

−
i c

−50 0 50

0

0.02

0.04

J/Δ

(a) (b)

FIG. 3. The dependence of the normalized critical current ic as
a function of the exchange coupling J for an isotropic magnetic
molecule (D = B2 = 0) and dot level εd/� = −5 in the absence of
magnetic field (B = 0).

current shows a smooth change from negative to positive value,
passing continuously through arbitrary small values. This is to
be contrasted with 0-π transition, which is due to the crossing
of energy levels leading to a change of ground state,6,30,31

where an abrupt change of the critical current can be observed
(see, e.g., Figs. 4 and 6 in Ref. 28).

We will now consider the effect of the anisotropy (D and B2)
and of the magnetic field B on the critical current, especially
near the π -0 transition. We assume that the superconducting
gap is independent of the magnetic field. Figure 5(a) shows
the effect of D and B2 on the transition; the surface shows the
values of the parameter for which the current is zero. Above the
surface the system is in the π -junction phase (ic < 0), while
under the surface the system is in the zero phase (ic > 0).
One can see that both D and B2 move the π -0 transition to
higher values of J . This is confirmed by Figs. 5(b) and 5(c),
which correspond to cuts of the three-dimensional (3D) plot
for fixed values of B2 and D, respectively. On these panels, the
different curves correspond to different values of the magnetic
field B: we see that increasing the magnetic field tends to push

(b)

(a)

2

3 4

S + 1/2 S + 1/2 S + 1/2 S + 1/2

S − 1/2 S − 1/2 S − 1/2 S − 1/2

31 4

S + 1/2 S + 1/2 S + 1/2 S + 1/2

S − 1/2 S − 1/2 S − 1/2 S − 1/2

1

2

FIG. 4. (Color online) Illustration of two typical tunneling pro-
cesses leading to the transfer of a Cooper pair. The presence of strong
Coulomb interaction prohibits the double occupation on the dot and
the electrons are transferred one by one. Because of the exchange
coupling J between the electron spin and the molecular spin, the
state of the occupied dot (black circle on the figure) is characterized
by the total spin, S − 1/2 and S + 1/2. These two levels are separated
by an energy 3J/2. The process where the intermediate state of the
occupied dot (a) is different from the initial one and the process where
the intermediate state is the same as the initial one (b) contribute with
different signs to the Josephson current. The competition between
these two processes leads to the existence of the π -0 transition; see
Eq. (15).
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(a)

(b)
π−junction

(c)

π−junction

shift

0−junction

smear

FIG. 5. (Color online) (a) π - and 0-junction regions as a function
of the J , D, and B2. The surface divides 3D space (J,D,B2) to the top
region in a π -junction regime and to the bottom one with 0-junction
regime; at the surface current is zero. Magnetic field is zero, B = 0,
its increasing leads to “shift” and “smear” of the surface are shown
by magenta and blue arrows. (b) π -0 transition diagram in (J,D)
space at B2 = 0. Different curves correspond to the different B’s:
B/� = 0.0 (solid), 0.5 (dashed), and 1.0 (dotted). (c) π -0 transition
diagram in (J,B2) space at different B and D = 0. The nonzero D

and B2 increases the critical Jc (see Fig. 3) and magnetic field mainly
decreases Jc.

the system toward the 0-junction phase (note that the results
are insensitive to the sign of B). On the 3D plot Fig. 5(a) the
effect of the magnetic field B is thus to shift the zero current
surface as shown with magenta arrows, and also to somewhat
smear the sharp behavior in B2 as shown with blue arrows.

Up to now, we have studied the phase diagram of the system
as a function of the exchange coupling J and of the anisotropy
parameters D and B2. However, for a given molecule, these
parameters have usually a fixed value. We will now study
the behavior of the critical current when the experimentally
adjustable quantities, the external magnetic field B and the dot
level εd, are varied. The goal is to understand how the values of
the exchange coupling and of the anisotropy parameters will
modify the behavior of the current as a function of B and εd.
This could be an original way to obtain information on the
exchange coupling and on the spin anisotropy in the molecule,
by measuring the critical current of the tunnel junction and
varying B and εd.

The different panels of Fig. 6 show the behavior of the
critical current as a function of B and for various values of the
dot level εd, the exchange coupling J and of the anisotropy
parameter D (for simplicity, we have taken B2 = 0). Each
column is for a given value of J : deep in the π -junction regime
J/� = −20 (left), in the intermediate regime J/� = 11

(middle), and deep in the 0-junction regime J/� = 20 (right).
The top panel of each column is for D = 0, while the two
bottom panels of each column are for nonzero values of
D as indicated. The richer behavior is obtained when the
exchange coupling has a value that allows us to observe the π -0
transition, here in the second column for J/� = 11. Without
anisotropy [Fig. 6(d)], we see that by sweeping the magnetic
field we can observe the π -0 transition. In the presence of small
anisotropy [Fig. 6(e)], we observe a nonmonotonic behavior
as a function of B, with the modulus of the critical current
|ic| decreasing as a function of B for small B, but increasing
for large B. Finally, for larger anisotropy [Fig. 6(f)], |ic| is
everywhere increasing as a function of B. Note that, between
panel Fig. 6(d) (D = 0) and panel Fig. 6(f) (D/� = 4), the
order of the curves as a function of εd has been reversed. When
J is much larger than the superconducting gap (right column,
with J/� = 20), the system is deep in the 0-junction phase, but
the anisotropy has a visible impact on the curves: comparing
Fig. 6(g) (for D/� = 0) with Figs. 6(h) and 6(i) (for D/� = 7
and 14), we see that when D is large enough, the slope of the
critical current is the opposite of the one for small D. This is
a consequence of the π -0 transition, which happens for larger
D. Finally, for negative J [Figs. 6(a)–6(c) with J/� = −20],
the anisotropy does not bring any qualitative change to the
behavior of the current as a function of the magnetic field, and
|ic| always decrease with B.

From the different curves shown in Fig. 6, we can deduce
that when J is positive (the antiferromagnetic coupling case),
the anisotropy has a visible impact on the behavior of the
critical current as a function of B, as it can produce a
nonmonotonic behavior close to the π -0 transition, and reverse
the slope of |ic| as a function of B when J is much larger
than the critical value. On the other hand, for negative J

(ferromagnetic coupling), the anisotropy does not have a
qualitative effect on the critical current, and it merely reduces
the value of |ic|.

IV. CONCLUSION

We have computed the Josephson current through a mag-
netic molecule in the tunneling regime, studying the effect
of the exchange coupling with the molecular spin, and the
spin anisotropy of the molecule. Performing a perturbative
calculation starting from a Hamiltonian model, we have shown
that an antiferromagnetic coupling between the electron spin
and the molecular spin can induce a π -0 transition. We
have described how the spin anisotropy D and the quantum
tunneling of magnetization term B2 affect the transition.

We have shown that by studying the behavior of the critical
current as a function of the magnetic field and the level position
(which are both experimentally tunable parameters), it is
possible to get information on the value of the spin anisotropy
D, even outside the range of the π -0 transition.

This work could be extended in several directions. The
calculations could be performed for a larger molecular spin
(albeit at the cost of heavier expressions). One could also
use anisotropy parameters that depend on the charge state
of the molecule (and thus on the occupation of the dot in
our model), which could describe more faithfully molecular
magnets like Mn12.25 One could also consider the case of an
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FIG. 6. (Color online) Critical current as a function of the magnetic field B for different values of the exchange coupling J and the
anisotropy parameter D (B2 = 0). The different curves in a single plot are for various dot levels εd: εd/� = −12.5 (solid cyan line), −10.0
(dashed green line), −7.5 (dotted red line), and −5 (dashed-dotted magenta line); all currents are normalized by the critical current obtained
for εd/� = −5 with B = J = D = B2 = 0 [see Eq. (14)]. Left column: J/� = −20; the system is deep in the π -junction regime, and the
anisotropy parameter D does not change the curves qualitatively. Middle column: J/� = 11; the system is near π -0 transition, and the value
of D has a great impact on the behavior of the curves: it can produce nonmonotonic behavior as a function of B [panel (e)], or reverse the slope
of the curves compared to D = 0 [panel (f)]. Right column: J/� = 20; the system is in the 0-junction regime and D still has a visible impact,
as it can change the slopes of the curves [panel (h)]. This is due to the presence of a (large) critical value Dc above which the system is again
in the π -junction phase (not shown).

external magnetic field aligned along an arbitrary direction
(and not along the anisotropy axis of the molecule), in order
to describe experiments where it is not possible to control the
anisotropy orientation. Such a magnetic field should have a
strong impact on the current, as it will mix efficiently all the
molecular states.26

Finally, new possibilities could open up if one considers
explicitly the Josephson current between type II superconduc-
tors. In this case, it could be possible to control the value of
the superconducting gap � with the applied magnetic field.
Going to very small � would give large values of J/�, D/�,
etc., and a very large parameter range of the system, including
the π -0 transition for J > 0, could be explored. In the same
manner, it is possible to enhance the critical temperature Tc

and the second critical field Hc2 by decreasing the thickness of
the superconductor.32 This could allow us to use large values
of the magnetic field.
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