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Is there a consistent quantum theory 

whose classical limit is general relativity,

in 4 lorentzian dimensions, with its standard matter couplings?

no uncontrollable 
infinities

unification 
not addressed

(cfr QCD)

The problem

existence, 
not uniqueness



Covariant loop gravity dynamics 
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• SL(2,C) ➞ SL(2,C)_q 
• A  ~ SL(2,C) Chern-Simons expectation value of the boundary graph of the vertex 
• A  =  Vassiliev-Kontsevich invariant of the vertex graph.
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Alejandro Perez notation:

n-j symbols

Spinor integrals

Covariant loop gravity dynamics: other version 

Coherent states

EPRL model becomes a state-sum model as its Riemannian relative. Using the following graphical
notation
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the amplitude is
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where the boxes now represent SL(2, C) integrations with the invariant measure. The previous
amplitude is equivalent to the its spin foam representation
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The vertex amplitude is well defined [63].

9.1 The coherent state representation

It is immediate to obtain the coherent states representation of the Lorentzian models. As in the
Riemannian case, one simply inserts resolution of the identities (??) on the intemediate SU(2)
(green) wires in (167) from where it results
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P operators:

Partition function:

on each face
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Projector on SL(2,C) invariant part Projector on minimal weight
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Covariant loop gravity dynamics: the Polish version (See Lewandowski talk)
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The four major results

1. The boundary states represent classical geometries. 
 (Canonical LQG 1990’, Penrose spin-geometry theorem 1971). 

2. Boundary geometry operators have discrete spectra. 
 (Canonical LQG main results, 1990’). 

3. The classical limit of the vertex amplitude converges (appropriately) to the Regge 
Hamilton function (with cosmological constant).   
(Barrett et al, Conrady-Freidel, Bianchi-Perini-Magliaro, Engle, Han..., 2009-2012). 

4. The amplitudes with positive cosmological constant are UV and IR finite:
(Han, Fairbairn, Meusburger, 2011). 

W q
C < 1



Other important recent results

1. Fermions and Yang-Mills fields can be coupled to LQG 
 (Bianchi, Han, Magliaro, Perini, Wieland, CR). 

2. Amplitudes are locally Lorentz invariance 
 (Speziale, CR). 

3. The amplitude leads immediately to the Bekenstein-Hawking entropy 
(no fixing of      )   

(Frodden-Gosh-Perez, Bianchi, 2011-2012). 

S =
A

4�



There aren’t “many models”.   

There is only one Lorentzian theory in 4d that works. 

Several possible variants in the definition:

-  Which class of two-complexes? (Bahr, Puchta)

-  Pre-factors           (see later) 

- ... NC



gab ! eiaTetrads gab = eia eib

Spin connection !(e) : de+ ! ^ e = 0

GR action
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SL(2,C) unitary representations:

SU(2) ➝ SL(2,C) map:

SU(2) unitary representations: |j;mi 2 Hj

Main property:

Boost generator       Rotation generator

weakly on the image of~K + �~L = 0

Main tool: SL(2,C) unitary irreducible representations (why so little used in physics?)

γ-simple representations:
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The gauge invariant operator:                                         satisfies  

Is precisely the Penrose metric operator on the graph

State space

Operator:                                                                          where  
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It satisfies 1971 Penrose spin-geometry theorem, and 
1897 Minkowski theorem:  semiclassical states have a 
geometrical interpretation as polyhedra.                     

→

Boundary geometry : standard LQG kinematics 



• Area and volume                      form a complete set of commuting observables and have discrete spectra 

• → basis (spin network basis)         

(Al, Vn)

|�, jl, vn�

Geometry is quantized:

(i) eigenvalues are discrete
(ii) the operators do not commute

volume  V 2
n =

2
9

�Ll1 · (�Ll2 � �Ll3)A2
l = Gllarea  

→vn

jl

Boundary geometry 

ZC =
X

jf ,ve

N{jf}
Y

f

(2jf+1)

Y

v

Av(jf , ve)• Using this basis, the amplitude reads

→     Ultraviolet finiteness



Theorem :  For a 5-valent vertex
[Barrett, Pereira, Hellmann, 
Gomes, Dowdall, Fairbairn 2010]

Large distance limit
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Theorem : For a 5-valent vertex
[Han 2012]
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A “spinfoam”: a two-complex colored with spins 
on faces and intertwiners on edges.
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Regime of validity of the expansion:

On the structure of a background independent quantum theory:
Hamilton function, transition amplitudes, classical limit and continuous limit

Carlo Rovelli

Centre de Physique Théorique, Case 907, Luminy, F-13288 Marseille, EU

(Dated: March 24, 2012)

The Hamilton function is a powerful tool for studying the classical limit of quantum systems, which
remains meaningful in background-independent systems. In quantum gravity, it clarifies the physical
interpretation of the transitions amplitudes and their truncations.

I. SYSTEMS EVOLVING IN TIME

Consider a dynamical system with configuration vari-
able q 2 C, and lagrangian L(q, q̇). Given an initial con-
figuration q at time t and a final configuration q0 at time
t0, let qq,t,q0,t0 : ! C be a solution of the equations of
motion such qq,t,q0,t0(t) = q and qq,t,q0,t0(t

0) = q0. Assume
for the moment this exists and is unique. The Hamilton
function is the function on (C ⇥ )2 defined by

S(q, t, q0, t0) =

Z t0

t

dt L(qq,t,q0,t0 , q̇q,t,q0,t0), (1)

namely the value of the action on the solution of the
equation of motion determined by given initial and final
data. This function, introduced by Hamilton in 1834 [?
] codes the solution of the dynamics of the system, has
remarkable properties and is a powerful tool that remains
meaningful in background-independent physics.

Let H be the quantum hamiltonian operator of the
system and |qi the eigenstates of its q observables. The
transition amplitude

W (q, t, q0, t0) = hq0|e� i
~H(t0�t)|qi. (2)

codes all the quantum dynamics. In a path integral for-
mulation, it can be written as

W (q, t, q0, t0) =

Z q(t0)=q0

q(t)=q

D[q] e
i
~
R t0
t dtL(q,q̇). (3)

In the limit in which ~ can be considered small, this can
be evaluated by a saddle point approximation, and gives

W (q, t, q0, t0) ⇠ e
i
~S(q,t,q0,t0). (4)

That is, the classical limit of the quantum theory can be
obtained by reading out the Hamilton function from the
quantum transition amplitude:

lim
~!0

(�i~) logW (q, t, q0, t0) = S(q, t, q0, t0). (5)

The functional integral in (3) can be defined either by
perturbation theory around a gaussian integral, or as a
limit of multiple integrals. Let us focus on the second def-
inition, useful in non-perturbative theories such as lattice
QCD and quantum gravity, which are not defined by a

gaussian point. Let L(qn, qn�1, tn, tn�1) be a discretiza-
tion of the lagrangian. The multiple integral

WN (q, t, q0, t0) =

Z
dqn
µ(qn)

e
i
~
PN

n=1 aL(qn,qn�1,tn,tn�1) (6)

where µ(qn) is a suitable measure factor, tn=n(t0�t)/N ⌘
na, and the boundary data are q0 = q and qN = q0, has
two distinct limits. The continuous limit

lim
N!1

WN (q, t, q0, t0) = W (q, t, q0, t0) (7)

gives the transition amplitude. While the classical limit

lim
~!0

(�i~) logWN (q, t, q0, t0) = SN (q, t, q0, t0). (8)

gives the Hamilton function of the classical dis-
cretized system, namely the value of the actionPN

n=1 aL(qn, qn�1, tn, tn�1) on the sequence qn that ex-
tremizes this action at given boundary data. The dis-
cretization is good if the classical theory is recovered as
the continuous limit of the discretized theory, that is, if

lim
N!1

SN (q, t, q0, t0) = S(q, t, q0, t0). (9)
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TABLE I. Continuous and classical limits

The interest of this structure is that it remains mean-
ingful in di↵eomorphism invariant systems and o↵ers an
excellent conceptual tool for dealing with background in-
dependent physics. To see this, let’s first consider its gen-
eralization to finite dimensional parametrized systems.

II. PARAMETRIZED SYSTEMS

I start by reviewing a few well-known facts about
background independence. The system considered above

Structure of the theory
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Notice: 
• No critical point 
• No infinite renormalization
• Physical scale: 
• Cfr: condensed matter away from critical points

- QFT :  critical phenomenon
- Quantum Gravity: non-critical 
   phenomenon 

Structure of the theory



-   All physical QFT are constructed via a truncation of the d.o.f.   (cfr: QED: particles, QCD Lattice).

-  All physical calculation are performed within a truncation.

-   The limit in which all d.o.f. is then recovered is pretty different in QED qnd QCD:
   

+ +   ....

→ →  ....

What about Quantum Gravity? 

Lattice site = small region of space = excitations of the gravitational field = quanta of space = quanta of the field

Diff invariance !   

Convergence between the QED and the QCD pictures



Physics

• Scattering amplitudes

• Cosmology

• Black hole entropy



Carlo Rovelli                                                                      Loop Quantum Gravity                                                                    String08

Boundary values of the gravitational field  =    geometry of box surface 
=    distance and time separation of measurements

Spacetime region

Particle detectors = field measurements

Distance and time measurements
=  gravitational field measurments

In GR, distance and time measurements 
are field measurements like the other ones: 

they are part of the boundary data of the problem.



(ii)   Scattering.   

[Zhang,  CR 2011]The Regge n-point function is recovered 
in the large j limit

z

Result:

Result:
[Alesci, Bianchi Magliaro Perini 2009 , 

Ding 2011, Zhang 2011,]

The free graviton propagator is recovered

(i)   Gravitational waves. 



(iii)   Loop quantum cosmology. 

Result:

Mukhanov-Sasaki equations for perturbations
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Best hope for empirical confirmation ? 

Friedman equation for the scale factor 
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✓
1� 2

⇢

⇢c
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z
v = 0

[Cailleteau, Barrau, Grain, Mielczarek, Vidotto]

(iv) Spinfoam cosmology: (See Vidotto’s talk)



1.     Local near-horizon geometry is Rindler geometry, where the stationary killing field is boost

3.      Local equilibrium time evolution is the generator of boosts         :  on 

4.      Local energy is aA                                                                (Frodden, Gosh, Perez formula)

5.      State                                                is thermal at temperature 

6.      Entropy  

(iv)   Black hole entropy.                                          

aK

E = hj|aK|ji = �j =
Aa

8⇡G

T =
a~
2⇡

| i = ⌦f |ji [Bianchi, 2012]

[Bianchi, 2012]dS =
dE

T
=

dAa

8⇡G
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a~ =
dA

4~G

S =
A

4~G



Main open issue:        Do radiative corrections destroy the viability of the expansion?

• Radiative corrections come from large spins 
and from large graphs with many spins. 

• They are finite.

• Where is the expansion viable?
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Main open issue:        Nature of the large radiative corrections:   “antispacetimes” 

A(jf , ve) ⇠
j�1

eiSRegge + e�iSRegge

A ⇠
j�1

�
eiSRegge + e�iSRegge

� �
eiSRegge + e�iSRegge

� �
eiSRegge + e�iSRegge

� �
eiSRegge + e�iSRegge

�

⇠
j�1

A++++ +A+++� + ..

This is the term that diverges!
(Christodoulou, Lanvik, Riello, CR)

Divergences are due to 
“antispacetimes”

P



Main open issue:        Do radiative corrections destroy the viability of the expansion?

The physics of  “antispacetimes”
(Christodoulou, Riello, CR)

A(jf , ve) ⇠
j�1

eiSRegge + e�iSRegge

A spacetime “pocket”
Fermions detect negative Lapse regions

�IeµI (@µ + !µ) +m = 0
e

0 = df(t, ~x), e

i = dx

i

f(t, ~x) = t� 2↵⌧ e

� ~x

2

� (arctan(t/⌧) + ⇡/2)



Main open issue:        Do radiative corrections destroy the viability of the expansion?

= + Small correctionsLarge factor

WC(hl) = NC

Z

SU(2)
dhvf

Y

f

�(hf )
Y

v

A(hvf )

Reabsorbed here



On the structure of a background independent quantum theory:
Hamilton function, transition amplitudes, classical limit and continuous limit

Carlo Rovelli

Centre de Physique Théorique, Case 907, Luminy, F-13288 Marseille, EU

(Dated: March 24, 2012)

The Hamilton function is a powerful tool for studying the classical limit of quantum systems, which
remains meaningful in background-independent systems. In quantum gravity, it clarifies the physical
interpretation of the transitions amplitudes and their truncations.

I. SYSTEMS EVOLVING IN TIME

Consider a dynamical system with configuration vari-
able q 2 C, and lagrangian L(q, q̇). Given an initial con-
figuration q at time t and a final configuration q0 at time
t0, let qq,t,q0,t0 : ! C be a solution of the equations of
motion such qq,t,q0,t0(t) = q and qq,t,q0,t0(t

0) = q0. Assume
for the moment this exists and is unique. The Hamilton
function is the function on (C ⇥ )2 defined by

S(q, t, q0, t0) =

Z t0

t

dt L(qq,t,q0,t0 , q̇q,t,q0,t0), (1)

namely the value of the action on the solution of the
equation of motion determined by given initial and final
data. This function, introduced by Hamilton in 1834 [?
] codes the solution of the dynamics of the system, has
remarkable properties and is a powerful tool that remains
meaningful in background-independent physics.

Let H be the quantum hamiltonian operator of the
system and |qi the eigenstates of its q observables. The
transition amplitude

W (q, t, q0, t0) = hq0|e� i
~H(t0�t)|qi. (2)

codes all the quantum dynamics. In a path integral for-
mulation, it can be written as

W (q, t, q0, t0) =

Z q(t0)=q0

q(t)=q

D[q] e
i
~
R t0
t dtL(q,q̇). (3)

In the limit in which ~ can be considered small, this can
be evaluated by a saddle point approximation, and gives

W (q, t, q0, t0) ⇠ e
i
~S(q,t,q0,t0). (4)

That is, the classical limit of the quantum theory can be
obtained by reading out the Hamilton function from the
quantum transition amplitude:

lim
~!0

(�i~) logW (q, t, q0, t0) = S(q, t, q0, t0). (5)

The functional integral in (3) can be defined either by
perturbation theory around a gaussian integral, or as a
limit of multiple integrals. Let us focus on the second def-
inition, useful in non-perturbative theories such as lattice
QCD and quantum gravity, which are not defined by a

gaussian point. Let L(qn, qn�1, tn, tn�1) be a discretiza-
tion of the lagrangian. The multiple integral

WN (q, t, q0, t0) =

Z
dqn
µ(qn)

e
i
~
PN

n=1 aL(qn,qn�1,tn,tn�1) (6)

where µ(qn) is a suitable measure factor, tn=n(t0�t)/N ⌘
na, and the boundary data are q0 = q and qN = q0, has
two distinct limits. The continuous limit

lim
N!1

WN (q, t, q0, t0) = W (q, t, q0, t0) (7)

gives the transition amplitude. While the classical limit

lim
~!0

(�i~) logWN (q, t, q0, t0) = SN (q, t, q0, t0). (8)

gives the Hamilton function of the classical dis-
cretized system, namely the value of the actionPN

n=1 aL(qn, qn�1, tn, tn�1) on the sequence qn that ex-
tremizes this action at given boundary data. The dis-
cretization is good if the classical theory is recovered as
the continuous limit of the discretized theory, that is, if

lim
N!1

SN (q, t, q0, t0) = S(q, t, q0, t0). (9)

Summarizing:
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Exact quantum gravity
transition amplitudes
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LQG
transition amplitudes

WC(hl)
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Regge

Hamilton function
S�(lib )
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TABLE I. Continuous and classical limits

The interest of this structure is that it remains mean-
ingful in di↵eomorphism invariant systems and o↵ers an
excellent conceptual tool for dealing with background in-
dependent physics. To see this, let’s first consider its gen-
eralization to finite dimensional parametrized systems.

II. PARAMETRIZED SYSTEMS

I start by reviewing a few well-known facts about
background independence. The system considered above

y� : Hj � Hj,�j

|j;m⌅ ⇤� |j, �j; j,m⌅

Y� : L2[SU(2)] � F [SL(2, C), C]

⇥(h) ⇤� (Y�⇥)(g), h ⇥ SU(2), g ⇥ SL(2, C)

D(j)
mm0(h) ⇤� D(j,�j)

jm,jm0(g)

y� : Hj � Hj,�j

|j;m⌅ ⇤� |j, �j; j,m⌅

Y� : L2[SU(2)] � F [SL(2, C), C]

⇥(h) ⇤� (Y�⇥)(g), h ⇥ SU(2), g ⇥ SL(2, C)

D(j)
mm0(h) ⇤� D(j,�j)

jm,jm0(g)
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to a 3-geometry q such that gq is close to a flat geometry.
Then one may expect that in this regime W�n [qn] con-
verges fast, and therefore a small n is su�cient to give a
good approximation to the physical amplitudes.

V. SPINFOAMS

In covariant loop quantum gravity one defines trun-
cated transition amplitudes which are functions of
boundary data [? ? ]. These are defined by the EPRL-
FK-KKL dynamics [? ? ? ]. Explicitly, they are given
by

WC(hl) =

Z

SU(2)

dhvf

Y

f

�(hf )
Y

v

A(hvf ) (27)

where the vertex amplitude is given by

A(hab) =
X

jab

Z

SL(2C)

dga
Y

ab

trjab [habY
†
� gag

�1
b Y� ]. (28)

I refer to [? ] for the notation. These equations define
loop quantum gravity. They can be seen as a version
of (23) that addresses the di�culties associated to (23).
In particular, (27) is ultraviolet finite and admits a de-
formed version [? ? ? ] where the amplitude is indeed
finite. The measure (from which convergence depends [?
]) is fixed by gauge covariance [? ] and the triangular
inequalities are implemented by the tensor structure of
the SU(2) representations. The theory can be coupled
to fermions and Yang-Mills fields [? ].

In (27), C is a two-complex. The transition amplitude
depends on L SU(2) elements hl associated to the L links
l of the graph that bounds C and is therefore an element
W of the boundary Hilbert space H@C [? ]. Semiclassi-
cal states  in H@C can be associated to discretized 3d
geometries q formed by glued polyhedra [? ? ]. In
particular, these geometries can be Regge geometries.

In a remarkable series of works [? ? ? ? ], evidence
has piled up that (27) converges to the Regge Hamil-
ton function S�[q] in an appropriate classical limit, if
the two-complex C is the two-skeleton of the dual of �.
We can therefore compose a table similar to the one in
Section I.
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Transition amplitudes
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TABLE II. Continuous and classical limits in quantum grav-
ity.

Thus, the LQG transition amplitudes on a two-
complex define a family of approximations to the full
theory, and the classical limit of each of these (for C the
two-skeleton of �⇤) is given by Regge gravity on �. An
analog table could be written for lattice QCD.
There are some peculiar features of quantum gravity,

still, that distinguish it for the case in Table I, as well as
from QCD.
The first is that the three-metric q cannot be fully di-

agonalized. A maximal set of commuting operators in
H@C is formed by areas and volumes of the polyhedra,
but these quantities do not su�ce to determine the ge-
ometry of the glued polyhedra. The full set of data that
determine this geometry is formed by operators that do
not commute. Therefore classical 3 metrics can only be
associated to semiclassical states in H@C . To have semi-
classical states –where fluctuations are small with respect
to expectation values– we need large quantum numbers.
In particular, we need large spins, and therefore large
distances compared to the Planck scale. Physically, this
simply means that at small scale the geometry of space
cannot be Riemannian: it is a quantized geometry, and
there is a Heisenberg uncertainty preventing the full 3-
geometry to be sharp. In other words, the ~ ! 0 limit
of the theory is also necessarily a large distance limit.
At short scale, quantum gravity does not have a proper
continuous limit taking it to classical GR. This was of
course expected on physical grounds.7

A second essential di↵erence between quantum gravity
and other theories defined via a discretization such as
QCD is the absence of a coupling constant to be tuned
to a critical value in order to define the continuous theory.
This has been illustrated in detail in [? ] and I refer the
reader to that paper for a full discussion.
Individual amplitudes (27-28) can be obtained as Feyn-

man amplitudes of a proper QFT, using the group-field-
theory formalism [? ]. By separating the terms with
vanishing spins and reinterpreting them as defined on
sub-two complexes, it may be possible to re-express the
limit as a series [? ]. This observation, and the anal-
ogy with the standard Feynman expansion reinforces the
interpretation of the expansion in n as a perturbative
expansion.
Finally, the formal argument presented at the end of

the last section suggesting fast convergence in n has re-
ceived some circumstantial support in the context of the
amplitude (27): the amplitudes computed for boundary
data su�ciently close to flat space converge rapidly to
the correct classical limit already at very low n; see [? ?

7 There is a formal way to take the classical limit without sending
the dimensions of the individual polyhedra to infinity. Since
the eigenvalues of the geometrical quantities are proportional to
(powers of) the Immirzi parameter �, one can formally take �
to zero in order to explore the classical limit at fixed boundary
triangulation and at fixed boundary size. The � ! 0 limit has
been studied in [? ? ? ].

5

to a 3-geometry q such that gq is close to a flat geometry.
Then one may expect that in this regime W�n [qn] con-
verges fast, and therefore a small n is su�cient to give a
good approximation to the physical amplitudes.

V. SPINFOAMS

In covariant loop quantum gravity one defines trun-
cated transition amplitudes which are functions of
boundary data [? ? ]. These are defined by the EPRL-
FK-KKL dynamics [? ? ? ]. Explicitly, they are given
by

WC(hl) =

Z

SU(2)

dhvf

Y

f

�(hf )
Y

v

A(hvf ) (27)

where the vertex amplitude is given by

A(hab) =
X

jab

Z

SL(2C)

dga
Y

ab

trjab [habY
†
� gag

�1
b Y� ]. (28)

I refer to [? ] for the notation. These equations define
loop quantum gravity. They can be seen as a version
of (23) that addresses the di�culties associated to (23).
In particular, (27) is ultraviolet finite and admits a de-
formed version [? ? ? ] where the amplitude is indeed
finite. The measure (from which convergence depends [?
]) is fixed by gauge covariance [? ] and the triangular
inequalities are implemented by the tensor structure of
the SU(2) representations. The theory can be coupled
to fermions and Yang-Mills fields [? ].

In (27), C is a two-complex. The transition amplitude
depends on L SU(2) elements hl associated to the L links
l of the graph that bounds C and is therefore an element
W of the boundary Hilbert space H@C [? ]. Semiclassi-
cal states  in H@C can be associated to discretized 3d
geometries q formed by glued polyhedra [? ? ]. In
particular, these geometries can be Regge geometries.

In a remarkable series of works [? ? ? ? ], evidence
has piled up that (27) converges to the Regge Hamil-
ton function S�[q] in an appropriate classical limit, if
the two-complex C is the two-skeleton of the dual of �.
We can therefore compose a table similar to the one in
Section I.

C
o
n
t
i
n
u
o
u
s

l
i
m

i
t

��
��

��
��

��
��

��
��
!

Quantum gravity
Transition amplitudes

W (hl)

j!1���!
General relativity
Hamilton function

S[q]

C
!

1
��
��
!

�
!

1
��
��
!

LQG amplitudes
on a two-complex

WC(hl)

j!1���! Regge theory
S�(q)

Classical limit�����������������������!

TABLE II. Continuous and classical limits in quantum grav-
ity.

Thus, the LQG transition amplitudes on a two-
complex define a family of approximations to the full
theory, and the classical limit of each of these (for C the
two-skeleton of �⇤) is given by Regge gravity on �. An
analog table could be written for lattice QCD.
There are some peculiar features of quantum gravity,

still, that distinguish it for the case in Table I, as well as
from QCD.
The first is that the three-metric q cannot be fully di-

agonalized. A maximal set of commuting operators in
H@C is formed by areas and volumes of the polyhedra,
but these quantities do not su�ce to determine the ge-
ometry of the glued polyhedra. The full set of data that
determine this geometry is formed by operators that do
not commute. Therefore classical 3 metrics can only be
associated to semiclassical states in H@C . To have semi-
classical states –where fluctuations are small with respect
to expectation values– we need large quantum numbers.
In particular, we need large spins, and therefore large
distances compared to the Planck scale. Physically, this
simply means that at small scale the geometry of space
cannot be Riemannian: it is a quantized geometry, and
there is a Heisenberg uncertainty preventing the full 3-
geometry to be sharp. In other words, the ~ ! 0 limit
of the theory is also necessarily a large distance limit.
At short scale, quantum gravity does not have a proper
continuous limit taking it to classical GR. This was of
course expected on physical grounds.7

A second essential di↵erence between quantum gravity
and other theories defined via a discretization such as
QCD is the absence of a coupling constant to be tuned
to a critical value in order to define the continuous theory.
This has been illustrated in detail in [? ] and I refer the
reader to that paper for a full discussion.
Individual amplitudes (27-28) can be obtained as Feyn-

man amplitudes of a proper QFT, using the group-field-
theory formalism [? ]. By separating the terms with
vanishing spins and reinterpreting them as defined on
sub-two complexes, it may be possible to re-express the
limit as a series [? ]. This observation, and the anal-
ogy with the standard Feynman expansion reinforces the
interpretation of the expansion in n as a perturbative
expansion.
Finally, the formal argument presented at the end of

the last section suggesting fast convergence in n has re-
ceived some circumstantial support in the context of the
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LQG: Summary
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Physics:        (i) Propagator,   (ii) n-point functions,   

   (iii) Early cosmology  → Bounce + perturbations,

   (iv) Black-Hole thermodynamics.

Main open issue:        Large radiative corrections,   

                          (i)   Related to “antispacetimes”,   

      (ii) Can be absorbed in pre-factors?

   


