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We define a new representation for quantum general relativity, in which exact solutions of the 
quantum constraints may be obtained. 

The representation is constructed by means of a noncanonical graded Poisson algebra of 
classical observables, defined in terms of Ashtekar's new variables. The observables in this algebra 
are nonlocal and involve parallel transport around loops in a three-manifold Z. The theory is 
quantized by constructing a linear representation of a deformation of this algebra. This represen- 
tation is given in terms of an algebra of linear operators defined on a state space which consists of 
functionals of sets of loops in Z. The construction is general and can be applied also to 
Yang-Mills  theories. 

The diffeomorphism constraint is defined in terms of a natural representation of the diffeomor- 
phism group. The hamiltonian constraint, which contains the dynamics of quantum gravity, is 
constructed as a limit of a sequence of observables which incorporates a regularization prescrip- 
tion. We give the general solution of the diffeomorphism constraint in closed form. It is spanned 
by a countable basis which is in one-to-one correspondence with the diffeomorphism equivalence 
classes of multiple loops, which are a generalization of the link classes studied in knot theory. 
Then we explicitly construct, in closed form, a large space of solution of the entire set of 
constraints, including the hamiltonian constraint. These turn out to be classified by the ordinary 
knot and link classes of Z. 

The space of solutions that we find is a sector of the physical states space of nonperturbative 
quantum general relativity. The failure of perturbation theory is thus shown to be not relevant to 
the problem of the existence of a nontrivial physical state space in quantum gravity. The 
relationship between this new loop representation and the self-dual representation of Ashtekar is 
illuminated by means of a functional transform between states in the two representations. 
Questions of the completeness of the solution space, the meaning of the physical operators and the 
physical inner product, are discussed, but not, so far, resolved. 
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1. Introduction 

In this paper we introduce a new approach to the quantization of general 
relativity* that allows us to obtain exact results about the structure of the physical 
state space of that theory**. This approach is an outgrowth of the reformulation of 
canonical general relativity of Ashtekar [3, 4], and relies essentially on the simplifica- 
tion of the canonical theory achieved by the use of Ashtekar's new variables. 

The main idea of this approach is to define a representation of quantum general 
relativity in terms of functionals over sets of loops. This idea was suggested by the 
discovery that when the hamiltonian constraint, or Wheeler-DeWitt  equation [5], is 
reformulated in terms of Ashtekar's variables it admits a large class of exact 
solutions, which are related to loops in three dimensions [6]. In this paper we will 
show that, by the use of this new representation, called the loop representation, exact 
simultaneous solutions to all of the quantum constraint equations may be explicitly 
obtained. 

The loop representation is obtained, following Isham's ideas [7, 8], by quantizing a 
noncanonical Poisson algebra of nonlocal classical observables, which we call the J 
algebra. Thus, this work is a realization of the idea stressed by Isham that, at the 
nonperturbative level, where the governing symmetry is diffeomorphism invariance 
and not Poincar~ covariance, the correct quantization of general relativity should be 
based on a noncanonical algebra and, consequently, should not involve the conven- 
tional Fock, or particle, structure. 

Instead, the space of solutions of the constraints that we find using the loop 
representation turns out to be represented in terms of a countable basis of solutions 
which is in one-to-one correspondence with the knot and link classes of the spatial 
manifold. The knot and link classes are the topologically inequivalent ways in which 
a set of loops may be knotted and linked. Their classification forms the subject of a 
branch of mathematics called knot theory [9]. 

More explicitly, we describe below the general solution to the (three-dimensional) 
diffeomorphism constraints in terms of a countable basis associated with what we will 
call the generalized link classes of the manifold. These are a generalization of the 
usual knot and link classes which include the cases in which the loops intersect, 
overlap, and kink. A subset of these will be shown to be solutions to the hamilto- 
nian constraint as well. We do not claim to have the general solution of the 
hamiltonian constraint. 

There are many open problems associated with this approach, among which are 
the construction of a physical inner product and the algebra of physical observables. 

* For a review of the present status of perturbative and nonperturbative methods in quan tum gravity 
see Isham [1]. 

**  A short account of the results of this paper appeared in Rovelli and Smolin [2]. Preliminary results 
appeared in ref. [16]. See also the contribution of the two authors to the proceedings of the Osgood 
Hill conference [2]. 
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Thus, we do not now claim that the loop representation gives a complete quantiza- 
tion of general relativity. 

However, we do claim that these results show that the failure of the perturbative 
quantization cannot be taken as an indication that quantum general relativity does 
not exist. Indeed, the existence, as well as the detailed structure, of the solutions that 
we find could not have been indicated by perturbative calculations. Thus, it seems 
that the perturbation expansion around flat Minkowski space does not reach the 
exact solutions and consequently does not give a reliable description of the short 
distance physics of the exact theory. Instead, as many people have argued, these 
results indicate that nonperturbative effects, coming from the strong coupling of the 
gravitational field at Planck scales, do drastically change the structure of the 
physical states in such a way to invalidate perturbative calculations based on a 
semiclassical approximation around a fixed classical metric. 

Since perturbation theory does not capture the short distance physics correctly, it 
is not meaningful to study the limit in which the cutoff is removed perturbatively. 
Thus, the present results show that the failure of the perturbative approach does not 
bear on the issue of whether a quantum theory based on the dynamics of general 
relativity exists. 

Here follows a brief overview of what is done in this paper: 
In sect. 2 we work in the context of classical general relativity. We define the 

classical observables whose Poisson algebra defines the 3- algebra. These observ- 
ables, that we denote generically as T observables, depend on loops in the 
three-dimensional space 2. The simplest of them (which constitutes a maximal 
commuting subalgebra) is given by the trace of the holonomy of Ashtekar's 
connection A,(x) around a given loop ~, 

V[~,] = T r P e x p ( ~ A ) ,  (1) 

(P means path ordered) and has an intuitive physical interpretation in terms of the 
parallel transport of a left-handed spinor in the gravitational field along 7. The 
other observables are obtained by inserting along the loops, in n different points, 
the conjugate Ashtekar variable 6a(x), (which is the densitized triad). We call T" 
the observables obtained with n insertions. The Poisson brackets of the T's  close 
and have the structure 

{T ' ,T  m) =T "+m-1. (2) 

These Poisson brackets define the graded algebra .Y-. J -  may be graphically 
described in terms of breaking and rejoining of the loops at their intersection; for 
instance the Poisson bracket of a T with no insertion and a T with one insertion is 
described in fig. 1. This algebra codes the symplectic structure defined by the 
canonical Poisson brackets of classical general relativity. 
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Fig. 1. An example of Poisson brackets between loop observables (the precise meaning of this drawing 
will be defined later in the paper). 

The quantization is done by finding a linear representation of this algebra, or, 
more precisely, of a deformation of this algebra, in terms of an algebra of linear 
operators,  which we call g ,  on a space of functionals over the space of the sets of 
loops in 2,. The loop functionals represent unconstrained states of quantum gravity 
and the linear operators i~ ~ g are the quantum operators corresponding to the 
classical observables T. This defines the "kinematics" of quantum gravity and is 

described in sect. 2. 
Although the subject of this paper is general relativity, it is important to point out 

that the loop representation can be constructed for any theory in which a connec- 

tion plays the role of a canonical coordinate. Thus it can be applied also to 
Yang-Mi l l s  theories. As we will describe in a separate paper, the techniques 
developed in this paper provide a systematic approach to the hamiltonian formula- 
tion of Yang-Mil l s  theories in terms of loops functionals [12]*. A particularly 

illuminating example of the loop representation is also provided by the quantization 
of the free Maxwell theory. This is discussed in ref. [13]. 

In the context of Yang-Mills  theories, the idea of expressing the quantum theory 
in terms of loop functionals is not new [10]; for example, it has been strongly 
advocated by Polyakov [11]. The loop representation differs from these earlier works 
in two principal ways. First, we work in a hamiltonian, rather than a path integral 
framework. Second, the loop representation makes crucial use of multiple loops. 

We will assume in this paper that the three-manifold ~J is compact, and without 

boundary.  In this case the dynamics of general relativity is given entirely by the 
constraints [14,15]**. These are also constructed in sect. 3. The internal gauge 
SU(2) constraint of Ashtekar's theory is automatically taken into account in the 
quantization, because the T observables are SU(2) gauge invariant. The diffeomor- 
phism constraint is defined by considering the linear representation of the Diff(Z) 
group in the states space, defined by the natural action of the Dill(2;) group on the 
loops. We demonstrate that the 7 ~ operators transform under such a group in the 
same way as the corresponding classical observables. We show that the generators of 
the spatial diffeomorphisms in the loop representation have the correct commuta-  

* We may note that in Yang-Mills theories one does not have as strong a motivation for going to a 
loop basis as one has in gravity, since loop states are not eigenstates of the hamiltonian, as they are in 
general relativity. Nevertheless, as we discuss in ref. [12], the loop representation suggests a new 
approach to numerical computations in QCD. 

**A review of the hamiltonian formulation of general relativity and of the issues raised by its 
quantization on a compact manifold is given by ref. [15]. 
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tion relations among themselves and with the observables. As a result they can be, 
and are, identified with the diffeomorphism constraints of quantum gravity. 

The hamiltonian constraint is defined in terms of the 7 ~'s. Classically it can be 
expressed as a limit of a suitable sequence of T observables. The quantum con- 
straint will be defined by the limit of the corresponding quantum operators. We 
may note that this is the way that any operator product must be defined in a 
quantum field theory. What is nice about the loop representation is that it naturally 
provides a regularization for the hamiltonian constraint. This completes the defini- 
tion of the loop representation. 

In sect. 4 we discuss the relationship between the loop representation and the 
self-dual representation, which is the natural quantization diagonal in the Ashtekar 
connection. We express this relation in terms of a linear mapping, called ~ ,  
between the two representations. We also show that by introducing a measure on 
the space of the connections, this mapping may be expressed as a functional 
transform, which we call the loop transform. At least at a formal level, this 
transform provides an alternative route to the definition of the loop representation. 

Then, in sect. 5, we study the solutions of the quantum constraint equations. We 
obtain the following results. 

(i) The entire space of states annihilated by the constraints D~, which generate 
spatial diffeomorphisms, is found in terms of an explicit countable basis. The 
elements of this basis are in one-to-one correspondence with the generalized link 
classes of 2:, which are the equivalence classes, under Dill(2:) of sets of piecewise 
smooth loops in 2:. 

(ii) Among these states are some which are also annihilated by the hamiltonian 
constraint, and are thus exact physical states of the gravitational field. Included in 
these is a sector whose basis is in one-to-one correspondence with the subset of the 
generalized link classes of ~ which are based on sets of smooth, nonintersecting 
loops. These are the well-known ordinary link classes, whose classification is the 
subject of knot theory. 

Finally in the last section we discuss what remains to be understood before we 
can know whether or not the loop representation provides a completely satisfactory 
quantization of general relativity. 

However, before beginning the technical work of constructing the loop represen- 
tation, we conclude the introduction with a summary of the basic issues that 
motivate our approach to the quantization of general relativity. 

1.1. N O N P E R T U R B A T I V E  A N D  GE NE R AL L Y COVARIANT Q U A N T U M  FIELD THEORY 

The construction of a quantum field theory without a background geometry to 
describe gravitation raises several issues that are not faced in any fiat space 
quantum field theory. In particular, what are the consequences of: (i). The absence 
of Poincar6 invariance? (ii). The fact that the quantization and regularization must 
be done without a c-number background metric or connection structure? (iii). The 
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requirement that the physical states are invariant under spatial diffeomorphisms? 
(iv). The fact that the local dynamics of the theory is driven by a hamiltonian 
constraint, rather than a hamiltonian? (v). The difficulties of the definition of 
diffeomorphism invariant physical observables? 

From the point of view of the standard quantization schemes general relativity, 
treated nonperturbatively so that the metric is never split into a classical back- 
ground and a quantum fluctuation, has very unusual features. For example, Poincar6 
invariance, which in one form or another is necessary for the definition of almost all 
forms of quantum field theory in four dimensions, is absent. The absence of the 
Poincar6 group means the absence of the notion of particles, which are the 
irreducible representations of the Poincar6 group in the Hilbert space. This disap- 
pearance of the particle is well known already in quantum field theory in curved 
space-time. The absence of particles and of Poincar6 invariance means the absence, 
in the Hilbert space of the quantum theory, of a standard Fock structure, and 
therefore of the entire machinery of conventional quantum field theory. From this 
point of view, the failure of perturbative methods to yield any sensible generally 
covariant quantum field theories is not surprising. 

As a second illustration of the way that a quantum theory of gravity must differ 
from the background dependent quantum field theories we are familiar with, let us 
consider an issue which is of crucial importance for understanding conventional 
quantum field theories: that of the short distance behavior. In an ordinary quantum 
field theory, the usual short distance divergences are measured in terms of the 
background metric. In nonperturbative quantum gravity, in which there is no 
background metric, there is no invariant c-number measure of the distance between 
two points, and questions about the short distance structure are much more difficult 
to formulate. Moreover, in quantum gravity the physical states have to be in the 
kernel of the diffeomorphism constraint, which means that they are diffeomorphism 
invariant. This means that any n-point functions, defined as the expectation value of 
products of local operators, must be constant as the n points are moved around by 
diffeomorphisms. 

The contrast could thus not be stronger between the behavior of the two-point 
function in an ordinary quantum field theory, and in a diffeomorphism invariant 
theory without a background metric. In the first case we have 

(0[O(x)q)(y)10)  - 1/(x _ y ) 2 ,  (3) 

where the norm is taken with respect to the fixed background metric. On the other 
hand, in quantum gravity we must have 

(~p[q,(x)q,(y)J~p) - constant, if x + y ,  (4) 

whenever [~p) is any physical state, and ¢~ any local operator. Thus, in nonperturba- 
tive quantum gravity the n-point functions cannot be used to extract any informa- 
tion corresponding to the usual notion of short distance behavior. 
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Of course, part  of the point is that local observables such as ~ (x )  are not 

meaningful, as they do not commute with the constraints that generate diffeomor- 
phisms. Thus, we cannot really conclude from this simple argument that the usual 
kinds of short distance structure will not be present in a quantum theory of 

gravity*. If  we want to describe the short distance behavior of quantum general 
relativity nonperturbatively, we need first to have a nonperturbative characteriza- 
tion of the physically meaningful observables. 

This raises what we believe is a crucial issue for constructing a satisfactory 
nonperturbat ive quantization of general relativity, which is the problem of the 
physical observables. We will discuss this problem in detail below, for now we may 

note that this problem has two aspects, both of which are highly nontrivial. These 
are: (i). What  are the observables of the classical theory? (ii). Which (if any) classical 

observables can be translated into operators in the context of a regularization 
procedure that is nonperturbative and does not destroy diffeomorphism invariance? 

The physical observables of the classical theory have to commute with the 
constraints, and, hence, be invariant under the full four-dimensional diffeomor- 
phism group. An important corollary of this is that for the compact case any 
physical observable is also a constant of motion. In the case of a pure gravitational 
field, with no matter, and with a spatially compact topology, we know in fact of not 

a single classical physical observable. This is not really surprising, as to know a 
physical observable explicitly would be to know an explicit expression for a 
constant  of the motion as a function of arbitrary initial data for the Einstein 

equations. But it highlights the fact that we actually have a very poor understanding 
of the general physical interpretation the full Einstein equations. 

We will see that the fact that we do not know the classical physical observables 
causes a major  difficulty in the construction of the quantum theory. We will find an 
algebra of physical observables, but we will not be able to give them an interpreta- 
tion in terms of a correspondence with the observables of the classical theory. 

The nontriviality of issue (ii) can be appreciated by noting that, in the familiar 
metric representation, an infinite number of three-dimensional diffeomorphism 
invariant observables can be written down explicitly as integrals over densities 
constructed from the phase space variables. However, every member of this set, save 
one, f xP~q~h ,  is a nonpolynomial function of the basic observables. As we shall 
see, the loop representation provides a regularization procedure which is compatible 

* Note that if a perturbatively sensible quantum theory of gravity exists, one would expect its short 
distance structure to be conventional, the notion of distance being given in this case by the 
background metric around which the perturbation theory is defined. Thus, if one believes that 
the short distance structure of space-time is described by a perturbative theory, one might argue that 
the conventional short distance structure will be present in quantum gravity, and could be extracted 
from a diffeomorphism invariant state by using an appropriate physical observable. However, this 
kind of argument cannot be applied to general relativity, which we know must be quantized 
nonperturbatively, if it is to be quantized at all. 
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with three-dimensional diffeomorphism invariance, but it only can be applied to 
observables which are polynomial in the basis variables. Thus, even if the usual 
spatial diffeomorphism invariant observables constructed from the metric could be 
extended to physical observables of the theory, it is not at all clear that any of these 
could survive a passage to an algebra of physical observables in the quantum theory 
which is based on a nonperturbative regularization of the theory. Given these 
difficulties, the question of what the short distance structure of quantum general 
relativity is highly nontrivial. 

Do these difficulties necessarily imply that quantum general relativity cannot 
exist? We do not think so. The standard Poincar~ invariant quantum field theories 
are the only kind of quantum theory that has so far been fully understood in four 
dimensions, but it is very likely that these are not the only kinds that exist. A large 
part of the problem of quantum gravity is contained in the problem of finding a 
quantum mechanical description of a field theory which differs from conventional 
quantum field theory in that the governing symmetry principle is diffeomorphism 
invariance rather than Poincar~ covariance. 

Thus, we work in the following framework: We do not consider any modification 
to general relativity or to the basic axioms of quantum mechanics. Instead, we look 
for a new approach to the construction of a quantum field theory which is 
nonperturbative and allows the implementation of the full diffeomorphism invari- 
ance of the classical theory. 

There are many ways in which one might try to achieve this. We choose to work 
in the framework of canonical quantization, as amended by Dirac for the case of 
systems with first class constraints. A program for the canonical quantization of a 
constrained theory with weakly vanishing hamiltonian, as in the case of general 
relativity, can be summarized in the following steps [4, 5, 7, 15]. 

(i) Choice of a preferred algebra of classical observables, that we call elementary 
observables, which is closed under Poisson brackets. The traditional choice is given 
by some set of canonically conjugate observables with canonical Poisson brackets. 

(ii) Choice of a linear space 5 p, physically interpreted as " the space of the 
unconstrained quantum states" and a set of linear operators on 5 a in one-to-one 
correspondence with the elementary observables. These are the elementary quantum 
operators. 

(iii) Definition of the quantum operator constraints Ci, corresponding to the 
classical constraints. 

(iv) Solution, on 5 a, of the quantum constraint equations ~ 

Cil ) =0 .  (5) 

'* These mus t  be appropriately modified to incorporate a suitable regularization procedure, as we 
discuss in detail below. 
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The linear subspace ~ph of 5 z of the solutions is interpreted as the space of the 
physical quantum states. 

(v) Definition of the physical observables. These are operators on 5 z which are 
well defined on 5Zph; that is they commute with the constraint operators. 

(vi) Choice of a scalar product on 5Zph such that the self-adjointness properties 
of the physical observables are assured. As discussed for instance in refs. [4,17], it 
may be convenient mathematically to have a Hilbert structure on the space of 
unconstrained states, but this structure can have, in general, no physical signifi- 
cance. This is because there is generally no natural way to bring down the Hilbert 
structure of 5Z to 5aph, where we need it for the definition of physical expection 
values [17]. In this paper we will not introduce any Hilbert structure on 5 a. 

We refer to quoted references for a careful discussion of the many issues raised by 
such program. Here we want to discuss some specific questions raised by the 
attempt to implement this program in the case of the gravitational field. 

1.1.1. Elementary observables. As is well known, the first attempt to realize the 
canonical quantization program for general relativity was the definition of the 
metric representation during the 60's [5,18], in which the elementary observables are 
the three-metric and its conjugate momentum. 

Ashtekar's reformulation of general relativity naturally suggested a different 
realization of the program in which the new variables Aa(x ) and 6"(x) are chosen 
to be the elementary operators [4]. This leads to the so-called self-dual representa- 
tion, which we will briefly describe later. 

A third representation is the loop representation, which we introduce in this 
paper, defined by using the T observables as the elementary observables. 

The ~Y- algebra formed by the T ' s  is, as we said, a noncanonical Poisson algebra. 
In quantum field theory the fixed time canonical commutation relations (CCR) are 
related to the Fock structure. Any representation of the CCR is equivalent to a 
representation defined by an infinite dimensional quasi-invariant measure [19]. 
However, very little is known about quasi-invariant measures besides the gaussian 
measures, which are canonically related to Fock space. If we are searching for a 
quantum theory without the standard Fock structure, we have either to look for 
non-gaussian representations of the CCR, or, as Isham has long argued [7], we have 
to change the departure point, and use a noncanonical algebra, as we do here. 

1.1.2. Constraints. There are several ways to deal with the first class constraints 
and the gauge invariances that they generate. Since in what follows we will use a 
mixed approach, it is worthwhile to discuss this problem in detail. The first way is to 
define the constraints as operator functions of the elementary quantum observables, 
by choosing an ordering in the definition of the classical constraints as functions of 
the classical elementary observables [20]. The well-known issue of closure of the 
constraint algebra is then raised. This is the way in which we will define the 

hamiltonian constraint. 
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If we have control of the invariance group generated by the constraints, a 
powerful way to define the constraint operators is to define a representation of the 
group on 5:  and then identify the quantum constraints as the generators of this 
representation [7, 8]. The constraint algebra is then naturally satisfied. What one has 
to worry about is, in this case, that the transformation properties of the other 
objects in the theory are the correct ones. This ensures the correctness of the algebra 
of the constraints and the observables together. We will follow this way when we 
give the definition of the constraint associated with the spatial diffeomorphisms. 

A third possibility for dealing with the quantization of a closed algebra of 
constraints is simply to choose a set of elementary observables that commute with 
the constraints. Then the constraints can be simply forgotten in the rest of the 
theory, since such observables coordinatize the reduced classical system. For a 
detailed discussion of this see, for example, ref. [17]. We will deal in this way with 
the internal gauge constraint. 

1.1.3. Divergences. Any formal definition of a quantum field theory contains 
infinite quantities. For the theory to be well defined these have to be eliminated 
from physical quantities in some way. In flat space quantum field theory a definite 
procedure exists that allows to subtract the divergencies order by order in a 
perturbation expansion. 

There is a feature of the dynamics of general relativity that makes it, in this 
respect, very different from the flat space quantum field theories and which could 
make the problem of the infinities less problematic. This is because, as we shall 
argue on general grounds, it is possible that general relativity needs a regularization, 
but it does not need a renormalization; at least for the definition of the constraints 
and the physical state space. 

Different kinds of infinities appear in the theory. 
The first type comes from the singularities in observables defined at a point. 

These singularities can be treated, as usual, in the framework of the theory of 
distributions. We shall discuss how all singularities of this kind can be eliminated by 
suitably smearing the observables. 

The second set of singularities comes from products of local operators, which are 
products of distributions. These products may be avoided by carefully using 
elementary observables which, suitably smeared, do not involve ill-defined quanti- 
ties. 

The crucial singular object in the theory is then the hamiltonian constraint. This 
situation is analogous to the one of flat space theories: The singularities in the 
definition of the fields operators are treated simply by interpreting the field as 
distributions and the real source of infinities is the hamiltonian, by virtue of its 
containing products of local operators. 

The situation in gravity, however, is different from the one in flat space theories 
because the dynamical operator is a constraint. This means that we are not 
interested in knowing its action on all the states, we are only interested in knowing 
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its kernel. Let us contrast the two equations 

H]~,) = E]~b), cgl+ ) = 0 .  (6,7) 

The first, which defines the dynamics of an ordinary quantum field theory, requires 
both regularization and renormalization. If H~ -- ~iH] is a sequence of regularized 
hamiltonians, containing a sum of regulated terms HI then the stationary state 
condition is 

lim ~Z(8),Hg]+) = Erenormalized]~), 
8 ~ 0  i 

(s) 

where Z(8)i is a multiplicative renormalization, which often differs from term to 
term. 

In quantum gravity, on the other hand the physical state condition is simply 

lim rgs[~)  = 0 ,  (9) 
8 ~ 0  

where rg~ are the regulated operators. As the right-hand side is simply zero, 
renormalization may not be required to construct the solutions to this equation. 
This difference occurs for the following reason. Renormalization is necessary in an 
ordinary quantum field theory because the hamiltonian must be well defined on the 
whole Hilbert space. However, in quantum gravity the hamiltonian constraint needs 
only to be well defined on its kernel, but here it is represented just by the operator 
multiplication by zero. The states outside the kernel are unphysical, and while the 
regulated hamiltonian constraint must be defined on the whole state space, includ- 
ing the unphysical states, there is no reason for its limit, as the regularization is 
taken away, to be well defined anywhere except on the physical state space*. 

In other words, because of the particular features of gravity, we do not need to 
renormalize rg. It is sufficient to regularize it in order to have a precise definition of 
its kernel. 

This fact is hidden in the metric representation, in which the hamiltonian 
constraint is the sum of two terms. The second of these does not need to be 
regularized, therefore it is not clear how the sum behaves in the limit. In the 
self-dual representation, on the contrary, because the constraint consists of a single 
term, it is possible to define a regularization scheme in which g,8,/, is proportional 
to 1 /8 ,  and apply these ideas. 

The situation is even better in the loop representation. As we shall see the 
hamiltonian constraint is naturally defined in the classical theory as a limit of 
observables which are linear combinations of the elementary observables of the loop 
representation. Having the dynamical operators defined as a limit of the elementary 
observables is unpleasant for the classical theory. But it turns out to be nice 

* This idea was implicitly suggested in ref. [6]. 
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quantum mechanically, since it provides a natural regularization scheme in which 
the dynamical operator is defined as a limit of elementary operators*. 

1.1.4. Rea l i t y  conditions. In the Ashtekar formalism one first treats complexified 
general relativity. In order to reduce the theory to the real sector the constraints 
must be supplemented by a reality condition. 

The reality condition cannot be interpreted as a constraint on the state functions, 
in the manner of the other constraints. This is because in the quantum theory reality 
conditions are related to the Hilbert structure, rather than to the linear structure. 
The translation of the -~ operation, in other words, necessarily involves the inner 
product, as under quantization real quantities become hermitian operators. 

For  instance if we have a one-dimensional system, we can complexify the (x, p)  
phase space, then define the observables a = x + ip, b = x -  ip, and quantize the 
system by looking for a linear representation of the a, b Poisson algebra. The real 
sector of the classical theory is given by the reality condition b = d. In the quantum 
theory this amounts to choosing a Hilbert product such that the operator/~ is the 
conjugate of the operator a. 

Any quantization can be seen as the quantization of the complexified classical 
theory, up to the point in which the introduction of the Hilbert structure singles out 
the hermitian operators. 

In the quantization of a constrained system the physical inner product is defined 
on the space of solutions to the constraints, and not on the larger state space. This 
means that any reality condition that the phase space variables of a theory satisfies 
may be ignored during the construction of the physical state space, and imposed 
afterwards as a condition on the inner product defined on the physical state space. 
The inner product on the physical state space must be chosen so that physical 
observables, whose classical counterparts are real when the classical reality condi- 
tions are imposed, are represented by hermitian operators. In the body of this paper 
we formulate the theory on the unconstrained function space, and solve the 
constraints. We thus will not introduce a Hilbert structure on the state space and 
the reality conditions will play no role. 

1.1.5. Phys ica l  observables. The problem of the identification of the physical 
observables is a crucial one for any nonperturbative quantization of a gravitational 
theory. We do not solve this problem in this paper; rather the progress we are able 
to make concerning the nonperturbative structure of the physical state space serves 
to bring out the importance of this question. 

Very briefly, the problem is that since we do not know any physical observables 
of the classical theory, we are not able to identify the physical operators of the 

* A  more subtle question is the choice of the topology in which to take the limit (9). If we had a 
Hilbert structure, the Hilbert norm would clearly be the correct choice, but, as we just discussed, we 
do not have one on the unconstrained states. In this paper we work in the pointwise topology, which 
is the only natural choice at this stage in the development of the theory. Whether or not this choice 
will turn out to lead to a completely satisfactory theory, with a physical inner product and a full set 
of physical states and operators, is presently an open question. 
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quantum theory with specific physical quantities. Furthermore, if we cannot do this 
we do not know how to implement the reality conditions of the theory, and we 
cannot  identify the physical inner product of the theory. Without a physical inner 
product  and an identification of at least some operators on the physical Hilbert 
space with physical observables of the classical theory, the theory cannot be given a 
physical interpretation. We will return to these issues more than once in the course 
of this paper. 

However,  it is worth mentioning that in spite of this difficulty there is one general 
and important  conclusion we will be able to draw about the physical observables of 
quantum gravity at the nonperturbative level. We will show that the space of 
solutions to the spatial diffeomorphism constraints can be constructed explicitly in 
terms of a countable basis in which the basis elements are in one-to-one correspon- 
dence with the (generalized) link classes of the manifold. Any observable which 
commutes  with the spatial diffeomorphism constraints must then be expressible as a 

matrix in this basis, which means that it is expressible in terms of linear operations 
on the link classes. This means that any diffeomorphism invariant observable of the 
theory measures topological information about the extended structures that are in 
correspondence with the basis states in the loop representation. Thus, at the 
nonperturbat ive level, the "short  distance" structure of quantum general relativity 
must  be described in terms of topological relations of nonlocal observables rather 
than metrical relations of local observables. 

2. Loop variables in the classical theory 

The aim of this section is to introduce a class of nonlocal observables on the 
phase space of general relativity which will be the starting point for the quantization 

in the next section. 
The main properties of these observables, which will be denoted by the letter T, 

are the following. (i). They are invariant under SU(2) gauge transformations. 
(ii). They parametrize the gauge* constraint surface of the phase space, so that any 
gauge invariant observable may be expressed in terms of them. (iii). They form a 
closed Poisson algebra, which we call ~" algebra. (iv). They carry a realization of the 
diffeomorphism group of the three-manifold. 

The T observables depend on a loop, or a set of loops, in the three-manifold, and 
on a number  of points on the loops. We will denote by T n the T observables that 
depend on n points on the loop. The set of T observables form a graded algebra 

under the Poisson bracket, where the grading is given by the nonnegative integer n. 
We begin this section by briefly reviewing the Ashtekar formulation of general 

relativity. Then we introduce the observables T O and T 1. They form a preferred set 

* In this paper we use the following nomenclature: gauge refers only to the local SU(2) invariance; 
diffeomorphism refers only to the spatial diffeomorphism group; and physical, as in "physical 
observable" means invariant under gauge transformations, diffeomorphisms and transformations 
generated by the hamiltonian constraint. 
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of the T variables in that their Poisson brackets close. We call the subalgebra that 
they define the small ~Y- algebra. At this stage we introduce a graphical notation 
which is useful for calculations. After this we introduce the entire class of T n 
observables and compue the full oj- algebra. We then study how the usual local 
variables of general relativity, and in particular the three-metric, can be recovered 
from the T 's ,  and, finally, we discuss the way in which the constraints are expressed 
in terms of these loop variables. 

2.1. A S H T E K A R ' S  NEW VARIABLES 

We briefly recall here the basic equations of Ashtekar's formulation of canonical 
general relativity [3, 4]. 

We assume, to begin with, a three-dimensional manifold 27, whose topological 
and differentiable structure is fixed. In this paper it is assumed that 2? is compact, 
and without boundary*. 

Ashtekar's variables are coordinates on a complexification of the phase space of 
general relativity, extended by the introduction of local frame fields in order to 
allow couplings to spinors. The fundamental variable in Ashtekar's formalism is a 
complexified SU(2) (or SL(2, C)) connection, denoted A~Ae(x ). It may be geometri- 
cally interpreted as the projection into the three-manifold of the left-handed spin 
connection of the four-metric**. A~,4B(x ), being a complexified SU(2) connection, 
is symmetric in its spinor indices AB. The curvature of A ~ 8 ( x  ), called F, bAB(X), 
also symmetric in the spinor indices, is related to the self-dual, or left-handed, piece 
of the riemannian curvature tensor. 

Conjugate to A,AB(x ) is the variable 8~AB(X). It is geometrically interpreted as 
the densitized inverse frame field. It is also symmetric in spinor indices. In what 
follows we often will not indicate the spinor indices. 6a(x) and A~,(x) are treated as 
2 × 2 matrices in multiplications and traces. Spinor indices are raised and lowered 
with the usual two-spinor antisymmetric object c,4B and its inverse [4]. 

The relation with the standard canonical variables is the following. The three-met- 
ric q~b is given by*** 

q( x )q~b( x ) = - ½Tr[ 8~( x )Sh( x )] , (10) 

where q is the determinant of q,b. The relation between the connection and the 

* The extension of the loop space formalism to manifolds with boundaries or asymptotic conditions is 
in progress. 

**  Lower case Latin letters from the beginning of the alphabet denote three-dimensional abstract 
indices, upper  case Latin indices from the beginning of the alphabet are two-component abstract 
spinor indices. 

* * *  The variable 8"(x) that we use in this paper is equal to 1 / ~ 0  times the variable with the same name 
used in refs. [3,4]. This is the reason for the } in eq. (10), and for the absence of the 1 / ( 2  factor in 
eq. (12). 
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standard variables is that Ao = F~ + ( i / f 2 ) Y l o ,  where Fo is the SU(2) spin connec- 
tion on ~ compatible with 6 ~, and H~ is linearly related to the extrinsic curvature. 

AoAB(x ) is thus a function of both the three-metric q~,b(x) and its conjugate 
momenta .  In spite of this fact, the A~aB(x  ) are all simultaneously commuting in the 
Poisson brackets of general relativity*, 

( AoA~(X) ,  AbcD(Y)  } = O. (11) 

The 6 aAB'S have vanishing Poisson brackets with each other, and satisfy 

a. a (x, y). (12) 

Of  particular interest in this paper will be quantities defined by parallel transport 
along loops in ~; using the connection A~(x) .  If ~ is a parametrized loop in 2,  then 
we will define the SL(2, C) matrix 

(13) 

where the notation 

f A = ds (14) 

is used for the line integral of a one-form, and P means path ordered. By 
Uv(s) = Uv(s, s)  we denote the parallel transport all around the loop, also known as 
the holonomy, beginning and ending at s. By virtue of the fact that it lives in 
SL(2,C),  it satisfies the identity 

(15) 

The main result of Ashtekar's formalism is that the form of the constraints is 
greatly simplified. There is a constraint which generates the SU(2) internal gauge 
transformations 

f¢( x ) =-- N t i S ( x )  - O, (16) 

where ~ .  is the A.  covariant derivative. This is, of course, just the usual Gauss law 
constraint**.  

* We denote Poisson brackets by { , }, and quantum commutators by [ , ]. 
** Up to this point there is a complete correspondence with the hamiltonian formalism for a 

(complexified) SU(2) Yang-Mills theory, the 5 "~ ~ 's corresponding to the Yang-Mills electric field. 
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In the presence of the SU(2) constraint, the diffeomorphism and hamiltonian 
constraints of general relativity take the form 

~ ( x )  = Tr[Foh(x)6h(x)] - 0 ,  

~ ( x )  = Tr[Fob(x)6~(x)fb(x)] - O. 

(17) 

(is) 

In contrast to their form in the usual variables, these are both polynomial in 
A , ( x )  and 6"(x), as well as homogeneous in the latter. 

These constraints define the complex version of general relativity. In order to 
have real minkowskian or euclidean general relativity we have to impose additional 
reality conditions. We demand that ~a is hermitian, namely 6 ~+= 6 ~, where the t 
refers to a fixed hermitian conjugate operation in the spin space, and that its time 
derivative is also hermitian. 

2.2. THE T ° AND T l OBSERVABLES AND THE SMALL 3- ALGEBRA 

We consider continuous, piecewise smooth, nondegenerate mappings a: S 1 ~ S. 
Each such mapping gives us a parametrized closed curves in space. We call such 
curves loops, and we denote them by greek letters a, fl, 2/ . . . . .  or, in components, 
a~(s), f l " ( s ) , . . . ,  where the loop parameter s will always be considered modulo 2~, 
that is s = s + 2~r. The inverse of a curve a is defined to be the curve (a t)"(s) = 
aa (2~r -  s). 

The first observable that we introduce is T °. T o depends on a loop 7 and is 
defined to be simply the trace of the holonomy of Ashtekar's connection along 3'* 

T [ a ]  ~ Tr U . ( s ) =  T r P e x p ( ~ A ) .  (19) 

The set of T[a] 's  coordinatize the phase space of general relativity in the 
following way. As shown in ref. [6], any holomorphic and gauge invariant functional 
of the A f s  can be determined by expressing it as a functional of the T[a]. This is 
because any SU(2) connection is determined up to gauge transformations by the 
traces of its holonomy, and holomorphic functionals of an SL(2,C) connection are 
determined by their values when the connection is restricted to lie in SU(2)**. Thus, 
the T[a]  are holomorphic coordinates on the gauge constraint surface on the phase 
space of (Aa,6~), which is a complexification of the phase space of general 
relativity. 

* Note that the superscript 0 is suppressed. In general the n on a T" is suppressed when it is indicated 
by the number of indices. 

** Holomorpic is here defined in terms of a fixed hermitian structure on the spin bundle, as is explained 
in ref. [4]. 
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In order to have a complete set of coordinates on the gauge constraint surface of 
the phase space we must add observables which involve 6a(x). We want them to be 
SU(2) gauge invariant, at the same time, however, we will require that they do not 
involve products of more than one 6~(x) at a single point. This is because we expect 
that in the quantum theory such coincident operator products will not be well 
defined. The simplest way of satisfying these requirements is to insert the 6~(x)'s 
inside of traces of parallel transport around loops. We thus define a second set of 
observables called T 1 as follows. For any loop y, and loop parameter s, Ta[7](s) is 
given by inserting 6"(x) along the holonomy of 7, at the point x = ~,(s). That is, we 
define 

r " [ Y l ( s ) -  Tr[Uy(s)6~(7(s))].  (20) 

T[7] is invariant under reparametrization of 7; this is also true if the 
reparametrization changes the orientation, since the trace of an SL(2,C) matrix is 
equal to the trace of its inverse. T~[7](s) is not reparametrization invariant since it 
depends on a preferred value of the loop parameter S. However, it is reparametriza- 
tion covariant. Let y'  be a reparametrization of 7 with the same orientation, 

7 ' (s )  = 7 ( f ( s ) ) ,  f ' (s)  > 0. Then clearly 

T~[7 ' l ( s )  = T a [ y l ( f ( s ) ) ,  (21) 

so that we can identify these two objects. 
T~ [7 ](s), however, changes sign under reparametrizations of the loop that change 

its orientation. This follows from eq. (15) and from the symmetry of 6"(x) in the 
spinor indices. Therefore, the T 1 observable depends on oriented unparametrized 
loops with a preferred point. We will sometimes also associate an orientation also to 
the loop on which the T o operator depends; the orientation is arbitrary and no final 
result will depend on it, but it is useful to have an orientation in the course of 
calculations. 

We now introduce a graphical notation that will be useful in the following. Let us 
denote a class of loops equivalent under reparametrization by a closed line. Since T o 
depends on single loops, but not on their parametrization, we can note a T[7 ] 
simply by means of the corresponding equivalence class of parametrized loops, as in 
fig. 2a. Our convention will be that the intersections and the points of nondifferen- 
tiability on the loops and their order (which are parametrization invariant concepts) 
are reproduced by the drawing. For instance a loop with one self-intersection is 

a: 

Fig. 2. T[y]. Fig. 3. T"[y](s). 
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depicted in fig. 2b. Then we can denote the equivalence classes of oriented loops 

with one particular selected point by putting a dot in one point and an arrow that 
fixes the orientation. Using this we denote the T a as in fig. 3. We call the dots on 
the drawing of the loops which represent the insertion of a 6~(x) "hands".  

Before introducing the T" with n > 2 we discuss the properties of the T °, T ~ set. 
Their main property is that they form a closed Poisson algebra. 

We have, of course, for any two loops a and fl, 

( T[ al, T[ fl ] } = O. (22) 

To express the rest of the Poisson algebra we need to refer to loops that result 
f rom the breaking and joining of two loops that intersect at a point. Let a and B be 

two loops that intersect at the point x = a ( £ ) = / / ( / ' ) .  We can construct a loop by 
starting from x, going first around a and then around ft. We call this loop a#x/3. 

The subscript is needed because the two curves may intersect in more than one 
point. We will not write the subscript where the context is clear, and we also use 
a:~s/~ for a ~ , ~ / ~ .  To complete the definition we need to specify how the loop 
aC~xfl is parametrized. We adopt the following convention. If £ and /" are the values 
of the parameters  of a and /~ at the intersection, a(s+£)  and fi(t+ ~) are 
parametrized loops that start and end at the intersection (recall that the loop 
parameters  are defined modulo 2~r). We define 

{ a(2u + £) for 0<u<Tr, 
a#xf i (u)= f l ( 2 u + / ' )  for ~ r < u < 2 7 r .  

(23) 

We will use the notation u'(s) and u(t) for the values of the parameter of a~fl that 
correspond to the points a(s) and B(t). That is the functions u'  and u are defined 

by a#fl(u'(s)) = a(s), aCzfl(u(t)) = fl(t) and may be easily computed from eq. (23). 
Now we can compute the Poisson algebra. The Poisson bracket of a T o with a T 1 

gives a term proportional to a T o as follows. By using the identity 

{e~B(X)'UvCD(O's)} =- - i~A .As(x) Pexp Ah(y(u)l~,(u)bdu 

= - i / ' d u a 3 ( v ( u ) , x ) v  c • a u) (AUv(u,s)m D, (24) 
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we have 

( T ~ [ y ] ( s ) ,  T[rl]} = iUv(s) AB { 8A~B(Y(S)), T°[B]} 

= i U ~ ( s ) A R f d t 8 3 ( . r ( S ) ,  ~l(t))il"(t)Un(t)(AB ) 

--i 
= _~_fdt83(~,(s),~l(t))41a(t)[TO[y#~l]_ T013,#~/ 1]]. (25) 

The bracket is zero unless ~ intersects ~, at the point s. 
It is convenient to introduce a special notation for the singular terms that appear 

in the commutators of the J algebra. We define 

~"[~', n] (s )  -- ½fdt83(~'(s), ~l(t))il~(t). (26) 

In subsect. 2.4 we show that these singularities are harmless and can be eliminated 
by interpreting the T observables as distributions, such that the singularities in the 
commutators are eliminated by averaging over suitable test functions. These singu- 
larities thus have the same character as the singularities in the canonical commuta- 
tion relations ( ~ (x ) ,T r (y ) )=  83(x, y), which are present in every classical field 
theory. 

It is also worth while, for later convenience, to introduce the notation 

v 

(a#f l )  > < = a#f l ,  ( a# f l )  ^ = a#f l  1, (27) 

and a symbol ~ that may take the value > < or ~ .  The reasons for this notation 
will become clear in a moment. Using this notation, the Poisson brackets (25) 
becomes 

(T~['Yl(s),r[~]} = --iE(--1)K>lA~[y,~l(s)r°[(y#~l)O], (28) 
0 

where we have defined I > < [ = 0, I A V I = 1. 
The Poisson bracket of two T l 's is again proportional to another T 1. We have 

i ( r ~ [ y ] ( s ) ,  r h [ , ] ( t ) }  = Uy(s) AB{ 6~B(y(S)), Un(t)CD}ffbD(,(t)) 
+ 

=aa[y. Tll(s)(Tr[Ur(s)U,(u.t)ab(B(t))Un(t.u)] 

- T r [ U  v x(s)U,(u, tlab(~l(tl)U,( t. u)]) 

-- Ab[~l. "~](t)(Tr[Un(t)Uy(v. s)6~(7(s))Uy(s, u)] 

-Tr[U~ ~(t)Ur(v. s)6~('t(s))t~(s, u) ] ) .  (29) 
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,, a 

{ ' }: " • [~,,n] - 

Fig. 4. Poisson brackets of a T o and a T 1. 

1 
99 

The result is then 

= i £ ( -  1) '<>' A [n, r ] (O T° 
© 

- i E ( - 1 )  Iol Au[Y, 7 1 ] ( s ) T h [ ( Y " ~ s ~ l ) O ] ( u ( t ) )  . 
0 

(30) 

We call the Poisson algebra of the T °, T 1 observables, defined by these equations, 

the small .Y- algebra. 
Now we show how these calculations may be performed in terms of the graphical 

notation that we introduced. The Poisson brackets are an operator that sends two 
observables, each parametrized by a loop, to a linear combinations of observables 
parametrized by loops that are related to the original ones by simple topological 
operations. The Poisson brackets of a T o and T 1 such that the hand indicating the 
presence of the 8~'(x) is at one of the intersection points can be written* as in fig. 4. 
Similarly, the Poisson brackets of two T ~'s such that each of the two 8a(x) ' s  is at a 
point of intersection is drawn as in fig. 5. It is clear that there is a simple graphical 
rule at work here. The { , } operator acts at each point where there is a hand. There 
is an elementary action at any hand, which we now describe. 

If  the hand is not at an intersection point of the two loops, the result is zero. If 
the hand is on 7 at a point of intersection with ~/ and has index a, the action is the 

following. We obtain two new loops from 7 and ~/by removing the hand, breaking 
each of them at the point of intersection, and rejoining each resulting leg of 7 with 
one of ~l- In one of these two loops the orientations are consistent, in the other they 
clash so that we have to reverse the orientation of ~/ before rejoining; we take the 
difference between the first loop and the second one and, finally, we multiply the 
result by A~[y, ~/]. 

This graphical rule expresses exactly the contents of eq. (24). It is summarized in 
fig. 6. Now the total action of the operator ( , ) is given by its action over the hand 

* In the figures we use the following convention to distinguish the two ways in which the four legs 
arriving at an intersection can be rearranged. We consider the rearrangement in which the two legs 
coming from the right (and the two coming from the left) are connected (the > < figure) to be the 
one in which the orientation of the two loops matches naturally. Note that in fig. 4 the handed loop 
is oriented, while the orientation of the other loop is arbitrary; by reversing its orientation, the role of 
the two resulting loops is inverted, but  also the A changes sign, and the overall result is invariant. 
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~, . v ~ _ j  n -  A E,.n,[', ~ )  - 
/ a 

Fig. 5. Poisson brackets of two T l 's .  

1 
1 

Fig. 6. The action of the grasp operator. 

of the first loop (if it has a hand) minus its action over the hand of the second one 
(if it has a hand). 

We use for compactness the following terminology. We say that a hand on a loop 
7 "sees"  a loop ~ if "t and ~ intersect at the location of the hand. We say that the 
hand "grasps"  the loop ~ to indicate the operation described in fig. 6, and we call 

the "grasp"  of the hand over the loop ~ the result of the operation (the grasp is zero 
unless the hand sees 7)- Then we can re-express our result about the Poisson algebra 
in the following terms. 

The Poisson brackets of two handed loops a and/3  is given by the grasp of the 
hand of a over/3, minus the grasp of the hand of/3 over ~. 

Note  that intersections which are not at the locations of the dots are not relevant. 
At this point, the pictorial meaning of the notation > < ,  A V should be clear. 

These symbols refer exactly to the pictorical description, as in fig. 6, of the 
rearrangement  of the legs at the intersection. 

The last topic concerning the small .Y- algebra that we need to discuss is the 
question of whether the T o and T 1 are enough to parametrize the gauge constraint 
surface of the phase space. If they are then, in principle, a complete quantization of 
the theory can be based on them. This issue is presently open; the problem is the 
following. 

There exists a subspace of the phase space of complexified general relativity on 

which the mapping (6"(x), Ao(x))~ ( r  °, T l) is degenerate: if Ao(x ) = 0, then 
T o =  2 and T ~= 0 whatever 5~(x) is. The intersection of this subspace with the 
constraint surface consists of the initial data for the self-dual sector of the theory. 
However,  the intersection of this self-dual sector with the real slice of the phase 
space - that corresponding to initial data whose evolution is real - is exactly one 
point, which is the initial data for flat space-time. 
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Thus,  there are two questions. First, is flat space-time the only point  at which a 

coordina t iza t ion  of  the constraint  surface by  the functions T o and T 1 becomes 
degenerate? Second, even if this is the case, off the constraint  surface the A a = 0 
subspace contains  a nontrivial set of  nonphysical  initial data, so that the T o and T 1 

clearly do not  coordinatize the whole phase space off the constraint  surface. Thus, 

even if the coordinat izat ion they give of  the constraint  surface is nondegenerate,  it is 

no t  clear that  they contain a sufficient number  of observables to construct  the Dirac 

quant iza t ion  of  the theory'*. 
Even if the T o and T 1 do parametrize the constraint  surface, the parametrizat ion 

that  they give will not be very convenient for the expression of  some impor tant  

observables such as the three-metric and the hamil tonian constraint. Thus, whatever 

the answer to the question of the completeness of T o and T 1 is, we will find it 

useful to have a larger algebra of  observables. 

2.3. THE GENERAL T OBSERVABLES AND THE FULL J A L G E B R A  

In  this subsection we introduce a more general set of loop observables, obtained 

by inserting more  than one 6~(x) along the ho lonomy of a loop. We define T" as a 

funct ion of  a loop and of n points on the loop fixed by loop parameter  values 

S l , . . . ,  s,,, which satisfy 0 < s I < • • • < sn ~< 2~r. We define 

¢/1 - ' '  ( / n  . . . .  Tordered [Y](S1 Sn) =-- T r [ ~ a l ( T ( s 1 ) ) V v ( s 1 ,  S 2 ) o a 2 ( y ( ' 2 ) )  . .  

e°,, (v(,o)) u,(,., ,0] .  (31) 

For  later convenience we adopt  the convention that the order in which the s i (and 

related a,)  are written as arguments of a T n is irrelevant. If  P = (i, j . . . . .  p ,  q) is a 

pe rmuta t ion  of  the first n natural numbers  we define T n (without the subscript 

ordered) to be 

a t . . .  ¢ / p  Tal ...... [ T ] ( S 1 . . . S n )  = £ O ( S q - - S p ) . . . O ( S j - - s i ) T o r d e r e  d [ T ] ( S ~ . . . S p )  (32 )  
P 

where O(t) = 1 for t > 0 and zero otherwise; T" may be graphically represented as 

an oriented curve with n hands. 
The main proper ty  of the T n's is that they form a closed graded Poisson algebra, 

which has the structure 

{ T n, T m ) - T ,+, , , -1 .  (33) 

* I n  2 + 1 gravity [37] one can demonstrate that the mapping (6a(x),  An(x ) )~  (T °, T 1) is in fact 
degenerate on 6, on the A = 0 subspace. 
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{ T  ... . . . . .  [ y ] ( s 1 . . .  Sn) ' Tbl.. .bm[.rl](ll . . . lm)} 

tl 

= -- i  E E(--1)'OLa"'[3',n](Sk) 
k = l O  

x . . . .  ,,. [ ( 3 ' # , : , ) °  

+i ~ ~'~(--1)O'~bk[B,y](tk) 
k = l O  

3' O x T l ~ , . . . ~ k . . . b  ..... 1 . . . . .  [ (~:~z tk ) ] ( U t ( l l ) . . . ~ t ( l k ) . . . U ( + t r n ) , l A ( S 1 ) . . . 1 A ( S n ) ) .  

(34) 

The slash over a term means that that term is not present: ( a l . . .  ~k " . - a m ) =  

(a l  --- a k - l a k  + 1 ""  a,,). Each of the two terms contains a sum over the hands of one 
of the loops, and, for every hand, the sum of the two ways to rearrange the legs. 

This result is obtained after some algebra, or much more easily by the graphical 
calculus described in the previous subsection. The full Poisson algebra can then be 
expressed in the following form. 

The Poisson brackets of two handed loops a and/3 are given by the sum of all the 
grasps of the hands of a, over fl, minus the sum of all the grasps of the hands of fl 
over a. 

For instance the Poisson brackets of a T 2 and a T 3 that intersect at two points, 
such that there is a hand of the T 2 at each intersection, are given in fig. 7. 

We have shown that the T observables form a graded Poisson algebra. As we 
already said we call this algebra Y .  This algebra is entirely expressible in term of 
breaking and rejoining of handed loops and, remarkably, the full symplectic 
structure of the phase space is coded in this algebra (more precisely, in a suitable 

closure of the algebra). 

a a 

+ A [~,rl] 

Fig. 7. Poisson brackets of a T 2 with a T 3 which intersect at the hands of the T 2. 
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2.4. S M E A R I N G  

In this subsection we show how the singularities present in the formal expression 
for the .Y- algebra are avoided by smearing the T observables. 

In any field theory the Poisson algebra of local field observables involve singular 
expressions. These are handled by interpreting the fields as three-dimensional 
distributions, to be defined by smearing them in three dimensions with smooth test 
functions. Now, the TO[7](s) observable depends on the space point "f(s), and we 
do find distributional expressions in its Poisson brackets. If we want to eliminate 
these singularities it is not enough to average in the loop parameter, as the singular 
expressions contain three-dimensional delta functions. 

We will thus introduce a smearing or regularization procedure in which the T" 
observables are averaged over both the loop parameter and the position of the loop 
in space. This will be sufficient to eliminate all singularities in the Poisson brackets 
of the 3"  algebra. 

To define the smeared observables we consider, instead of loops, two parameter 
congruences of loops 3'o(s), o = (o 1, 02). We then define the smeared T 1 observables 
to be 

T l [ y o l ( f )  = f d2°ds fa(yo(s ) )ya[yol (s ) ,  (35) 

where f is a one-form on 22. 
The Poisson brackets of the smeared T 1 with a T o are given by 

Tl[y~,l(f),T[~l]} =-ifJ(T[yo#~]- T[yo#7/ 1]), (36) 

where the o in the r.h.s, is a function of the integration variable. Note that the 
singular coefficient A has been replaced by the line integral of the one-form f along 
the grasped loop 7- 

For  n > 1 we introduce an independent three-dimensional smearing for every 
hand. That is we consider 2n-parameter families of loops "fol ..... and define 

T" [Yo~ .... ,,](f)=fd201...d20.fdSl...ds. 

X fa(11) ( "Y . . . . . . .  ( S 1 ) )  " '"  fa(n) ( ~/ol . . . .  ,,(Sn))r . . . . . .  ~ [ '~1 . . . .  nl(Sl"''Sn)" 

(37) 

It is straightforward to verify that all the singularities of the J -  algebra are 
eliminated in this way. 
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Fig. 8. 3AR3~. :~ + C4c.e °t~ = 3AD3C ~. 
Fig. 9. The fundamental  two-spinor identity as a 

condit ion on the T O . 

We may assume that the dependence of the loop on each pair of parameters o, is 
nondegenerate only in an interval around one of the hands (that is on the support of 
the corresponding fa) and that these intervals do not overlap. In this way we keep 
the smearing of each hand separate from the others, and the regularized loop 
appears as one which is fattened in a neighborhood of each hand. Actually, in the 
classical theory it is not necessary to smear each hand independently. However, this 
will be essential in the quantum theory. We will thus describe the smearing 
procedure in detail only after the introduction of the quantum loop operators. 

2.5. O T H E R  P R O P E R T I E S  OF T H E  T OBSERVABLES 

The SL(2, C) algebra in which the Ashtekar connection lives is characterized by 
the following algebraic identity which plays an important role in the loop formalism 

828  + = (38) 

By inserting this identity between the four legs of the loops arriving at one 
intersection we obtain the identity expressed in fig. 8. For instance, by using this 
identity we have the relation 

+ -1]  = T[ IT[/3I, (39a) 

which is graphically expressed in fig. 9. Therefore we have another interpretation of 
the two symbols > < and v . They refer respectively to 6~6c D and %c eB°. Their 
difference 6~ 8~ represents the crossing of the two loops and may be represented 
with the symbol ×.  In this spirit we will also use ( a# f l )  x= a o/3.  

Note that in the notation of fig. 8 the identity (38) is expressed very similar to the 
way in which the same identity is expressed in Penrose's spin network formalism 

[211. 
The o y- observables satisfy also a second identity having to do with retracing over 

portions of a loop. We denote by p o o o r . . .  a loop obtained by joining the ends of 
the segments 0, o, r . . . .  

Let c~ be a loop that starts and ends in the point P, and P a segment with an end 
on P. We call the loop ao P ° 0 -1 a loop with a tail (fig. 10a) and we have 

T[e~ooop -1] = T [ a  I. (39b) 
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la) 

-I 

-1 ~ , p  . P  , p  

,, oP o ~_,° p-i 

(b) 

C¢ .p  ¢c , p  
l 2 

(c) 

Fig. 10. (a) Loop with tail; (b), (c) eyeglass loops. 
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The identities (39a) and (39b) allow a complete characterization of T °. In fact it 
is possible to show [22] that, given any function on the space of unparametrized 
loops which satisfy these identities, there is an SL(2,C) connection such that the 
loop function is the holonomy of that connection. These two identities imply the 
two following relations between the T° ' s .  Let a and fl be any two loops and let p 
be a segment that joins a point of a with a point of ft. The first relation is 

T [ a ] T [ ~ ] =  T [ a o p o f l o p  -1] + T [ a o p o f i - l o p - ' ] .  (40a) 

We call the loops of the form a o p o fi o p 1 eyeglass loops (see fig. 10b). The second 

relation is the following. Let a be any loop and P and Q two distinct points on a. 

Let a 1 and a 2 be the two segments of a separated by P and Q, and let p be another 
segment joining P and Q. Then 

T [ a ] - -  T [ a l o p l T [ a 2 o  p 1 ] -  T [ O / l o p o o / 2  l o lo ] .  (40b) 

We denote also the loops of the form a 1 o o o a 21o 0 and the set of the two loops 
a lo P, a2 o p - l ,  as eyeglass loops (see fig. 10c). Any eyeglass loop determines in a 
unique way a loop (or a set of two loops), obtained by cutting away the segments P 
and p-1. We will say that the eyeglass loop is related to the loop (or the set of two 
loops) determined in this way. For instance a o p o fl o P-1 is related to the double 
loop a, fl, and a~ o p o a2 -1 o p is related to the loop a. 

The two relations (40a, b) are important for the following reason. Since the value 
of T o on any loop with a tail is determined by the value on the corresponding loop 
without tail, we can eliminate the loops with a tail from the formalism and restrict 
our loop space to the space of the loops without tail, namely to the loops that are 
not of the form a o p o p 1. Then, we may also forget the retracing identity eq. (39b); 
however, because of the interplay between this identity and the identity (39a), there 
are some remaining relations between the T ° ' s  on loops with no tail. It is possible 
to show that all these relations are given by eqs. (40a, b). 
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The full set of the T coordinatizes the gauge invariant phase space. Most of the 
interesting local observables of general relativity are at the border of the T set; that 
is they can be obtained as the limit of certain linear combinations of T ' s ,  as the 
loop shrinks down to a point. For instance the three-metric is related to the T 2 
observables in the following way. Consider a loop ,/(x) which starts and ends at the 
point x and the sequence ~,8(x) obtained by shrinking down ~,(x) to the point x: 
"f~(x) = 87 (x )  + (1 - 8)x, 8 ~ (0,1). Then we have that 

(41) 

In the limit 8--+ 0 the U ' s  in this expression go to the identity, so that only the 

8~(x) ' s  survive in the trace. 
The hamiltonian constraint can be defined in terms of T 2'S in a similar way. To 

define it we consider a fixed coordinate system in the neighborhood of a point x. 
Given these coordinates let us define a coordinate circle of radius t} beginning at x 
which lies in the a b coordinate plane. We call this ~,,ah(x ). Then we have 

U~,ab(x)( S ) = ]~ q- a2Fab( X ) -}- O((~2) . (42)  

In order to get the hamiltonian constraint we have to start from a combination of 
T 2'S such that in the limit the first term that contains the identity cancels. If we 

take 

c~a(x) = T[Ohl[,/~b(x)](82,2~), (43) 
it follows that 

W(x)= ~im(1/82)c~(x). (44) 

In fact (we use ~, for ra,,(x)) 

Wa(x)=Tr[Sta(y(62))Uv(82,2Tr)6hl(y(2~))Uv(2¢r,82)]. (45) 

We can neglect the difference between 6(x) = 6(3,(2~r)) and 6(~,(82)), which is of 
order 63, and for the same reason we can substitute Uv(2~r, 82) with the identity and 

Uv(82, 2~r) with Ur(O ). So we have 

c~(x) = Tr[#Lh(x)ff~l(x)Ur~b(x)(0)] + 0(82). (46) 

Now we can expand U as in eq. (42). The leading term is zero because of the 

antisymmetrization, thus 

~ ( x )  = 82Tr[6b(x )6a(x )F .b (x ) ]  + 0(82) ,  (47) 

from which eq. (44) follows. 
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We will not be directly interested in expressing the other constraints in terms of 
the T variables. Rather we will be interested in the transformation properties of the 
T ' s  under the transformation generated by these constraints in the phase space. To 
give these transformation properties is equivalent to giving the constraints. 

Under  SU(2) gauge transformations the T observables are invariant. Under a 
diffeomorphism ~ they transform as scalars as far as their dependence on the loop I' 
is concerned and as vector densities of weight 1 at the points 1'(si) and related index 
a,. That is, in the new coordinate system x '~ = W(x)  they are given by 

T,al ...... [1'1(S I . . .S , , )  = J  1 (1 ' ( s1) ) . . .  J - l ( 1 " ( S n )  ) 

X 
0,o,(1'(,1)) o¢o(1'(s.)) 

Oxbl "'" ~xbn 
rh, ,,o[, 1.1'1(,1...,,, ), 

(48) 

where (~ .  y)~(s)  = ~(1 ' (s ) )  and J(x) is the jacobian of the coordinate transforma- 
tion ~. 

Finally we need to introduce a generalization of the definition of the T loop 
observables which will be needed in what follows. 

First of all we define a multiple loop to be a set containing a finite number of 
(continuous, piecewise smooth) loops. We use the notation {7} to indicate a 
multiple loop formed by single loops ~/1--- ~, and we denote the space of multiple 
loops by ~{. ~ '  is a graded space which is the direct sum of the space of the single 
loops, the subspace of the multiple loops consisting of two loops, the subspace of 
the triple loops, and so on. For later convenience we add to ~ '  a point representing 
the multiple loop formed by zero loops. 

In what follows we will often need to use multiple loops instead of loops. A 
multiple loop can be seen as a direct generalization of a single loop, obtained by 
relaxing the continuity condition to the condition of the absence of end points. In 
particular we assume that the multiple loop has a unique parameter s ~ (0,2~rn) 
which " jumps"  from one point to the other. In this spirit we will use the notation 

Note that this notation allows some, but not all, of the expressions of this section 
to be immediately generalized to multiple loops. An example of this is 

a°[v, {,}1(,)  = E (50) 
i 
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where the only nonvanishing term of the sum is the one corresponding to the loop in 
which s lies. 

In conclusion we have shown that general relativity may be formulated in terms 
of the T variables, defined in eqs. (19) and (31). The symplectic structure is given by 
the graded algebraic structure J -  given in eq. (34), the hamiltonian constraint is 
given in eq. (44), the transformation properties under transformation generated by 
the other constraints are well defined. The relation with the metric formalism is 
expressed in eq. (41). 

3. Definition of the loop representation 

We now are ready to come to the main point of this paper, which is the 
construction of a representation for canonical quantum general relativity as a 
representation of the 3- algebra described in the last section. We will start by 
constructing the linear space of functionals on which the representation is defined. 
This will be a space of functionals on the space of multiple loops. An element of this 
space, which represents an unconstrained quantum state of the theory, may then be 
thought of as an assignment of amplitudes for each collection of loops on the 
three-manifold 2. 

It is important  to note that the loop representation is not a space of functionals 
over a classical configuration space. This is related to the fact that it is associated 
with the quantization of a noncanonical observable algebra. 

Given the definition of the representation space we will go on to construct the 
algebra of linear operators on this space. These will form a linear representation of a 
deformation of the Poisson algebra 3-. The operators are denoted T and are 
interpreted as the quantum operators corresponding to the classical observables T. 
The correspondence between the classical and the quantum theory is thus estab- 
lished by means of this correspondence between these algebras. 

After introducing the operator algebra we come back to the definition of the state 
space and specify more precisely the state space by imposing some restrictions on 
the space of the loop functionals. These conditions are necessary if the quantum 
algebra is to be an irreducible representation of a deformation of the classical 
algebra. 

Finally we complete the definition of the theory by defining the quantum 
operators that express the constraints. 

We construct the quantum observable algebra in two steps, as we did for the 
classical Poisson algebra. We begin with the observables in the small 2 z" algebra. 
The quantum commutator algebra of these observables is isomorphic to the classical 
Poisson algebra. After this we define the general 7 ~ observables. In the general case 
we will find that the commutator algebra of the T defines a linear representation of 
a deformation of the classical Y algebra. 
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3.1. THE STATE SPACE AND THE QUANTIZATION OF THE SMALL J ' A L G E B R A  

Let us consider a linear space of complex functionals on .W, the space of sets of 
piecewise smooth continuous loops. We shall denote this space by 50; its elements 
will be denoted by d[{~/}]. Any d [ ( ~ } ]  may be expressed in terms of its 
"components" d,[B1 . . . . .  Bn] on the subspaces of ~ of the sets composed of n 
loops. Thus d [ { ~ } ]  has the form 

d =  {do, d,(oO, d , ( / V & ) ,  d,(,,,,,-y,,-~,,) .... }. (51) 

Note that these amplitudes depend on unordered sets of loops. Thus, in eq. (51) the 
d , ' s  are symmetric in their entries. 

We now introduce an algebra of operators on 5 ~, which provides a faithful 
representation of the J -  algebra. We begin with the observable T °. The quantum 
operator 7~[y] corresponding to the observable T[7] is defined by 

(52) 

where 7 u { ~ } is the collection of loops which is the union of ,/ and ( ~ }. Thus, 
T[7] is a kind of lowering* operator. 

Next we consider the T 1 observable. We define 

¢° [~,](,) d [ { ,7}1 = h Z ( -  1) 'o' a°[~ ', { ,  } ] (s) d [(~,:~ { ,  })o] .  
0 

(53) 

Note that this action is defined in terms of the elementary grasp operations defined 
in fig. 5 of the previous section. Here, however, the grasp is on the argument of the 
loop functional, and the coefficient ( -  1)IOI Ao[~,, { ,/)](s) multiplies the value of the 
loop functional. In the quantum context we will use the expression "grasp" in this 
way. That is we express the content of eq. (53) by saying that the action of the 
quantum observables corresponding to the handed loop ~, is given by the grasp of 
the hand on the loop functional. 

Let us compute the commutator algebra of these operators. First of all it is 
straightforward to show that the ~0 operator commutes with itself. We have 

f [ , q e [ B l d [ { n } ]  =d[ ,~ u B u {n}] = e [ B l e [ , ~ l d [ { n } ] ,  (54) 

* If d has support only on sets of n loops then 7~[71d defined by eq. (52) has support only on sets of 
n - 1 loops. 
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because the action of U is commutative. The commutator  of ~0 and ~1 is given by 

[~ [,~], ~" [ t~](~)] .~[( ,~ }] 

= h E ( -  l) '°la°[/~, ( ~}](,)..d[,~ u (B# { ~ }1 ° ] 
0 

- h 'Y ' . ( -1 ) IO 'a"[ /~ ,  o~ u { n } ] ( s ) . ~ [ ( , 8 # ( a  u { n } ) ) o ] .  
O 

(55) 

Note  that 

a°[/~, ,~ u ~](~) = a° [,~, ,~](s) + a°[/~, ~](~),  (56) 

where the first or the second term are different from zero only if the hand of/3 sees 
a or ~ respectively. Thus the second term in the commutator  may be decomposed as 

= h E ( -  1) '°',~" [,8, ,~](~) ~ [( /~#~)o u ( ~ }] 

+ ,~°[.8, { ~ } ] ( ~ ) d [ , ,  u (.8:~ ( ~ })<>]. (57) 

The last term cancels with the first term of the commutator  and we obtain the final 

result 

[7~[,~1, f"[ /~l(s)]  = h~2 ( -  l)~°~a"[B, ~ ] (s ) f  [(/~#,,)~]. (58) 
© 

In words, the difference between first adding a loop a to the argument of the 
functional and then grasping it by an operator, and first grasping it and then adding 
the loop a, is given by the possibility that the grasped loop is a itself. Therefore, the 
difference of the two operations is the same thing as adding the grasp of a. 

A similar calculation shows that 

[~"[','](~), ~"[~](0]  = hE(-a)LO~a"[v,  ~](~)¢'~[(,,,#~,7)0] (,,,(t)) 
O 

- h Z  ( -  1)~<>~ a"[ ~, ,,, ] ( t )~" [(~#,~,)~ ] ( , , (s)) .  
O 

(59) 

All these commutators  reproduce ih times the corresponding classical Poisson 
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a: ~/~ 
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Fig. 11. The results of two hands grasping (b) one at a time, and (c) simultaneously. 
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brackets given in eqs. (28) and (30) of the previous section. Thus the set of the 
operators 7 ~° and 7 ~a form a linear representation of the small 3 -  algebra. 

3.2. THE QUANTIZATION OF THE FULL J ALGEBRA 

In order to represent the full J "  algebra by linear operators on 50 we need to 
generalize our notation on the breaking and rejoining of loops at intersections to the 
case in which the breaking and rejoining happens simultaneously at two or more 
intersections. This is illustrated by fig. 11. In fig. l l a  we have two loops, one with 
two hands and the other without hands. The loops intersect twice, and there is one 
hand at each intersection. In fig. l l b  we draw the result of grasping with the hands 
one at a time (such as in the case of classical Poisson brackets), while fig. l l c  shows 
the result of grasping with the two hands simultaneously. In general we call grasp of 

n hands one at the time the sum of the n grasps of the n hands, this is the sum of 
the 2n terms obtained by breaking and rejoining at one intersection at a time. The 
simultaneous grasp of n hands is the sum of 2" terms obtained by breaking and 
rejoining at all the hands at the same time. 

Given a loop c~ with n hands at the points s l . . .  s,, and a loop fl which intersects 
c~ at each of these points we denote by 

( a #  ...... °/?)(~1...~,} (60) 

the loop obtained by substituting the n intersections with the n alternatives 
( ~ 1 . - -  ~ , ) .  We do not need to specify how the resulting loop is parametrized, since 
the parametrization will not play any role in the future. We do maintain the 
notation, introduced in the previous section, that u'(s) and u(t)  indicate the 
parameters  of the composed loop that correspond to the points a(s)  and fl(t). 

Our notation for loops generalizes in a straightforward way to multiple loops. The 
reader may note that the result of a simultaneous grasp will often be a multiple loop 
even when the two original loops are single loops. 
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We may  now introduce the quantum loop operators with more than one hand. 
We define 

f ....... [ v ] ( s ,  

=- h " E . . .  ....... . . . .  

O~ O,, 

(61) 

where r will be defined in a moment .  In words, the action of  a many  handed loop 

q u a n t u m  opera tor  is proport ional  to the simultaneous grasp of all its hands. That  is, 

it is given by  the sum of all the 2 n possible ways in which one can simultaneously 

substi tute all of  the intersections at which there is a hand  with one of  the two ways 

to jo in  the legs of the two intersecting loops to each other. Note  that the result of 

the grasp is zero unless all the hands of 7 see (~ }. 
The  sign of  each term in eq. (61) is determined by r, which has to do with the 

orientat ions of the two loops. It is defined as follows. Each of  the two original loops 

has (or can be given) an orientation. Each term of the grasp is a (multiple) loop 

made  out of  segments of the original loops, thus each of these segments has an 

orientat ion.  In order to assign an orientation consistently to each of the loops some 

of  the orientat ions of the segments may have to be reversed, r (or more properly 

r ( (~,#  ........ , (~/})~ .... O,,))) is defined as the number  of these segments whose orienta- 

t ions must  be reversed*. 

The  computa t ion  of the commuta tor  algebra of the 7 ~ operators is a tedious but  

s t ra ightforward exercise in combinatorics.  We give here the main idea of  the 

calculation. 
We  must  compute  the difference between acting on a loop functional first with a 

handed  loop c~, with n ,  hands and then with a handed loop fl with n/~ hands, and 

act ing in the opposite order. In the first case the hands of  fl may  grasp both  the 
loop a or the loop functional. In the second case they are the hands of fl which may 

grasp both  a or the loop functionals. All the terms in which both loops grasp only 

the loop functional  cancel among themselves. 
Let  us evaluate the commuta tor  at a loop ~/. Consider the first half of the 

commuta to r ,  which is given by first grasping 7/ with the hands of a and then by 

grasping the resulting functional with the hands of ft. In  the second step we must  

evaluate the action of the hands of fl on terms in which the loop functional is 

evaluated at c~:~. For  each hand there are two possibilities: it may  grasp either a 
segment  of  c ~ , /  which comes from c~ or one which comes from 7/. Thus we can 

express the result of the grasp as the sum of terms which is organized according to 

* In the case of grasps of a single hand we have r((-/# { ~ })~) = I ~ [ ; therefore the previous way to 
keep track of the sign is a particular case of the present one. 
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how many of the hands of fl grasp a and how many grasp ~. As we already said the 
term in which all the hands of fl grasp 7/cancels with analogous term of the second 
half of the commutator.  Let us then consider the case in which all but one of the 
hands of fl grasp ~ and one hand grasps a. The corresponding term is a term in 
which ~ is grasped by all the hands of a and fl, save one of ft. Thus it is equivalent 
to the action, on ~, of the quantum loop operator with n~ + n• - 1 hands obtained 
by grasping a with one of the hands of ft. Thus we have found a first term in the 
commutator :  the commutator  of a 7 ~" and a 7 ~m contains a term of the kind 
~,,+m 1 obtained by grasping one of the loops with one of the hands of the other 

one. Note that this is exactly the same term which is on the r.h.s, of the Poisson 
brackets of the corresponding classical observables, but multiplied by ik, since any 
grasp in the quantum context contains also a multiplication by h. A calculation 

shows also that the ( -  1) ~ rule reproduces the signs which result from the classical 
calculation. 

However, the term proportional to h is only the first term in the quantum 
commutator .  There are also terms of higher order in h. For example, consider the 
case in which two hands of fl grasp a and the others grasp ~. This case produces the 
term of the kind {,,o+"t, 2 obtained by the simultaneous grasp of two hands of fl 
over a. As two hands have acted to yield the operator this term is multiplied by h 2. 
This continues up to the term of the kind h~T~o+"~'-"/' in which all the hands of fl 

grasp a. 
The total commutator  is given by the formula 

[['ff ........ [O~](S 1 .. S.,),  ,Tb .... b " [ ~ ] ( / l ' ' '  Ira)] 

II ( I1 
= p~--~ h') E "'" £ E "'" E (--I)rAakl[~,OL]([kl)'''Aakp[~,OL](t]~'p) 

=1 k j = l  kp=kp-l+l Ok1 O~p 

[( 1 X T  . . . . .  ~*, . .4,p . . . .  ..t,~ . h~ f l ~ s ,  . % a )  

× ( )... , '(s.), ,( t,)... ,(,,,,)) / 

- (a~-~  fl, a ~ b , s ~ t , n ~ m ) .  (62) 

An example is given in fig. 12. We call this algebra the ~Y~ algebra. Note that g has 
the structure (assuming n < m) 

[~,, f - - , , ]=hf ,+m l+h2~,,+m 2+ . . .  +h"T" ,  (63) 
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b 

Fig. 12. Commutator  of a ~2 with a 7 ~3. Compare with fig. 5. 

and that it is related to the classical Poisson algebra J -  by 

lim (1 l ib ) IT  n, ~m] = { T n, Tin). (64) 
h ~ 0  

In other words, g is a deformation of J ' ,  ih being the deformation parameter. 
Thus, the linear operators T form a faithful representation of a deformation of the 
Poisson algebra of the classical T observables. They therefore provide a quantization 
of the phase space of general relativity in which they may be considered to be the 
quantum operators corresponding to the classical T observables [7]. 

3.3. RESTRICTIONS IMPOSED ON THE SPACE OF THE STATES 

The classical loop observables are not independent. There are relations among 
them which follow from their definition in terms of parallel transport. In the 
quantum theory these relations may be realized by imposing suitable restrictions on 
the space of states. 

A first set of these relations follows from the invariance of the holonomy under 
reparametrizations. We may implement these relations in the quantum theory 
simply by demanding that the loop functionals z~¢[(~}] are invariant under 
reparametrizations, i.e. they depend only on the unparametrized multiple loops. It is 
straightforward to verify that all the formulas that we have written are consistent 
with this restriction. 

A second set of relations among the T ' s  are those that are consequences of the 
two-spinor identity (39a). We can realize these relations in the quantum theory by 
imposing directly a corresponding condition on the states. To do this it is helpful to 
realize that although the identity (39a) is a nonlinear condition on the basic loop 
observables it can be realized as linear restriction on states which are functionals of 
multiple loops. We require that, for any pair of loops 7 and ~ and any intersection 
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point involving them, 

115 

,5~'[~:~ . . . .  ] -1- .3~[~ 1:~' O . . . .  ] -- ,5~' ['/ [,_) T] . . . .  ] = 0 ,  (65) 

where .. .  refers to any other loops that may be present in the argument of the loop 
functional. In general, using the × symbol defined in sect. 2, 

[ -] d [ ( ~ , ~ ) ' ] - d [ ( - ~ , 7 )  ><] + ~  (~,~,7) A = 0 .  (66a) 

It is straightforward to demonstrate that on the space of the states that satisfy this 
restriction the loop operators satisfy the spinor identity (39a). 

A final set of restrictions follows from the identities (39) illustrated in fig. 10. 
Referring again to that figure we impose the conditions, 

. ~ [ , , o o o o  ' . . . .  1= .~ [ ,~  . . . .  1. (66b) 

By using eqs. (66a, b) we obtain the counterpart of eqs. (40a, b) for the loop states. 
These are 

J~[O/,/~] =J ;~[O~°po~op -1] -{",5~[O~op o/~ l o p - l ] ,  (67a) 

d[ , : , ]  = ~ [ %  o o, ,~,op -~] - . ~ [ , , 1  o o o , , ; '  o o ] .  (67b) 

We may note that the first of these equations implies that the value of any loop state 
is determined by its value on the single loops. 

3.4. THE DIFFEOMORPHISM CONSTRAINT 

There is a natural action of the diffeomorphism group of ~ on the loop space ,A'. 
For any q~ ~ Diff(N) it is given by 

(~. {v})(s)= {~(v(s))}. (68) 

This action induces a natural linear representation, which we call U, of the 
diffeomorphism group on the space of the loop functionals on ~ ,  by 

u(,)~[(~)] =d [¢ ' .  (,)]. (69) 

If ~f is a one-parameter group of diffeomorphisms generated by the vector field v 
on 22, the generators D(v) of the representation U are given by 

d 
D ( u ) d [ { T / ) ]  --- ~-~U(th,).~[{7/}]I,= 0. (70) 
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The operators D(o) are unbounded and we do not expect them to be defined on 
the entire space 5 °, but only in some "dense" domain. This domain consists 
essentially of the loop functionals which are differentiable in the directions tangent 
to the orbits of the diffeomorphism group in Jg. (Recall that we did not impose any 
general differentiability requirement on the loop functionals.) 

The D(o)'s defined in this way satisfy the algebra of the diffeomorphism group 

[D(v),  D(w)] = D(tv, w]). (71) 

We are interested in the commutation relations of the quantum loop observables 
7 ~ with the D(u) or, equivalently, in the transformation properties of the loop 
observables under the representation U. We use the notation 

1~" f ........ [~,/](SI...SI1 ) ~ U(~)) 'T Q1 ..... [~ l ] (Sl . . .st , )U(~ ' ) .  (72) 

It is straightforward to show that 

, .  = 

The calculation is 

(73) 

O . 7 ~ [ 7 ] ~ [ ~ / ] = U ( q s ) f [ T l U ( o  1 ) d [ ~ / ] = U ( ¢ ) d [ T U ( O . ~ / ) ]  

=d [ (¢ -1 . - , / )  u.~l = 7~[¢-1.-,,,1.~[, 1. (74) 

It is slightly more complicated to show that 

(p.~ ........ [y](Sl...Sn)=j l (y(Sl) ) . . .  J I(T(Sn) ) Ox b, 

Oxbn " , 
(75) 

(see eq. (48)). Eqs. (73) and (75) show that the quantum operators 7 ~ transform 
under the representation U of the diffeomorphism group exactly as the correspond- 
ing classical observables transform under diffeomorphisms. Since the Poisson brack- 
ets of the diffeomorphism constraints generate infinitesimal diffeomorphisms on the 
classical phase space, it follows that the commutator of the D(v) with all the 
observables of the theory reproduces exactly the Poisson brackets of the diffeomor- 
phism constraints with the corresponding classical observables. Thus we can identify 
the D(v) operators with the quantum diffeomorphism constraints, or more pre- 
cisely, with the quantum operator corresponding to the smeared form 

~d3xv~(x)C.(x) (76) 

of the diffeomorphism constraints. 
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3.5. THE HAMILTONIAN CONSTRAINT 

Finally, we come to the definition of the hamiltonian constraint. The hamiltonian 
constraint is, in Ashtekar's formalism, a quadratic expression of the conjugate 
momenta,  6~(x). As such, it cannot be expressed directly as an operator in the 
quantum theory, it must be expressed as the limit of a sequence of regulated 
operators. Therefore, in order to define the hamiltonian constraint in the quantum 
theory additional structure must be introduced to allow us to define a suitable 
regularization procedure. From this point of view the situation is the same as in flat 
space quantum field theories in which a regularization procedure must be intro- 
duced in order to define the hamiltonian. What is different is that we must 
introduce a suitable regularization in the absence of a background metric, in a way 
that does not destroy the diffeomorphism invariance of the theory. 

As we already discussed in the introduction, the classical loop formulation 
provides a natural solution to this problem. In fact, the classical hamiltonian 
constraint is already defined in eqs. (43) and (44), as the limit of the observables 
cga(x). In the quantization introduced earlier in this section, each of these objects is 
represented by a well-defined quantum operator, 

~8(X) = T [ a b ] [ y L ( x ) ] ( 8 2 , 2 r r ) .  (77) 

Thus the loop representation directly gives us a natural definition of a regulated 
quantum hamiltonian constraint. 

According to the discussion contained in the introduction we implement the 
quantum hamiltonian constraint in the form 

lim ~ z ¢ [ { ~ / } ]  = 0. (78) 
6 4 0  

In sect. 5 we will study a class of solutions to this equation. 
Before accepting this definition of the quantum hamiltonian constraint, we must 

discuss its compatibility with the diffeomorphism constraints. Since additional 
structure has been added in order to define the regulated operators ~ ,  what 
conditions should be satisfied regarding the action of the diffeomorphisms on them? 

A non-diffeomorphism invariant structure is necessary to define the regulated 
constraint operator since it is necessary to replace the local observable Cg(x) by an 
extended object, defined in terms of some extended structures on space. This is 
unavoidable since regularization necessarily involves some form of point splitting or 
short distance cutoff. In our construction of the regulated hamiltonian constraint, 
given by eq. (43), we make use of a specific set of loops, which are defined in terms 
of a particular coordinate system. This is the way in which our regularization of the 
hamiltonian constraint breaks the diffeomorphism invariance. 
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Therefore we must assure ourselves that, nevertheless, the space of solutions is 
diffeomorphism invariant. This amounts to showing that to impose the constraint in 
one particular set of coordinates is equivalent to imposing it any other coordinate 
system. This will be true if the regulated hamiltonian constraint is transformed 
linearly into itself under the representation U of the diffeomorphisms group. 

This can be demonstrated in the following way: Let us fix a coordinate system O 
and define ~ ( x )  with respect to it. If we call q~- ~ ( x )  the regulated hamiltonian 
constraint defined in the coordinate system ~O, we need to show is that 

~" ~ 8 ( X )  = U ( ~ - I ) ~ 8 ( x ) U ( d ~ ) .  (79) 

But this relation follows from all the definitions. 
In subsect. 5.3 we shall see that the class of solutions to the regulated hamiltonian 

constraint that we will find is diffeomorphism invariant: the result of applying a 
diffeomorphism to any functional ~ which satisfies eq. (78) is another functional 
which satisfies eq. (78). 

3.6. SMEARING IN THE QUANTUM THEORY 

In subsect. 2.4 we showed that the distributional singularities contained in the 
Poisson algebra of the loop observables may be eliminated by smearing over a space 
of test functions. This may also be done for the quantum algebra. The situation is 
more complicated because the simultaneous grasps produce terms containing prod- 
ucts of delta functions. These are prevented from coinciding by the requirement that 
the loop parameters of the hands must be unequal. To construct a completely 
nonsingular algebra we must be careful to define suitable spaces of congruences and 
test functions in such a way that these simultaneous delta function singularities are 
always completely eliminated by the integrations over the test functions. 

By smearing the ~n operators in the same way as the classical observables, the 
delta distributions in the A-functions only appear inside the corresponding integrals; 
however, an inspection of the integrals shows that if two of the integration regions 
could overlap some degeneracy may appear such that some of the delta distributions 
which result are not compensated by a corresponding integration. 

In order to avoid this problem we have to assume that the integration regions 
corresponding to different hands on the same loop do not overlap. This requirement 
can be satisfied as long as there is an open interval in the loop parameter separating 
each insertion of a ff~ in T n. We defined the quantum loop algebra so that this 
would be the case. 

Intuitively we want to substitute for a loop with n hands a loop which has 
"fat tenings" in n regions, put each hand in a region, and require that the regions do 
not overlap. Each fattening is described by a (two-dimensional) congruence of loops 
and each congruence depends on a different two-dimensional parameter o i. 
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We can obtain this by considering only n-dimensional congruences in which the 
dependence on the ith parameter a, is trivial everywhere except on an interval 3, i of 
the loop parameter.  We require that the intervals do not overlap and that in the 
interval the loop actually spans a congruence as the parameter  varies. 

More precisely we consider mappings ?n from R 2n × S 1 into ~, which we denote 

Yo, .... °(s), with the following characteristics. We call ,/* the interval of S 1 in which 
the dependence from a '  is nontrivial. We assume that each ~,i is connected and 

disconnected from the others ,/J, and that the restriction of ?n to any y~ is injective. 
In terms of these objects it is now easy to define the smeared quantum operators. 

What  we have to do is simply to make sure that any hand 6u(y(s)) stays in its 
interval ,/i. We obtain this by inserting in the definition of the smeared operator an 

universal smooth function R~(Sl... sn) which is defined to be zero unless each s i is 
in the corresponding ,/( Finally the definition of the smeared quantum loop 

observable is 

]r [ ' Y n ] ( f ) =  f d2°1 "'" d=%f ds,...dsnR~(s,...Sn) 

x f ( / l  . ('~/0" l . . . .  n (S1 )  " ' "  "{a I ...... (Sn)) ~a, . . . . .  [~al  . . . .  . ] ( S I . . .  Sn). ( 8 0 )  

Note  that the overlap of two integration regions is still allowed if the two 
fattenings of the loop belong to the two different arms of a self-intersection of the 
loop. An inspection of the commutators shows that this case is safe and introduces 

no additional singularities. 
We leave to the reader as an exercise to compute the commutator  of two of these 

operators and verify that the result is given by a finite dimensional integral over 
smeared operators of the same form. 

4. Transformation theory 

4.1. RELATION BETWEEN THE LOOP REPRESENTATION AND THE SELF-DUAL 
REPRESENTATION: THE BRA SPACE 

In this section we describe the relationship between the loop and the self-dual 

representations. We expect such a relationship to exist because they both form a 
representation of the same linear algebraic structure. We will proceed by looking for 
a linear mapping  ~ ,  defined between the two, that preserves this structure. We will 
find that we can represent this mapping as an integral transform from the state 
space of the self-dual representation to the state space of the loop representation. 

The linear equivalence that we are considering should not be confused with 
unitary equivalence. In general, we may expect that there exist infinitely many 
unitary inequivalent representations of any infinite dimensional algebra of observ- 
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ables. Linear mappings can sometimes be defined between certain kinds of exten- 
sions of the irreducible representation spaces; such mappings typically send a state 
defined in one space to an "infinite norm state" of the other space. In field theory 
the Bogoliubov transformations are examples of such mappings. However, we are 
not concerned here with problems related to unitary equivalence, since we work 
with the general philosophy that the physical Hilbert structure will only be imposed 
on the space of solutions of the constraint equations. Also, we are not concerned in 
this section with giving an exact or rigorous characterization of the function spaces 
involved in the loop representation. These questions are both interesting and 
important, but they are beyond the scope of this paper. Rather, we are more 
interested here in gaining some intuition about the physical meaning of the 
structures that we have built ~. 

Several aspects of the loop representation are clarified by having an explicit 
expression for its relation with the self-dual representation. This is because in the 
self-dual representation the connection with the basic, but noninvariant observables, 
such as the metric, extrinsic curvature and connection is more direct. At the same 
time, the structure of the diffeomorphism invariant states and observables is 
transparent in the loop representation, but very difficult to see in the self-dual 
representation. 

Our philosophy in this section is then to try to understand the two representations 
as two realizations of the same structure, in the spirit of Dirac [23]. This will be 
done by establishing a mapping between the two representations by choosing a 
complete set of commuting operators and identifying its eigenstates, in each 
representation, with each other. 

A maximum set of commuting observables that are well defined in both represen- 
tations is given by the T o observables. We will therefore study the eigenvector 
equation 

r q,, = q,,, (81)  

where i is an index that labels the eigenstates, in each of the representations, and we 
will identify the corresponding '/';'s with each other. 

Before beginning we need to discuss an important point. Because we have no 
inner product in the unconstrained theory, there is no canonical mapping between 
states and linear functionals on the states. We therefore have the possibility of 
identifying the state space of the loop representation with either the state space of 
the self-dual representation, or its dual. It will turn out that the loop space is 
naturally identified with the dual, or bra space, of the self-dual representation. 

We begin by reviewing the self-dual representation and by describing the T 
operators in it, and in its conjugate representation. Then we discuss the eigenvalue 

* W e  a s s u m e  tha t  a topolog ica l  s t ruc tu re  has  been  given to the s ta te  space  of  the se l f -dual  r ep resen ta -  

t ion ,  a n d  m a k e  use of  this s t ruc tu re  in o u r  def in i t ions .  
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equation (81) first in the self-dual representation and then in the loop representa- 
tion. Having the solutions we can define the mapping that identifies the two sets of 
eigenstates. We then discuss how to express this mapping in the form of an integral 
transform, and, finally, we discuss the possibility of using the mapping itself as the 
instrument for defining the loop representation. 

4.2. THE SELF-DUAL REPRESENTATION 

The variable A,(x)  has, when expressed in terms of the traditional variables of 
canonical relativity, the form of a function of the three-metric plus i times a 
function of the conjugate momenta. It is thus a nonlinear analogue of the Bargmann 
coordinate z =q + ip on the complexified phase space of a finite dimensional 
system. This analogy guides the construction of the self-dual representation, which 
is the representation in which the elementary observables chosen for the quantiza- 
tion are the Ashtekar variables A,(x) and 6~(x). The space of the states is defined 
to be the linear space, which we call S, of holomorphic functionals of the connection 
'P[A]. Holomorphic means in this context that 

OA~(x~ - 0 ,  (82) 

where ~" is defined with respect to a fixed hermitian conjugate operation in the spin 
space. To the elementary observables A,(x)  and ~ ( x )  correspond the quantum 
operators defined, respectively, as the multiplicative operator Aa(x ) and the func- 
tional derivative operator 

h 0 
g ° ( x ) e [ A ]  = (83) 

i OA~(x) 

We use a hat to indicate the operators in the self-dual representation and to 
distinguish them from operators in the loop representation, which are indicated by a 
tilde. 

The definition of any other observable in terms of the basic observables requires a 
choice of the factor ordering. We define the quantum operators T which quantize 
the classical observables T in the self-dual representation by requiring that all the 
6~(x)  stand to the right of all the Aa(x ). 

We now come to the definition of the conjugate representation. As we said in the 
previous paragraph, we will not be concerned with mathematical rigour, and assume 
that a topological structure has been assigned to S. The conjugate representation is 
then defined in terms of the dual S* of the states space S, which is the set of 
continuous linear functionals q~: S ~ C. 



122 C. Rovelli, L. Smolin / Quantum general relativity 

On S* a representation of the observables' algebra conjugate to the one on S is 
defined: to any operator 0 on S is associated the operator O* on S* defined by 

O*~(q ' )  -- q~(dq') .  (84) 

This equation defines a representation of the observables on S*. More precisely it is 
an antirepresentation, since 

[ 6 " ,  6 . '1  = ( 6 . 6 "  - 6"6")  

(85) 

4.3. SELF-DUAL REPRESENTATION; COHERENT STATES 

We now study eq. (81) in the self-dual representation. In this section we will use 
the following notation* for the trace of the holonomy of the connection A along a 
loop a 

H[a, AI=Tr(Pexp~A). (861 

Since the operator i?°[a] is diagonal in the self-dual representation 

7~[a] g '[A] = H[a, A]q~[A], (87) 

its eigenstates are "delta-functionals". This is the first point in which the conjugate 
representation turns out to be useful. We consider eq. (81) in the conjugate self-dual 
representation 

T*[od] ~/= C;["]~i" (88) 

This equation has a well-defined meaning and it is straightforward to see that it is 
solved by the delta distributions 8~- which** are defined, for any given connection 
Aa(x ) by 

a~-(q') = ~ [ Y ] .  (89) 

* The notation is a bit redundant, since we have T[a] = H[a, A], but we want to have a notation for 
the holonomy of a connection that distinguishes between cases in which we consider it as an 
observable on the phase space (T[a]) and cases in which it has to be regarded just as a function of 
two variables (H[a ,  A]). 

** In this section the notation A-does not mean the complex conjugate of A. It simply indicates a 
particular connection. We use the notation A-instead of A when the connection is the index that 
labels the different eigenstates. 
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In fact, for any g" in S, 
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=3y(H[a, . ] ' t ' )= H [ a , Y ] g t [ Y ]  = (90) 

Therefore the index i, labeling the independent eigenstates, runs over the space of 
the connections A. The simultaneous eigenvectors of all the T*[c~] operators are 

• y=3y (91) 

and the eigenvalue of T*[a] corresponding to 3y is H[a ,  A]. 
Since H[c~, A] is gauge invariant, the simultaneous eigenspaces of all the T[a]  are 

not one dimensional. The eigenspace corresponding to the eigenvalue H[a ,  A] 
contains all the 8~-'s with A-in the same gauge orbit as A. This is, in fact, the only 
degeneracy, as the self-dual representation is defined to be the space of holomorphic 
functionals of Ao. Thus, any functional in the space must be completely determined 
by its value when the connection is restricted to be in SU(2). However, the H[c~, A] 
uniquely determines an SU(2) connection up to gauge equivalence, so that on the 
space of holomorphic and gauge invariant functionals the simultaneous eigenspaces 
of H [ a ,  A] are one-dimensional. Therefore the simultaneous eigenspaces of all the 
T[e~]'s uniquely define a basis for the space of the gauge invariant states. They can 
be labeled, for instance, by the connections ,~ that satisfy a gauge condition that 
uniquely fixes a gauge. We assume in what follows that such condition has been 
chosen and the A--'s satisfy it. 

These delta functions states have some interesting properties, which are relevant 
for discussing their "physical interpretation"'*. 

Recall that the self-dual representation is a holomorphic representation. The 
multiplicative operator A is therefore a creation operator, as are all the functions of 
A, including the T[a]. In the same sense that Aa(x ) creates elementary excitations 
of the Ashtekar connection which are localized at the point x, the T[c~] create 
excitations of the connection that are localized on the loop a. When we go to the 
conjugate representation these operators (which are not physical and must not be 
thought as self-adjoint, because the Ashtekar connection is complex), become 
destruction operators. The corresponding eigenstates, being eigenstates of a destruc- 
tion operator, are "coherent states"*'*. Therefore they have a corresponding classi- 
cal configuration, which is given by the corresponding eigenvalues. The bra-states 6y 

* N o t e  that ,  as these are uncons t ra ined  states  for q u a n t u m  gravi ty  they cannot  be in te rpre ted  as 
phys ica l  s ta tes  of the gravi ta t iona l  field. However ,  they are physical  s tates  for Y a n g - M i l l s  theory, 
thus the fo l lowing  discuss ion can be unders tood  as giving us some in tu i t ion  as to how loop states  
represen t  gauge  invar ian t  q u a n t u m  states of a connect ion.  

**  Since we are not  in a Hi lber t  space, this no t ion  of coherent  s ta tes  should  not  be taken too literally. 
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are therefore the "coherent states" corresponding to the classical configurations 
Aa(x ) (A has a real part that contains information about the metric and an 
imaginary part that contains information about the momentum). The relation 
between the delta distributions and the bra coherent states is not surprising if we 
recall that one of the properties of the coherent statesin the holomorphic representa- 
tion is exactly to act as delta functions; for instance for a one-dimensional system 
we have, for a coherent state [c), with c = x + i p ,  

(c l+)  = ¢ ( c ) .  (92) 

for all Bargmann states ]~b). 

4.4. LOOP REPRESENTATION; EXPONENTIAL STATES 

Now let us study the eigenvalue equation (81) in the loop representation. It is 
given by 

/~[c~]d,[{~l}] = d , [ a u  {~}]  = c i [~]d, [ {~l} ] .  (93) 

The eigenvector equation (93) is solved by any loop functional sO'[{ ~ }] which has 
the form 

d , , [ { ~ 1 - . - % } ] =  I-[ c[~,]  (94) 
I= l ,n  

for any generic functional of single loops c[~]*. Recall that the loop states are 
functional of multiloops and we are using the notation 

= . . . .  ) .  (95) 

In fact, if d [ { ~ } ]  is given by eq. (94) 

T ° [ ° L ] " ~ [ ( ~ } ]  = ' ~ ' [  O~[J { ~ } ]  = H C[]~i ] = C [ ~ ] d [ { ~ } ] .  (96) 
~11 ~a u {',/} 

Let us pause a moment to consider these loop functionals. They are given, in 
components by 

[{ T~ }] = (1, c[o~], c[o/1] c[o/2],. . .  ).  (97) 

They are thus analogous to the exponential states of a symmetric Fock space. This is 
not surprising, since the exponential states in the Fock theory are the eigenvectors 
of the lowering operator, and ;?0 is in fact a lowering operator in the Fock like 
structure of the loop representation. By appropriating the notation for the Fock 

* Here I labels the different loops in the multiloop (~ }. 
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exponential states we may introduce the notation exp(c) for the functional defined 
in eq. (94), and call the states in the image of exp, exponential states, exp is a 
mapping from the space of the functionals of a single loop to the space of the 
functionals of multiple loops. 

In the standard Fock spaces, as ~b varies in the Hilbert space, the exp(~)'s span 
(or, actually, overspan) the symmetric Fock space. We expect something analogous 
to happen here, if it does, we could actually define the loop space as the linear span 
of the exponential states. 

The situation is however somewhat complicated by the two-spinor condition 

.Sgq'[~-'~] q-J~ [~ .~-1 ]  =,.~y'[T U ~]. (98) 

This is a linear condition on the space of functionals of multiple loops, but it 
becomes a non#near condition on the functionals e[a] of a single loop if we impose 
it on the eigenstates of eq. (93), that is on the exponential states. In other words, 
from eq. (98) and 

~¢= exp(c),  (99) 

the nonlinear condition 

cIv#8] +  [v#8 1] = c[vlcD] (lOO) 
follows. 

Therefore the eigenstates of the 7 ~° are the functionals exp(c), where c satisfies 
the nonlinear condition (100). 

Now in ref. [22] it is shown that every loop functional c[a] that satisfies this 
nonlinear condition, the retracing condition (66b) and a suitable continuity condi- 
tion can be written as the trace of the holonomy of an SL(2, C) connection*. Thus, 
we have 

c[.]  = Y].  (101) 

Therefore we have obtained the result that in the loop representation the simultane- 
ous eigenstates of the T°[a] observables are given by the states 

..~¢~-= exp H [ . ,  A ] (102) 

and the corresponding eigenvalues are H[a, A], which are the same set of eigenval- 
ues found in the self-dual representation. 

Note that, because of the definition of the holonomy of a multiple loop, eq. (102) 
can be written as 

ad~-[{~}] = H [ { ,  , A-], (103) 

* We are not interested here in the continuity condition, since we can always restrict ourselves, for the 
present purposes and at our level of rigour, to the "dense" subset in which such condition holds. 
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H [ ( n } , Y ] -  1-I (104) 
hE(n} 

The holonomies H[ (~ ) ,  ff]  are seen here, for any fixed connection A_ as loop 
functionals. These loop functionals are the eigenvectors of the 7 ~° operators. They 
represent, in the loop representation, the same states that are represented by the 
8~-'s in the conjugate self-dual representation. Thus they represent coherent states. 
Each one of them is characterized by a connection f f  and corresponds to the 
classical gravitational configuration with the three-metric and its conjugate momen- 
tum given by the real and the imaginary part of ~ Since by definition these loop 
states span the loop states space, we have obtained an intuitive picture of the loop 
state space. 

4.5. THE MAPPING ~" 

At this point we can put together the results of the two previous subsections. 
Following the program outlined in the beginning of this section, we can identify the 
eigenvectors of the two representations characterized by the same eigenvalues 

(105) 

We may introduce a linear mapping ~ from S* into the loop functionals space that 
realizes this identification. We define a map 

by 

~ :  (I) ~ ~2' (106) 

~ [ ( T / } ]  =Y((b ) [ (~ /} ]  = ( / ) (H[( 'q) ,  . ] ) .  (107) 

Note that in this equation the holonomy H[(B}, A] is seen, for any multiple loop 
(~/}, as a functional of the connection. • acts on this functional and gives, for any 
( ~/}, a complex number. That is, it gives a loop functional. The mapping ~ defined 
in eq. (107) is linear and continuous. It is straightforward to verify that it realizes 
the identification (105), that is it sends the T o eigenvectors in the conjugate self-dual 
representation to the corresponding eigenvectors in the loop representation. 

Let us now consider how operators transform under the action of ~ .  We will 
define a self-dual operator O and a loop operator 0 to be equivalent if 

y6*  = (aos) 

We now show that the loop observables and constraints are equivalent to the 
corresponding operators in the self-dual representation. That is, ~ is in fact the 
mapping that realizes the identification of the two representations. 
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0 and O are equivalent if, for any c/i, 
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o~(~*~ = 0 o ~ .  (109) 

Using the definitions (84) and (107), this is the condition, 

• ( 6 H [ ~ , .  ]) = 6 ~ ( H [ , ~ , .  ] ) .  (110) 

0 can be brought inside the parentheses, since it acts only on the loop variables, and 
since this equation has to hold for any q~, we have the result that (} and 0 are 
equivalent if 

6 H I { a ) ,  A] = OH[{  a},  A] ,  (111) 

where the first operator acts on the A argument, while the second acts on the loop 
argument. Eq. (111) is the main tool used in the study of the relationship between 
the two representations. 

Note that not all the self-dual operators admit an equivalent. An operator that 
admits an equivalent will be called transferable. In particular the elementary 
operators of the self-dual representation 8 and A do not admit equivalents. 

A class of operators that are transferable are the T" operators. In the self-dual 
representation, we may choose for the it" operators the ordering given by putting all 
the 6* operators on the left of the A. Note that the ir n operators are well defined 
and do not need to be regularized, because we have built into their definition the 
condition that the hands, which correspond, in the self-dual representation, to 
functional derivative operators, cannot coincide. 

It is straightforward to verify that the T" operators satisfy eq. (111). For instance 
consider T O . We have 

A] = A ] H [ ( r ) ,  A] = v A] = 

(112) 

The reader may verify that the same is true for the other T". 
The fact that the J -  algebra is transferable can be used to elucidate some of the 

properties of f t .  First we note that any transferable operator sends the kernel of 
into itself*. In fact, if O is transferable then (} exists such that Y 6 *  = 0o~; if q~ in 
the kernel of ~ ,  we have 0 = 0o~q~ =~- ( ( )*~ ) ;  that is 0 " ~  is also in the kernel of 
o~. Assume now that the space of the self-dual states S is restricted in such a way 
that we have an irreducible representation of the gauge invariant algebra of 
observables. One can always do this without losing the physical content of the 

* One can also demonstrate the vice versa: if an operator sends the kernel of o ~ into itself, then it is 
transferrable. 
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classical limit (indeed, one has to restrict the state space to an irreducible represen- 
tation in order to avoid adding extra degrees of freedom). Then by assumption there 
is no nontrivial invariant subspace under the algebra. Since the kernel of o~ is an 
invariant subspace, it has to be trivial (or the whole space, but this is not the case, 
because the image of o~ is not empty). Therefore we do not "lose" any state going 
from the self-dual representation to the loop representation. Thus, a left inverse 
mapping o ~ -  1 exists on the image of the irreducible sector such that 

f f - l f f =  1. (113) 

The constraints in the self-dual representation are related to the constraints in the 
loop representation by eq. (111), in the same way as the observables T'.  As the 
constraints are the central operators in quantum gravity, it is interesting to study 
how they behave under ~- in more detail. 

The self-dual internal gauge constraint is, because it annihilates the holonomy, 
equivalent to the null operator in loop space. This is because, as we already said, the 
transform f f "p icks  up" only the SU(2)-gauge invariant content of the self-dual 
wave function. Therefore the internal gauge constraint is automatically solved in 
going to the loop representation. 

For the diffeomorphism and the hamiltonian constraints there is an issue related 
to the ordering problem. We choose for the conjugate constraints C* the ordering 
with all the 6* operators on the left of the A operator (this is the ordering in which 
the constraint algebra formally closes [4]). Then Do(x ) is given, in the self-dual 
representation, by 

Do(x ) = TrFob(X ) 3Ab(x)  , (114) 

which is the generator of the diffeomorphisms, and the hamiltonian constraint W(x) 
(in the unregularized form) is given by 

3 3 
~ ( x )  = TrFob(x ) 3Ao(x)  3Ab(X) . (115) 

The loop generator of the diffeomorphisms is the equivalent of the operator 
Do(x ). In fact, as the holonomy of a shifted A is like the holonomy of the same A 
for a loop shifted in the opposite direction, it is straightforward to verify that 

f d3xoaDa(x)H[a, A] = D ( v ) H [ a ,  A], (116) 

where in the left-hand side we have the self-dual operator and in the right-hand side 
the loop operator. 
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Finally, the equivalence of the regulated loop and the regularized self-dual 
hamiltonian operators follows directly from the fact that they are defined in terms 
of the T" operators, which are equivalent in the two representations. 

4.6. I N T E G R A L  REPRESENTATION OF THE T R A N S F O R M  

In this subsection we give a formal integral representation of the mapping o~. 
The definition is formal because we ignore issues related to the exact definition of 
the spaces of functionals on which the integral is defined. 

The idea is to represent a dense subspace in S* by functionals of the connection 
by introducing a generic measure /,[A]. /~ is a technical device with no direct 
physical meaning. We stress the fact that it should not be confused with the measure 
that defines the physical Hilbert structure. In particular we do not require that the 
observables are self-adjoint with respect to the Hilbert structure defined by this 
measure, nor that it is invariant under gauge or coordinate transformations. For 
instance, we can fix a coordinate system on 2: and choose for / ,  a gaussian measure 
formally given by 

d/~ [A] = e -s[a} d [A] ,  (117) 

where S[A] is a quadratic functional of the connection and its derivatives. This is a 
well-defined measure for any choice of such a quadratic functional. We do not need 
to specify it here more precisely because, as we shall see, the essential results are, in 
a sense that will be specified, independent of the choice of this measure. Given #, a 
subspace of S* can be represented by functionals 4)[A]. These are defined by 

4)(7,) = fdt,[A] 7,[A]4)[A]. (118) 

By using this representation of the distributions 4), the transform 5 can be 
written as 

~[{v)]  = f d~[A]H[{v},A]4)[A], (119) 

which is the original formula for the transform o~" given in ref. [16]. 
It should be emphasized that ~ is well defined from the conjugate self-dual 

states to loop states without any measure; the measure is needed only to express the 
conjugate self-dual states in terms of functionals 4)[A], and therefore express ow as 
an integral transform. 

The operators are represented on the 4)[A]'s in the following way. O* is 
represented by the operator O t adjoint to O with respect to the chosen measure #, 
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that is the operator that satisfies 

f dj*[AI~[AI(o'I"[AI)= f d~,[A](O*~[AI)'I'[A]. (120) 

The q~[A] that represents a given • depends, obviously, on the choice of /,. 
Similarly the notion of adjoint depends on the choice of / , .  In particular the adjoint 
of A a is A~ itself and the adjoint of 8 ~ is 

8 8dtz[A]/SA (x) (121) 
at°(x) = aAo(x  + dr[a]  

The second term comes from the derivative of the measure in the integration by 
parts. We assume that the definition of S is such that the boundary term in the 
integration by parts vanishes. If the measure has the form (117) we have 

8 8S[A] (122) 
a*°(x)= aao(x) aao(x)" 

Note  that the multiplicative term added to the (functional) derivative does not 
modify the basic commutation relations. Recall that to add to o ~ ( x ) =  8/SA,(x) 
the functional gradient of any functional of A is exactly the freedom allowed in the 
definition of the fundamental observables. The freedom to redefine the measure is 
therefore related to the freedom to redefine the operator in the conjugate self-dual 
representation by adding a gradient. 

Representations defined by operators in which a different gradient term has been 
added to the functional derivatives define, in general, unitarily inequivalent repre- 
sentations. That is, the corresponding operators are self-adjoint with respect to 
different Hilbert structures, represented on the functional space by inequivalent 
measures, and the functional spaces that represent the states, which are the corre- 
sponding L 2 spaces, are different. Thus, if the transform, and its functional 
representation (119) are to be understood rigorously, it will be necessary to give a 
more precise definition of the spaces of functionals we are working with, and to 
understand the issues of the irreducibility of these spaces as representations of the 
algebra of observables. These questions are important but beyond the scope of this 
paper. 

The integral (119) may be explicitly computed in the linearized theory, where 
there is a natural Poincar6 invariant choice for /,(A). By doing so a complete 
representation of the Fock space of linearized general relativity in terms of loop 
functionals may be obtained [13]. This result gives us confidence in the transform 
and the loop representation. 
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4.7. ALTERNATIVE DEFINITION OF THE LOOP REPRESENTATION 

The formulas of the previous two sections offer an alternative way to define the 
loop representation which does not directly involve any reference to the classical oj- 

algebra. 
Assume that we first quantize the theory in the self-dual representation. We may 

then define the corresponding conjugate representation. Then, by means of the 
transform Y defined in eq. (107), we obtain the states space of the loop representa- 
tion, and, by means of eq. (108), or its simpler equivalent eq. (111), we "bring" 
observables and constraints to the loop space. In this way we construct the loop 
representation as a "transformed form" of the self-dual representation. 

This is analogous to defining the momentum representation of finite dimensional 
quantum mechanics by first defining the coordinate representation and then the 
Fourier transform. The analogy is even stronger if we compare our theory with the 
quantum theory of a free relativistic particle. This is defined by the Kle in-Gordon 
equation, which can be seen as the quantum hamiltonian constraint corresponding 
to the classical constraint p 2  m2= O, which defines the classical dynamics. The 
solutions of the Kle in-Gordon equation are certain exponentials @k(x) = e ik~. It is 
very convenient to "go to the k basis", where k is the label of the exponentials. This 
is obtained by means of the Fourier transform which is an integral transform with 
the exponentials as the integral kernel. The observables are "brought"  to the 
k-representation by constructing their equivalents under the Fourier mapping. 
Equivalent observables are defined as those that have the same action on the 
exponentials. For instance, the momentum operator is given in the two representa- 
tions by, respectively, - i  d / d x  and k, and the relation between the two is given by 

d 
e ikX - k e ikX (123) - i ~ x  - . 

Now, since, in the self-dual representation, a class of solutions of the hamiltonian 
constraint is given by products of traces of the holonomies around certain classes of 
loops, it is natural, by analogy, to try to "go to the loop basis". Following the 
analogy, one can introduce an integral transform, with the holonomy as the integral 
kernel, and use it to define the loop representation and to "bring" the operators to 
the loop space. Note the strict analogy between the form of eq. (119) and the 
Fourier transform and between eqs. (111) and (123). 

This was the way in which the loop representation was originally discovered. The 
T~ operators, for instance, which may seem to be pulled from the air in sect. 3, were 
obtained originally, through eq. (111), by looking for transferable operators. This 
construction of the loop representation is more intuitive, and the introduction of the 
loops is directly motivated by the discovery of the loop solutions of the self-dual 
hamiltonian constraint. On the other hand, the quantization by means of the J -  
algebra is much more direct, and avoids the long path through the self-dual 
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representation and most of the difficulties related to the infinite dimensional 
character of the mapping J~. 

F rom this point of view the loop representation is nothing but a change of basis 
in the state space of the quantum theory: we use a set of states on which the 
hamiltonian constraint acts in a simple way as the new basis elements. This is 
analogous to the change of basis from the functional formulation of a free field 
theory to a Fock basis, or from the SchrSdinger formulation of the hydrogen atom 
to the energy-angular  momentum basis. 

A change of basis may be nontrivial for two reasons. From the mathematical side 
we know that a formal change of basis leads in general to inequivalent structures. 
From the physical side we expect that a new basis which simplifes the dynamics can 
give us new concepts to describe the physics, in the same sense in which the Fock 
basis in the quantized Maxwell field provides us with the concept of photons. 

5. Solutions 

In this section we study the solutions of the quantum constraints in the loop 
representation. 

5.1. D I F F E O M O R P H I S M  INVARIANT STATES A N D  G E N E R A L I Z E D  K N O T  CLASSES 

We begin with the diffeomorphism constraint. We want to find the general 
solution to 

D ( o ) ~ ¢ [ ( ~  }1 = 0 .  (124) 

Since D(v)  is the generator of the action of the diffeomorphism group on the loop 
space Jg, eq. (124) is equivalent to the requirement that the state ~¢[(~}] is 
constant along the orbits of this action. We denote by K((  ~? )) the orbit in which the 
multiple loop ( ~ )  lies. Thus, the general solution to eq. (124) is 

~ [ { ~ } ] = d [ K ( { ~ } ) ] .  (125) 

Let us now study these orbits. 
First of all, as ~ sends a multiple loop composed of n loops into a multiple loop 

composed of the same number of loops, a first characterization of the orbits is given 
by the number of loops. A second diffeomorphism invariant of the loop is the 
number  of intersections. A third is the numbers of points of discontinuity of the 
first derivatives of each loop*. The orbits are thus distinguished by a string of 
integers that codes these characteristics. 

In addition, sets of smooth and nonintersecting loops fall into equivalence classes 
under the diffeomorphism group which are the knot and link classes of the loops. 

The knot classes of Z are the equivalence classes of smooth loops in Z under an 
operation known as ambient isotopy [9]. It is then a standard theorem in knot theory 

* We have already required that the loops be nondegenerate, so there are no points where the tangent 
vectors vanish. 
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that the equivalence classes of smooth loops with respect to diffeomorphisms are the 
same as the equivalence classes under ambient isotopy [9]. 

For the case of multiple smooth nonself-intersecting loops there is, beside the 
knotting of each single loop, the additional phenomenon of the linking of different 
loops, which is also invariant. The orbits of the diffeomorphisms in the space of 
these multiple loops are called the link classes of the manifold. We use the notation 
L for the link classes of the manifold. 

The generalization of knot theory to include also loops with corners is rather 
trivial. The generalization to include intersecting loops (or graphs) is less trivial, and 
has already been considered by some authors [24, 29]. 

In this paper we will call the orbits of the diffeomorphism group on 2: the 
generalized link classes of ~. 

Functionals in the loop representation that depend only on the generalized link 
class of the loops will then be solutions to the diffeomorphism constraints if it is 
true that the condition that the states be constant under the orbits of the diffeomor- 
phisms is compatible with the conditions we imposed on the states space in subsect. 
3.3. 

The first condition on the states is reparametrization invariance. Since the image 
of the loop is transformed by a diffeomorphism in a way that is independent of its 
parametrization it is clear that reparametrizations commute with the action of the 
diffeomorphisms, and therefore that the orbits of the diffeomorphisms are well 
defined on the space of unparametrized loops. 

The second condition is the two-spinor identity (66). The diffeomorphisms 
preserve this condition, because it is a topological relation, expressed by the 
breaking and rejoining at the intersections, and these operations are diffeomor- 
phisms invariant. Therefore the condition is well defined on the orbits K. The third 
condition, the retracing identity (67) is preserved under diffeomorphisms, for the 
same reason. 

The general solution to the diffeomorphism constraint is thus given by functionals 
of the form (125), with K({ ~ }) denoting the generalized link class of ~/in 2J, which, 
in addition, satisfy the two-spinor identity (66a) and the retracing identity (66b). 

It is important to stress the fact that the generalized link classes form a 
denumerable set. The loop space .//g is then, on the one hand, rich enough that a 
complete algebra of quantum observables for general relativity can be defined on it, 
but on the other hand, simple enough that, using it, the complete solution to the 
diffeomorphism constraints can be given in terms of a denumerable basis. 

5.2. SOLUTIONS TO THE HAMILTONIAN CONSTRAINT: FORMAL CALCULATION 

We now show that the regulated hamiltonian constraint has a nontrivial space of 
solutions. In particular, we want to show that if ~e has support only on smooth 
loops, without intersections, then it is in the kernel of the hamiltonian constraint, in 
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1 
lim ~n(x)z~c[a~] = O. (126) 
8--+0 ~'~ 

Thus, we will recover the results of ref. [6], using the loop space representation and 
regularization. 

We denote by ~ '0  the subspace of ~# formed by the multiple loops which are 
nonintersecting and smooth everywhere. We denote by jg~×t the subspace of ~g 
formed by multiloops which are composed by smooth nonintersecting loops a n d / o r  
by eyeglass loops that are related to smooth nonintersecting loops (see subsect. 2.5). 
We will first show that a loop functional that has support on ~gg0 is in the kernel of 
the hamiltonian constraint. These loop functionals do not represent states because 
they cannot satisfy eqs. (66a); however, by suitably extending these functionals to 
jff~xt, we shall obtain states that are in the kernel of the hamiltonian constraint. 

We do the calculation in two steps. First we consider the regularized hamiltonian 
constraint without the smearing described at the end of sect. 3. Using it we obtain 
our result by a formal calculation in which we deal with the A-distributions. Then in 
the next subsection we repeat the same calculation in the context of the completely 
well-defined regularization given by both the 6 regularization of the hamiltonian 
and by the congruence-smearing of the loops. 

We begin with the regularized unsmeared hamiltonian constraint. Its action on 
any loop functional ~¢[( ~/)] gives 

4 
~ ( x ) d [ ( O } ]  = ~ ciAt~[yL(X)](SZ)Abl[y~b(X)](21r)~¢[~i], 

i=1 
(127) 

where */i are four multiloops and c i four finite coefficients, which are given by the 
action of the T 2 ' S  o n  )'aSh(x) o n  T/. 

We now consider separately two cases. In the first case the loop , / is  in ~t'0, in the 
second 77 has corners or intersections so that it is not in ~'0- On -/go it is not 
difficult to show that ~ ( x ) d [ ( , / ) ]  is 0(33). Since a loop in Jr '  0 is smooth, the 
first of the two factors of A may be expanded in the loop parameter around the 
origin. If ,/ has no self-intersections, then the leading term is equal to the second A 
factor and the two cancel by the antisymmetrization in the vector indices. The next 
to leading term is then 0(63 ) so that in the limit we have zero. Note that if the loop 
has a corner, this expansion is not possible, since the ,/ in zl may be discontinuous 
in the region, where we want to expand it. 

Now consider the value of eq. (127) on the loops 7/with intersections or corners. 
One may show that if a has a corner or an intersection, then a#fl also has a corner 
or an intersection for any fl in J/g, since the operation of breaking and joining 
cannot subtract a corner or intersection. 
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Thus we have the following result. If  we apply the hamiltonian operator to a 

functional s¢[{~/}] with support only on J [0 ,  then lims_~0@~(x)d[(~/}] is zero 
both  on J [ 0  and outside it. Thus, it vanishes everywhere in ~ ' .  Thus, we have 
shown that using the loop representation, the hamiltonian constraint may be 
regularized in such a way that it has a nontrivial kernel, and that any loop 
functional with support on J t  0 is in this kernel. As we said, a loop functional ~ '  
that has support  on -/to cannot satisfy eq. (66a) and therefore does not represent a 

state. We will now construct an extension ~¢~xt of the functional d ,  which has 
llext satisfies eq. (66) and is still in the kernel of the hamiltonian support  on ~,~ 0 , 

constraint. Let us call any state that has support on ./g~ xt and satisfies the 
conditions 

 ,x,[ o0o o0-1l = ox,[ o0o  lo0 11, 

~ext[O/1 o O, O72 o p -1 ]  = - - ~ e × t [ a l o  O o a ~ - l o o l  , 

an extended state. Note that the value of any extended state ZZex t on the eyeglass 
loops is uniquely determined by its restriction on ~t '  0, namely by its value on the 
smooth nonintersecting loops. In fact, it follows from the definition and from eqs. 

(66a, b) that 

 ox,[ o0o#op -1] 

~ext[0/1 o p o 0~21 o p]  = -- 1.5~ext[O/] . 

Thus we have one extended state ~'ext with support o n  , / ~ x t  for every state see with 

support  on ~/0- We call ~ex t  the extension (to the eyeglass loops) of d .  It is 
straightforward to show that these extended functionals are still in the kernel of the 
hamiltonian constraint. This follows from the fact that the hamiltonian constraint 
operator  commutes with the conditions that define the extended states, so that, for 
instance 

~ S 3 ~ ' e x t [ 0 / ° 1 0 ° ~ °  p 1] = l ~ 8 ~ e x t [ O ~ , / ~ ]  -~-~0 0 .  

Thus, the extended functionals are states that solve the hamiltonian constraint. 
Therefore, we have the result that for every functional on the space of smooth 
nonintersecting loops we have one solution of the hamiltonian constraint. 

This calculation is, however, formal because the A's in the r.h.s, of the eq. (127) 
are distributions. Thus the action of the unsmeared hamiltonian constraint is not 
well defined unless all of the distributional singularities can be eliminated by 
appropriate  integrations. In subsect. 3.6 we showed that this is the case for all 
elements of the J algebra. However, for concreteness we will, in the next subsec- 
tion, indicate the details of the calculation when the action of the T2 's  in the 
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definition of c~8 have been regularized by integrating over the space of test 
functions, as described in subsect. 3.6. Before this, however, three comments are in 
order. 

(i). There is an analogy with the Fourier transform representation of the 
K le in -Gordon  equation, in which the solutions are given by the wave functions 
with support on the Lorentz hyperboloid. From this point of view J [0  as a subspace 
of ~ is analogous to the Lorentz hyperboloid as a subspace of momentum space. 

(ii). We may expect, from the results of refs. [6] and [25], that the space of 
solutions is larger and includes also some ~q¢[(7/}] which have support on intersec- 
tions, providing that certain restrictions are satisfied. 

(iii). Finally, as is noted in the introduction, the limit 8 --, 0 we have built into the 
construction of the hamiltonian constraint operator is defined by the point wise 
topology in Jg. If we had a Hilbert structure on the space of the unconstrained 
states we could have imposed a stronger requirement using the Hilbert norm. 
However, as we have emphasized, the physical inner product is only available on the 
space of solutions to the constraint, it is thus not available for use here. However, it 
is possible that another, nonphysical inner product could be used to give a stronger 
definition of this limit. We may note that this situation is, to our knowledge, new in 
context of nonperturbative analysis of four-dimensional quantum field theories. 

5.3. SOLUTIONS TO THE H A M I L T O N I A N  CONSTRAINT:  R E G U L A R I Z E D  C A L C U L A T I O N  

In order to demonstrate that the right-hand side of eq. (127) does in fact vanish as 
a distribution, we have to smear the hamiltonian constraint, along the lines de- 
scribed in sect. 3, and verify that the smeared hamiltonian constraint does annihilate 
any states whose support is restricted to smooth, nonself-intersecting loops. 

The first step in doing this is to substitute for the loop y~b(x) a suitable 
two-dimensional congruence -8 (In what follows we will, for ease of notation, "lab 2 . 

drop the ~h and the (x)  wherever they are not important.) 
In order to mimic the definition of the unsmeared loop we choose, for every 8, a 

congruence with the following characteristic. 70~0(s) is given by the loop 78 which is 
in the definition of the unsmeared hamiltonian constraint, y1, that is the first 
fattening of the congruence, is centered at s - - 0  and is contained in the interval 
[ -  ~ 8 ,  ~ 2 t82]. ,/2, that is the second fattening, is centered at s = 8 2  and it is 
contained in the interval [82 - ¼ 82, 82 + 1 82]. Moreover, we assume that the width 

of the fattening is also of the order 82 . 
In terms of this congruence we define the smeared regulated hamiltonian con- 

straint 

c~a= ET[y~ZE~hI(X)](f~b), (128) 
ab 
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where the test function is given in term of a generic smooth scalar function f (x ,  y) 
by 

f~2(x, y) = f ( x ,  y) 8~" 8 a (129) 

Now we show that for every test function f (x ,  y) the result of the action of this 
operator  on any loop functional with support on J / 0  goes pointwise to zero as 8 
goes to zero. 

By applying ~ to a state d [ (  71 }] we get the following integral 

f dsd t f (~(s ) ,~( t ) ) i l Ia(s ) i lb l ( t )R(s , t )~_ ,c id[~i] ,  (130) 
i 

where R(s, t) is zero unless ~(s) and ~/(t) are in the regions of the first and second 
fattening of 7~(x)a h respectively. 

As in the unsmeared calculation we can expand ilb(t) around t = s, 

d 
~b( t ) = ilb( s ) + t~ -~b( t ) l ,= ,  + O( t2 ) .  (131) 

Since nothing depends on the parametrization of 77 we can work for simplicity in 
a parametrization in which the ~/-parameter measures the proper lengths in a 
cartesian metric in the coordinate chart in which the hamiltonian constraint is 
defined. With other parametrizations one would have to add some suitable jacobian 
to the considerations that follow. The function R fixes the domain of integration in 
s and t in two regions of Z which are separate but which become close, when 8 
goes to zero, as 8 3. Thus in the expansion of //b(t) the t in front of the derivative is 
of order 8 3. Thus we can drop this term, and the ones of higher order in t, since we 
are taking the limit of 1 /8  2 times the action of the regulated operator. But to first 
order in t the integral we are considering is zero because of the antisymmetrization. 
This completes our calculation. We have shown that the formal result of the 
previous subsection is true also in the context of a completely well-defined regular- 
ization of the infinities. 

5.4. PHYSICAL STATES 

We now may combine the results of the previous subsections to exhibit some 
physical states of the gravitational field. 

Consider the class of solutions of the hamiltonian constraint given by the 
extended functionals with support on ,g~xt. Note that this class is transformed into 
itself by the diffeomorphism constraint. This result is general: if a loop functional 
d [ {  ~/}] is in the kernel of the hamiltonian constraint, then so is U~d[(  ~ }]. This 
means that the transformation properties of the hamiltonian constraint under 
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diffeomorphisms are correct; that is, the commutator of the hamiltonian constraint 
with the diffeomorphism constraint is proportional to the hamiltonian constraint 
itself. Because of that the hamiltonian constraint is well defined on the orbits K. 

The generalized link classes K which are in ~ 0  are the ones formed by smooth 
nonself-intersecting loops. These are the ordinary link classes L. 

Thus, we have the following result. Let ~¢ be an element of 5 p defined such that, 

z~¢ [( ~)1 = 0 ,  (132) 

unless (~ } is smooth and nonintersecting, and, when it does not vanish, 

ag [{~}]  = a d [ L [ { ~ ) ] ]  (133) 

where k[( '0)] is any ordinary link class of E. Then d [ ( ~ ) ] ,  extended to the 
eyeglass loops, is a physical state of the gravitational field. 

We have one independent state of this kind for every ordinary link class L of E. 
For  instance we can consider a basis in this space formed by states alL[ { 71 }] which 
are defined to be 1 if (~/} is in L and zero otherwise. 

To summarize, we have found a large space of physical states. A basis of this 
space is in one-to-one correspondence with the link classes of 2;. These states may 
be written in closed and explicit form in the loop representation. Furthermore, the 
action on any of these states of any (regularized) operator in the unconstrained 
operator algebra, 3 ,  may be computed explicitly*. We call this space 0 ~,G°phy s. 

~ppOy s forms a sector of the nonperturbative state space of quantum gravity, which 
we call the no intersections sector. 

As we already said, the results of ref. [6] suggest that besides ~pOy s there may be 
other sectors related to loops with intersections that satisfy suitable algebraic 
conditions at the intersections. 

5.5. AN ALTERNATIVE FORM FOR THE HAMILTONIAN CONSTRAINT; 
THE SHIFT OPERATOR 

The reader may be struck by how complicated, and cumbersome, the expression 
of the hamiltonian constraint is in the loop representation, compared to the other 
elements of the formalism. While the formalism for the hamiltonian constraint we 
have been discussing works, in the sense that it can be fully regularized in a way 
that is consistent with diffeomorphism invariance, one would like to know whether 
the hamiltonian constraint might have an expression in the loop representation 
which is more natural. In this section we would like to make a tentative proposal 
concerning this question. We will introduce a simple loop operator which has the 
same action as the regulated hamiltonian constraint, when it is evaluated on loops 

* Of course, if the operator is unphysical its action will take the state out of the physical state space. 
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with corners but with no intersections. Whether or not the definition of this 
operator can be extended in such a way that its action agrees with that of the 
hamiltonian constraint on all loop functionals is presently an open problem. 

However, even if such an extension is not possible, the form of the operator we 
will introduce is rather suggestive, and helps to clarify why the loops with no 
corners and no intersections are singled out by the hamiltonian constraint. Finally, 
the form of this operator, if it can be extended to the general case, suggests the 
existence of an extremely simple structure behind the dynamics of general relativity. 

We start from the self-dual hamiltonian constraint T(x) .  We consider the 

smeared form 

~ ( f )  = f d3xf(x)V(x), (134) 

and we regularize it by point splitting the two functional derivatives. We do this by 
defining a universal regularizing function z,(x, y)  such that 

lim z,(x, y) = ~3(x, y) .  (135) 
c - - * O  

For  instance, we could use 

Then we can write 

where 

z , (x ,  y)  = e -3/2 e -Ix-yl2/' . (136) 

( ~ ( f )  = lira cg , ( f ) ,  (137) 
c ---') 0 

(d , ( f )  = f d 3 x d 3 y f ( x ) z , ( x ,  y )Tr  F . b ( X ) - ~ - ~ x  ) 8Ab(y ) . (138) 

We then use eq. (111) to find the loop equivalent of cg,(f). By computing its 
action on the holonomy we get 

~ , ( f ) H  [y, A] = f ds f d t f ( y ( s ) ) z , ( y ( s ) ,  y ( t ) ) $ " ( s ) ~ ° ( t )  

XF~b(Y(s))ekiJTr[U(t ,  s )* 'U(s ,  t )TJ] . (139) 

Here ~i are the Pauli matrices multiplied by - 1. ~t. Using 

eiyk.ryA~kC D = t.r i DOBo c - i¢icBSf (140) 
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c~ ( f )H[3" ,A]  

= if dt f dsf(3 ' (s))z , (3"(s) ,  3 ' ( t ))~a(s)~b(t)  

x [Tr U(t, s)Tr(Fob(3"(s))U(s, t)) - Tr U(s, t) Tr(Gb(3'(s))U(t, s))]. 

(141) 

We are interested in the limit of this formula for small c. There are two 
possibilities for a nonvanishing integral. Either x is on 3' and is not an intersection 
point  for 3'. Or the point x is an intersection point for the loop 3'. In the first case, 
for small enough , ,  s and t have to be close. In the second case 3'(s) and 3 ' (0 may 
coincide even if s is different than t. 

Let us forget for the moment  the possibility that there is an intersection, and 
assume that s and t are close. Without loss of generality, we may assume that s > t. 

Then for small c it follows that U(t, s) = identity and U(s, t) = U(s). Then the first 
term in the brackets is zero, because the trace of the r contained in F vanishes. In 
the second term the first trace is the trace of the identity, that is 2, and we obtain 

c~ , ( f )H[3 ' ,A]  = 2if dt f ds f (3 ' ( s ) )z , (3 ' ( s ) ,  3"(t))~"(t)~lb(s) 

xTr (  F,,b(3'(s)lU(s, s + 1)) + O ( , 2 / .  

Now we note that 

(1421 

3 
f ds~3( x, 3 ' ( s ) ) f ° ( s ) ~ H [ a , A ]  

= f d s 3 3 ( x , y ( s ) ) f ~ ( s ) ~ ( s ) T r ( F ~ b ( y ( s ) ) U ( s , s ) ) .  (143) 

where 3/33 '~(s)  is the loop derivative, which is discussed, for example, in refs. [12] 
and [17]. Therefore we have the result 

~ , ( f ) H t Y ,  AI = ~ , ( / ) H [ 7 ,  A] ,  (1441 
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where 

3 
= 2if ds f d,I(y(,))z,(y(s), y ( t ) ) ~ ( t )  3y~(s) (145) 

is an operator  that acts only on the loop variable. Thus, acting on a restricted 
domain of loop functionals which vanish on intersecting curves, eq. (145) is, up to 
terms of O(c) the transform of the regularized hamiltonian constraint. Thus, on this 

restricted space of functionals, it may be considered to be a form of the regularized 
hamil tonian constraint. 

The case in which the transform is evaluated on sets of loops which intersect is 
more complicated, and we do not have, at the present time, a complete analysis of 

this case. It  does seem possible that an extension of (145) in which the action of 

~ , ( f )  is supplemented by combinatorial operators which rearrange the legs at the 
intersections will work in the general case. 

In spite of the fact that (145) is the transform of the hamiltonian constraint only 
on a restricted space of loop functionals, it has some extremely interesting proper- 
ties, which we would like to describe here. 

The operator  @,(f) is divergent as 1/~ in the limit ~ ~ 0. The simplest way to 
renormalize it is to introduce a multiplicative renormalization and multiply it by c. 
The operator  

, ~ , ( f )  (146) 

is well defined in the limit. Note that by multiplying the function z,(x,  y )  by ~ we 

essentially obtain a one-dimensional delta function instead of a three-dimensional 
one. Thus, by renormalizing the operator in this way we are changing the operator 

f rom a density in the three-dimensional space to a density in the one-dimensional 
space of the loop parameter. The latter is well defined in the loop representation, 
however, we may have trouble with the commutator  of the diffeomorphism con- 
straint with the renormalized operator. (As (145) is the transform of the regulated 
hamil tonian constraint, it still should behave suitably under spatial diffeomor- 
phisms. It is only the action of taking the limit above, that may be problematical*.) 

We proceed to take the limit c ~ O. In the limit one of two integrations can be 
performed and we get the renormalized hamiltonian constraint 

5 ° ( f )  = l im,C~,(f )  = f d s f ( ' / ( s ) ) ~ ( s )  3 
c ~ 0  

(147) 

* We may note that this form of renormalization of the hamiltonian constraint is only possible in the 
loop representation, where operators may depend explicitly on loops. A similar renormalization 
would not be possible, for example, in the self-dual representation, as it is improper to allow the 
regularization procedure which renders an operator meaningful to depend on the state that it is 
acting on. 
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Let us now compute the commutator  of the regularized hamiltonian constraints. 
We have 

¢,(g)] 
8 

= f ds dtdudwf(3"(s))z,(3"(s), y(t))'~"(s) 63,~(t ) 

8 
×g(y(u))z'(T(u)'3"(w))"fh(u) 83'b(w) ( f ~ g )  

= f ds dt du dw If( 3'(s)) 8~ g( 3'(u)) 8 ( / -  u) j'~(s) z, (T(s), 3'(t)) z, ( 3'(u), 3'(w)) 

+ f( 3'( s)) g( y( u))z,( 3"( s), 3"( t) )z,( 3"( u), 3'( w) ):f"( s)~-- w 8( t -  w) 82 

8 

= f dsdudw( f(  3"( s) ) O,,g( 3'( u)) -(g(3"(s)) 8,ff( 3"( u) ) ) 

8 
83" (w) • 

(148) 

If  we now take the c ~ 0 limit we obtain 

8 
f ds[ f ( 'Y(s) lO, ,g( '~(s l l -  (g(y(s)lOj( 'Y(s)l]9'~(sl '~h(s)  8.~b(s) , (149) 

which is the regularized loop form of the observable 

fd3x[f(x) Oag(x) -g(x) Oj(X)]8~(x )Sb(x )Db(x ) ,  (150) 

which is on the right-hand side of the classical commutator.  
We may note that this result depends on our taking the commutator  of the 

regularized constraints before we take the limit ~ ~ 0. If  we had taken the limit first, 
and thus taken the commutator  of the renormalized operators (147), we would not 
have gotten the right answer. 

A similar situation holds concerning the commutator  of the diffeomorphism 
constraints with our new form of the hamiltonian constraint. An explicit calculation 
shows that diffeomorphism constraints generate, acting on the regulated operator 
~ , ( f ) ,  the following action of the diffeomorphism group. The function f(x)zc(x, y) 
t ransforms as a scalar in x and y. This is correct, as f (x )  should be a density of 
weight - 1 because z,(x, y), which goes in the limit c ~ 0, to a three-dimensional 
delta-function, must, for consistency, be a density of weight 1. 
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Thus, the commutator of the regularized hamiltonian constraints, eq. (145), with 
themselves and with the diffeomorphism constraints are correct. However, once one 
takes the limit e ~ 0 the renormalized form of the constraint, (147) has incorrect 
commutators with itself and with the diffeomorphism constraints. 

Finally, we may study the action of the renormalized operator 5". We recall that 
in this discussion we are disregarding the intersections, thus we will evaluate its 
action only on nonintersecting loops. Note that we can write 

where 

1 
5Pz~¢[{~}] = lim ( ~ [ { % } ] - ~ ¢ [ { B } ] ) ,  

h ~ O h  

ng(s) 

(151) 

(152) 

If ~ is everywhere differentiable, 

n ° ( s )  + = + h ) .  (153) 

If, on the contrary, ~ ( s )  is nondifferentiable at s, that is there is a "corner", then 
eq. (153) is not true. In order to get a feeling of the action of 5" it is helpful to 
consider its action on the functionals of generic loops 77 that can be closed or open. 
Then we can say in general that ~h is the loop obtained by "shifting" 71 along its 
tangent. If ~ is closed and differentiable, this action is just a reparametrization, if it 
is open it is just shifted ahead towards one of the ends, and if there is a corner, 71 is 
broken in the point of the corner. 5 # is therefore the operator that generates this 
shift. We call it the shift operator (see fig. 13). Since the state functions are 
reparametrization invariant loop functionals we have that for any differentiable 
loop ~/, with no intersections, 

5C~¢ [ { ~ } ] = 0 .  (154) 

Fig. 13. The action of the shift operator. 
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Therefore we immediately have the result that the states that have support only on 
differentiable nonself-interesting loops are in the kernel of the hamiltonian operator. 

The shift operator is a very natural operator on the loop space. Both the 
diffeomorphisms and the shift operator are first order operators, and, more pre- 
cisely, are Lie derivatives on the loop manifold [31]. Recall that to any vector field 
V[3,]a(s) is associated the Lie derivative operator 

8 
 ev= fds v[vl°(s)  va(s). (155) 

The diffeomorphism constraint is the Lie derivative corresponding to the vector 
fields 

~ [ y l ~ ( s )  = f ~ ( y ( s ) )  (156) 

and the shift operator is the Lie derivative of the vector field 

Vf[~]a(s) = f ( y ( S ) ) ' ~ a ( S ) .  (157) 

The regularized hamiltonian operator is also a Lie derivative. It corresponds to the 
vector field 

Vi . , [v la (s )  = f dtf('/(t))'~(t)z,(~'(t), V(s)). (158) 

Thus, we may summarize the results of this section by saying that, at least on the 
restricted set of loop functionals which have support only on nonintersecting loops, 
the transform takes an operator which is a second order functional differential 
operator in the self-dual representation to an operator which is a first order 
functional differential operator in the loop representation. To compute this trans- 
form correctly, the operator in the self-dual representation must first be regularized 
by splitting the points at which the functional derivatives, 6/~Aa(x ) act. After the 
transform we have a first order functional differential operator; however, it is still 
regulated, by means of a smearing of the vector field on loop space on which it 
depends to an expression which is nonlocal in terms of the loop parameter. 

In the self-dual representation we do not know of a simple way to understand the 
action of the regularized hamiltonian constraint in the limit in which the regulariza- 
tion is removed. However, in the loop representation, at least in the restricted class 
of functionals we have considered, the action of the hamiltonian constraint does 
have a simple meaning when the regularization is removed. It is, up to an infinite 
multiplicative renormalization, proportional to a simple geometrical operator. 

These remarks are very incomplete. It certainly seems that the simple structure 
revealed by the appearance of the shift operator deserves to be better understood. In 
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particular we find it very striking that the action of the hamiltonian constraint can 
be coded (up to the action on the intersections) in an extremely natural operator like 
the shift operator. If an extension of the shift operator can be invented that, acting 
on a general state in the loop representation, reproduces the action of the regular- 
ized hamiltonian constraint, this extension would have to contain, through the 
transform, the dynamical content of the Einstein equations. It is thus possible that 
the full complexity of the Einstein equations may be coded in the simple action of 
shifting the loops along themselves. 

5.6. STRUCTURE OF THE PHYSICAL STATES SPACE ~p°y s AND EXAMPLES 

The sector of the physical states space 5Pp°ys that we have discovered inherits 
from knot theory a rich structure. We close this section with a few general remarks 
about the structure of this sector of the solution space. 

First of all 5rp°y s has the same Fock-like structure as the full 5 z. That is, there is 
a quantum number that counts the number of loops that can be used to give the 
physical state space a graded, or Fock-like structure. The zero level of this structure 
is formed by a single state. It is possible to show, under some symmetry assumption 
on the measure in the transform ~ ,  that this level zero state is related to the 
constant state in the self-dual representation. The fact that the constant functional 
is a solution to all the constraints in the self-dual representation was already noted 
in ref. [6], where it was called, with some trepidation, the "vacuum state". 

The expression vacuum should not be taken literally. It is not the state of 
minimum energy, since the theory has no preferred time, and therefore no natural 
notion of energy. It is also not an invariant state under rigid motions, since there is 
not any group of rigid motions in the theory, and there is no reason to believe that 
this state is associated with any flat metric with respect to which a rigid invariance 
group could be defined. It is also not clearly characterized by a notion of spatial 
homogeneity, since it is difficult to express this notion in the presence of the 
three-dimensional diffeomorphisms invariance, which is a property of all physical 
states. It may however be characterized as the physical state of minimal complexity 
in the loop representation. 

The nth level of the Fock-like structure is then given by linear combinations of 
knots formed by n loops. Within each level the knots may still be ordered in terms 
of growing complexity. For instance the simplest one loop knot is the unknot. The 
complexity of a knot can be defined in several ways, one way involves the 
expression of the knot in terms of operations of the braid group, another involves 
the reduced, two-dimensional knot diagrams [9]. 

It is interesting to note that there is a natural implementation of chirality in knot 
theory. The simplest single loop knot after the unknot is the so-called trefoil knot, 
represented in fig. 14. It exists in two inequivalent versions; the right-handed and 
the left-handed one [9]. 
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Fig. 14. Right and left trefoil knots. 

As an example of a state in ~.~pOy s which is not diagonal in the number of loops 
quantum number, consider any ordinary link invariant ~ [9, 26], and extend it to ~ /  
by assigning the value 0 at any loop not in M( 0. Then 

(159) 

extended to the eyeglass loops, is a physical state of quantum gravity. 
These states are particularly interesting for two reasons. First because the link 

polynomials are the principal tools used in attempts to construct a complete 
classifications of knots and links. If a, presumably denumerably infinite, set of link 
polynomials is discovered which classifies the links completely they could be used to 
define a useful complete basis for the no intersection sector of the physical state 
space. A second reason for interest in such states is the recent mathematical results 
that associate classes of link polynomials with conformal quantum field theory and 
integrable statistical mechanical models in two dimensions [26]. These results, 
together with the results of this section yield an unexpected connection between two 
dimensional physics and quantum gravity, as any system which yields a link 
invariant may be associated with an exact, nonperturbative, physical state of the 
gravitational field. It is tempting to speculate that this result is more than acciden- 
tal. For example, one might conjecture that it is an indication of a connection 
between string theory and quantum general relativity at the nonperturbative level. 

6. Conclusions and reflections 

The results described in this paper were obtained without any physical input or 
hypothesis besides those contained in the basic principles of general relativity and 
quantum mechanics. The developments that made these results possibles are primar- 
ily formal: Ashtekar's reformulation of general relativity, Isham's studies on the 
possibility and opportunity of quantizing noncanonical algebras of observables, 
and, on the mathematical side, the development of knot theory. 

The present formulation of the loop representation is not yet a complete theory of 
quantum gravity. Two basic elements are still missing for the definition of a 
complete theory. These are the definition of the physical scalar product and the 
definition of a class of physical observables. We begin these remarks with a 
discussion of these two issues. 

Let us recall that the identification of physical observables is an unsolved 
problem already in classical general relativity. This is not surprising, since in the 
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canonical framework the entire dynamics is contained in the constraints, so that the 
problem of finding classical observables that commute with the constraints is in fact 
closely related to the problem of finding the general solution to the equations of 
motion. The inadequacy of our understanding of pure general relativity and of its 
physical observables cannot be over stressed. 

At the same time, we do know operators which are defined over the space of 
physical states that we have found. The "number  of loops", "self-linking number", 
and so on, are all quantum numbers which define operators diagonal in the loop 
representation. But we are not able to express these operators in terms of the 
elementary operators. We therefore lose the connection with the physical interpreta- 
tion of the theory, which is given by the fact that the elementary operators are 
related to classical observables to which operational procedures are attached. 

At the present time we do not know the solution to this difficulty. Possible 
directions in which one might be sought are the following: 

(i). Study the algebra of operators which are naturally defined on the physical 
states, and try to deduce from it directly a physical interpretation. This would be a 
departure from the textbook quantization procedure we have followed up to now. 

(ii). Study the algebra of physical observables in terms of some suitable expan- 
sion. The strong coupling expansion is probably the most natural one in this context 
[27, 28]. Since we have exact solutions for the states, but do not know the observ- 
ables, we have to expand the observables. One could start by defining observables 
that commute with the constraints only up to a certain order in the expansion 
parameter*.  

(iii). Extend the formalism to the asymptotically flat case. This would provide us 
with an explicit algebra of known physical observables, such as energy and momen- 
tum, defined at spatial infinity. 

(iv). Add matter. The presence of matter partially simplifies the issues concerned 
with the physical observables. To understand why matter could help, note that it is, 
in principle, possible to characterize a physical observable and to fix its operational 
definition even without having its explicit value as a function in the phase space. 
Now in pure general relativity, in the absence of matter, to do even this is extremely 
difficult. In the presence of matter, on the contrary, it is not difficult to opera- 
tionally define physical observables. For instance, if we have a stone with a clock on 
it coupled to general relativity, then the value of the Ricci scalar where the stone is 
and at a fixed clock time is a well-defined diffeomorphism invariant observable, 
even if we do not know its explicit expression as a function on the space of the 
initial data. The addition of matter will certainly be a necessary step for the 
development of the loop representation. 

* G l o b a l  observables of this kind may be found in general relativity, for instance P =  fzq,,bfi "h 
commutes  with all the constraints up to terms of the order O(1/G) .  
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(v). Finally it is possible that if the general solution to the Einstein equations for 
a spatially compact universe were known, one could express the space of parameters 
of these solutions in terms of topological quantities that have to do with the linking 
and knotting of some natural set of curves in the three-manifolds. This would 
directly provide the physical basis for the topological observables suggested by the 
present work. 

The problem of the scalar product is closely related to the problem of the physical 
observables, since the main condition that we must impose on the physical Hilbert 
structure is that real physical observables should be represented by self-adjoint 
operators. 

Note  that the link classes form a countable set. Therefore the problem of fixing 
the Hilbert structure may be simplified by the fact that we have a discrete basis. 
This problem is then, perhaps, less burdened than one might at first think by 
subtleties concerning functional measures, allowing the problem to be formulated 
more directly in physical terms. For example, one could assume that the knot classes 
form a natural basis in the physical Hilbert space, and postulate that this basis is 
orthonormal.  This would directly fix the Hilbert structure. The consequences of this 
hypothesis have not yet been studied. 

Besides these basic open problems a number of points concerning the structures 
described remain unclear. Among these are: 

(a). The question of the existence of other sectors of physical states. We have 
reasons to suspect the existence of additional sectors involving intersecting loops. 
These can very likely be studied by extending directly the methods developed in this 
paper. 

(b). The exact definition of the space state, including the complete characteriza- 
tion of the functionals ~¢[{~}] is still an open problem. This is related to the 
question of the reducibility or irreducibility of the representation of the algebra of 
observables that we have defined. In this context it would be useful to understand 
whether or not the T °, T a observables by themselves are enough to describe the 
phase space of general relativity, as we discussed in sect. 2. 

(c). The commutator algebra of the constraints has to be studied more thor- 
oughly. The existence of a well-defined set of solutions to the full set of constraints 
assures us that there are no anomalies proportional to the identity operator, but 
there remains, at the present time, the possibility that terms appear in the commuta- 
tor of two hamiltonian constraints which are of higher order in h, and are 
proportional to operators that have the property of annihilating the space of 
solutions of the hamiltonian constraint. 

(d). The shift form of the hamiltonian operator is very suggestive, but still not 
really understood. It could, perhaps, simplify the study of the physical sectors 
involving intersecting loops. 

(e). We would like to understand more deeply the appearance of the link 
classes upon application of the diffeomorphism constraints. It is tempting to con- 
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jecture that this has something to do with the representation theory of the three- 
dimensional diffeomorphism group. Indeed, one may conjecture that there is an 
irreducible representation of the diffeomorphism group of a three-manifold 2: 
associated with each of its knot and link classes [29]. These would be constructed by 
defining a suitable linear function space over the configuration space of the curves 
in each class, the diffeomorphisms having a natural linear action on such spaces. 
Unfortunately,  at present very little is known about the representation theory of the 
diffeomorphism groups of three-dimensional manifolds. But there are some results 
which are very suggestive in this regard [30]. 

This brings us to our final remarks. The reader who has followed us up until this 
point is undoubtedly ruminating over the following issue: how is it possible to find a 
large class of exact solutions to the dynamical equations of a quantum theory when 
comparably few exact solutions to the classical theory are known? While we have 
nothing definitive to say about this, we think the following considerations are 
relevant. 

First of all, it must be stressed that we have so far only one sector of the physical 
state space. While this sector is infinite dimensional, and intricately structured, it 
may still correspond to only a small, or degenerate, set of the full set of solutions. 

But even if we are able to construct the full space of physical states, the physical 
observables are still missing. In this sense the dynamics of the quantum theory is 
contained in the constraints twice. Only the first of these two problems is signifi- 
cantly addressed by the results we have described. It could be that the difficult 
problems of quantum gravity, from the present point of view, are concerned with 
the construction of the physical observables and the physical Hilbert structure. In 
particular, while it is possible that the divergences found in perturbative approaches 
are completely tamed in a nonperturbative approach such as our's, it is also possible 
that they are lurking ahead in the problems of the physical observables and Hilbert 
structure*. 

The problem lies in finding physical operators to which we can give a physical 
interpretation. In turn, this problem reflects, as we stressed above, our very poor 
understanding of the classical observables of general relativity. Thus, we may be 
faced with an ironic situation in which the problem of giving a physical interpreta- 
tion to the operator algebra which results from a completely nonperturbative 
quantization of general relativity rests, ultimately, on our gaining a deeper under- 
standing of the classical theory. 

From an optimistic point of view, it is possible that the dynamics of general 
relativity is based on a simple and elegant mathematical structure that is still largely 
uncomprehended, and that this simplicity becomes more apparent in the quantum 

* However, note that all of the dangerous operator products in the dynamics are contained in the 
hamil tonian constraint. The hamiltonian, when it exists, is, besides the constraints, only a surface 
term linear in the basic observables [4]. Thus, no divergences are lurking there! 
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theory (certainly, the existence of the Ashtekar formalism, as well as the results of 
Penrose, Newman and others concerning self-dual solutions that, partially, inspired 
it, are very suggestive in this regard). This would suggest that new concepts are 
needed to describe what quantum general relativity has to say concerning the 
structure of space-time at the Planck length. The classification of physical states in 
terms of knot and link invariants may represent a first step in this direction. 

At the very least the results we have described show that nonperturbative 
quantum general relativity has a rich and nontrivial structure and that it is possible 
to develop techniques and concepts to explore this structure. 

Note added 

After the submission of this work two interesting papers by E. Witten appeared 
which bear on the work described here. In the first [32], Witten shows that, in the 
language used here, the loop transform of exp(ibfzY(A)), where Y(A) is the 
Chern-Simons form of an SU(2) connection, is equal to the Jones polynomial [26], 
which is an important invariant of links. (In this connection, see also ref. [33].) In 
Witten's paper a relationship between Chern-Simons theories and rational confor- 
mal field theories is introduced, so that it has been conjectured [34] that to every 
rational conformal field theory is associated a Chern-Simons theory. This strength- 
ens the conjecture we made in sect. 5 and in ref. [2] that a large class of conformal 
field theories will be associated with quantum states of 3 + 1 quantum gravity, by 
means of their association with link invariants. In Witten's second paper [35], 2 + 1 
dimensional general relativity is quantized by expressing it as a Chern-Simons 
theory. Witten's formulation of 2 + 1 dimensional general relativity is, as is de- 
scribed in ref. [36], the analogue of Ashtekar's formulation of 3 + 1 dimensional 
general relativity. 2 + 1 dimension general relativity can also be quantized in the 
loop representation, thus providing an example that illuminates many of the results 
described here [37]. Finally, another application of the methods described here is to 
the quantization of the Gowdy models [38], which are reductions of general 
relativity to a 1 + 1 dimensional field theory by the imposition of two spacelike 
Killing fields. 
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