
Intrinsic anomalous Hall effect and local polarizabilities

Pavel Středa1 and Thibaut Jonckheere2

1Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Praha, Czech Republic
2Faculté de Luminy, Centre de Physique Théorique, Case 907, 13288 Marseille, France

�Received 29 April 2010; revised manuscript received 13 July 2010; published 7 September 2010�

A theory of the intrinsic anomalous Hall effect, based on the space distribution of the current densities, is
presented. Spin-orbit coupling gives rise to a spatial separation of the mass centers, and of the current densities,
of the quasiparticle states having opposite group velocities. It is shown that this microscopic property is
essential for the existence of the anomalous Hall effect.
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It has been known for more than a century that ferromag-
netic materials exhibit an extraordinary Hall effect which
does not vanish at zero magnetic field. The theory of this
so-called anomalous Hall effect �AHE� has a long and con-
fusing history, with different approaches giving in some
cases conflicting results. While more recent calculations have
somewhat unified the different approaches and clarified the
situation, it is still an active topic of research. Recently theo-
ries together with number of experimental observations have
been reviewed by Nagaosa et al.1 Three broad regimes for
anomalous Hall effect have been identified: a high-
conductivity regime in which skew scattering dominates, the
so-called good metal or intrinsic regime in which anomalous
Hall conductivity is roughly independent of scattering and
bad metal �or hopping� regime in which Hall conductivity
decreases with decreasing of the longitudinal conductivity.
All three regimes are nicely illustrated by the dependence of
the anomalous Hall conductivity on the longitudinal one for
experimental data taken on different materials.2 It is gener-
ally accepted that the anomalous Hall effect is induced by
spin-orbit coupling as first suggested by Karplus and
Luttinger3 in 1954. As has been recently argued, it is accom-
panied by a strong orbital Hall effect.4–6 Spin-orbit coupling
is also responsible for the spin Hall effect, represented by
spin accumulation on the edges of a current carrying
samples.7,8

For the intrinsic, scattering-independent regime the best
quantitative agreement with experimental observations has
been obtained with semiclassical transport theory,9 leading to
the Berry-phase correction to the group velocity. In this case
Hall conductivity is expressed in terms of the Berry-phase
curvatures of Bloch states as originally derived by Karplus
and Luttinger3 by the use of the Kubo formula. This result
has been obtained by considering linear response to the dy-
namical force, the electric field. In accord with the general
theory of irreversible processes the same result should be
obtainable as the response to the statistical force, the gradient
of the chemical potential. It is the aim of this report to ana-
lyze such type of the response for the intrinsic regime.

Our approach is based on the analysis of the space distri-
bution of local current densities, and it is simple and rather
intuitive. We will show that the anomalous Hall conductivity
is related to the spatial separation of the mass centers of
states with opposite velocities. This confirms the interpreta-
tion of AHE in ferromagnetic systems as a consequence of
the periodic field of electric dipoles �electric polarizability�

induced by the applied current,3,10,11 despite the fact that the
original arguments were not convincing.12 We will also show
that in nonmagnetic systems, the spin-orbit coupling leads to
a periodic variation in the spin polarizability of the current
densities in the transport regime. This effect can be viewed
as an internal spin Hall effect. General consideration will be
accompanied by a simple model illustrating the above men-
tioned local polarizibilities. For the sake of simplicity, we
limit our consideration to crystalline structures invariant un-
der space inversion.

Current-density distribution is closely related to the or-
bital magnetization of solids. In zero magnetic field it has its
origin in the orbital magnetic moment of atomic states. Ig-
noring spin effects, atomic wave functions in spherical polar-
coordinate system can be written as

��
�at��r,�,�� = f��r,��

eim�

�2�
, � � n,l,m , �1�

where m is the so-called magnetic quantum number, with
m=0, �1,¯ and �m�� l. It determines the magnetic mo-
ment along the ẑ direction

Mz��� � −
e

2c
����r� 	 v��z��� � −

m

�m�
�R�

2

c
�j�� , �2�

where e denotes absolute value of the electron charge and v�
stands for velocity operator. The last expression represents a
classical analogy with j� being the current flowing on a cir-
cular loop of the radius R�. Because of the energy degen-
eracy in m the total orbital magnetic moment vanishes. How-
ever, spin-orbit coupling together with exchange interaction
remove this degeneracy giving rise to nonzero magnetic mo-
ment.

Within a mean-field approach the electron properties are
controlled by a single electron Hamiltonian H containing two
additive terms Hso and Hz representing spin-orbit coupling
and an effective Zeeman-type spin splitting due to the ex-
change interaction, respectively,

H =
p2

2m0
+ V�r�� + Hso + Hz �3�

with m0 being free-electron mass, V�r�� denotes the crystal-
line potential, p� is momentum operator, and
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Hso =

c

2

4�
�� · ��� V�r�� 	 p�	, Hz = − 
BB� eff · �� , �4�

where 
c denotes an effective Compton length and elements
of the vector �� are Pauli matrices. Strength of the Zeeman-
type splitting is controlled by the product of the Bohr mag-
neton 
B and the parameter B� eff representing an effective
magnetic field. The corresponding velocity operator reads

v� =
p�

m0
+


c
2

4�
�� 	 �� V�r�� . �5�

Eigenfunctions are spinors with two components, and since
spin-orbit coupling does not destroy translation symmetry
they are of the Bloch form. Energy spectrum E��k� is a func-
tion of the wave vector k�, with � being a band index, now
including also, in addition to atomic-orbital numbers, a spin
number. Eigenfunctions are of the following form:

��,k�� � ��,k��r�� =
eik�r�

�8�3
u��k�,r�� �6�

and velocity expectation values are

v���k�� =
1

�
�� k�E��k�� . �7�

Spinors u��k ,r�� are periodic functions of the lattice transla-
tion vectors. Assumed invariance under space inversion re-
sults in following k�-space symmetry: E��k��=E��−k�� and
v��k��=−v��−k��.

In order to analyze the role of the space distribution of the
current densities, it is illustrative to present first the results
for a simple model of a linear chain of atomic orbitals. It is
assumed that this chain is forming a one-dimensional lattice
along the x̂ direction with a period a. Model parameter will
be chosen to satisfy conditions for which the tight-binding
approach is applicable. Energy bands originated in overlap of
atomic states ��� will be denoted by the corresponding mag-
netic quantum number m. To model a ferromagnetic state, we
assume that the effective field B� eff is parallel with ẑ direction
and energy bands are fully spin polarized, with sz= �1 /2
being a good quantum number. We have obtained numerical
results by diagonalizing the single-particle Hamiltonian for a
two-dimensional separable chain potential

V�x,y� = − V0 cos�2�x/a� + m0�0
2y2/2. �8�

Note that adding a z-dependent potential would not affect the
current distribution of the considered model system. The pa-
rameters have been chosen to be in the tight-binding regime,
i.e., to fully separate the studied band from the other energy
bands �we used 2m0a2V0 /�2=75.0, m0�0

2a2=1.4	4�2V0,
and �
c

2 /a2=0.015�.
Typical current-density distribution within the unit cell for

the Bloch states �� ,kx� and �� ,−kx� are shown in Figs. 1�a�
and 1�b�, respectively. One observes circulating currents
forming vortices, which have the same orientation for both
cases. This orientation coincides with the orientation of the
circulating current of the atomic orbitals. In addition to this
circulating current, there is a direct current flow, with oppo-

site sign for the two cases. Corresponding total current and
its direction is just determined by the velocity expectation
value, −evx

��kx�. Note that these current flows are spatially
separated in the two cases �they are on opposite sides of the
circulating current�. The current densities averaged over x
and z coordinates,

jx
��kx,y� = − e
 
 ��,kx

+ �r��vx��,kx
�r��dxdz , �9�

clearly demonstrate the above-mentioned spatial separation
of the currents having opposite velocity directions, as shown
in Figs. 1�c� and 1�d�.

This space separation of currents flowing in opposite di-
rections is closely related to the mass-center separation
�Y��kx� of states �� ,kx� and �� ,−kx� with kx being consider
as positive, kx�0. For the considered model potential, Eq.
�8�, the y component of the force operator reads

Fy �
1

i�
�py,H	 = − m0�0

2y + 2sz


c
2

4�
m0�0

2px. �10�

In a stationary state the force expectation values has to van-
ish. Using the relation between px and vx given by Eq. �5� we
get

�Y��kx� = 2sz


c
2m0

4�
�1 − �
c

2m0

4�

2

�0
2�−1

2vx
��kx� . �11�

In the limiting case of vanishing spin-orbit coupling
�Y��kx�→0 and sum of the current densities jx

��kx ,y�
+ jx

��−kx ,y� approaches zero as well.
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FIG. 1. �Color online� Current distributions for an energy band
given by a chain of atomic states with spin sz=1 /2 and m=−1 for
��a� and �c�	 kx=1.5 /a and ��b� and �d�	 kx=−1.5 /a. In �a� and �b�,
the arrows indicate the direction of the current and a lighter back-
ground indicates a larger current. In �c� and �d�, the averaged cur-
rent densities jx

��kx ,y� are shown.

BRIEF REPORTS PHYSICAL REVIEW B 82, 113303 �2010�

113303-2



Nonzero total current appears if there is different occupa-
tion of states with opposite velocities which can be charac-
terized by the chemical-potential difference �
. It can be
related to the electric field along the ŷ direction, Ey
=�
 / �e��Y��kF���, with �Y��kF� being the mass-center
separation of quasiparticles having opposite velocities at the
Fermi energy EF=
. Within linear-response approach the re-
sulting current at zero temperature reads

Jx
��
� = −

e

h

vx
��kF� − vx

��− kF�
�vx

��kF��
�
 = −

e2

h
�Y��kF�Ey .

�12�

Because of the nonzero separation �Y��kF� and nonequal
occupation of states with opposite velocities the applied cur-
rent is giving rise an electric dipole moment, i.e., a charge
polarization is induced.

For the later use, let us express current Jx
��
� in terms of

the following quantity:

P� ��k��
�ws

� −
e

c
��,k��r���,k�� 	 v���k�� , �13�

where �ws defines a unit-cell volume. Evaluation of the fol-
lowing expression:

Jx
��
� = −

ecEy

2��ws



−�

+�

�„E��kx� − 
…�P� ��kx�	zdkx �14�

immediately gives the above result, Eq. �12� �using �ws=a
for the linear chain of atomic orbitals� since velocity expec-
tation value along the ŷ direction vanishes. The above de-
fined quantity, Eq. �13�, is the part of the orbital magnetic
moment within each of the unit cells which gives rise to an
electric dipole moment in the current carrying regime. For
this reason it will be called as the orbital polarization mo-
ment.

Generalization of the above treatment to a three-
dimensional system is straightforward. Velocity expectation
values have nonzero component also along the ŷ direction
and they contribute to the orbital polarization moment de-
fined by Eq. �13�. The resulting contribution of the band � to
the Hall conductivity component �xy can thus be written as
follows:

�xy
����
� = −

ec

8�3�ws



BZ
�„E��k�� − 
…�P� ��k��	zd

3k , �15�

where integration is limited to the Brillouin zone and �ws
now denotes volume of the Wiegner-Seitz cell. Inserting for
P� ��k�� and v���k�� their explicit forms, Eq. �13� and Eq. �7�,
respectively, and using equality

��,k��r���,k�� = − Im

�ws

u�
+�k�,r����� k�u��k�,r��	d3r , �16�

already derived by Karplus and Luttinger,3 the integration
per parts gives the well-known expression for the Hall con-
ductivity of Bloch electrons

�xy�
� = −
e2

4�2h
�
�



BZ
f0„E��k��…��� ��k��	zd

3k . �17�

Here f0�E� stands for zero-temperature Fermi-Dirac distribu-
tion function and the Berry-phase curvature �� ��k�� defined
using the periodic part of Bloch functions, u��k� ,r��, reads

�� ��k�� = − Im��� k�u��k�,r��� 	 ��� k�u��k�,r��� . �18�

Our description of the anomalous Hall effect based on charge
polarization effect is thus equivalent to the approach based
on the Berry-phase correction.9 The orbital polarization mo-
ment we introduced is equivalent to the Berry-phase correc-
tion to the orbital magnetization.13

For completeness, we must note that for the three-
dimensional case, computing the current distribution, say
along the ŷ direction, as well as the quantity �Y defining the
local dipole moments induced in transport regime is not
trivial. It requires to express eigenfunctions in a mixed rep-
resentation, to preserve the Bloch form along the x̂ direction,
while using Wannier representation along perpendicular di-
rections. The Wannier representation gives functions which
are bounded along the ŷ direction, allowing to compute �Y.
Nevertheless, qualitative features of both quantities are not
affected by system dimensionality.

Discussed relation between the anomalous Hall effect and
the local charge polarization is similar to that obtained for
Hall conductivity of Bloch electrons in rational quantizing
magnetic fields in terms of charge polarization.14,15 However,
in that case the physical picture is strongly affected by chiral
magnetic edge states.

Assumed nonequal occupation of states having different
velocities is controlled by electron transitions between them.
Such transitions are due to the scattering which is naturally
of the side-jump character since mass-center positions of
states with different k� are different. This type of scattering
does not affect the Hall conductivity which is given as the
sum of the additive band contributions defined by Eq. �15� or
Eq. �17�. However, this view can only be applied to the good
metal regime for which anomalous Hall conductivity is
roughly scattering independent quantity. It does not include
hopping regime for which disorder is so strong that eigen-
functions cannot be further considered to have Bloch char-
acter. Also skew scattering is ignored which excludes appli-
cability to high-conductivity regime.

Of particular interest are nonmagnetic systems in which
spin-orbit coupling is not negligible but effective Zeeman-
type spin splitting vanishes, Beff→0. We have on mind sys-
tems in which applied current does not induce Hall voltage
but there appears spin accumulation on sample edges. Typi-
cal example is GaAs on which such effect was first
observed.7,8 Local properties of such systems can be illus-
trated by using the above defined model of the single atomic
chain assuming twofold band degeneracy. In the case of the
vanishing Zeeman-type splitting states �� ,kx� with orbital
number m and spin sz are of the same energy as states ��̄ ,kx�
with opposite sign of the orbital number and spin, −m and
−sz. Their orbital magnetizations have opposite sign, the
sum of their current densities vanishes, jx

��kx ,y�+ jx
�̄�kx ,y�
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+ jx
��−kx ,y�+ jx

�̄�−kx ,y�=0, and total magnetization vanishes
as well. The mass-center separation has also opposite signs,
�Y��kx�=−�Y �̄�kx�, and in accord with Eq. �12� the resulting
anomalous Hall effect vanishes.

However, the spin-orbit coupling has still an important
effect in the transport regime. The current applied along the x̂
direction gives rise for each band to nonequal occupation of
states with opposite velocities represented by a local
chemical-potential difference �
. The two considered bands
contribute by the same current but their Fermi energy states
have different space distribution because of the different
mass-center positions determined by their spin orientation,
Eq. �11�. As a result, the spin polarization of the transport
current density averaged over x and z coordinates will be a
function of the y coordinate. This is illustrated in Fig. 2,
where the averaged transport current densities are shown for
the same model parameters as in Fig. 1. Qualitatively the
same features are expected for three-dimensional crystals,
i.e., that the spin polarization of the transport current density
will show a periodic oscillation. This property can be inter-
preted as an internal spin Hall effect.

To conclude, we have shown that the mass-center separa-
tion as well as the current-density separation of states having
opposite velocities is a typical feature of the systems with
spin-orbit coupling. In the transport regime it gives rise to
the charge polarization inducing anomalous Hall effect in
ferromagnetic crystals. We have shown that this intuitive pic-
ture gives the same results as the approach based on the
Berry-phase correction. Furthermore, in nonmagnetic sys-

tems it leads to a periodic spatial variation in the spin polar-
izability of the transport current density, a prediction we
called “internal spin Hall effect.”
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FIG. 2. Transport current densities jx
��kx ,y��
 for the energy

band of the twofold degeneracy �Beff=0� given by a chain of atomic
states ��� with m=−1, sz=1 /2 �full line� and m=1, sz=−1 /2
�dashed line� for Fermi energy given by the wave number kx

=1.5 /a.
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