Gwendal Fève (Laboratoire Pierre Aigrain, ENS Paris) - Realization of a time-controlled single electron source

We have realized the electron analog of the single photon source in a two dimensional electron gas [1]. Time controlled coherent emission of single electrons is achieved on sub-nanosecond time scales providing an important missing brick for manipulating quantum information in ballistic quantum conductors [2]. As a by-product, periodic operation of the single electron source, gives a quantized ac-current in the few 100Mhz range suitable for metrology. The single electron injection is obtained using a quantum dot connected to the conductor via a tunnel barrier of variable transmission D (quantum point contact). A magnetic field B = 1.3T is applied to the sample so as to work in the quantum Hall regime with no spin degeneracy. Only the last edge state (nu = 1) is transmitted. To trigger electron emission, a potential step is suddenly applied to a top gate to compensate the dot charging energy delta. The electron of the topmost occupied energy level is then injected from the dot to the lead formed by the edge state running along the wide 2DEG region. The injection energy above the lead Fermi energy can be controlled by the potential step height and the electron emission time tau by the QPC barrier transparency, tau = h/(D Delta). The single electron emission time is in the range of 0.1 to 10 nanoseconds suitable for further experiments aimed at manipulating coherent single electrons. When the potential returns to its initial value, a single electron is absorbed ( or equivalently a hole is emitted in the lead Fermi sea). Periodic repetition, at frequency f, of sequences of single electron emission followed by single electron absorption leads to a quantized ac current whose first harmonic is I=2ef. These experimental results are in excellent agreement with a theoretical description that will be also presented. As the dot charging energy and the QPC transmission can be obtained from independent linear measurements [3,4], no free parameter is used.
[1] G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, D.C. Glattli, A. Cavanna, B. Etienne, Y. Jin, Science, 316 1169 (2007).
[2] A. Bertoni, P. Bordone, R. Brunetti, C. Jacoboni, and S. Reggiani, Phys. Rev. Lett. 84, 5912 (2000). R. Ionocioiu, G. Amaratunga, and F. Udrea, Int. J. Mod. Phys. 15, 125 (2001). T.M. Stace, C.H.W. Barnes, and G.J. Millburn, Pys. Rev. Lett. 93, 126804 (2004).
[3] J. Gabelli, G. Fève, J.-M. Berroir, B. Plaçais, A. Cavanna, B. Etienne, Y. Jin, and D.C. Glattli, Science 313, 499 (2006).
[4] M. Buttiker, A. Prêtre, H. Thomas, Phys. Rev. Lett. 70, 4114 (1993). A. Prêtre, H. Thomas, M. Buttiker, Phys. Rev. B 5

Pascal Degiovanni (Laboratoire de Physique de l'ENS Lyon) - Capacitive quantum detection of edge excitations

We consider the problem of detecting ballistic electrons at the edge of a two-dimensional electron gas in the integer quantum Hall regime. This problem is motivated by recent proposals for developing an electronic version of quantum optics with single electrons propagating in nanostructures. A phenomenological model based on a passive linear circuit capacitively coupled to a gate will be considered as well as a model of coupled edge channels. Decoherence of edge excitations induced by the detector will then be discussed. Using information theory, we define the appropriate notion of quantum limit for such an "on the fly" detector. Relation to realistic devices will be addressed.

Minchul Lee (CPT) - Josephson Effect through a Magnetic Molecule.

We investigate the Josephson effect through a molecular quantum dot magnet connected to superconducting leads. The molecule depicts a metallofullerene where the spin of the magnetic atom inside the carbon shell is assumed to be isotropic. It is coupled to the electron spin on the dot via exchange coupling. Using the numerical normalization group method we calculate the Andreev levels and the supercurrent and examine intertwined effect of the exchange coupling, Kondo correlation, and superconductivity on the current. Exchange coupling typically suppresses the Kondo correlation so that the system undergoes a phase transition from 0 to $\pi$ state as |J| increases, where J is the exchange coupling constant. Antiferromagnetic coupling is found to drive exotic transitions: the reentrance to the Pi state for a small superconducting gap and the restoration of 0 state for large J. We suggest that the asymmetric dependence of supercurrent on J could be used as to detect the sign of J in experiments.

Roland Hayn (L2MP) - Le diagramme du phase du modèle Hubbard ionique

The ionic Hubbard model to study the relationship between band and Mott-Hubbard insulators and transport properties in small and wide gap insulators is presented. The phase diagram in the limit of high dimensions has been obtained by dynamical mean field theory. It shows an intervening metallic phase between the two insulating ones. Comparing it with the one-dimensional case where the intervening phase is a ferroelectric inslutaor, the presence of an intervening phase seems to be a universal feature of the ionic Hubbard model.

Thomas Leoni (CINAM) - La molécule unique, ses contacts et la jonction brisée.

La diversité des observations du comportement électrique (conducteur, semiconducteur, isolant) d'un seul brin d'ADN montre l'importance du contact avec les électrodes de mesure. La tâche devient encore plus ardue lorsque la taille de la molécule devient nanométrique. Il faut d'une part gérer la qualité du contact électrique, d'autre part maîtriser une distance interélectrodes nanométrique.
    Le contact électrique peut-être amélioré en fonctionalisant spécifiquement la molécule pour assurer une chimisorption sur une électrode métallique. Couplée à des techniques d'autoassemblage, cette méthode a permis la mesure en parallèle d'un grand nombre de molécules.
Passer à la mesure sur la molécule unique était un autre défi.
Un grand pas a été franchi au début des années 2000 notamment avec la publication de résultats obtenus à ASU par une technique de jonction brisée.
    Rapidement, une nanoconstriction métallique (d'or le plus souvent) est mécaniquement étirée jusqu'à la rupture. Au moment de la rupture, des molécules (préalablement fonctionnalisées) à proximité de la jonction peuvent venir jeter un pont entre les deux électrodes sub-nanométriquement séparées. Une nanopince à molécule unique est ainsi réalisée. La conductance peut être mesurée. En répétant l'expérience, on observe toutefois une certaine variabilité qui prend des proportions importantes lorsqu'il s'agit de comparer des résultats issus de différents laboratoires avec des techniques expérimentales voisines. Cette approche n'en demeure pas moins extrêmement intéressante et mérite d'être développée. Après avoir illustré ces résultats, nous insisterons sur le fait que ce n'est en fait qu'une conductance moyenne qui est mesurée. Beaucoup de paramètres entrent en jeu. La structure atomique des contacts en est un des plus importants. Une grande partie de l'information est accessible par l'étude de la nanojonction brisée d'or.
    Nous avons mené une étude statistique sur le comportement des jonctions brisées d'or via la mesure du transport électronique. Nous présenterons les résultats et les information déduites sur le mécanismes de rupture de la nanojonction brisée à partir des données acquises avec un STM. Pour compléter cette étude le développement de dispositifs expérimentaux plus stables est nécessaire. Nous l'avons entrepris. Les performances observées vont vraiment permettre d'observer les propriétés optoélectroniques d'une molécule unique dans les conditions ambiantes.


Jan Martinek (Polish academy of science - Visiteur au CPT) - Manipulating single spin in quantum-dot spin valves

We discuss the possibility to generate, manipulate, and probe single spins and their dynamics in single-level quantum dots (QDs) or single molecules coupled to ferromagnetic leads. We develop a theory of electron transport through QDs that are weakly coupled to ferromagnetic leads taking non-collinear magnetization of the leads into account, and allows for an externally-applied magnetic field [1,2]. The spin-polarized current flowing between dot and electrodes leads to a non-equilibrium accumulation of spin on the dot. Both the magnitude and the direction of the dot's spin depend on the magnetic properties of leads and their coupling to the dot. They can be, furthermore, manipulated by either an externally applied magnetic field or an intrinsically present exchange field that arises due to the spin-polarized tunnel coupling of the strongly-interacting-QD states to ferromagnetic leads. The exchange field can be tuned by both the gate and bias voltage, which, therefore, provide convenient handles to manipulate the quantum-dot spin. Since the transmission through the QD spin valve sensitively depends on the state of the QD spin, all the dynamics of the latter is reflected in the transport properties of the device. We suggest a series of transport experiments on spin precession in QDs coupled to one or two ferromagnetic leads. An applied magnetic field gives rise to the Hanle effect [3]. Recent experiments fit well to our predictions [4]. We study also frequency-dependent current noise of this system. We show that the noise spectrum displays a resonance at the Larmor frequency, whose line-shape depends on the relative angle of the leads' magnetizations. One can thus use the current noise as a tool to detect the electron spin resonance (ESR) from a single spin [5].
[1] J. König and J. Martinek, Phys. Rev. Lett. 90, 166602 (2003); M. Braun, J. König, and J. Martinek, Phys. Rev. B 70, 195345 (2004).
[2] J. König, J. Martinek, J. Barnas, and G. Schön, in "CFN Lectures on Functional Nanostructures", Eds. K. Busch et al., Lecture Notes in Physics 658, Springer, 145-164 (2005).
[3] M. Braun, J. König, and J. Martinek, Europhys. Lett. 72, 294 (2005)
[4] L. Y. Zhang, C. Y. Wang, Y. G. Wei, X. Y. Liu, D. Davidovic, Phys. Rev. B 72, 155445 (2005).
[5] M. Braun, J. König, J. Martinek, Phys. Rev. B 74, 075328 (2006).