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The problem

_ no uncontrollable
existence,
_ infinities
not uniqueness

s ther uantum theory

whose classical limit is general relativity,

In 4 lorentzian dimensions,wit@ standard matter couplings™

unification
not addressed
(cfr QCD)




Covariant loop gravity dynamics
A=0

Vertex amplitude  A(hy) = Z/ dg. H (27F + 1) T'ry, [thJgegf;le]

i /SL(20) ;

Simplicity map y7 : ’Hj RN %jmj
gsm) = |5,y + 1);5,m)

2-complex C
(vertices, edges, faces)

Transition amplitudes ~ We(h;) = Nc/
SU(2)

dhyy || 6(hy) ]| Ahoy) hy=[1hos
f v :

A>0

« SL(2,C) — SL(2,C)_qg
« A ~SL(2,C) Chern-Simons expectation value of the boundary graph of the vertex
A = Vassiliev-Kontsevich invariant of the vertex graph.



Covariant loop gravity dynamics: other version

Explicit Y We(hy) = / dg! / dhes Y
(SL2C)F-E)=V (SU2)V-F Jy
W)
{Jf}Hde X’Yff(Hg ) HX
ecOf ecdf
Coherent states We(h;) = Z/dgve/dnef def H (s —Teflgeg, |Jf e t) G
Jf f v

Spinor integrals

n-j symbols

Alejandro Perez notation:




Covariant loop gravity dynamics: the Polish version (see Lewandowski talk)

Partition function: We = Z ,U(jf) Tre H P, w(jr) = H(ij + 1)

Jf

on each face Hy = (k,v)= (s vJr+1))
on each edge H. = QfceHy
P operators: Pe = Py P Py

[N

Projector on minimal weight

Projector on SL(2,C) invariant part




The four major results

1. The boundary states represent classical geometries.

(Canonical LQG 1990’, Penrose spin-geometry theorem 1971).

2. Boundary geometry operators have discrete spectra.

(Canonical LQG main results, 1990°).

3. The classical limit of the vertex amplitude converges (appropriately) to the Regge
Hamilton function (with cosmological constant).
(Barrett et al, Conrady-Freidel, Bianchi-Perini-Magliaro, Engle, Han..., 2009-2012).

4. The amplitudes with positive cosmological constant are UV and IR finite: W(? < OO
(Han, Fairbairn, Meusburger, 2011).




Other important recent results

1.  Fermions and Yang-Mills fields can be coupled to LQG

(Bianchi, Han, Magliaro, Perini, Wieland, CR).

2. Amplitudes are locally Lorentz invariance

(Speziale, CR).

3. The amplitude leads immediately to the Bekenstein-Hawking entropy § — é
(no fixing of v )

(Frodden-Gosh-Perez, Bianchi, 2011-2012).




There aren’t “many models”.

There is only one Lorentzian theory in 4d that works.

Several possible variants in the definition:
- Which class of two-complexes? (Banr, Puchta)

- Pre-factors (see later)
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General relativity

Einstein Hilbert action Slg] = / \/— det g R|g]
Tetrads Jab — 63 Jab = 63 eé e = e,dxr® € R(1,3)
Spin connection SL(2,C') w = wedz® € sl(2,C) w(e) : de+wANe=0
GR action S[e,w]:/e/\e/\F*[w]
. 1
GR Holst action S[e,w]:/e/\e/\F [w]+—/e/\e/\F[w]
Y
S|
Canonical variables w, B=(eNne)"+ ; (e Ae)
On the boundary n, = e?na 7%‘67: =0 SL(Z, C) — SU(Q)

B — (K =nB,L=nB")

K+~L =0 “Linear simplicity constraint”



Main tool: SL(2,C) unitary irreducible representations (why so little used in physics?)

SU(2) unitary representations: 2] € 4 l7sm) € H,; L? =4(j+1)
SL(2,C) unitary representations: 2ke N, pe R (k,p);j,m) € Hyp = 69 Hi,pa
1=k,00
SL(2,C) Casimir’s: K2 _712— p2 — k241 K. = vk
Y-simple representations: p=~k+1)
SU(2) — SL(2,C) map: Yo Hj = HjiyG+1)

7im) = (5,7 +1)); Jym)

Image of Y, : J=Fk
minimal weight subspace

Main property: vL =0 weakly on the image of Y,

PN

Boost generator Rotation generator




Boundary geometry : standard LQG kinematics

State space Hr = L2 [SU(Q)L/SU(Q)N]
S . . d | S
Operator: Ll — {L;},Z — 1, 2, 3 where sz(h) = — (hetﬂ’) ZLZ —
dt t=0 lEn
G
[ [/ The gauge invariant operator: (57 = El : El’ satisfies Z Gy =0
leEn

Is precisely the Penrose metric operator on the graph

It satisfies 1971 Penrose spin-geometry theorem, and
1897 Minkowski theorem: semiclassical states have a
geometrical interpretation as polyhedra.

G -
/
l [

A
Polyhedron




Boundary geometry

area A2 = (7;;  volume V2 = 2 Ell : (El

n_§ XLl3)

2

* Area and volume (Al, Vn) form a complete set of commuting observables and have discrete spectra

* — basis (spin network basis) |F7 Iy Un>

Geometry is quantized:
% (i) eigenvalues are discrete
(i)  the operators do not commute

e Using this basis, the amplitude reads o = Z N{jf} H (25¢+1) H Av (jf, Ue)
v

—  Ultraviolet finiteness



Large distance limit

A “spinfoam”: a two-complex colored with spins

on faces and intertwiners on edges.

Theorem : For a 5-valent vertex

[Barrett, Pereira, Hellmann,
Gomes, Dowdall, Fairbairn 2010]

Theorem : For a 5-valent vertex
[Han 2012]

ZC — Z N{jf} H(ij‘|‘1)HAv(jfave)

jf/Ue f

A ve) ~  eiSRoms 4 oS

7 » | Dg el
¢ C'— o0 / g €

g>1

W s elPa
>1

Aq(jfave> ~

g>1,g~1

—1.5
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Structure of the theory

Continuous limit

Exact quantum gravity
transition amplitudes

W (h)

N

C—o0

LQG
transition amplitudes

We(hy)

General relativity

h—0 i .
— Hamilton function

~

S(q)

AN

3

7
<

Regge

h—=0 Hamilton function

y

~

Sa (L)

Classical limit

Regime of validity of the expansion:

~

1
LPlanc'k LK \/;



Structure of the theory

Exact quantum gravity General relativity

L . h—0 . .
transition amplitudes > Hamilton function
0 W (hi) S(q)
e N\ AN
g 3 3
e 0 T
: 0 <
S
k= LQG Regge
+ .. : h—0 : :
5 transition amplitudes N Hamilton function
~ We (hi) ) Sa(liy)
Classical limit .
/4
Notice: - QFT : critical phenomenon
* No critical point - Quantum Gravity: non-critical
* No infinite renormalization phenomenon

Physical scale:

Cfr: condensed matter away from critical points



Convergence between the QED and the QCD pictures

- All physical QFT are constructed via a truncation of the d.o.f. (cfr: QED: particles, QCD Lattice).
- All physical calculation are performed within a truncation.

- The limit in which all d.o.f.is then recovered is pretty different in QED gqnd QCD:

d
9 —¢—9 9
L
®
——¢ 86—
*— 0
d

What about Quantum Gravity!?
Lattice site = small region of space = excitations of the gravitational field = quanta of space = quanta of the field

Diff invariance !



Physics

e Scattering amplitudes

 Cosmology

 Black hole entropy



Boundary values of the gravitational field = geometry of box surface
= distance and time separation of measurements

Particle detectors = field measurements

\ Distance and time measurements
= gravitational field measurments

In GR, distance and time measurements
are field measurements like the other ones:
they are part of the boundary data of the problem.



(i) Gravitational waves.

4 )
Result: i i red
Ul EE GaviEen [Prefagiiel s FEesvere [Alesci, Bianchi Magliaro Perini 2009,
g ) Ding 2011, Zhang 2011,]
(i) Scattering.
X
4 )
The Regge n-point function is recovered [Zhang, CR 2011]
Result: in the large j limit

Y




(iii) Loop quantum cosmology.

Result:

Friedman equation for the scale factor

i—(1-92%

Pc

P

Av——v=0

Z

Mukhanov-Sasaki equations for perturbations [Cailleteau, Barrau, Grain, Mielczarek,Vidotto]

Best hope for empirical confirmation !

Pc =

Sl

T Qo

Bounce

(iv) Spinfoam cosmology: (See Vidotto’s talk)



(iv) Black hole entropy.

A

= G &

Local near-horizon geometry is Rindler geometry, where the stationary killing field is boost

Local equilibrium time evolution is the generator of boosts G/ : on

. . . Aa
Local energy is aA F = <]‘aK‘]> = v)] = e (Frodden, Gosh, Perez formula)
s
State U) =®v¢rl|7 is thermal at temperature /' = &_ﬁ - :
f 9=  [Bianchi,2012]

_d_E_dAaQW_ dA
T  8rGah 4hG

Entropy as [Bianchi, 2012]




Continuous limit

Main open issue:

Exact quantum gravity
transition amplitudes

W(h)

]
T
Q

LQG
transition amplitudes

We(hy)

Do radiative corrections destroy the viability of the expansion?

General relativity

h=0, Hamilton function - Radiative corrections come from large spins
S(q) and from large graphs with many spins.
:
4 » They are finite.
Regge
=0 Hamilton function _ _ _
Sa(li,) - Where is the expansion viable?

Classical limit

\
/4




Main open issue: Nature of the large radiative corrections: “antispacetimes”

. S e e _S e e
A(jp,ve) ~  ePRemse 4 o7 ! PRess

A ~ (6iSRegge _I_ e_iSRegge) (eiSRegge _|_ e_iSRegge) (eiSRegge _|_ e_iSRegge) (eiSRegge _l_ e_iSRegge)
j>1

~ Ap A+
j>1 ]
Divergences are due to
T “antispacetimes”

This is the term that diverges!
(Christodoulou, Lanvik, Riello, CR)



Main open issue: Do radiative corrections destroy the viability of the expansion?

A(jfa Ue) ~ eiSRegge -+ €_iSRegge
The physics of “antispacetimes” i>1
(Christodoulou, Riello, CR)

e = df(t, %), e = dx’

52 I (9 4 4 — 0
f(t,Z) =t —2a1 e @ (arctan(t/7) + 7/2) g I( H wu)@b ma

T Fermions detect negative Lapse regions
A spacetime “pocket”



Main open issue: Do radiative corrections destroy the viability of the expansion?

Large factor +  Small corrections

Reabsorbed here

\4

We(h) = Ne /

SU(2)

; i
. ‘
. 3

dhoy | [6(hs) [ ] AChos)
f v



LQG: Summary

i

Continuous limit

Weh) = [ [T56:s) T] At Y,

A(hgp) = Z/s dga Ht’rjab [habYJgagb_le]
Jab

L(2C)  ip

Physics: (i) Propagator, (ii) n-point functions,
(iii) Early cosmology — Bounce + perturbations,

(iv) Black-Hole thermodynamics.

Main open issue: Large radiative corrections,
(i) Related to “antispacetimes”,

(i) Can be absorbed in pre-factors?

Exact quantum gravity

General relativity

transition amplitudes }H—()) Hamilton function
W (hy) S(q)
3 8
T T
© <
LQG 50 Regge
transition amplitudes — Hamilton function
We(hy) SA(lib)
Classical limit .
€
Hi = Hjg v

Fsm) — 4,775, m)




