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268 M. Bronstein

QUANTUM THEORY OF WEAK GRAVITATIONAL
FIELDS1

By M. Bronstein.

(Received on 2. January 1936)

§1. General remarks. §2. Hamiltonian form and plane waves. §3. Commutation
relations and eigenvalues of the energy. §4. Let us undertake a little gedanken experiment!
§5. Interaction with matter. §6. Energy transfer by gravitational waves. §7. Deduction
of Newton’s law of gravitation.

§ 1. G e n e r a l r e m a r k s

It is known that the deviations of a space-time continuum from “Euclid-
eanness” can be characterized by the components of the Riemann - Christoffel
tensor. When these deviations are small, this fourth-rank tensor field can be
derived from a symmetric second-rank tensor field as follows:

(μρνσ) =
1

2

(
∂2hμν

∂xρ∂xσ

+
∂2hρσ

∂xμ∂xν

− ∂2hμσ

∂xρ∂xν

− ∂2hρν

∂xμ∂xσ

)
, (1)

where hμν is the small deviation of the fundamental metric tensor from its
Minkowskian value Δμν (Δ00 = 1, Δ11 = Δ22 = Δ33 = −1; Δμν = 0, if μ �=
ν). In these circumstances, we consider the world as “Euclidean” with the
metric tensor Δμν , and (μρνσ) as the components of a fourth-rank tensor field
embedded in this flat world. Thereby hμν play the role of the “potentials”,
whose values can be fixed by four additional “gauge conditions”

[αα, β] = 0 (β = 0, 1, 2, 3). (2)

(Here and in what follows the summation convention applies only to Greek
indices, also in the sense that e.g. Aαα denotes A00 − A11 − A22 − A33; it
allows us not to worry about the difference between co- and contravariant
components; [αβ, γ] is the usual notation for the three-index Christoffel sym-
bol).

In empty space, the equations of gravitation read

(μρνρ) = 0. (3)

1A more detailed summary of this work appears simultaneously in “Journal of Exper-
imental and Theoretical Physics” (russian).
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Republication of: Quantum theory of weak gravitational fields 269

Under the “gauge conditions” (2), they are fully equivalent to the usual wave
equations for potentials

�hμν = 0. (4)

In what follows, we consider a quantum-mechanical continuous system, for
which the classical equations of motion can be written in the form (4); along
with the additional conditions (2), which, as we shall show, are compatible
with the S c h r ö d i n g e r equation for the quantum-mechanical system un-
der consideration, this system is identical to the gravitational field in empty
space. This treatment is, to some extent, analogous to F e r m i ’s quan-
tization of electrodynamics: F e r m i ’s depends on a non-gauge-invariant
Lagrangian; our quantization of the gravitational field also relies on quanti-
ties that are not (even approximately) relativistic invariants.

§ 2 . H am i l t o n i a n f o rm and p l a n e wa v e s

Let us consider a dynamical continuum with ten fields hμν (μ ≤ ν), which
play the role of mechanical coordinates with the Lagrangian density

[αα, β] [βγ, γ] − [αβ, γ] [αγ, β] +
1

2
[αα, β] [γγ, β] .

Rather complicated calculations, which we omit here for brevity, show that
the corresponding Hamiltonian density is

2

(
p00 +

∑
l

∂h0l

∂xl

)2

− 1

4

(
3p00 −

∑
l

pll + 2
∑

l

∂h0l

∂xl

)2

−

−1

2

∑
l

(
−p0l +

∂h00

∂xl

+
∑
m

∂hml

∂xm

)2

+

+
1

4

∑
n

(
2pnn + p00 −

∑
l

pll + 2
∂h0n

∂xn

)2

+

+
1

2

∑
l<m

(
plm +

∂h0m

∂xl

+
∂h0l

∂xm

)2

+
1

8

∑
l

(
∂h00

∂xl

)2

−

−1

4

∑
lm

(
∂h0l

∂xm

− ∂h0m

∂xl

)2

+
1

4

∑
lm

∂h00

∂xl

∂hmm

∂xl

− 1

2

(∑
l

∂h0l

∂xl

)2

−
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270 M. Bronstein

−1

8

∑
m

(
∂

∂xm

∑
l

hll

)2

+
1

4

∑
lmn

(
∂hln

∂xm

)2

+

+
1

2

∑
lmn

(
∂hlm

∂xm

∂hln

∂xn

− ∂hlm

∂xn

∂hln

∂xm

)
,

where pαβ are the momenta conjugate to the coordinates hαβ and that the
corresponding equations of motion are (4). Here and in what follows, Latin
indices take the values (1, 2, 3) only. For simplicity we have also set the
speed of light to 1 and the Newtonian gravitational constant to 1/16π. (The
reader can easily verify the value of gravitational constant if he compares
our formulas e.g. with the formulas 58.1 and 59.4 of E d d i n g t o n’s book
“Relativitätstheorie in mathematischer Behandlung”, Berlin, Springer 1925.)

Now let us introduce the Fourier expansion,

hαβ =
1

(2π)3/2

∫
dk

[
hαβ,ke

−i(ωt−kr) + h+
αβ,ke

i(ωt−kr)
]

(where ω = |k|). The Hamiltonian can the be calculated to be

H =

∫
dkω2

{
1

2

(
h+

00,k +
∑

l

h+
ll,k

)(
h00,k +

∑
l

hll,k

)
+

+
∑
l �=m

(
hlm,kh

+
lm,k − h+

ll,khmm,k

) − 2
∑

l

h0l,kh
+
0l,k

}
. (5)

(At first sight, the factor-ordering seems to be arbitrary, but it will be clear
from what follows that this is the only one that will avoid quantum“zero-
point energy”.)

After Fourier expansion, the conditions (2) take the following form

1
2
ω (h00,k +

∑
l hll,k) +

∑
l klh0l,k = 0,

ωh0l,k +
∑

m kmhml,k + 1
2
kl (h00,k −

∑
m hmm,k) = 0

(l = 1, 2, 3).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6)

Hence the number of independent hμν,k (for a given k) is equal to 10− 4 = 6.
However one may easily show that for many problems where e.g., energy
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transfer by gravitational waves is discussed, the number of independent po-
larizations is even fewer. Let us consider e.g., the case k‖z. Then the condi-
tions (6) become

h11,k + h22,k = h00,k + 2h03,k + h33,k = h01,k + h31,k =

= h02,k + h32,k = 0. (6′)

Taking into account the relation (6′) one may write the energy content of the
gravitational wave in the form

2dkω2
(
h+

12,kh12,k + h+
11,kh11,k

)
.

(Using the conditions (6′) the integrand in (5) can be easily brought to this
form, if all hμν,k and h+

μν,k commute; later we shall see, that even when the
h and h+ are quantized and do not commute, a similar result holds.) Thus,
without changing the energy content of the gravitational wave, we can sub-
ject the 10 amplitudes hμν,k to four additional conditions besides (6). For
example, we can choose (also when k is not parallel to z) the following (albeit
relativistically non-invariant) additional conditions:

h00,k = h01,k = h02,k = h03,k = 0.

Thus we see among other things that for the energy transfer only the trans-
verse gravitational waves are significant, namely those with two independent
polarizations. However, the situation is quite different if one considers not
energy transfer but e.g., gravitational interaction between two massive bod-
ies: we shall see below that for this interaction only the longitudinal hμν

waves dominate.

§3 . C o m m u t a t i o n r e l a t i o n s a n d e i g e n v a l u e s
o f t h e e n e r g y .

The H e i s e n b e r g – P a u l i commutation relations read2:

[hαβ(r), hα′β′(r′)] = 0,
[pαβ(r), pα′β′(r′)] = 0,
[pαβ(r), hα′β′(r′)] = h

i
δαα′δββ′δ(r − r′) (α � β, α′ � β′).

⎫⎬
⎭ (7)

2Here h means h/2π.
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272 M. Bronstein

After Fourier expansion, we obtain

[hαβ,k, hα′β′,k′ ] = 0,
[
h+

αβ,k, h
+
α′β′,k′

]
= 0,[

h+
00,k, h00,k′

]
=

[
h+

00,k, hll,k′
]

=
[
h+

ll,k, hll,k′
]

= − h

2ω
δ(k − k′),[

h+
00,k, h0l,k′

]
=

[
h+

ll,k, h0m,k′
]

=
[
h+

0l,k, hmn,k′
]

= 0,[
h+

00,k, hlm,k′
]

=
[
h+

nn,k, hlm,k′
]

= 0 (l �= m),[
h+

ll,k, hmm,k′
]

=
h

2ω
δ(k − k′) (l �= m),[

h+
0l,k, h0m,k′

]
=

h

2ω
δlmδ(k − k′),[

h+
lm,k, hpq,k′

]
= − h

2ω
δlpδmqδ(k − k′) (l < m, p < q).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

We introduce the operators

A =
1

2
ω

(
h00,k +

∑
l

hll,k

)
+

∑
l

klh0l,k,

Bl = ωh0l,k +
∑
m

kmhml,k +
1

2
kl

(
h00,k −

∑
m

hmm,k

)
.

Calculation shows that due to (8) all eight operators A, Bl, A+, B+
l (l =

1, 2, 3) commute with each other. But they do not commute with the Hamil-
tonian (5), i.e. they are not integrals of motion. However in the particular
case, when

A = Bl = A+ = B+
l = 0,

one can easily show, that the Poisson brackets of any of these operators and
the Hamiltonian, i.e. the rates of change of these operators, are all zero.
It means that the conditions (6) (and their conjugates) are compatible with
each other and with the quantum-mechanical equations of motion.

The commutation relations (8), the Hamiltonian operator (5) and the
additional conditions (6) (together with the ansatz for the interaction be-
tween gravitational field and matter, which will be introduced later) form
the foundation of the quantum theory of gravity proposed here. Note that
the quantum-mechanical Hamiltonian operator can never be uniquely spec-
ified by the correspondence principle: it is always possible to change the
Hamiltonian by introducing additional terms that go to zero when h → 0
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(e.g., “spin terms” in the theory of the electron); in general even relativistic
requirements are not sufficient to fix these “spin terms” uniquely. Neverthe-
less, we believe that adding such terms is not necessary here.

Now to calculate the eigenvalues of the energy! As in the quantum elec-
trodynamics this is accomplished by introducing the new variables ξ that
satisfy the commutation relations[

ξ, ξ+
]

= 1.

The eigenvalues of ξξ† are well-known to equal n + 1, and those of ξ+ξ equal
n, where n is a positive integer or zero.

Here it is not possible to introduce these ξ-variables in a symmetric man-
ner. One possible solution of the problem looks like this,

1

2

(
h00,k +

∑
l

hll,k

)
=

√
h

2ωdk
ξ00,ke

iωt,

h11,k =

√
h

2ωdk

(
ξ+
11,k√
3

e−iωt +
ξ22,k√

3
eiωt + ξ33,ke

iωt

)
,

h22,k =

√
h

2ωdk

(
ξ+
11,k√
3

e−iωt +
ξ22,k√

3
eiωt − ξ33,ke

iωt

)
,

h33,k =

√
h

2ωdk

(
ξ+
11,k√
3

e−iωt − 2√
3
ξ22,ke

iωt

)
,

hlm,k =

√
h

2ωdk
ξlm,ke

iωt (l �= m),

h0l,k =

√
h

2ωdk
ξ+
0l,ke

−iωt.

The Hamiltonian in the new variables transforms into

H =
∑
k

hω
(
ξ+
00,kξ00,k + ξ12,kξ

+
12,k + ξ23,kξ

+
23,k + ξ13,kξ

+
13,k−

−ξ+
01,kξ01,k − ξ+

02,kξ02,k − ξ+
03,kξ03,k − ξ11,kξ

+
11,k+

+ξ+
22,kξ22,k + ξ+

33,kξ33,k

)
.

⎫⎪⎬
⎪⎭ (5′)

Therefore the eigenvalues of the energy (for each value of k) are

hω (n00 + n12 + n23 + n31 − n01 − n02 − n03 − n11 + n22 + n33 + 2) ,
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274 M. Bronstein

where n00, n12, ... are ten quantum numbers (n = 0, 1, 2, ...).
The conditions (6) make this expression positive definite. To see this, we

again consider the case k‖z. From (6) we then obtain the following conditions:

ξ00,ke
iωt + ξ†03,ke

−iωt = 0, ξ†01,ke
−iωt + ξ13,ke

iωt = 0,

ξ†02,ke
−iωt + ξ23,ke

iωt = 0, ξ†11,ke
−iωt + ξ22,ke

iωt = 0.

From this it follows that

n01 = n31 + 1, n02 = n23 + 1, n22 = n11 + 1, n03 = n00 + 1.

The eigenvalues of the energy for this k become

hω
(
ξ†12,kξ12,k + ξ†33,kξ33,k

)
= hω (n12 + n33) .

We see, consequently, that the energy of the gravitational field consists of
positive gravitational quanta, of two polarizations for each wave vector k.
In analogy to the classical case, also here only the transverse gravitational
excitations matter: e.g., for k||z, these are h12 and 1/2 (h11 − h22).

No “zero-point energy terms” arise in the process, due to the suitably
chosen factor-ordering in the expression (5).

§ 4 . L e t u s und e r t a k e a l i t t l e g e d ank e n e xp e r im en t !

In order to understand somewhat better the physical content of the quan-
tum theory of the gravitational field, let us consider the measurement of
one of the field quantities appearing here, for example, of the three-index
Christoffel symbol [00, 1]. The classical E i n s t e i n equations of motion read
in our case (all hμν � 1):

d2x

dt2
=

∂h01

∂t
− 1

2

∂h00

∂x
= [00, 1]. (9)

Following B o h r and R o s e n f e l d 3 let us consider the measurement of
a space-time average of [00, 1] in volume V and time interval T . Take a
test body of volume V. Let its mass be ρV . The above equation of motion,
which is valid only when the speed of the test body is small compared to
the speed of light, makes the following measurement possible: let us measure

3Bohr N. and Rosenfeld L., Dansk. Vidensk. Selskab., Math.-fys. Meddel. 12, 8. 1933.
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the momentum of the test body at the beginning and at the end of a time
interval T ; then by definition the required average is

(px)t+T − (px)t

ρV T
.

Therefore the measurement of [00, 1] is associated with an uncertainty of
order

Δ[00, 1] ≈ Δpx/ρV T, (10)

where Δpx is the uncertainty in momentum. Let the duration of the mo-
mentum measurement be Δt (of course, Δt � T ); Δx be the uncertainty
in the coordinate associated with measuring the momentum. The uncer-
tainty Δpx consists of two terms: the usual quantum-mechanical h/Δx and
one associated with the gravitational field produced by the test body itself
because of its recoil due to the measurement. Because of E i n s t e i n ’s equa-
tion of gravitation �h01 = ρvx the uncertainty in h01, which appears as a
consequence of the undetermined recoil speed Δx/Δt, must be of the order
ρΔx

Δt
·Δt2. One can see from (9), that the corresponding uncertainty in [00, 1]

is of the order ρΔx, and therefore during every measurement of momentum
there appears an additional uncertainty in momentum connected with the
gravitational field, which is of order ρΔx · ρV Δt. In order to simplify the
comparison with the usual units of measurement we suspend our convention
c = 1, G = 1/16π (till the end of this section). For the momentum we obtain

Δpx ≈ h

Δx
+ Gρ2V ΔxΔt.

It can be shown (similarly to the arguments of B o h r and R o s e n f e l d)
that the second term can be made arbitrarily small compared to the first. But
in order to make the best measurement of [00, 1] it seems more appropriate
to bring Δpx to its minimum, i.e. to make both terms of the same order.
Thus one should choose Δx of the order

Δx ≈ 1

ρ

(
h

GV Δt

)1/2

.

For Δ[00, 1] we obtain

Δ[00, 1] � h1/2G1/2Δt1/2

V 1/2T
. (11)
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276 M. Bronstein

Thus an absolutely precise measurement of the gravitational field would be
possible only if an arbitrarily rapid measurement of momentum were possible.
But two circumstances make the latter impossible: firstly, according to the
definition of the measurement, Δx � V 1/3 should hold, and it leads to

Δt 	 h

ρ2GV 5/3
.

Secondly, according to the theory of relativity, Δx can never be greater than
cΔt, and it leads to

Δt � h1/3

c2/3ρ2/3V 1/3G1/3
.

It follows from (11) that Δ[00, 1] can never be made smaller than

h

ρTV 4/3
or

h2/3G1/3

c1/3ρ1/3V 2/3T
.

Of these two bounds the first is the only significant one for the case of a light
test body (ρV � h1/2c1/2G1/2, i.e. smaller than approximately 0.01 mg). For
a heavier test body the second one is the most significant. It is clear that for
the most precise measurement possible of [00, 1] heavy test bodies should be
used, so only the second bound is of theoretical importance. We finally have

Δ[00, 1] � h2/3G1/3

c1/3ρ1/3V 2/3T
. (12)

Thus it is clear that in the region where all hμν are small compared to 1
(this is just the meaning of the word “weak” in the title of this paper),
accuracy of gravity measurements can be increased arbitrarily: as in this
domain of phenomena the approximate linearized equations (1) hold, conse-
quently the superposition principle is also valid, and it is therefore always
possible to create a test body of arbitrary large ρ. From this we conclude
that it is possible, just as, e.g., this paper attempts to do, to construct a
completely self-consistent quantum theory of gravity within the framework
of special relativity (i.e. when the space-time continuum is “Euclidean”).
However, within the domain of General Relativity theory, where deviations
from “Euclideanness” can be arbitrary large, the situation is quite different.
Indeed the gravitational radius of the test body used for the measurement
(GρV/c2) cannot be larger than its linear dimensions

(
V 1/3

)
; this means that
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the upper bound on its density is (ρ � c2/GV 2/3). Consequently, in this do-
main the possibilities of measurement are even more restricted than those
due to the quantum-mechanical commutation relations. Without a deep re-
vision of classical notions it seems hardly possible to extend the quantum
theory of gravity also to this domain.

§5 . I n t e r a c t i o n w i t h ma t t e r

The Ansatz for the energy of interaction between gravitational field and
matter that is consistent with the correspondence principle can be obtained
from the general relativistic form of the D i r a c wave equation established
by V. F o c k.4 When all hμν are small compared to 1, this equation can be
written, for vanishing electromagnetic field, in the following form:

h

i

3∑
k=0

ekak

(
∂

∂xk

− 1

2

3∑
l=0

elhkl
∂

∂xl

)
ψ+

+

(
1

8

h

i

3∑
k=0

∂h00

∂xk

αk − mβ

)
ψ = 0,

where
e0 = 1, e1 = e2 = e3 = −1

and

α0 = 1, α1 = ρ1σ1, α2 = ρ1σ2, α3 = ρ1σ3, β = ρ3

(the Dirac matrices). If we introduce two two-component functions χ and ϕ
instead of the four-component ψ-function:

ψ1 = χ1e
−imt/h, ψ2 = χ2e

−imt/h, ψ3 = ϕ1e
−imt/h, ψ4 = ϕ2e

−imt/h,

then for decreasing particle velocity, χ goes to zero, and ϕ tends to its non-
relativistic wave function. From the S c h r ö d i n g e r equation for these
ϕx one can see that the interaction energy between the particle and the
gravitational field takes the form

V =
m

2
h00 +

h

i

∑
k

h0k
∂

∂xk

− h2

2m

∑
kl

hkl
∂2

∂xk∂xl

− h2

4m

∑
kl

∂hkl

∂xl

∂

∂xk

+

4V. Fock, ZS. f. Phys., 57, 261, 1929.
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+
h

4i

∑
l

∂h0l

∂xl

+
h2

4mi

∑
jklm

σjejlm
∂hkm

∂xl

∂

∂xk

+
h

4

∑
jlm

σjejlm
∂h0m

∂xl

,

where ejlm is the skew-symmetric unit tensor (i.e. e123 = 1 and ejlm is anti-
symmetric with respect to each pair of its indices). When the wavelength of
the gravitational perturbations is sufficiently large, this expression simplifies
to

V =
m

2
h00 +

h

i

∑
k

h0k
∂

∂xk

− h2

2m

∑
kl

hkl
∂2

∂xk∂xl

. (13)

We shall use the relation (13) below. Note that even simple considerations
based on the correspondence principle, without going through the D i r a c -
F o c k equation, also lead to the relation(13) for the interaction energy.

§ 6. En e r g y t r a n s f e r b y g r a v i t a t i o n a l w a v e s

One of the simplest applications of the quantum theory of gravity sketched
above is in the calculation of the energy radiation into gravitational waves
emitted by material systems. Here we make use of the conditions (6) and
(6′) together with h00,k = h01,k = h02,k = h03,k = 0. In the ξ-variables (see
above, §3) for the case k‖z it leads to

V =
m

8π

√
hdk

πω

{[
ξ
(
ẋ2

1 − ẋ2
2

)
+ 2ηẋ1ẋ2

]
eikr+

+
[
ξ+

(
ẋ2

1 − ẋ2
2

)
+ 2η+ẋ1ẋ2

]
e−ikr

}
, (14)

where for brevity ẋk is written instead of
h

mi

∂

∂xk

, and ξ and η are written

instead of ξ33 and ξ12. Let us denote the initial or the final state of the
emitting particle by k or l, the initial or the final state of the gravitational
excitations by k′ or l′. For the transition probability per unit time quantum
mechanics gives the well-known expression

2π

h
δ (El + El′ − Ek − Ek′) |(kk′ |V | ll′)|2 .

Using the known values of oscillator matrix elements we conclude that the
probability of spontaneous emission of a gravitation quantum per unit time,
with a given k (k||z) and with ξ - polarization is

m2

32π2

dk

ω

∣∣(k ∣∣ẋ2
1 − ẋ2

2

∣∣ l
)∣∣2 δ (El − Ek + hω) ,
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and with η-polarization

m2

32π2

dk

ω
|(k |2ẋ1ẋ2| l)|2 δ (El − Ek + hω) .

The probability of the transition k → l with the simultaneous emission of a
gravitation quantum into a cone dΩ(‖z) per unit time is therefore

dΩ

8π2

m2ω

h

{∣∣∣∣
(

k

∣∣∣∣ ẋ2
1 − ẋ2

2

2

∣∣∣∣ l

)∣∣∣∣
2

+ |(k |ẋ1ẋ2| l)|2
}

.

It is not difficult to generalize this expression to arbitrary direction (not
only ‖z) and then to integrate over all directions. The calculation leads to
the following result: the total probability (per unit time) of the transition
k → l with simultaneous emission of a gravitation quantum of the frequency
ω = (Ek − El) /h is

m2ω

10πh

⎧⎨
⎩

∑
pq

|(k |ẋpẋq| l)|2 − 1

3

∣∣∣∣∣
(

k

∣∣∣∣∣
∑

p

ẋ2
p

∣∣∣∣∣ l

)∣∣∣∣∣
2
⎫⎬
⎭ .

It is not difficult to generalize this expression also to an arbitrary system of
matter particles. For the energy that such a system loses to gravitational
waves radiated per unit time during the transition k → l, we obtain the
expression

ω2

10π

⎧⎨
⎩

∑
pq

∣∣∣(k
∣∣∣∑ mẋpẋq

∣∣∣ l
)∣∣∣2 − 1

3

∣∣∣∣∣
(

k

∣∣∣∣∣
∑

p

∑
mẋ2

p

∣∣∣∣∣ l

)∣∣∣∣∣
2
⎫⎬
⎭ (15)

(the summation symbol
∑

without indices means summation over different
particles). This formula is the quantum-theoretic generalization of E i n s t e i n
’s known result.

Indeed, E i n s t e i n’s expression for the energy radiated per unit time in
the form of gravitational waves (with G = 1/16π) is5

1

80π

⎧⎨
⎩

∑
pq

(
d3

dt3

∑
mxpxq

)2

− 1

3

(∑
p

d3

dt3

∑
mx2

p

)2
⎫⎬
⎭ .

5In E i n s t e i n ’s work (Berl. Ber., 1918, p. 154) there is 1/160π instead of 1/80π
due to a calculation error. More recent calculations by E d d i n g t o n (see his textbook
or Proc. Roy. Soc. 102, 281, 1922) lead to the correct coefficient.
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If Ipq ≡
∑

mxpxq can be represented through a Fourier series of the form

Ipq =
+∞∑

k=−∞
I(k)
pq eikω0t,

then this classical expression for the emission of energy at frequency ω = kω0

becomes

ω6

40π

⎧⎨
⎩

∑
pq

∣∣I(k)
pq

∣∣2 − 1

3

∣∣∣∣∣
∑

p

I(k)
pp

∣∣∣∣∣
2
⎫⎬
⎭ . (16)

On the other hand we have,(
k

∣∣∣∑ |mẋpẋq|
∣∣∣ l

)
=

∑ ∑
j

(
k

∣∣√mẋp

∣∣ j
) (

j
∣∣√mẋq

∣∣ l
)

=

= −
∑ ∑

j

m (k |xp| j) (j |xq| l) ωkjωjl.

At lower frequencies and higher quantum numbers, as one can easily calculate
e.g. for the case of a rotator, we can put ω2 instead of 2ωkjωjl (ω = the
emitted frequency), and it gives approximately

(
k

∣∣∣∑ mẋpẋq

∣∣∣ l
)

= −ω2

2
(k |Ipq| l) .

Then the expression (15) becomes

ω6

40π

⎧⎨
⎩

∑
pq

|(k |Ipq| l)|2 − 1

3

∣∣∣∣∣
∑

p

(k |Ipp| l)
∣∣∣∣∣
2
⎫⎬
⎭ .

If we replace Fourier amplitudes for matrix elements, this expression goes
over into E i n s t e i n ’s (16) classical one. Thus in the limit h → 0 the
quantum theory of gravity agrees with classical E i n s t e i n theory.

§ 7. D e r i v a t i o n o f N ew t o n ’ s l aw o f g r a v i t a t i o n

D i r a c showed6 that various interactions between charges can be always
interpreted as realized through a mediation by an intermediate agent, namely

6Dirac P.A.M.- Proc. Roy. Soc. 136, 453, 1932.
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by the quantized field. Here we will show that is also the case for gravitational
phenomena. At first glance, this looks a little paradoxical because both
expressions for the interaction between field and matter are almost exactly
the same [eΦ is the main term of interaction in the electromagnetic case; if
we write m/2 instead of the charge e, and replace the scalar potential Φ with
the scalar potential h00, we obtain the main term in (13)]; yet, the very same
scheme should in one case explain the repulsion of particles of the same type
(Coulomb force), but in the other case the attraction (Newtonian forces). The
solution of the paradox lies in the fact that in quantum electrodynamics, the
commutation relations for the potential Φ are

[
Φ+

k , Φk′
]

=
h

2ω
δ(k − k′),

while in our case another commutation relation applies, namely (cf. (8))

[
h+

00,k, h00,k′
]

= − h

2ω
δ(k − k′).

Neither commutation relations are introduced a d h o c, but originated
quite naturally from the general quantum-mechanical formalism. As we shall
see this suffices to obtain the correct sign of the gravitational interactions.
T h u s , t h e f u n d a m e n t a l d i f f e r e n c e b e t w e e n C o u l o m b
a n d N e w t o n i a n f o r c e s i s e x p l a i n e d f r o m q u a n t u m
m e c h a n i c s .

Following the idea of D i r a c, F o c k and P o d o l s k y 7 derived
Coulomb’s law. Our calculation proceeds exactly parallel to theirs. We start
from the equations(

1

2m1

p1
2 +

m1

2
h00(r1)

)
ψ +

h

i

∂ψ

∂t1
= 0,(

1

2m2

p2
2 +

m2

2
h00(r2)

)
ψ +

h

i

∂ψ

∂t2
= 0.

At t1 = t2 = t we have(
1

2m1

p1
2 +

1

2m2

p2
2 +

h

i

∂

∂t

)
ψ = −

(m1

2
h00(r1) +

m2

2
h00(r2)

)
ψ.

7V. F o c k and B. P o d o l s k y, Sow. Phys. 1, 801, 1932 (Part II).
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The expansion of the solution in the powers of m1 and m2 is required.
Due to the above-mentioned difference between the commutation rela-

tions, instead of the formulas (39) and (40) of F o c k and P o d o l s k y we
obtain the following formulas:

−
(

1

2m1

p1
2 +

1

2m2

p2
2 +

h

i

∂

∂t

)
ϕ2 ∼

∼ m1

2(2π)3/2

∫
h00,kϕ1(p1 − hk, p2)e

−iωtdk +

+
m2

2(2π)3/2

∫
h00,kϕ1(p1, p2 − hk)e−iωtdk;

−
(

1

2m1

p1
2 +

1

2m2

p2
2 +

h

i

∂

∂t

)
ϕ1 ∼

∼ m1

2(2π)3/2

∫
h+

00,kϕ0(p1 + hk, p2)e
iωtdk +

+
m2

2(2π)3/2

∫
h+

00,kϕ0(p1, p2 + hk)eiωtdk.

Then, 8

ϕ1(p1, p2) =

− m1

2(2π)3/2h3
h+

00,
p1

0−p1
h

δ(p2 − p2
0)δj0

W − W0 + |p1
0 − p1|e

i
|p1

0−p1|−W0
h

t−

− m2

2(2π)3/2h3
h+

00,
p2

0−p2
h

δ(p1 − p1
0)δj0

W − W0 + |p2
0 − p2|e

i
|p2

0−p2|−W0
h

t.

Let us put

h+
00,kh00,k′ ∼ 0 and h00,kh

+
00,k′ ∼

h

2ω
δ(k − k′).

After removing the infinite self-interaction term we finally obtain(
1

2m1

p1
2 +

1

2m2

p2
2 +

h

i

∂

∂t

)
∼

∼ m1m2

4(2π)3/2h

δ(p1 − p1
0 + p2 − p2

0)δj0

|p1 − p1
0|2 e−

i
h

W0t.

8For the notations see V. F o c k and B. P o d o l s k y , loc. cit.
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The sign of the right-hand side is different than in the F o c k - P o d o l s k y
formula (42). When we go back to the configuration space we accordingly
obtain the S c h r ö d i n g e r equation with the potential energy

− m1m2

16π|r1 − r2| ,

and thus we have recovered Newtonian gravitation as a necessary consequence
of the quantum theory of gravity.

The Physical-Technical Institute
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