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A theory of the Hall effect in two-dimensional electron systems subjected to weak periodic modulation of
the background potential is presented. It is shown that the nondissipative Hall current is strongly affected by
the static electron polarizability, which is responsible for the nonmonotonic sequence of quantum Hall plateaus
in the dependence on the magnetic field strength. This static electron polarizability is quantized whenever the
Fermi energy lies within an energy gap.
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I. INTRODUCTION

The Hall resistance increases with increasing magnetic
field strength in most studied systems. This property is also
usually preserved for the quantum Hall effect. Deviations
from this standard dependence are expected for two-
dimensional electron gas subject, besides the perpendicular
magnetic field, to a periodic potential. Such systems have a
complicated energy structure due to the interplay of the two
characteristic areas: the area of the unit cell of the periodic
potential and the area per unit magnetic-flux quantum. For
such two-dimensional systems, a nonmonotonic sequence of
quantum Hall plateaus in the dependence on the applied
magnetic field was predicted1,2 soon after the discovery of
the integer quantum Hall effect.3 Recently, the prediction has
been experimentally verified for a weakly modulated two-
dimensional electron gas in strong magnetic fields.4 Similar
behavior was also predicted for three-dimensional systems.5,6

To our knowledge, the physical origin of such nonstandard
Hall-resistance behavior has not yet been understood. As we
show in the present paper, it is due to a local charge polar-
ization effect represented by static electron polarizability.

Hall resistance RH is standardly measured on long-strip
shaped samples, and it is defined as the ratio of the voltage
drop between strip edges and the applied current. Recently, it
has been argued that for Bloch electrons, the Hall resistance
is affected by the local charge polarization induced by the
voltage across the strip.7 The main aim of the presented treat-
ment is to analyze the polarization effect in its purest form.
For this reason the following virtual experiment will be stud-
ied. Consider a strip with electrically connected ends so that
nondissipative current can flow through it. Applying an ex-
ternal electric field across the strip, a voltage drop U� be-
tween strip edges and a Hall current JH are induced. Thus,
we can define the Hall conductance as their ratio

GH =
JH

U�

. �1�

In the quantum Hall regime, the measured Hall resistance
just amounts to 1/GH.

Properties of the Hall conductance GH will be analyzed
for two-dimensional electron systems in strong magnetic
fields. A periodic background potential with a rectangular

unit cell and an potential amplitude much smaller than the
Landau-level spacing will be considered. In this limit, the
periodic potential weakly perturbs the free electron Landau-
level structure.8–10 It guarantees that the periodic potential
does not lead to a Landau-level mixing and that it can be
treated in the lowest-order perturbation expansion. Then, the
most important effect is that each Landau level becomes
broadened and its energy dispersion shows a complicated
self-similar structure as a function of the magnetic field
strength B, often presented in the form of the aesthetically
pleasing figure which has become known as the Hofstadter
butterfly.11 As first noticed by Wannier,12 energy gaps within
the internal structure of the broadened Landau level can only
appear if the following relation is satisfied:

N =
s

A0
+

�

2�lB
2 , lB

2 =
�

m*�c
=

1

2�

hc

eB
, �2�

where lB is the so-called magnetic length, �c is the cyclotron
frequency, and A0=axay denotes the unit cell area. Assuming
zero temperature, the number of electrons N equals the inte-
grated density of states N���. Integers � and s are the so-
called gap quantum numbers that specify the dependence of
N��� on B and A0.7,13 They can also be viewed as bulk in-
variants that correspond to a response coefficient related to
the pressure on the boundary,14 which is just equal to N��� if
the Fermi energy lies within the gap of the bulk spectrum. In
the presence of the magnetic field, the pressure is composed
of the Lorentz force and the gradient force from the back-
ground potential. Values of gap quantum numbers are then
determined by the condition that both forces have to be com-
pensated by the boundary force. Consequently, two types of
edge states, magnetic and nonmagnetic, appear at the system
boundaries,13 with � counting the number of magnetic edge-
state branches. It was realized1,2,15,16 that � is associated with
the quantum Hall effect. Thouless et al.1 identified � as a
topological index of the dependence of eigenfunctions on
wave vectors in the magnetic Brillouin zone, thereby spawn-
ing the topological approach to the quantum Hall effect. In
the following, we will refer to � and s as the topological
numbers.
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The Hall resistance attains quantized values,

RH
Q =

1

GH
Q = −

h

e2

1

�
= −

B

ec�N −
s

A0
� , �3�

whenever the Fermi energy � is located within the gap of the
bulk-energy spectrum. The topological number � is thus di-
rectly measurable. The question arises if there exists a physi-
cal quantity, measurable at least in principle, allowing direct
measurement of the topological number s. It will be shown
that this quantity is the static electron polarizability.

The paper is organized as follows. We recall in Sec. II the
results of the eigenvalue problem for the cosine-potential
modulation. In contrast to the standard presentation of the
single-particle spectrum, we use the extended zone scheme
here. The system geometry is an infinitely long strip, and we
summarize the basic edge-state properties. The results of this
section are not new, but the reader may find useful to find
them collected, with a unified perspective and notation. In
the following sections, the main attention will be devoted to
the properties of electrons with energy within energy sub-
bands, since the properties of edge states �the only states in
the energy gaps� are well known. Section III gives expres-
sions for the electronic-wave-function center-of-mass posi-
tions in the periodic potential unit cell and computes their
linear response to an electric field. Section IV is devoted to
the integrated density of states N���. In order to find the link
between the properties of a system in which the Fermi en-
ergy lies within an energy gap and those for which it is
located within an energy subband, the, in general, noninteger
quantities �̃��� and s̃��� satisfying Eq. �2� for any value of
the Fermi energy are defined. We call �̃��� and s̃��� the
effective topological numbers, as they are the generalization
of the topological numbers defined in energy gaps. The fol-
lowing sections are devoted to properties and interpretation
of the effective topological numbers. In Sec. V, their relation
to the magnetization and internal pressure is discussed, while
in Sec. VI, �̃��� and s̃��� are shown to be simply related to
measurable quantities, Hall conductance and static electron
polarizability, respectively. Finally, the main results are sum-
marized in the last section.

II. ENERGY SPECTRUM

A. Model Hamiltonian

For the sake of simplicity, the cosine form of the potential
modulation of the two-dimensional electron gas will be con-
sidered,

V�r�� = − V0 cos�Kxx� − V0 cos�Kyy� , �4�

where Kx=2� /ax and Ky =2� /ay are elementary translations

of the reciprocal lattice. Magnetic field B� is assumed to be
applied perpendicularly to the x-y plane, i.e., along the ẑ
direction. Since we will discuss properties of a strip of finite

width along the ŷ direction, the Landau gauge A� ��−By ,

0 ,0� is chosen for the vector potential A� . The resulting
single-particle model Hamiltonian reads

H =
py

2

2m* +
m*

2
� px

m* − �cy�2

+ V�r�� + Vc�y� , �5�

where �c�eB /m*c denotes the cyclotron frequency with m*

and e being the electron effective mass and absolute value of
the electron charge, respectively. The confining potential
Vc�y�, which determines the strip width, is assumed to be
different from zero only at the edge regions.

The unmodulated system, V�r���0, has an energy spec-
trum composed of Landau levels having the energy ��c�n
+1/2� within the region far from the strip boundaries. The
exact eigenstates �n ,kx	 are with a great accuracy approached
by wave functions having the following form

�n,kx

�0� �r�� =
1


2�
eikxx�n�y − lB

2kx� , �6�

where lB
2kx denotes the mass-center position of the normal-

ized oscillator function �n�y�. For slowly varying confining
potential, the wave function at edge regions can be assumed
unchanged while the Landau-level energy is shifted by the
potential energy of the oscillator mass center, Vc�lB

2kx�.
To establish the effect of the periodic potential V�r��, we

diagonalize the Hamiltonian defined by Eq. �5� in the basis
of the unmodulated system eigenfunctions, Eq. �6�. The al-
ready mentioned limitation of our treatment to a weak peri-
odic modulation implies that the amplitude V0 has to be
much less than the Landau-level spacing ��c. Then, the
Landau-level mixing by the periodic potential can be
neglected9,10 and only the periodic potential matrix elements
diagonal in the Landau-level index n are to be taken into
account. Since the modulation in the x̂ direction couples Lan-
dau states with centers differing by integer multiples of lB

2Kx,
the zero-order eigenfunctions can be written in the following
way:

�n,kx
�r�� = �

	=−


+


un�kx + 	Kx��n,kx+	Kx

�0� �r�� , �7�

where 	 is an integer index. Amplitudes un�kx+	Kx� are so-
lutions to the eigenvalue problem defined by the
kx-dependent effective Hamiltonian H�kx�, which has, in this
representation, the form of the tridiagonal matrix,

−
Ṽ0

�n��ax�
2

un�kx + �	 − 1�Kx + �H	,	�kx� − En�kx + 	Kx�

�un�kx + 	Kx� −
Ṽ0

�n��ax�
2

un�kx + �	 + 1�Kx = 0, �8�

with

H	,	�kx� = ��c�n + 1/2� + Vc„lB
2�kx + 	Kx�…

− Ṽ0
�n��ay�cos„lB

2�kx + 	Kx�Ky… . �9�

The effective potential amplitudes read
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Ṽ0
�n��a� � V0e−��/2��2�lB

2 /a2�Ln��
2�lB

2

a2 � , �10�

where Ln�z� denote the Laguerre polynomials.10 Assuming
that the confining potential increases to infinity at some val-
ues of mass-center positions, the tridiagonal matrix given by
Eq. �8� is of finite dimensions and the eigenvalue problem
can be, at least in principle, solved.

B. Bulk-energy structure of broadened Landau levels

The eigenvalue problem becomes substantially simplified
if we limit our consideration to the so-called rational mag-
netic fields, satisfying the following condition:

2�lB
2

axay
=

hc/e

axayB
�

�0

�
=

q

p
, �11�

where q and p are integers. Physically, this commensurability
condition means that there are p flux quanta �0 per q unit
cells. Then, the matrix element H	,	�kx� is periodic with pe-
riod p, H	+p,	+p�kx�=H	,	�kx�, for lB

2kx in the bulk region
where Vc�y�=0. The amplitudes un�kx� have periodic moduli
as well,

�un�kx + pKx�� = �un� lB
2�kx + pKx�

lB
2 �� = �un� lB

2kx + qay

lB
2 ��

= �un�kx�� , �12�

but they can differ by phase factors. Assume that the phase
difference between the amplitudes un�kx� and un�kx+ pKx� ac-
quires a certain value  from the interval �0,2��. This
boundary condition reduces the eigenvalue problem defined
by Eq. �8� to an eigenvalue problem given by a p� p matrix,
which can easily be solved. For each , which we call the
branch index, the energy dispersion as a function kx can be
obtained. Broadened Landau levels become composed of p
subbands, and according Usov,9 the eigenenergies are peri-
odic in the wave number kx as follows:

En,
�0� �kx +

pKx

q
� = En,

�0� � lB
2kx + ay

lB
2 � = En,

�0� �kx� . �13�

Note that for the considered Hamiltonian, the internal struc-
ture of broadened Landau levels does not depend on the level
index n. It is only their overall width which scales in accord

with the n dependence of the effective potential Ṽ0
�n��a� given

by Eq. �10�.10 The obtained dispersions for q / p=1/3 and
q / p=3/5 are shown in Figs. 1 and 2, respectively.

The above treatment is equivalent to the standard applica-
tion of the Born-Karman conditions along the ŷ direction.9,10

The only difference is that instead of the wave number ky, we
use the branch index . We also did not introduce the mag-
netic Brillouin zone, so that the original meaning of the wave
number kx, determining the mass-center positions lB

2kx of the
harmonic oscillators entering the base functions, Eqs. �6� and
�7�, has been preserved. Therefore, we can omit the usually
introduced subband index, and the energy dispersions pre-
sented as a function of lB

2kx are periodic with the period ay.
The presented bulk-energy spectra are based on the im-

plicit assumption that a dissipation process of some sort ex-
ists, giving rise to a finite coherence length much less than
the strip width. Then, the interference between the bulk and
the edge states is suppressed, and the bulk spectra do not
depend on the form of the confining potential. The probabil-
ity of finding an electron within an interval of length ay, far
from the edge region, is given by the average over all
branches . Assuming a fully filled Landau level, the prob-
ability that an electron within the unit cell area A0 has an
energy belonging to one particular subband is equal to 1/q,
or equivalently, there have to be 1/ �2�lB

2 p� states within the
unit area per one subband. This condition has to be satisfied
by the averaging procedures over the branch index .

C. Edge states

Within edge regions, a nonzero confining potential gives
rise to edge states. They have been studied numerically for
cosine modulation, Eq. �4�, assuming a sharp confining po-
tential modeling hard walls or a smooth confining potential
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FIG. 1. Energy dispersion as a function of
lB
2kx for q / p=1/3 and ax=ay and for several val-

ues of . The edges of the energy subbands are
shown with thicker lines. Expectation values of
the cosine-potential modulation along the ŷ direc-
tion are shown by the dotted line.
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unmodulated by the periodic potential.13,17 It has been found
that two types of edge states, magnetic and nonmagnetic,
exist.

Magnetic edge states are forming branches having oppo-
site velocities at opposite strip edges. It has been shown that
the sum of the chiralities of all magnetic edge states at a
given energy in a bulk-energy gap equals the topological
number � for the gap. In particular, magnetic edge states
must always exist at all energies in a gap for which � is
nonzero. Therefore, the energy branches of these magnetic
edge states bridge the energy gap between adjacent
subbands.13 They contribute a finite amount to the magneti-
zation per unit area of the system in the thermodynamic
limit, despite the fact that their contribution to the density of
states vanishes. Their contribution to the magnetic moment
tends to compensate the contribution from the bulk states and
maintain the total magnetic moment small. This is the physi-
cal reason for the stability of magnetic edge-state branches
with respect to varying conditions at the system edges. To
preserve the chirality, the effect of magnetic edge states can
be included by inserting � edge-state branches into the bulk-
energy gap. They are formed by contributions of bulk
branches , and they can have arbitrary dispersion, i.e., the
dependence on lB

2kx at the edge region, since it does not af-
fect system properties in the thermodynamic limit. Only the
proper sign of the velocity has to be preserved.

For the considered weak cosine modulation, Eq. �4�, it has
been rigorously established1,18 that the topological numbers
� and s which have to satisfy the Diophantine equation, Eq.
�2�, for any Landau level are uniquely determined by the
auxiliary inequality

�s� � p/2, �14�

and that a gap occurs when this inequality is sufficient to
determine s uniquely. That is why we limit our consideration
to rational magnetic fields for which p is an odd integer.
Then, all p subbands are separated by energy gaps.19

The other types of edge states are nonmagnetic states.
They appear in pairs of opposite velocities but located at a
particular edge region. They show a behavior which is typi-

cal for edge states of two-dimensional periodic systems in
zero magnetic field.20 If the system contains hard walls, the
occurrence of nonmagnetic edge states in a gap depends on
the hard wall position relative to maxima or minima of the
periodic potential. They form branches which often cover an
energy interval narrower than the full gap. If the hard wall
position is gradually shifted over the period ay, just s non-
magnetic edge states per interval ax cross the gap.13 This
behavior is general and it does not depend on the form of the
confining potential. In real systems, a variation of the con-
fining potential along the x̂ direction always appears. It leads
to the formation of the nonmagnetic edge states which be-
come localized in all directions13,20 covering whole gap.

In thermodynamic limit, the system properties cannot de-
pend on the form of the confining potential. Bulk branches
forming a particular subband give rise to edge states whose
effect can be included by considering a single branch of
magnetic or nonmagnetic edge states in the dependence on
their chirality. While the velocity of the magnetic edge states
is nonzero, the nonmagnetic localized states have zero veloc-
ity and cannot contribute to the current.

III. MASS-CENTER POSITIONS AND LINEAR
RESPONSE TO THE ELECTRIC FIELD

A. Mass-center positions

To define mass-center positions, we first compute the av-
erage electron mass distribution gn,,kx

�y� along the ŷ direc-
tion for an electron in the state �n , ,kx	. Corresponding
zero-order wave functions are given by Eq. �7�, where the
index  has been added, un�kx�→un,�kx�, to specify the se-
lected solution of the Harper’s equation. Using the periodic-
ity of amplitudes un,�kx� given by Eq. �12�, and having in
mind that the shift of the periodic potential by the lattice
constant can only change the wave function phase, we get

gn,,kx

�0� �y�

m* = �
	p=−


+


wn,,kx

�0� �y − 	pay� , �15�

where 	p is an integer index and the local distribution for the
considered rational magnetic fields with p=2i+1 can be
written as

FIG. 2. Energy dispersion as a function of
lB
2kx for q / p=3/5 and ax=ay. Values of  are the

same as that used for dispersions in Fig. 1. Ex-
pectation values of the cosine-potential modula-
tion along the ŷ direction are shown by the dotted
line.
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wn,,kx

�0� �y� = �
	=−i

+i

�un,�kx + 	Kx��2��n�y − lB
2�kx + 	Kx���2.

�16�

The electron mass distribution along the ŷ direction, which is
periodic with a period ay, is thus expressed as the sum of
identical local distributions shifted along the ŷ direction by
	pay. The form of the local distribution is such that in the
limit of a vanishing amplitude of the periodic potential, the
mass-center position of the local distribution reaches the
value defined by eigenstate given by Eq. �6�. Indeed, for a
vanishing potential, �un,�kx��2 becomes a constant indepen-
dent of kx, and the resulting mass-center position reaches the
desired value lB

2kx. The used empty-lattice condition allows
us to define mass-center positions for periodic system
uniquely.

To get a precise evaluation of the mass-center position of
a given local distribution, we use the relation between the
velocity and the position operators,

y =
px

m*�c
−

vx

�c
. �17�

Using the eigenstates to the first order in the modulation
potential,10 we get the standard expression for the velocity
expectation values along the x̂ direction,

vn,
�0� �kx� =

1

�

dEn,
�0� �kx�
dkx

, �18�

while the contribution of the operator px reads

� px

m*�c
�

n,,kx

= lB
2kx + lB

2 �
	=−i

+i

	Kx�un,�kx + 	Kx��2. �19�

The resulting expression for mass-center positions can be
written in the following way:

Yn,
�0� �kx� = lB

2kx −
lB
2

�
pn,

�0� �kx� , �20�

where the momentum

pn,
�0� �kx� = m*vn,

�0� �kx� − � �
	=−i

+i

	Kx�un,�kx + 	Kx��2 �21�

is a periodic function of kx,

pn,
�0� �kx + aylB

−2� = pn,
�0� �kx� . �22�

The mass-center positions Yn,
�0� �kx� defined in such a way

have the following interpretation. Consider an electron in the
state �n , ,kx	, spread over the width Nay. In each of the unit
cells of the width ay, it has a local distribution whose mass-
center position is given by Eq. �20�. The first term on the
right-hand side of Eq. �20� represents the mass-center posi-
tions of oscillator functions, Eq. �6�, and corresponds to the
unmodulated system, i.e., the vanishing periodic potential.
The range of the values of this first term coincides with the
strip width. The second term describes the shift due to the
force caused by the periodic potential. It is a periodic func-

tion of lB
2kx with a period ay. Note that for p=1, or for van-

ishing potential modulation along the x̂ direction, Eq. �20�
coincides with existing results.21

To illustrate the distances of mass-center positions for a
given energy, the eigenenergies as a function of the mass-
center positions within the interval of the length ay are pre-
sented in Figs. 3 and 4 for q / p=1/3 and q / p=3/5, respec-
tively. Only curves for a single value of the branch index 
are shown, since for any allowed value, they are qualitatively
identical. In these figures, also magnetic edge-state branches
at the strip edges satisfying the chirality condition are
sketched.

Two remarks are in order here. First, the above treatment
represents mass-center positions of the bulk electrons. Since
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FIG. 3. Center panel: energy dispersion as a function of the
mass-center positions Y for q / p=1/3 and ax=ay. The filled �empty�
dots represent states with negative �positive� velocities along the x̂
direction. The potential modulation along the ŷ direction is given by
the dotted line. Left and right panels: sketch of the magnetic edge-
state branches near the strip edges.
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our aim is to characterize properties of macroscopic systems,
we implicitly assume the existence of a finite coherence
length, much less than the strip width, which prevents inter-
ference between bulk and edge states. Thus, the bulk-state
properties are supposed to be practically independent of the
details of the boundary conditions. The mass-center positions
of edge states are assumed to be located close to the physical
system edges. In the thermodynamical limit, i.e., the limit of
the infinite system area, their mass-center positions can be
identified directly with the physical system boundaries with
no substantial effect to any measurable physical quantities.

Second, in order to allow for an easy fulfillment of the
aforementioned condition in the empty-lattice limit, we have
confined our treatment to the odd values of the integer p.
Satisfying this condition for even values of p is not trivial,
since the chosen form of the potential modulation leads to
unstable solutions9 which are, in fact, very sensitive also to
boundary conditions. Then, an additional averaging proce-
dure has to be adopted to obtain results characterizing mac-
roscopic systems, where the interference between bulk and
edge states is supposed to be suppressed. This problem will
be treated elsewhere.

B. Linear response to an electric field

Consider a homogeneous electric field across the strip,
i.e., along the ŷ direction, Ey. Assume that it is weak enough

so that the condition eEyay � Ṽ0�ay� is satisfied. As it gives
rise only to a weak perturbation of the background potential
modulation, we can limit our consideration to the linear re-
sponse in Ey. The corresponding potential term which has to
be added to the model Hamiltonian, Eq. �5�, reads

�H = eEyy . �23�

The resulting single electron Hamiltonian can be written in
the following way:

H� � H + �H =
m*

2
� �

m*� px

�
− �kx� − �cy�2

+
�2

m*

px

�
�kx

−
�2

2m* ��kx�2 +
py

2

2m* + V�r�� , �24�

where

�kx �
eEy

��c
. �25�

Using the same form of the zero-order eigenfunctions as that
given by Eq. �7�, only diagonal elements of the kx-dependent
effective Hamiltonian �Eq. �8� are affected,

H	,	� �kx�� = ��c�n + 1/2� +
�2

m* �kx� + 	Kx��kx

− Ṽ0�ay�cos„lB
2�kx� + 	Kx�Ky… , �26�

where

kx� � kx − �kx. �27�

To establish wave function amplitudes un�kx�, the assumption

eEyay � Ṽ0�ay� allows for the neglect of terms linear in 	 in

components H	,	� �kx�� of the p� p Hamiltonian matrix. There-
fore, the following approximation can be used:

�2

m* �kx� + 	Kx��kx �
�2

m*kx��kx. �28�

This approach fully preserves the interference between
coupled states.

Up to the linear order in the electric field, the energy
spectrum is given as follows:

En,�kx� = En,
�0� �kx� + eEyYn,

�0� �kx� , �29�

and the velocity expectation values are

vn,�kx� = vn,
�0� �kx� +

1

�

dYn,
�0� �kx�
dkx

eEy . �30�

For mass-center positions and momentum, we obtain

Yn,�kx� = Yn,
�0� �kx�� = Yn,

�0� �kx� −
dYn,

�0� �kx�
dkx

�kx, �31�

pn,�kx� = pn,
�0� �kx�� = pn,

�0� �kx� −
dpn,

�0� �kx�
dkx

�kx. �32�

The changes of the mass-center positions due to the applied
electric field are then given by

1

lB
2

dYn,
�0� �kx�
dkx

eEy = eEy −
1

�

dpn,
�0� �kx�
dkx

eEy . �33�

This equality represents the differential form of expression
�20� for the center-of-mass positions.

IV. INTEGRATED DENSITY OF STATES IN TERMS
OF THE EFFECTIVE TOPOLOGICAL NUMBERS

In this section, we obtain an equation for the integrated
density of states in the form of Eq. �2�. Using the results of
the previous section, we define quantities �̃��� and s̃���,
which are the generalization of the topological numbers �
and s for the cases when the Fermi energy is not located
within a bulk-energy gap.

At the considered zero temperature, the electron concen-
tration coincides with the integrated density of states N���
for given Fermi energy �. Eigenenergies are periodic in kx
with the period aylB

−2, see Eq. �13�, and within each period,
there are no more than two crossings of each particular
branch  with the energy �. We can thus introduce left and
right kx positions of occupied state intervals as kx

�L,R�� ,��
with indices �L� and �R� denoting left and right boundaries.

To get the expression for the integrated density of states
N���, we simply integrate Eq. �33� divided by eEy over kx.
The constant term gives N���, the mass-center part defines
�̃, and the momentum part defines s̃. In analogy with Eq. �2�,
we get

N��� =
s̃���
A0

+
�̃���
2�lB

2 , �34�

with
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N��� =
n

2�lB
2 +

1

N
�
=1

N kx
�R� − kx

�L�

2�ay
, �35�

s̃��� =
1

N
�
=1

N pn,
�0� �kx

�R�� − pn,
�0� �kx

�L��
2��/ax

, �36�

and

�̃��� = n +
1

N
�
=1

N Yn,
�0� �kx

�R�� − Yn,
�0� �kx

�L��
ay

. �37�

For brevity, the dependence of kx
�R� and kx

�L� on the branch
index  and on the value of the Fermi energy � has been
omitted. The factor proportional to the Landau-level index n
in the expression for the integrated density N��� comes from
the contribution of n fully occupied Landau levels which are
below the considered level.

The above expressions, which are obtained with the Fermi
energy inside an energy subband, can be given a meaning
even when the Fermi energy is in gap, by considering the
edge states. Indeed, when the energy is in a gap, there are no
states in the bulk of the strip, but states are present near the
edges of the strip. The magnetic edge states, shown in Figs.
3 and 4, come in pairs with opposite velocities at the two
edges, thus giving a macroscopic contribution to the mag-
netic moment. This contribution can be formally split into
contributions per period ay, which defines the corresponding
values for Yn,

�0� �kx
�R,L��, and consequently yields a contribution

to �̃���. Note that it is just the edge-state contribution which
gives the factor n in the expression for �̃���, as each filled
Landau level contributes one magnetic edge-state branch.
Similarly, the contribution of nonmagnetic edge states can be
written formally as a contribution per period ay, which yields
values for pn,

�0� �kx
�R,L�� and thus for s̃���. This procedure en-

sures the validity of Eq. �2�, i.e., the condition for topological
numbers which has to be satisfied at gap energies.1,13,14

As we are considering the case of rational magnetic fields
�see Eq. �11�, Eq. �2� is an equation for integer numbers, a
Diophantine equation, which, for the considered case of the
weak potential modulation, is often presented in the follow-
ing form:

� = � + s
q

p
, �38�

where �=2�lB
2N is the filling factor, which is 1 for a fully

occupied Landau level. It is thus natural to consider the ef-
fective topological numbers as a function of �, rather than a
function of the Fermi energy �. The dependence of �̃��� and
s̃��� on the filling factor �=2�lB

2N is presented in Figs. 5 and
6 for the cases q / p=1/3 and q / p=3/5, respectively. For the
considered odd values of the integer p, the energy gaps
within the bulk region always appear at filling factors � equal
to integer multiples of 1 / p. At these values of �, the effective
topological numbers �̃��� and s̃��� become integers just
equal to the corresponding values of � and s, as can be seen
in the presented figures.

V. MAGNETIZATION AND INTERNAL PRESSURE

This section is devoted to the relation between quantities
characterizing macroscopic properties of the considered sys-
tem, the magnetization and the internal pressure, and the
effective topological numbers �̃��� and s̃���. We will show
that Eq. �34� is equivalent to that already derived by means
of thermodynamics,7

− � �P

��
�

T,V,B
+ B� �M�a�

��
�

T,V,B
= 0, �39�

where P denotes the internal pressure and M�a� is the part of
the magnetization which originates in the motion of the elec-
tron mass centers. The above equation has been derived as
the consequence of the equality of statistical forces acting in
the studied system. The proof that it is equivalent to the
identity given by Eq. �34� will lead to the conclusion that
both equations are of the same physical origin.

0 1/3 2/3 1
ν −n

-1

-0.5

0

0.5

1

s~(ν)
σ∼(ν) − n

FIG. 5. Dependence of the effective topological numbers, �̃−n
and s̃, for the nth Landau level, on the filling factor � for q / p
=1/3 and ax=ay.

0 0.2 0.4 0.6 0.8 1
ν − n

-2

-1

0

1

2

s~(ν)
σ∼(ν) − n

FIG. 6. Dependence of the effective topological numbers, �̃−n
and s̃, for the nth Landau level, on the filling factor � for q / p
=3/5 and ax=ay.
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A. Magnetization

Magnetic moment of the electron within an eigenstate
�n , ,kx	 is composed of two contributions, both parallel to
the applied magnetic field, i.e., perpendicular to the electron
system. The first term represents the moment arising due to
the relative motion of the electron with respect to its center
of mass. In the strong field and weak periodic modulation
limits used, the Landau-level mixing can be neglected and
the term is just equal to the magnetic moment of the electron
in the absence of the modulation. It depends on the Landau-
level index n only and it is equal to −�B

*�2n+1�, with �B
*

�e� / �2m*c� the effective Bohr magneton. The second term
represents the effect of the potential modulation as well as
confining potential and originates from the motion of the
electron mass centers. The magnetic moment per unit area,
magnetization M���, can thus be divided into two parts,

M��� � M�i���� + M�a���� =
e

c
Tr�f0�H�vxy , �40�

where f0�E� stands for the Fermi-Dirac distribution function.
The magnetic moment M�i���� with the origin in the relative
motion reads

M�i���� = − �B
* eB

hc
�
n=0

+


�2n + 1��n��� , �41�

where �n��� is the filling factor of the particular Landau
level n.

The mass-center motion contribution M�a���� is given as
follows:

M�a���� =
e

c
�
n,
� f0„En,

�0� �kx�…
vn,

�0� �kx�Yn,
�0� �kx�

2�ayN

dkx, �42�

where the kx integration is taken over the length period lB
−2ay.

Inserting Eq. �18� for the velocity expectation values, we get
the following zero-temperature result:

M�a���� =
e

ch
�
n,
�

0

� Yn,
�0� �kx

�R�� − Yn,
�0� �kx

�L��
ayN

dE , �43�

where kx
�L,R� are boundaries of occupied states of the given

branch  below energy E. Comparison with the definition of
the effective topological number �̃, Eq. �37�, immediately
yields

�̃��� =
hc

e

�M�a����
��

. �44�

For energies within the gap regions, only magnetic edge
states give nonzero contribution and �̃ reduces to the usual
topological number �. The above equation becomes

� �M�a����
��

�
�� gap

=
e

hc
� . �45�

This relation was already derived by the use of thermody-
namical arguments.13

B. Internal pressure

Internal pressure in two-dimensional systems is defined as
the derivative of the grand-canonical potential � with re-
spect to the area A,

P = − � ��

�A
�

T,B,�
= − � ��

�A
�

T,B,�,A0

+ P0, �46�

P0��� � −
A0

A
� ��

�A0
�

T,B,�,A
. �47�

The first term on the right side of the above equation, Eq.
�46�, represents scaling of the internal pressure with A under
the constraint of fixed unit cell area A0. For a system of
noninteracting particles, its derivative with respect to the
chemical potential equals the particle concentration N���.
The second term P0��� arises due to the variation of A0 and
vanishes for zero potential modulation.

To establish the internal pressure, we apply its quantum
mechanical definition. Let us assume that the change of the
sample area A is due to the change of the strip width accom-
panied by the corresponding change of the lattice constant
ay. Since

dH

day
= −

y

ay

dV�r��
dy

, �48�

we get

P��� = Tr� f0�H�y
dV�r��

dy
� . �49�

Similarly, as in the case of the magnetic moment, the above
expression can be divided into two parts. The contribution
which represents the effect of the mass-center positions reads

P�a���� = �
n,
� f0„En,�kx�…

Yn,
�0� �kx�Vn,� �kx�

2�ayN

dkx, �50�

where

Vn,� �kx� = �n,,kx�
dV�r��

dy
�n,,kx	 . �51�

Since the expectation value of the force along the ŷ direction
defined by the acceleration operator ay,

m*ay = m*�cvx −
dV�r��

dy
, �52�

vanishes for an electron in any eigenstate, the quantity
Vn,� �kx� entering Eq. �50� can be replaced by m*�cvn,

�0� �kx�. If
we further insert for Yn,

�0� �kx� the expression given by Eq.
�20�, we obtain, for the internal pressure at zero temperature,

P�a���� = �
0

�

N�E�dE + P0
�a���� , �53�

where
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P0
�a���� = − �

n,
�

0

� pn,
�0� �kx

�R�� − pn,
�0� �kx

�L��
2��ayN

dE . �54�

The derivative of the internal pressure P�a���� with respect to
� has the following form:

�P�a����
��

= N��� +
�P0

�a����
��

. �55�

If we define pn,
�0� �kx

�L,R�� for energies at which there are no
bulk states by means described in the above, we obtain the
general relation13,14,22

� �P0
�a����
��

�
�� gap

= � �P0���
��

�
�� gap

= −
s

A0
. �56�

Thus, the effective topological number s̃��� defined by Eq.
�36� can be expressed as the derivative of the pressure
P0

�a���� with respect to the chemical potential,

s̃��� = − A0
�P0

�a����
��

. �57�

Note that in the considered limit of the weak periodic modu-
lation, the topological number s for gaps between broadened
Landau levels equals zero. Therefore, the summation over
the Landau-level index can be excluded from the internal
pressure evaluation by Eq. �54�.

To conclude this section, let us note that the product of the
magnetic field strength B and the part of the magnetization
stemming from the relative electron motion, M�i����, has the
meaning of pressure. It can be easily shown that the corre-
sponding part of the internal pressure P0

�i���� just equals
−BM�i����. Thus, the effect of the relative electron motion
can be fully included into the definition of the internal pres-
sure. Then, the resulting pressure P��� coincides with the
pressure P�a���� defined in this section.

VI. EFFECTIVE TOPOLOGICAL NUMBERS IN TERMS
OF MEASURABLE QUANTITIES

In this section, we show that the effective topological
numbers �̃��� and s̃��� are simply related to, at least in
principle, measurable quantities: the Hall conductance for
�̃��� and the static electron polarizability for s̃���.

A. Hall conductance

Quantum Hall effect for two-dimensional system of Bloch
electrons in the presence of a magnetic field has been the
subject of many theoretical papers1,2,13–17 and the technologi-
cal progress in sample preparation allowed for verification of
the theoretical predictions.4 Nearly no attention has been de-
voted to the properties of the Hall effect between two adja-
cent quantized values. Only recently it has been argued23,24

that the Hall current is related to the Fermi electron contri-
bution to the part of the magnetic moment which stems from
the motion of the electron mass centers, i.e., to the magnetic
moment M�a���� defined in Sec. V A. In the following, an-
other procedure leading to the same result will be used.

The applied electric field Ey changes the velocity of elec-
trons originally having energy En,

�0� �kx�, and for the current
density along the x̂ direction, we have

jx = −
e

N
�
n,
� f0„En,

�0� �kx�…
vn,�kx�
2�ay

dkx. �58�

Inserting for vn,�kx� its linear expansion in Ey, Eq. �30�, we
get

jx = − e2Ey�
n,
� f0„En,

�0� �kx�…
2��ayN

dYn,
�0� �kx�
dkx

dkx. �59�

Comparison with the expression for M�a����, Eq. �43�, im-
mediately gives the relation7 we have been looking for,

jx = − ec
�M�a����

��
Ey . �60�

For the Hall conductance, we get

GH �
jx

Ey
= − ec� �M�a����

��
�

T,A,B
= −

e2

h
�̃���

= −
ec

B
�N��� −

s̃���
A0

� . �61�

The last equality has been obtained by using identity relating
effective topological numbers �̃��� and s̃��� with the inte-
grated density of states N���, Eq. �34�.

For the Fermi energy located within an energy gap of bulk
states, the only contribution of Fermi electrons to the total
magnetic moment is due to the electrons in edge states.
In the thermodynamic limit, the derivatives of M��� and
M�a���� with respect of the � coincide, and using Maxwell
relations, we get

GH
Q = − ec� �M���

��
�

T,A,B
= − ec� �N���

�B
�

T,A,�� gap

= −
e2

h
� =

1

RH
Q . �62�

Note that the above general formula �61� for the Hall con-
ductance GH is also directly applicable to the experimental
data satisfying the condition that the Hall field is much larger
than the longitudinal field. In these cases, the measured Hall
resistance is approximately determined by 1/GH.

B. Static electron polarizability

The polarizability arises from the charge redistribution in-
duced by the so-called local electric field inside the bulk of
the system.25 It is defined as the ratio of the induced dipole
moments to the field actually acting on charges within the
unit cell area. In the considered transport regime, only the
polarizability across the strip induced by the electric field
along the ŷ direction, Ey, has a physical meaning.

The electronic states we consider are long extended states
along the x̂ direction and they are localized along the ŷ di-
rection around their mass-center positions Yn,

�0� �kx�. The
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mass-center shift induced by Ey is given by Eq. �31�. Besides
electron charges, there are positive charges of ions determin-
ing the background potential. The standard assumption that
there is only a constant shift of these charges without any
local charge redistribution is used. The resulting shift along
the ŷ direction is −lB

2�kx, with �kx defined by Eq. �25�. The
average displacement of the electron and corresponding posi-
tive charges along the ŷ direction reads

�Yn,�kx� = −
dYn,

�0� �kx�
dkx

�kx + lB
2�kx =

lB
2

�

dpn,
�0� �kx�
dkx

�kx,

�63�

where the definition of the mass-center position Yn,
�0� �kx�, Eq.

�20�, has been used. Since pn,
�0� �kx� defines the periodic part

of the mass-center positions, the displacement has the same
periodicity with the period ay / lB

2 , see Eq. �22�. Note that the
total charge neutrality of the system has been assumed, i.e.,
the sum over all charges vanishes.

The dipole moment due to the shift of the electron in the
state �n , ,kx	 is given as the product of the electron charge
and the above-defined displacement, Eq. �63�. For the static
electron polarizability, we get

���� =
e2

m*�c
2�

n,
� f0„En,

�0� �kx�…
2��ayN

dpn,
�0� �kx�
dkx

dkx. �64�

Comparison with the expression for the internal pressure
P0

�a����, Eq. �54�, and that for the effective topological num-
ber s̃���, Eq. �36�, gives

���� = −
e2

m*�c
2

�P0
�a����
��

=
e2

m*�c
2

s̃���
A0

. �65�

When the Fermi energy is located within an energy gap, the
polarizability has a quantized value

�Q =
e2

m*�c
2

s

A0
, �66�

where s is the topological number for the considered gap.
However, contrary to quantum Hall values, the proportional-
ity constant relating �Q and the gap quantum number s is not
a universal quantity, but it is determined by the force con-
stant m*�c

2. The static electron polarizability as a function of
the filling factor smoothly interpolates between adjacent
quantized values as can be seen from the dependence of s̃���
presented in Fig. 6. For a completely filled broadened Lan-
dau level, s equals zero and there is no polarization effect. It
can be nonzero only for noninteger filling factors. These
properties are specific for the considered limit of a potential
modulation weak in comparison to the Landau-level energy
separation ��c.

VII. SUMMARY AND CONCLUDING REMARKS

In this paper, we have studied the Hall effect for two-
dimensional electron systems subject to a weak periodic po-
tential. The Hall conductance has been obtained as a linear
response to the electric field across the strip. It gives rise to
two response forces: the Lorentz force related to the current
induced along the strip and a gradient force related to the
electron polarizability. If there is no potential modulation, the
polarizability vanishes and the force due to the electric field
across the strip can only be compensated by the Lorentz
force. As a result, the Hall resistance is exclusively deter-
mined by the electron concentration. In the case of nonzero
potential modulation, the electron polarizability affects the
resulting value of the induced Hall current and, consequently,
the Hall resistance is affected. In the particular case when the
system becomes an insulator, like when the filling factor �
=1/3 for q / p=1/3, there is no current flow, i.e., no Lorentz
force appears. Then, the only response to the electric field
across the strip is the polarization of the system, as expected.
In the general case, the competition of the Lorentz force and
the force related to the electron polarizability, which together
have to compensate the electric force, is responsible for the
nonmonotonic dependence of the Hall resistance on the mag-
netic field strength.

We have defined effective topological numbers �̃��� and
s̃��� as response coefficients related to the Lorentz force and
the static electron polarizability, respectively. The sum of
�̃��� divided by the area per unit flux quantum and s̃���
divided by the unit cell area gives the electron concentration,
Eq. �34�. This relation is equivalent to the steady state con-
dition that the total force acting on electrons has to vanish.
Whenever the Fermi energy is located within an energy gap
of the bulk-energy spectra, effective topological numbers
obey integer values satisfying the necessary condition for the
gap appearance, Eq. �2�. The Hall resistance obeys quantized
values given by �. Similarly, the static electron polarizability
obeys quantized values defined by the integer s, but contrary
to the quantum Hall values, the proportionality constant is
not a universal quantity. It is determined by the force con-
stant which is a material dependent quantity. Also, the local-
ized states within bulk gaps affect polarizability contrary to
the Hall effect.
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