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Spectral Properties of Nonhydrogenic Atoms in Weak External Fields
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We study how the ionic core in a nonhydrogenic atom modifies the dynamics of a Rydberg electron in
the presence of a weak static external field. We show that such a system is neither regular nor chaotic:
its energy levels display unusual statistical properties, intermediate between the standard Poisson and
random matrix ones. The ionic core acts as a scatterer whose size is comparable to the de Broglie
wavelength of the electron, inducing specific quantum effects. [S0031-9007(98)07115-4]
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The hydrogen atom in the presence of an extern
magnetic field is a quantum system whose correspond
classical dynamics is either regular or chaotic, dependi
on the scaled energye ­ Eg22y3 (E is the energy andg
is the magnetic field in atomic units), and thus constitut
a prototype for studies on quantum chaos [1].

In correspondence with the evolution of the classic
dynamics from quasi-integrable for a weak magnetic fie
(low negative scaled energy# 20.5) to chaotic at high
field (high scaled energy$ 20.13), the statistical proper-
ties of the energy levels evolve from a Poissonian spe
trum to those of the Gaussian orthogonal ensemble (GO
of random matrices [1]. In the first case, the neares
neighbor spacing (NNS) distribution—which measure
the probability to find the next energy level at distances
(in units of the mean level spacing)—isPssd ­ exps2sd,
and, in the second case, it is approximately given by t
Wigner distributionPssd ­ psy2 exps2ps2y4d.

In a nonhydrogenic atom—for example, an alkali atom
as used in several experiments [2–4]—the Rydberg ele
tron is in a highly excited state while all other elec
trons are in low excited states. The system (nucleus1

inner electrons) can be considered as a frozen ionic co
with spherical symmetry, the size of a few Bohr radi
When it is outside this ionic core, the Rydberg electro
experiences a Coulomb field created by a chargeZ ­ 1 at
the nucleus. It is only when it penetrates the core that
feels a stronger force. At the scale of the Rydberg ele
tron (few thousands Bohr radii), the ionic core appears
a very small object perturbing the hydrogenic dynamics

A nontrivial question—addressed in this Letter—i
to determine the spectral properties of a nonhydrogen
atom in an external field. When the classical hydrogen
dynamics is chaotic, it seems that they remain describ
by the GOE [4]. The situation is totally different when
the hydrogenic dynamics is regular because the ionic co
breaks the quasi-integrability. Courtneyet al. [4] have
shown a dramatic change in the statistical properties
energy levels which seem to be close to the GOE on
in the presence of the ionic core. They attribute th
phenomenon to “core-induced chaos”; we here show th
this point of view is incomplete.
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An efficient numerical method based onR-matrix the-
ory exists for finding the energy levels of a nonhydrogen
atom in an external field [3]. It relies on the physica
picture outlined above: one splits space in an outer
gion where the effect of the ionic core is negligible an
where the Schrödinger equation for the Rydberg electr
is solved by expansion on a suitable basis, and an in
region where the quantum dynamics is dominated by
ionic core (the effect of the external field is negligible
and can be described by a set of quantum defects. T
matching between the solutions in the two regions giv
the energy levels of the nonhydrogenic atom.

We have calculated the lowest 40 000 states of the
drogen atom in a magnetic field at scaled energye ­ 20.5
(for theLz ­ 0, even parity series) and the same set for t
simplest nonhydrogenic atom, imposing a single nonze
quantum defectd,­0 ­ 0.5. This is not too far from a real
atom such as lithium whered0 ­ 0.4 and d,$2 ø 0.01.
Figure 1 shows the cumulative spacing distributionNssd ­Rs

0 Psxd dx obtained for various sequences of energy le
els (for d,­0 ­ 0.5), all obtained at the same scaled en
ergy, that is, for the same hydrogenic dynamics. T
lowest sequence is well described by the Wigner dist
bution, but, for higher excited states, the distribution dev
ates from Wigner and tends to a well defined limit whic
presents level repulsion—such as the Wigner distrib
tion—at the origin, but also has a much longer tail for larg
spacings—such as the Poisson distribution [see Figs. 1
and (e)]. Clearly, the behavior at larges is exponential,
not Gaussian. For comparison, we have also plotted
“semi-Poisson” distribution (defined below) [5]:

Pssd ­ 4s exps22sd , (1)
which is in excellent agreement with our numerical r
sults. We have carefully checked that the numerica
obtained distribution does not further change for high
excited states. In other words, when we go to higher a
higher Rydberg states at fixed scaled energy, the statist
properties of the energy levelsdo not tend to the ones of
the GOE.

A similar phenomenon is observed in an external sta
electric field. For scaled energye ­ EF21y2 (whereF
is the electric field in atomic units) sufficiently below th
© 1998 The American Physical Society
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FIG. 1. Statistical properties of the energy levels of a nonh
drogenic atom (quantum defectd,­0 ­ 0.5) in a weak magnetic
field (scaled energy20.5, Lz ­ 0, even parity). (a) Cumu-
lative nearest-neighbor spacing distribution between the 200
and the 700th excited states (solid histogram), compared w
the Poisson (dashed line), semi-Poisson (dash-dotted line),
Wigner (dotted line) distributions; (b) and (c) Same as (a
respectively, in the ranges 1000th to 2000th and 5000th
40 000th excited states; (d) and (e) The nearest-neighbor sp
ing distribution itself, on linear and logarithmic scales [data a
in (c)]. While, for low excited states, the distribution is wel
described by the Wigner distribution, the distribution for highe
excited states is quite different, with a linear level repulsio
such as Wigner and an exponential tail such as Poisson. T
agreement with the intermediate semi-Poisson distribution
excellent; see especially the tail at large spacing in (e). In t
corresponding hydrogenic situation, all of the distributions a
close to the Poisson distribution.

classical ionization thresholde ­ 22, the highly excited
states are quasidiscrete. In the absence of an ionic co
the system is integrable and displays a Poisson statist
For a nonhydrogenic atom, the NNS distribution is linea
at small spacing (the cumulative distribution starts ass2)
and falls exponentially at larges—see Fig. 2. Although
it slightly deviates from the semi-Poisson distribution (se
discussion below), it has the same qualitative behav
at small and larges and is clearly very different from
a Wigner distribution. We expect such a behavior t
be general for nonhydrogenic atoms in any external fie
weak enough to keep the classical hydrogenic dynam
quasi-integrable.

A complete understanding requires a careful analys
of the physical phenomena taking place in the vicinity o
the ionic core. The crucial point is to know whether
semiclassical approximation may be used there: We arg
in the following that the answer is negative and that
specific approach is needed.

The ionic core acts as a spherical obstacle which sc
ters the Rydberg electron. The size of the scattering obj
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FIG. 2. Same as Fig. 1, but in a weak electric field (scaled
ergy 22.2) for states ranging from the 20 000th to the 40 000
excited states. Again, the cumulative spacing distribution
clearly different from the Poisson and the Wigner distribution
in good qualitative agreement with the semi-Poisson predict
at small and larges.

(few Bohr radii) is comparable to the de Broglie wav
length of the Rydberg electron close to the core, even
one considers extremely highly excited states: the io
core cannotbe treated as a classical object [6]. The e
fect of a spherical scatterer is accounted for by a set
phase shifts in the different spherical channels. Here, th
phase shifts are nothing but the quantum defects. Diff
ent model potentials for the ionic core may give the sa
set of quantum defects and, consequently, the same sp
in the presence of an external field. They will, howeve
lead to different classical dynamics [7] and, consequen
to different thresholds for core-induced chaos: this is b
cause near the nucleus, where the core strongly affects
classical trajectories and makes them depend sensiti
on the initial conditions, the semiclassical approximati
breaks down. It is thus impossible to build a solution of t
Schrödinger equation which follows closely one such cla
sical trajectory, the wave packet being unavoidably sc
tered near the origin [8]. However, the breakdown of t
semiclassical approximation is not extremely severe
cause the de Broglie wavelength is comparable—not m
larger—to the size of the ionic core. A semiclassical a
proximation using core-scattered orbits thus gives a corr
qualitative understanding of the physics, for example,
existence of additional modulations in the density of sta
and density of oscillator strengths [7]. If quantitative r
sults are needed—for example, the amplitudes and pha
of these modulations—a quantumad hoctreatment of the
ionic core is required, as done in [6]. From a tempo
point of view, a typical classical trajectory follows an in
variant torus of the hydrogenic motion, being from tim
to time scattered by the ionic core to another torus. T
time interval between two consecutive scattering event
of the order of the Heisenberg time,h̄y(mean level spac-
ing), which expresses that the quantum dynamics can
considered neither as chaotic nor as regular: it is an in
mediate situation.

The physics is very similar to the one of a rectangu
two-dimensional billiard containing a small circular sca
terer, whose size is tuned to the de Broglie wavelen
2443
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[9]. While, for a relatively large obstacle, the system (
standard Sinai billiard) has the statistical properties of th
GOE, in the limiting case of a point scatterer, these a
somewhat different: there is linear level repulsion at sma
spacing, but the tail significantly deviates from a Gaus
ian, exactlyas our numerical observations on nonhydro
genic atoms. Because of particular attention on the lev
repulsion phenomenon, the distributions obtained in [
have been incorrectly interpreted as Wigner distribution
and thus as proofs of the existence of “wave chaos”
“chaos induced by quantization.”

The analogy between a nonhydrogenic atom and suc
billiard can be made more formal. Suppose we are ab
to solve exactly the hydrogenic problem in the presen
of an external field.Ei will denote the energy levels and
cisrd the eigenstates. The Green’s function is

GsE, r, r0d ­
X

i

c
p
i sr0dcisrd
E 2 Ei

. (2)

At any energyE, GsE, r, r0d (viewed as a function of
r) is a solution of the Schrödinger equation for th
electron, decreasing at infinity. Moreover, except in th
immediate vicinity of the nucleus, it is also a solution
of the Schrödinger equation for the nonhydrogenic atom
Hence, the energy spectrum of the nonhydrogenic ato
in the presence of the external field is simply given b
those values ofE for which GsE, r, r0d nearr ­ 0 can be
matched with the field-free nonhydrogenic eigenfunction
(which depend on the quantum defects) described in [1
In the specific case of a single nonzero quantum defe
d ­ d,­0, only the , ­ 0 spherical component plays a
role as the other ones cancel at the origin, and we fina
end with the following equation:X

i

jcis0dj2

Ei 2 E
­

cotspdd
2

, (3)

where the sum overi, which is formally divergent, has
to be conveniently renormalized. This renormalizatio
process is somewhat tricky and will be explained—
together with the general case of several nonzero quant
defects—in detail elsewhere [11]. It is analogous to th
one used in [9] for a point scatterer in a billiard (for which
a similar equation is obtained for the energy spectrum
taking into account the presence of the Coulomb potenti

Equation (3) not only allows calculation of the non
hydrogenic energy levels as soon as the hydrogenic on
are known, but it also gives much insight in the statis
tical properties of the energy levels. A first remark i
that there is exactly one root between two poles, i.e
one nonhydrogenic energy level in the interval limite
by two consecutive hydrogenic levels. We now conce
trate on the cased ­ 0.5 where the right-hand side (rhs)
in Eq. (3) is zero. The statistical properties of the roo
of Eq. (3) can be obtained from the statistical propertie
of the hydrogenic energy levelsEi and the numerators
jcis0dj2. For a quasi-integrable situation, theEi have a
2444
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Poisson distribution, but the distribution of the numer
tors is not universal. It is then easy to show that th
NNS distribution of the roots of Eq. (3) decreases simil
to exps22sd at large distances (unlike the Wigner distr
bution) and presents a linear level repulsionPssd ­ as
at small s with the coefficienta depending on the dis-
tribution of the numerators. When all numerators a
equal, one getsa ­ p

p
3y2, significantly smaller than

the semi-Poisson predictiona ­ 4, see Eq. (1) [5]. This
is the situation realized for a weak external electric fie
where the eigenstates are separable in parabolic coo
nates, and their overlaps with the usual spherical hyd
genic states are given by a Clebsch-Gordan coefficie
which is the same for all states in the case, ­ m ­ 0:
the slope nears ­ 0 is smaller than four (see Fig. 2)
and a global small deviation from semi-Poisson is o
served. For a nonuniform distribution of the numerato
a increases, being for usual smooth distributions clo
to four, either smaller or larger. This is the case for a
external magnetic field where the numerators are wid
spread and the global agreement with semi-Poisson alm
perfect. In order to understand qualitatively the spect
properties, Bogomolnyet al. [5] have introduced a simple
model—baptized “semi-Poisson model”—for solving ap
proximately Eq. (3), where each zero is lying exactly
the middle of two consecutive poles. The correspondi
NNS distribution—called semi-Poisson distribution—
given by Eq. (1) and reproduces well our numerical r
sults (see Figs. 1 and 2).

Several models based on different physical groun
predict linear level repulsion. For example, the “shor
range Dyson model” discussed in [5] (where there is lev
repulsion only between adjacent states, in contrast w
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FIG. 3. Cumulative next-nearest-neighbor spacing distrib
tions (on a double logarithmic scale) for a nonhydrogenic ato
in a weak magnetic [data of Fig. 1(c)] or electric [data o
Fig. 2] field, compared with the Poisson (dashed line), sem
Poisson (solid line), short-range Dyson model (dash-dot
line), and GOE (dotted line) distributions. The functional de
pendence at small spacings is clearly proportional tos3, in
agreement with the semi-Poisson model, and deviates from
other distributions.
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FIG. 4. Spacing distributions for a nonhydrogenic atom i
a weak magnetic field (scaled energy20.5, from 13 000th
to 22 000th excited states) with quantum defectd,­0 ­ 0.15
(dotted line) and 0.85 (dashed line) in comparison wit
the analytical prediction of thed-Poisson model [Eq. (4)].
The excellent agreement validates the model which smooth
evolves from a Poisson distribution ford ­ 0 to a semi-Poisson
distribution atd ­ 0.5, where the effect of the ionic core is
maximum.

the GOE where there is level repulsion between any p
of states) predicts a NNS distribution exactly equal to th
semi-Poisson distribution, although other statistical qua
tities behave differently from the ones of the semi-Poisso
model. In order to discriminate between the various mo
els, we study the next-nearest-neighbor distributionP2ssd,
i.e., the statistical distribution of spacing between stat
n and n 1 2. The corresponding cumulative distribu
tion N2ssd ­

R
P2sxd dx is shown in Fig. 3 on a double

logarithmic scale, in comparison with the predictions o
the Poisson, semi-Poisson, short-range Dyson, and G
models, which behave ass2, s3, s4, ands5, respectively.
Clearly, the numerical results scale ass3 in good agree-
ment with the semi-Poisson model, in sharp contrast w
some other systems displaying intermediate level statist
[5,12], which are closer to the short-range Dyson mode
Note that the semi-Poisson model does not predict co
rectly the coefficient ofs3. Like the NNS, there is no
universality here and the model is too crude.

When the quantum defectd in the, ­ 0 channel is not
equal to 0.5, the rhs in Eq. (3) is not zero and, in averag
the roots are not in the middle of consecutive poles. F
equally spacedEi and equal numerators, Eq. (3) can b
exactly solved, and the roots lie exactly at fractiond

of each interval. To describe the general situation (n
equally spacedEi), we define ad-Poisson model where
each level lies atdEi 1 s1 2 ddEi11. The corresponding
spacing distribution is

Pdssd ­
1

1 2 2d

∑
exp

µ
2

s
1 2 d

∂
2 exp

µ
2

s
d

∂∏
. (4)
n
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It is shown in Fig. 4 in comparison with the NNS
distributions obtained numerically for a nonhydrogen
atom in a magnetic field withd ­ 0.15 and 0.85. The
agreement is excellent. The same distribution is obtain
for quantum defectsd and1 2 d, as predicted by Eq. (4).

In conclusion, we have shown that, for a nonhydroge
atom in a weak external field, the presence of t
ionic core which scatters the Rydberg electron lea
to statistical properties of the energy levels of a ne
type, intermediate between the standard Poisson
GOE statistics. Similar observations have been recen
reported in other systems [5,12,13], which indicate th
importance and broad interest: as far as we kno
nonhydrogenic atoms are the first “real” systems whe
this is numerically observed and where an experimen
confirmation could be obtained in the near future.
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