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A theory of the static electron polarizability of crystals whose energy spectrum is modified by
quantizing magnetic fields is presented. The polarizability is strongly affected by nondissipative Hall
currents induced by the presence of crossed electric and magnetic fields: these can even change its sign.
Results are illustrated in detail for a two-dimensional square lattice. The polarizability and the Hall
conductivity are, respectively, linked to the two topological quantum numbers entering the so-called
Diophantine equation. These numbers could in principle be detected in actual experiments.
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The polarizability is usually presented as an important
property of insulators [1]. An electric field imposed be-
tween the plates of a capacitor penetrates into their interior,
and charge redistribution is induced within the system.
This effect is characterized by the polarizability: the ratio
of induced dipole moments per unit volume and the local
field. In metals this charge redistribution is nonuniform
because of the charge mobility and the local electric field is
nonuniform as well. In the particular case that the distri-
bution of the atomic cores is not affected by the applied
electric field, it is the electronic charge redistribution only
which determines the polarizability of insulators as well as
metals.

Crystalline solids have an energy spectrum composed of
energy bands. They become insulators whenever the Fermi
energy is located within an energy gap between these
bands. Additional energy gaps can be opened by applying
strong magnetic fields to two-dimensional (2D) as well as
to three-dimensional crystals [2—4]: the energy spectrum
of 2D crystals is separated in an integer number of sub-
bands whenever the number of flux quanta contained in the
unit cell corresponds to a rational number [2]. The number
of electrons per subband is specified by two topological
gap numbers, one of which has been linked to the Hall
conductance [5]. The present work establishes that for
electrons in a “‘strong” periodic potential subject to a
magnetic field, the remaining gap number is directly linked
to the polarizability. We thus limit our attention to the static
electron polarizability and its dependence on the electron
concentration, i.e., on the Fermi energy w. This limitation
allows to exclude dissipative processes from the consid-
eration: no current flow is allowed along the applied elec-
tric field. For the sake of simplicity, an ensemble of
spinless electrons at zero temperature is considered. We
will also limit our treatment to “ideal” crystals with a
rectangular unit cell of volume a_ A, where a, is the lattice
constant along the Z direction and Ay = a.a,, is the area in
the X § plane.
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In the considered geometry, the magnetic field is applied
along the Z direction, parallel with capacitor plates as well
as with the zth crystallographic axis. The external field due
to the voltage drop between capacitor plates is applied
along the ¥ direction. The system is assumed to be open
along the x direction, (i.e., periodic boundary conditions)
allowing nondissipative current flow. This condition allows
the direct comparison of the polarizability with the topo-
logical gap numbers. Such condition could be realized in a
Corbino geometry with cylindrical capacitor plates of large
radius.

We start with the case of a vanishing magnetic field.
Generally, electrons are not equally distributed over energy
bands. The electron occupation §§0)(,u) of the ith band per
volume a,A obeys the sum rule a,A)N(un) = ,-550)(,u) =
59 (w). Here N(u) denotes the electron concentration (the
integrated density of states). Whenever the Fermi energy is
located within an energy gap, §°(u) = s (s integer). The
wave functions of each band are assumed to be of Bloch-
like form (i.e., extended) along the X direction while along
the § direction we consider a Wannier-like form (i.e.,
localized). With this choice the mass-center positions of
the electrons along the y direction are well defined by the
expectation values of the y coordinate. Averaging over
occupied states belonging to the ith band gives an average
value of the mass-center positions (¥;(w)). An electric field
along the y direction, Ey, leads to a redistribution of the
electron charge, which can be characterized by the shifts of
the mass-center positions (AY;(u)). These shifts are con-
trolled by the balance of the electric force and of the
gradient force, due to the background crystalline potential,
which acts in opposite direction to bring the electrons back
into their equilibrium positions. Within linear response in
&y, the latter is characterized by a force constant K;(x), so
that:

— 50(w)e€, — Ki(w)AYi(w)) = 0. (1)
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The resulting static electron polarizability a®(u) is given
as follows

CeYAAY (W) | @ ()
azA()Sy aZAO 7 K,(,u)

The above expressions are applicable even in the case of a
nonuniform electric field along the § direction if the charge
redistribution does not affect the values of the force con-
stants K;. Strictly speaking, for real metallic systems it
might be a crude approximation.

Next, an external magnetic field splits the bands into
subbands [2—-4]. Because the geometry allows electrons to
flow along the X direction, the crossed electric Sy and
magnetic B fields give rise to a Hall current density jj.
Consequently, an additional force—the Lorentz force—
acts on the electron ensemble. The new balance condition
along the y direction becomes:

B . 1
— eN(p)€, — ol

a0 () = @

D Ki(w)AYi(w) =0, (3)

aZAU

where the index i now counts available subbands. The Hall
current density has the standard form
e o)

g = g, 4
JH h a, y ()

where 6(u) is dimensionless. Introducing §(u) to express
the mass-center shifts (AY;(u)) in the form given by
Eq. (1), the force balance Eq. (3) becomes

()
a2mwly’

where Iz = \/hc/(eB) is the magnetic length.
The effect of a strong magnetic field on Bloch electrons

is more pronounced in 2D systems, which motivates our
choice of a crystal formed by 2D planes, perpendicular to
the magnetic field, which are separated along the Z direc-
tion by a,. The lattice constant a, is large enough that
electron transitions between planes are ruled out. We thus
consider a single layer only: a 2D crystal with electron
concentration a,N(u). As was first noticed by Wannier [6]
and recently proved by Kellendonk [7], the necessary
condition for the appearance of an energy gap in such
systems reads N(u) = s/(a,Ay) + o/(a,2wl3), where s
and o are integers, often called topological gap numbers,
and o determines the value of the quantum Hall conduc-
tance [5]. The comparison of this so-called Diophantine
equation with its general form Eq. (5) leads to the con-
clusion that s is related to the system polarizability.

The relation between polarizability and Hall current is
now illustrated with a tight-binding model on a square
lattice, Ay = a?, assuming nonzero overlap between the
nearest neighbor sites only. At zero magnetic field it gives a
single energy band with cosine dispersion. The effect of the
magnetic field is included with the Peierls substitution
[2,8]. This model was first used to obtain the ‘“‘Hofstadter

5(u) N

N(p) = @Ay
z

(&)

butterfly” energy spectrum [2]. For rational magnetic
fields, satisfying

A
0 g, g=2i+1 (6)

2ml}

(where p and i are integers), the energy spectrum is com-
posed of g subbands well separated by energy gaps for
which topological gap numbers are uniquely defined [5,9].

Choosing the Landau gauge A= (—=By,0,0), the
Hamiltonian of the system remains periodic in the X direc-
tion. Zero-order wave functions of each row of atomic
orbitals ¢,(x — am,y — an) along the £ direction are
thus of the following standard form:

VO, (1) = S ek, (x— amy —an), ()

where k, is the wave number. The vector potential between
atomic sites belonging to different rows differs by AA, =
—BaAn, and the Peierls substitution suggests to shift k,
entering the zero-field eigenenergies as follows:

k,— k,— 272", (8)
q a

so that phase factors in the overlap integrals arise between
orbitals of the neighboring rows. Assuming zero-order
eigenfunctions in the form of a linear combination of row
eigenfunctions, Eq. (7), the coefficients c,(k,) have to
satisfy the following Harper’s equation [8,10]:

E-E
c,,(kx)[Z cos<kxa - 277%) i }

+ Cn—l(kx) + Cn+1(kx) =0, 9

where E, is the energy of the atomic orbitals (chosen to be
zero) and AV is the overlap strength (the zero-field band
width is 8AV). The modulus of the ¢, coefficients are
periodic with a period g, but their amplitude differs by a
phase B: c¢,+, = ¢’c, [11]. For a given B € [0,27],
Eq. (9) gives a system of g equations, and the c,(k,, B)
are eigenvectors of a ¢ X ¢ matrix. The eigenvalues Eg(k,)
give the g subbands, each of them composed of energy
branches determined by the phase 3, which are periodic in
k, with period 27/a. Because of the periodicity of the
|c,(k,, B)|, it is natural to define Wannier-like functions,
which are extended (localized) along the X (9) direction:

+i
wn,kx,ﬁ(;) = Z Crialky, B)\I’f?lA,kx(F)' (10)

A==i

The average mass-center position in the y direction reads:

Y, 5(k,) = [ Vg (APdE = an + YP k), (1)
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FIG. 1. Energy spectrum Eg(k,) (in units of the overlap
strength AV) as a function of the center of mass coordinate
YgB)(kX) (in units of the lattice constant) for the fraction p/q =
1/3, shown for 8 = 0 (down triangles), 8 = /2 (circles) and
B = 7 (up triangles). Empty (closed) symbols correspond to
positive (negative) velocity along the x axis. The left and right
sides show the magnetic edge states inside the energy gaps.

+i
Yg'k) =a > Aley(k, AP, (12)

A=—i

Y(ﬂB ) vanishes at zero magnetic field.

The eigenvalue problem is mathematically equivalent to
the one found for a weak periodic potential in a strong
magnetic field [12], and leads to the same spectrum as a
function of k,, except that the values of p and ¢ are
interchanged. However, the spectrum presented as a func-
tion of the mass-center position differs substantially from
that of the weak periodic potential. For the ratio p/q =
1/3, the energy spectrum is composed of three subbands,
each of them formed by the branches obtained for all
values of B. The spectrum is symmetric with respect to
zero energy because of electron-hole symmetry. This is
illustrated in Fig. 1, where only three values 8 = 0, 7/2,
and 7 are shown. The branches 8 = 0, 7 correspond to the
subband edges, while 8 = 7/2 characterizes the central
branch. At the crystal edges, determined by the values n;,
and nyp of the row index n, the natural condition that
Cp,—1 = Cppr1 = 0 leads to the appearance of edge states
formed by contributions from each of the energy branches
B. Two types of edge states appear, nonmagnetic edge
states and magnetic ones [8,13] which are responsible for
the quantum Hall effect. The latter have opposite velocities
at opposite edges, and are shown in Fig. 1 for p/g = 1/3.
Note that in the thermodynamic limit, the mass-center
positions of edge states can be identified with the edges
of the physical system.

Next, we switch on Ey, which shifts the position of the
atomic orbitals. The force trying to return electrons back to
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FIG. 2 (color online). Dependence of the effective topological
number §, on the band filling factor v, for the ratio p/g = 0, 1/3
and 3/5.

their original positions is assumed to be linear in this shift,
with a proportionality (‘“force”) constant K = m,Q3, with
a confinement frequency () (m, is the free electron mass).
Within linear response with respect to £, the mass-center
positions of atomic orbitals are shifted along the y direction
by the distance —e&,/(mo€23) from their equilibrium po-
sitions na. This shift enters the Peierls substitution, Eq. (8),
giving rise to an additional shift k, — k, + (w./Q)?> X
(e€y/hw,), where w.= eB/myc is the cyclotron fre-
quency. The resulting shift of the mass-center position
reads

(B)
e& dYg'(k,)
AYglh,) = ——2(1- 12— 22} (13
B ( x) my Q%( B dkx ( )
The electric field £, also gives rise to a potential energy,
and up to the lowest order the eigenenergies are modified
simply by an additive contribution e&,Y, (k,). The veloc-
ity expectation along the % direction is shifted

€5y dY(ﬂB) (kx)

AUX(B’ kx) = T dk

(14)
Consequently, a nonzero current density along ¥ direction
(the Hall current) is induced by £,. It can be expressed in
the form of Eq. (4) with &(w) given as:

dk, (15)

Ng
o) = N3 Y [ dksfoEathe) ~ )
A=1

where fo(E — u) denotes Fermi-Dirac distribution func-
tion and Ng denotes number of branches. When the Fermi
energy u lies within the energy gaps, & approaches an
integer value o, which can differ from zero due to the
presence of magnetic edge states.

Using the Eq. (13) defining the average shift of the mass-
center positions and the identity Eq. (5), the electron polar-
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izability can be written as
2

e <N(M)— &(,u))_ er 5(u) (16)

m()Q% Clzz’iTl% moﬂ% aZAO '

a(w) =

For the tight-binding model considered here, the depen-
dence of a(u) is fully specified by the effective topological
number §(u). The latter is plotted as a function of the
filling factor of the tight-binding band, v, = a,AoN(w)
in Fig. 2 for several values of the ratio p/q.

The case p/q = 0 corresponds to the zero magnetic
field, for which § — §© = p, as follows from Eq. (5).
For nonzero ratios a rich behavior is induced by the applied
magnetic field. Whenever the Fermi energy is located
within the energy gap between subbands, i.e., if v, is given
by integer multiples of 1/¢, the effective topological num-
ber 5(u) takes an integer value which is just equal to the
topological gap number. As seen in Fig. 2, for p/q = 1/3,
the total contribution of the lower and the upper subbands
to the polarizability vanishes. In this particular case the
applied electric force acting on carriers belonging to these
subbands is fully compensated by the Lorentz force due to
the induced nondissipative edge Hall currents. For the case
p/q = 3/5 the magnetic field even changes the sign of §
and consequently the sign of the polarizability. At half-
filling of the band (v, = 1/2), the Hall current vanishes
and § approaches its zero-field value 1/2. The central
symmetry of all curves around this half-filling point (v, =
1/2, § = 1/2) is a consequence of the electron-hole sym-
metry of the single tight-binding band.

In this Letter we have analyzed the interplay between the
Hall current and the electron polarizability for the tight-
binding model of a crystalline solid. This interplay is
controlled by the compensation of the external electric
force with the two other forces acting on the electrons:
the gradient force, due to the periodic background poten-
tial, which is related to the polarizability, and on the other
hand the Lorentz force, which determines the nondissipa-
tive Hall current. The presence of the quantizing magnetic
field induces a rich and complex behavior for the electron
polarizability, which can even change sign as a function of
the electron concentration.

Most importantly, we provide an answer to the long-
standing question: what measurable quantity is determined
by the topological gap number s entering the Diophantine
equation? While it has been understood for a long time that
o determines the quantum Hall effect, a similar interpre-
tation of s has so far remained unclear. We have shown that
s is directly linked to the static electron polarizability.
Contrary to the quantum Hall effect, the proportionality
constant between the polarizability and the topological
number s is a material dependent quantity rather than an
universal constant, which can even depend on the magnetic
field. The independence of the force constant 72,3 on the
magnetic field considered here is a mere consequence of

the use of the Peierls substitution which is justified when
Qy > w,.

The predicted effect requires that a few flux quanta
penetrate the lattice area Ay. This requires large fields
(~ 10° T) when the lattice constant ~10 A. If, however,
the magnetic field is tilted with respect to Z, an effective
area (larger than A,) can accommodate a few flux quanta,
and the above condition can be reached with available
fields [4]. This condition can also be reached in 2D arrays
of quantum dots or antidots with a lattice constant
~100 nm. Such (anti) dots need to be weakly coupled in
order to reproduce a tight-binding energy spectrum. Their
size reduction (which implies well-separated atomic states)
still represents a challenge. Another possibility is to con-
sider ultracold fermionic atoms in two-dimensional optical
lattices subject to an effective “magnetic field”, due to the
system rotation [14]. There, the condition for obtaining
close to 1 flux quanta per unit cell could be achieved with
current experimental technology. Finally, note that inter-
actions between particles could open additional energy
gaps. Nevertheless, assuming that the interactions do not
destroy periodicity, the single particle gaps will remain
more pronounced, which justifies the present results.
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