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Spectral Properties of Nonhydrogenic Atoms in Weak External Fields
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We study how the ionic core in a nonhydrogenic atom modifies the dynamics of a Rydberg electron in
the presence of a weak static external field. We show that such a system is neither regular nor chaotic:
its energy levels display unusual statistical properties, intermediate between the standard Poisson and
random matrix ones. The ionic core acts as a scatterer whose size is comparable to the de Broglie
wavelength of the electron, inducing specific quantum effects. [S0031-9007(98)07115-4]

PACS numbers: 32.60.+i, 05.45.+b, 03.65.Sq, 32.80.Rm

The hydrogen atom in the presence of an external An efficient numerical method based @&matrix the-
magnetic field is a quantum system whose correspondingry exists for finding the energy levels of a nonhydrogenic
classical dynamics is either regular or chaotic, dependingtom in an external field [3]. It relies on the physical
on the scaled energy = Ey~2/3 (E is the energy ang picture outlined above: one splits space in an outer re-
is the magnetic field in atomic units), and thus constitutegjion where the effect of the ionic core is negligible and
a prototype for studies on quantum chaos [1]. where the Schrédinger equation for the Rydberg electron

In correspondence with the evolution of the classicals solved by expansion on a suitable basis, and an inner
dynamics from quasi-integrable for a weak magnetic fieldegion where the quantum dynamics is dominated by the
(low negative scaled energg —0.5) to chaotic at high ionic core (the effect of the external field is negligible)
field (high scaled energs —0.13), the statistical proper- and can be described by a set of quantum defects. The
ties of the energy levels evolve from a Poissonian speamatching between the solutions in the two regions gives
trum to those of the Gaussian orthogonal ensemble (GOEBhe energy levels of the nonhydrogenic atom.
of random matrices [1]. In the first case, the nearest- We have calculated the lowest 40 000 states of the hy-
neighbor spacing (NNS) distribution—which measuresdrogen atom in a magnetic field at scaled energy —0.5
the probability to find the next energy level at distance (fortheL, = 0, even parity series) and the same set for the
(in units of the mean level spacing)—#s) = exp(—s),  simplest nonhydrogenic atom, imposing a single nonzero
and, in the second case, it is approximately given by thguantum defecé,—y = 0.5. Thisis nottoo far from a real
Wigner distributionP(s) = 7s/2 exp(—s%/4). atom such as lithium wherg, = 0.4 and §,=, < 0.01.

In a nonhydrogenic atom—for example, an alkali atomFigure 1 shows the cumulative spacing distributdi) =
as used in several experiments [2—4]—the Rydberg elecf, P(x) dx obtained for various sequences of energy lev-
tron is in a highly excited state while all other elec- els (for 6,—y = 0.5), all obtained at the same scaled en-
trons are in low excited states. The system (nucleus ergy, that is, for the same hydrogenic dynamics. The
inner electrons) can be considered as a frozen ionic colewest sequence is well described by the Wigner distri-
with spherical symmetry, the size of a few Bohr radii. bution, but, for higher excited states, the distribution devi-
When it is outside this ionic core, the Rydberg electronates from Wigner and tends to a well defined limit which
experiences a Coulomb field created by a chatge 1 at  presents level repulsion—such as the Wigner distribu-
the nucleus. It is only when it penetrates the core that ition—at the origin, but also has a much longer tail for large
feels a stronger force. At the scale of the Rydberg elecspacings—such as the Poisson distribution [see Figs. 1(d)
tron (few thousands Bohr radii), the ionic core appears aand (e)]. Clearly, the behavior at largds exponential,

a very small object perturbing the hydrogenic dynamics. not Gaussian. For comparison, we have also plotted the

A nontrivial question—addressed in this Letter—is “semi-Poisson” distribution (defined below) [5]:
to determine the spectral properties of a nonhydrogenic P(s) = 4sexp(—2s), Q)
atom in an external field. When the classical hydrogeniavhich is in excellent agreement with our numerical re-
dynamics is chaotic, it seems that they remain describeslults. We have carefully checked that the numerically
by the GOE [4]. The situation is totally different when obtained distribution does not further change for higher
the hydrogenic dynamics is regular because the ionic corexcited states. In other words, when we go to higher and
breaks the quasi-integrability. Courtney al. [4] have higher Rydberg states at fixed scaled energy, the statistical
shown a dramatic change in the statistical properties gbroperties of the energy levetid nottend to the ones of
energy levels which seem to be close to the GOE onethe GOE.
in the presence of the ionic core. They attribute this A similar phenomenon is observed in an external static
phenomenon to “core-induced chaos”; we here show thaglectric field. For scaled energy = EF~'/2 (where F
this point of view is incomplete. is the electric field in atomic units) sufficiently below the
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FIG. 2. Same as Fig. 1, but in a weak electric field (scaled en-
ergy —2.2) for states ranging from the 20 000th to the 40 000th
05 excited states. Again, the cumulative spacing distribution is
P(s) © , clearly different from the Poisson and the Wigner distributions,
00 - in good qualitative agreement with the semi-Poisson prediction
P(s) 10" at small and large.
(log scale)  10” = :
10° ]
0 1 ) s 4 (few Bohr radii) is comparable to the de Broglie wave-
Spacing s length of the Rydberg electron close to the core, even if

FIG. 1. Statistical properties of the energy levels of a nonhy-One considers extremely highly ?XC'ted. states: the lonic
drogenic atom (quantum defedt_, = 0.5) in a weak magnetic = COre cannotbe f[reated as a c_IassmaI object [6]. The ef-

field (scaled energy-0.5, L. = 0, even parity). (a) Cumu- fect of a spherical scatterer is accounted for by a set of
lative nearest-neighbor spacing distribution between the 200tphase shifts in the different spherical channels. Here, these
and the 700th excited states (solid histogram), compared wit@ase shifts are nothing but the quantum defects. Differ-

the Poisson (dashed line), semi-Poisson (dash-dotted line), al : P :
Wigner (dotted line) distributions: (b) and (c) Same as (a). t model potentials for the ionic core may give the same

respectively, in the ranges 1000th to 2000th and 5000th t§e€tOf quantum defects and, consequently, the same spectra
40000th excited states; (d) and (e) The nearest-neighbor spai®? the presence of an external field. They will, however,
ing distribution itself, on linear and logarithmic scales [data aslead to different classical dynamics [7] and, consequently,
in (c)]. While, for low excited states, the distribution is well tg different thresholds for core-induced chaos: this is be-

described by the Wigner distribution, the distribution for higher
excited states is quite different, with a linear level repulsioncause near the nucleus, where the core strongly affects the

such as Wigner and an exponential tail such as Poisson. THgassical trajectories and makes them depend sensitively
agreement with the intermediate semi-Poisson distribution i®n the initial conditions, the semiclassical approximation
excellent; see especially the tail at large spacing in (€). In théreaks down. Itis thus impossible to build a solution of the
corresponding hydrogenic situation, all of the distributions aregchrgdinger equation which follows closely one such clas-
close to the Poisson distribution. sical trajectory, the wave packet being unavoidably scat-
tered near the origin [8]. However, the breakdown of the
classical ionization threshold = —2, the highly excited semiclassical approximation is not extremely severe be-
states are quasidiscrete. In the absence of an ionic coreause the de Broglie wavelength is comparable—not much
the system is integrable and displays a Poisson statistickrger—to the size of the ionic core. A semiclassical ap-
For a nonhydrogenic atom, the NNS distribution is linearproximation using core-scattered orbits thus gives a correct
at small spacing (the cumulative distribution starts3s  qualitative understanding of the physics, for example, the
and falls exponentially at large—see Fig. 2. Although existence of additional modulations in the density of states
it slightly deviates from the semi-Poisson distribution (seeand density of oscillator strengths [7]. If quantitative re-
discussion below), it has the same qualitative behaviosults are needed—for example, the amplitudes and phases
at small and larges and is clearly very different from of these modulations—a quantuad hoctreatment of the
a Wigner distribution. We expect such a behavior toionic core is required, as done in [6]. From a temporal
be general for nonhydrogenic atoms in any external fielgpoint of view, a typical classical trajectory follows an in-
weak enough to keep the classical hydrogenic dynamicegariant torus of the hydrogenic motion, being from time
quasi-integrable. to time scattered by the ionic core to another torus. The
A complete understanding requires a careful analysisime interval between two consecutive scattering events is
of the physical phenomena taking place in the vicinity ofof the order of the Heisenberg timg/(mean level spac-
the ionic core. The crucial point is to know whether aing), which expresses that the quantum dynamics can be
semiclassical approximation may be used there: We argusonsidered neither as chaotic nor as regular: it is an inter-
in the following that the answer is negative and that amediate situation.
specific approach is needed. The physics is very similar to the one of a rectangular
The ionic core acts as a spherical obstacle which scatwo-dimensional billiard containing a small circular scat-
ters the Rydberg electron. The size of the scattering objeterer, whose size is tuned to the de Broglie wavelength
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[9]. While, for a relatively large obstacle, the system (aPoisson distribution, but the distribution of the numera-
standard Sinai billiard) has the statistical properties of théors is not universal. It is then easy to show that the
GOE, in the limiting case of a point scatterer, these aréINS distribution of the roots of Eq. (3) decreases similar
somewhat different: there is linear level repulsion at smalto exg—2s) at large distances (unlike the Wigner distri-
spacing, but the tail significantly deviates from a Gausshution) and presents a linear level repulsiBfs) = as
ian, exactlyas our numerical observations on nonhydro-at smalls with the coefficienta depending on the dis-
genic atoms. Because of particular attention on the levetribution of the numerators. When all numerators are
repulsion phenomenon, the distributions obtained in [9kqual, one getsr = 7+/3/2, significantly smaller than
have been incorrectly interpreted as Wigner distributionghe semi-Poisson predictian = 4, see Eq. (1) [5]. This
and thus as proofs of the existence of “wave chaos” ofs the situation realized for a weak external electric field
“chaos induced by quantization.” where the eigenstates are separable in parabolic coordi-
The analogy between a nonhydrogenic atom and suchrates, and their overlaps with the usual spherical hydro-
billiard can be made more formal. Suppose we are ablgenic states are given by a Clebsch-Gordan coefficient,
to solve exactly the hydrogenic problem in the presenceavhich is the same for all states in the case= m = 0:
of an external field. E; will denote the energy levels and the slope neas = 0 is smaller than four (see Fig. 2),

:(r) the eigenstates. The Green’s function is and a global small deviation from semi-Poisson is ob-
B ()i (r) served. For a nonuniform distribution of the numerators,
G(E,r,x') = Z r=—— (2)  «a increases, being for usual smooth distributions close

i

Ei to four, either smaller or larger. This is the case for an

At any energyE, G(E,r,r’) (viewed as a function of external magnetic field where the numerators are widely
r) is a solution of the Schrédinger equation for thespread and the global agreement with semi-Poisson almost
electron, decreasing at infinity. Moreover, except in theperfect. In order to understand qualitatively the spectral
immediate vicinity of the nucleus, it is also a solution properties, Bogomolngt al. [5] have introduced a simple
of the Schrodinger equation for the nonhydrogenic atommodel—baptized “semi-Poisson model’—for solving ap-
Hence, the energy spectrum of the nonhydrogenic atorproximately Eqg. (3), where each zero is lying exactly in
in the presence of the external field is simply given bythe middle of two consecutive poles. The corresponding
those values of. for which G(E,r,r’) nearr = 0 can be NNS distribution—called semi-Poisson distribution—is
matched with the field-free nonhydrogenic eigenfunctiongiven by Eq. (1) and reproduces well our numerical re-
(which depend on the quantum defects) described in [10pults (see Figs. 1 and 2).

In the specific case of a single nonzero quantum defect Several models based on different physical grounds
8 = 8¢—o, only the £ = 0 spherical component plays a predict linear level repulsion. For example, the “short-
role as the other ones cancel at the origin, and we finallypange Dyson model” discussed in [5] (where there is level

end with the following equation: repulsion only between adjacent states, in contrast with
Z i (0)]? _ cot(7 5) 3)
— E, — E 2 .
L . 10
where the sum oveit, which is formally divergent, has .
to be conveniently renormalized. This renormalization 10

process is somewhat tricky and will be explained—

together with the general case of several nonzero quanturiN,(S)
defects—in detail elsewhere [11]. It is analogous to the 10
one used in [9] for a point scatterer in a billiard (for which

10

a similar equation is obtained for the energy spectrum), 10
taking into account the presence of the Coulomb potential. 10°

Equation (3) not only allows calculation of the non- % L
hydrogenic energy Ievels_ as soon as the hy_drogenic ones 10 16»1 160
are known, but it also gives much insight in the statis- )
tical properties of the energy levels. A first remark is Spacing s

that there is exa(_:tly one root be_tween _tWO pOIe,S’,i'e'FIG. 3. Cumulative next-nearest-neighbor spacing distribu-
one nonhydrogenic energy level in the interval limitedtions (on a double logarithmic scale) for a nonhydrogenic atom
by two consecutive hydrogenic levels. We now concenin a weak magnetic [data of Fig. 1(c)] or electric [data of

trate on the casé = 0.5 where the right-hand side (rhs) Fig. 2] field, compared with the Poisson (dashed line), semi-

; ; fati ; oisson (solid line), short-range Dyson model (dash-dotted
in Eq. (3) is zero. The statistical properties of the root ine), and GOE (dotted line) distributions. The functional de-

of Eqg. (3) can bg obtained from the statistical propertie'spendence at small spacingis clearly proportional tos®, in
of the hydrogenic energy levels; _and_ the numerators agreement with the semi-Poisson model, and deviates from alll
|;(0)]*>. For a quasi-integrable situation, ti& have a other distributions.
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1.0 It is shown in Fig. 4 in comparison with the NNS
distributions obtained numerically for a nonhydrogenic

0.8 atom in a magnetic field wittd = 0.15 and 0.85. The
agreement is excellent. The same distribution is obtained
0.6 for quantum defects and1 — &, as predicted by Eq. (4).
P(s) In conclusion, we have shown that, for a nonhydrogenic
0.4 atom in a weak external field, the presence of the
ionic core which scatters the Rydberg electron leads
0.2 to statistical properties of the energy levels of a new
type, intermediate between the standard Poisson and
0.0 GOE statistics. Similar observations have been recently

reported in other systems [5,12,13], which indicate their
Spacing s importance and broad interest: as far as we know,

nonhydrogenic atoms are the first “real” systems where

FIG. 4. Spacing distributions for a nonhydrogenic atom inthis is numerically observed and where an experimental

a weak magnetic field (scaled energy0.5, from 13000th . . . .
to 22000th excited states) with quantum defégt, = 0.15 confirmation could be obtained in the near future.

(dotted line) and 0.85 (dashed line) in comparison with We thank E. Bogomolny, K. Taylor, and J. Zakrzewski
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