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1 Introduction

Interfacial tensions play a key role in surface phenomena and, up to our

knowledge, no theory leads to a good prediction of the behaviour of these

quantities in terms of atomic interactions.

Several approaches have been so far developed : the radial theory in which

the interfacial tension is expressed in terms of the distribution function [1],

the lattice approach in which the interfacial tension is expressed in terms

of ratios of partition functions [2], phenomenological and mean field mod-

els supported by numerical simulations [3, 4] and numerous numerical and

experimental data [5] are also available.

Among this interesting problem, not only for theoretical purpose, one

of the open problem is to predict the surface tension for a binary mixture

combining two types of liquid-vapour and/or liquid-liquid interfaces A/C and

B/C as schematically reproduced in Fig. 1.

INSERT HERE FIGURE 1

For immiscible fluids, some approximate formulae have been derived using

thermodynamics and statistical mechanics [6] leading to relations between

the liquid-liquid interfacial tension and the liquid-vapour surface tension.

Among them, we should quote for convenience the empirical Antonov’s rule

[7]

γA/B = |γA − γB| (1)

between the interfacial tension γA/B and the surface tensions γA, γB with their

common vapour; and the classical formula based on the geometric average

[8]
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γA/B = γA + γB − 2K
√

γAγB (2)

between the interfacial tension and the pure liquid surface tensions, where

K is a constant depending on the nature of the system.

For miscible liquids, say A and B, the problem is to discuss how the

interfacial tension γAB/C will depend on the composition of A or B in the

bulk in contact with C. Using thermodynamical considerations for perfect

solutions, several equations corresponding to this type of mixture have been

derived in the literature [9, 10, 11]. For molecules of similar size, it is for

instance known that

e−βaγAB/C = c.e−βaγA/C + (1 − c).e−βaγB/C (3)

where the γ’s denote the interfacial tensions, c is the fixed molar fraction of

A in the AB mixture and a is the mean surface area per molecule. Another

well known formula can be obtained whenever γA/C and γB/C are sufficiently

close to each other [11]

γAB/C = c.γA/C + (1 − c).γB/C (4)

For non-ideal solutions, we still refer to the Guggenheim’s formula based

on a quasi-crystalline model [10] and to the Defay, Prigogine and co-workers

development [11] which is also based on a lattice approximation.

The Guggenheim’s result, which assumes that the interface is composed

by a single layer, is given by:

e−βaγAB/C = c.e−βaγA/Ceβmω(1−c)2 + (1 − c).e−βaγB/Ceβmωc2 , (5)
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where m is a constant depending on the lattice structure and ω is the

Guggenheim interaction energy describing the interaction energy between

the molecules of two different types A and B.

The Defay,Prigogine and co-workers’ formula [11], which is derived for a

monolayer model, can be written as:

γAB/C = γA/C + RT log
xm

1

xl
1

+ αl[(xm
2 )2 − (xl

2)
2] − αm(xl

2)
2 (6)

= γB/C + RT log
xm

2

xl
2

+ αl[(xm
1 )2 − (xl

1)
2] − αm(xl

1)
2 (7)

This model describes a liquid like a stack of molecule planes. Each molecule

is situated in a plane parallel to the liquid surface and surrounded by z neigh-

bours of which lz are in the same plane and mz in each of the adjacent planes,

with l + 2m = 1. The interface with C is viewed as one layer of molecules,

each of which has (l + m)z nearest neighbours. The variables x1 and x2 de-

note the mole fractions of liquid 1 (A) and 2 (B) respectively (the notation l

and m are indexes for quantities corresponding to the liquid phase and to the

surface phase regarded as a monolayer resp.). Recalling that these equations

were first derived by Schuchowitsky [12] and by Guggenheim [10], we can ob-

tain the equation (5) from (7) knowing that: ω/z = α/z = N [ǫ12 − ǫ11+ǫ22
2

],

where z is the number of nearest neighbours, N the Avogadro’s number, α

and ω are the excess of potential energy of an AB pair of neighbours in com-

parison with the mean of the energies of a AA and a BB pair, and replace

xm
1 by xl

1 in the α-terms assumed to be small.

More than one layer cases have been considered in the literature, from

two layers [13] to the multilayer models [14] where it has been shown that,

as the number of transition layers between the surface and solution tends to
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infinity, the model becomes perfectly consistent with the Gibbs adsorption

equation.

This monolayer model, even though being a first approximation, leads

however to some good comparison with experimental data.

These approaches consider nevertheless a flat and very rigid interface be-

tween the two media A and C. The validity of this kind of approximation

is obviously questionable at a microscopic scale and could be important for

long chain molecules such as polymers for which the entropy of configuration

can be very large. The purpose of this paper is to reconsider this problem of

binary mixtures within a microscopic model where the interfaces can fluctu-

ate, as represented in Fig. 2, and where exact expressions can be derived for

γAB/C even for interacting molecules A and B.

INSERT HERE FIGURE 2

This kind of results complements thus other approaches based on ther-

modynamical hypothesis about the behaviour of the local density and on

microscopic simulations [4].

This category of models where it is possible to compute exactly the inter-

facial tensions for mixtures is the disordered generalization of the so-called

Solid-On-Solid (SOS) models.

In Section 2, we give a simple microscopic derivation of the formulae for

the interfacial tension of mixtures (4) and (5) within Solid-On-Solid models.

This allows us to calculate explicitly interfacial tensions and to apply our

method to perfect, ideal or dilute solutions in the sense of Guggenheim [10].

Let us also mention that this approach can easily be extended to the coexis-

tence of more than two different liquids. More general cases for interacting
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molecules are considered in Section 3 and concluding remarks are presented

in Section 4.

2 The ideal case

2.1 The Solid-On-Solid (SOS) model

The SOS model has been introduced by Buff, Lovett and Stillinger [15] to

describe the interface between two media using a gaussian approximation.

This model represents a media A in equilibrium with a media C. The

corresponding A/C interface may be described by a collection of heights

h0, h1, . . . , hN ∈ R assuming no overhangs. A typical configuration is given

in the Fig. 3.

INSERT HERE FIGURE 3

We present here the d = 2 SOS model. For simplicity, we consider that

the energetic cost of the interface is proportional to its length. The energetic

cost of the interface is thus given by

H(h0 · · ·hN) = JAC

N−1
∑

i=0

[1 + |hi+1 − hi|] (8)

where JAC represents the energetic cost per unit length for the A/C interface.

The associated density of free-energy or interfacial tension is then given for

a flat interface by

γA/C = − 1

β
lim

N→∞

1

N
log Z(N, β) (9)
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where Z(N, β) is the partition function corresponding to a flat interface

Z(N, β) =

∫ +∞

−∞
dh0 · · ·

∫ +∞

−∞
dhNe−βJAC

∑N−1
i=0 (1+|hi+1−hi|)δ(h0 − 0)δ(hN − 0)

(10)

In this paper we will use the disordered generalization of this model.

That means that the energetic cost JAC is no more a constant but a random

variable which can take different values.

To model the interface for binary mixtures, we consider that the coupling

per unit length is also a random variable J . This variable may take two values

JAC and JBC with probabilities c and 1 − c where, as previously mentioned,

c is physically the mole fraction of A in the bulk of the AB mixture. This

allows us to represent the interface by two N -uples of independent random

variables (h0, · · · , hN) and (J0, · · · , JN). In this way, the interface can adjust

its height h and, by moving or not molecules, also the corresponding energetic

cost J taking into account the fixed concentration c. In this approach the

molecules of the mixture are not distinguishable and have similar size. Each

site i is occupied by one molecule.

The energetic cost of this interface is given by the Hamiltonian

H(h0 · · ·hN) =
N−1
∑

i=0

Ji[a + |hi+1 − hi|] (11)

where Ji may take the value JAC or JBC with probability c or 1− c and a is

the reference unit length. The associated partition function is given by

Z(J0, J1, · · · , JN−1) =

∫ +∞

−∞
dh0 · · ·

∫ +∞

−∞
dhNe−β

∑N−1
i=0 Ji(a+|hi+1−hi|)δ(h0)δ(hN).

(12)

It is well known that random systems are often related to disordered

systems for which one has introduced the notion of quenched and annealed
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disorder [16]. For the annealed case, the couplings are considered to be

random and will be treated in the same way than the heights. For the

quenched disorder, the couplings are frozen in a given configuration. There

are then two ways to define the associated free energy density

γquenched
AB/C = − 1

aβ
lim

N→∞

1

N
〈log Z(J0, J1, · · · , JN−1)〉 (13)

and

γannealed
AB/C = − 1

aβ
lim

N→∞

1

N
log〈Z(J0, J1, · · · , JN−1)〉 (14)

where the average 〈 · 〉 has to be taken with respect to the coupling distribu-

tion.

To simplify our notation, a will be taken equal to 1. Physically a rep-

resents the mean area occupied by a molecule. Consequently, when writing

βγ, we will in fact mean βaγ for dimensional reasons.

Let us now present our results, the proofs of which can be found in the

Appendix.

2.2 The results

Let us first introduce the family of probability distributions defined by the

Boltzmann factor

dµ(h0, h1, · · · , hN ; J0, J1, · · · , JN−1) =
1

Z
e−β

∑N−1
i=0 Ji(1+|hi+1−hi|)δ(h0)δ(hN)

(15)

where Z is the thermal normalization factor which can be expressed as

Z(J0, J1, · · · , JN−1) =

∫ +∞

−∞
dh0 · · ·

∫ +∞

−∞
dhNe−β

∑N−1
i=0 Ji(1+|hi+1−hi|)δ(h0)δ(hN),

(16)
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Using quenched disorder to compute the free energy, we obtain the fol-

lowing equation to express the surface tension of the mixture like a convex

combination of the pure component surface tensions

γquenched
AB/C = − 1

β
lim

N→∞

1

N
〈log Z(J0, J1, · · · , JN−1)〉

= c.γA/C + (1 − c).γB/C , (17)

where γA/C and γB/C are the interfacial tensions for the A/C and B/C

interfaces and where the average 〈 · 〉 has to be taken with respect to the

coupling distribution.

This kind of formula is therefore valid when the interface is quenched i.e.

the system finds its equilibrium position within the configurations for a given

set of couplings. Let us note that Eq.(17) is equivalent to Eq.(4).

The other approach, i.e. if we use the annealed disorder, leads to :

βγannealed
AB/C = − lim

N→∞

1

N
log〈Z(J0, J1, · · · , JN−1)〉

= − log[c.e−βγA/C + (1 − c).e−βγB/C ] (18)

where γA/C and γB/C are the interfacial tension for the A/C and B/C inter-

faces and where the average 〈 · 〉 has to be taken with respect to the coupling

distribution. This is equivalent to Eq. (3).

Here, the variables Ji and hi are treated on an equal basis. This im-

plies that the molecules at the interface are sufficiently mobile to allow the

interface to adjust itself, both in heights and in composition. This thus cor-

responds to a complete equilibrium case. Let us note that in this case there

is no correlation between the different energetic costs Ji. A typical composi-

tion behaviour is given in Fig. 4 within the annealed approach. The mixtures
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which follow this kind of behaviour are called perfect or ideal mixtures. More

general formulae can be derived within this context for inclined interfaces due

to the anisotropy of the SOS model [17].

INSERT HERE FIGURE 4

Finally, let us point out that more complex models for the heights hi and

for the couplings Ji could have been considered like gaussian distribution

for instance but we can easily extend to these last case the previous results.

The key ingredient has to be found in the application of the central limit

theorem4.

3 The non-ideal case

Let us now consider the case of non perfect solutions, i.e. whenever the A

molecule at the interface prefers to be in the neighborhood of another A

molecule or a B molecule for instance.

In that case, after integrating over the h’s variables, cf Eq. (16), we will

have asymptotically that

〈Z〉 ∼
∫

dν(J0 · · · JN−1)
∏

i

(

2e−β(Ji+Ji+1)/2

β
√

JiJi+1

)

(19)

where the random variables are no more independent and are distributed ac-

cording to the probability measure dν(J0 · · · JN−1). Let us consider as before

that Ji may take two values JA and JB. For nearest neighbours couplings in

the measure dν, the associated sum can then be written as

〈Z〉 =

∑

J0∈{JA,JB} · · ·
∑

JN−1∈{JA,JB}〈J0|T |J1〉 · · · 〈JN−2|T |JN−1〉
∑

J0∈{JA,JB} · · ·
∑

JN−1∈{JA,JB}〈J0|T ′|J1〉 · · · 〈JN−2|T ′|JN−1〉
(20)

4cf Appendix
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where the transfer matrices T and T ′ are given by

T =





2WAA
e−βJA

βJA
2WAB

e−
1
2 β(JA+JB)

√
βJAβJB

2WAB
e−

1
2 β(JA+JB)

√
βJAβJB

2WBB
e−βJB

βJB



 (21)

T ′ =





WAA WAB

WAB WBB



 (22)

where WAA (resp. WAB,WBB) is the weight associated to the pair (Ji, Ji+1)

which takes the value (JA, JA)( resp. (JA, JB) or (JB, JA) , (JB, JB)). In

terms of interaction energies ǫAA, ǫBB and ǫAB, we thus have

WAA ∼ e−βǫAA

WBB ∼ e−βǫBB

WAB ∼ e−βǫAB

Therefore, we get with appropriate periodic boundary conditions

lim
N→∞

− 1

N
log < Z >= lim

N→∞
− 1

N
log[Tr(TN)/Tr(T ′N)] (23)

where Tr denotes the trace of the matrix. This leads to

βγannealed
AB/C = − log λmax + log λ′

max (24)

where λmax (resp. λ′
max) is the maximal eigenvalue of T (resp. T ′).

However, here, the concentration c is not fixed. To fix c, we have to

consider the grand canonical approach by introducing the factor e−µ Ji+Ji+1

2

within the matrices of transfer T and T ′. Taking into account that

lim
N→∞

1

N

∑

i

Ji = JB + (JA − JB).c = − ∂

∂µ
log λ′

max (25)
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we may inverse the relation c(µ) to get γannealed
AB/C as a function of c.

This leads to

e−βγannealed
AB/C = α1e

−βγA/C + α2e
−βγB/C + Φ (26)

where

α1 =
z

z + q +
√

z2 + q2 + 2(2 − q)z
(27)

α2 =
q

z + q +
√

z2 + q2 + 2(2 − q)z
(28)

and

Φ =

√

z2e−2βγA/C + q2e−2βγB/C + 2(2 − q)ze−βγA/C−βγB/C

z + q +
√

z2 + q2 + 2(2 − q)z
(29)

with

q =
WAAWBB

W 2
AB

∼ e2β(ǫAB− ǫAA+ǫBB
2

) (30)

The concentration c has to be found in z, namely :

z =
(1 − 2c)2 + 2c(1 − c)q − (1 − 2c)

√

(1 − 2c)2 + 4qc(1 − c)

2c(1 − c)
(31)

Limiting cases are easily recovered as

c → 0 :

e−βγAB/C = e−βγB/C

c → 1 :

e−βγAB/C = e−βγA/C

More general cases are presented in Fig. 5.

INSERT HERE FIGURE 5
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These results are qualitatively in agreement with the experimental obser-

vations. Let us however stress that one gets a change of the concavity in the

vicinity of c = 0.5. for the regime where q is small. This corresponds phys-

ically to the case where the system tries to have as many pairs of different

molecules A − B as possible or, in other words ǫAB << ǫAA+ǫBB

2
.

We thus have a different formula, Eq.(26), which can be compared to

the Guggenheim’s result. From the data for the mixture of acetone and

diethylether extracted from [18], we get the results presented in Fig. 6. with

a mean area occupied by a molecule a = 30Å2 and ωGuggenheim = 450cal/mole

and ours with a = 30Å2 and the associated ω ∼ 750cal/mole (q ∼ e2βω, and

q has the molecular interpretation introduced in (30)). As can be seen in this

figure, both formulae lead to a good fit of the data with reasonable values of

the parameters.

Moreover, it should be noticed that the two models also differ, from en-

tropic reasons, since they refer to two different types of configuration.

INSERT HERE FIGURE 6

For the quenched γAB/C , we then have to calculate

〈log Z〉 =

∫

dν(J0 · · · JN−1)
∑

i

(βJi + log
2

βJi

) (32)

In this case the configuration of couplings (J0, J1, ..., JN−1) is fixed. The

summation in (32) is independent of the order of the Ji’s. We will always

obtain cN values of JA and (1−c)N of JB. The result is therefore equivalent

to the ideal case

γAB/C = c.γA/C + (1 − c).γB/C (33)
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4 Concluding remarks

The introduction of the disorder within this problem of interfacial tension

for binary mixtures has been helpful to understand the domain of validity of

known formulae like (4) and (5). Indeed, within the Solid-On-Solid model,

we have obtained for ideal systems that

e−βγannealed
AB/C = c.e−βγA/C + (1 − c).e−βγB/C (34)

and that

γquenched
AB/C = c.γA/C + (1 − c).γB/C (35)

The formula for γannealed means that the molecules at the interface are suf-

ficiently mobile to allow the interface to find its equilibrium configuration,

both in heights and in composition. However, the formula for γquenched means

that the molecules are not allowed to move at the interface, the only possible

way to reach equilibrium is therefore to adjust the heights.

For non-ideal solutions, we have obtained an exact expression (26) which

is qualitatively and quantitatively in good agreement with the observations.

It complements Guggenheim’s formulae for the case where the entropic con-

tribution to the interfacial properties can become important such as for long

chain molecules. A more detailed quantitative comparison with experimental

data will be published elsewhere.

Let us also here remark that whenever the molecules A and B are distin-

guishable in size, the previous approach cannot be used any more since the

heights h and the couplings J are no more independent random variables.

Moreover, we want to emphasize that these results can also be used to

treat the equilibrium surface pressure of binary surfactant mixtures
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A Appendix

A.1 Proof of the equation (17)

Applying the result of [17], we obtain

βγA/C = βJAC − log
2

βJAC

. (36)

Let us now consider the partition function

Z(J0 · · · JN−1) =

∫ +∞

−∞
dh0 · · ·

∫ +∞

−∞
dhNe−β

∑N−1
i=0 Ji(1+|hi+1−hi|)δ(h0)δ(hN).

(37)

Introducing the increments of heights

xi = hi+1 − hi, (38)

we can show5 that the weak constraint hN = 0 can be treated by some

appropriate central limit theorem. We thus get asymptotically

Z(J0, · · · , JN−1) ∼
∏

i

∫ +∞

−∞
dxie

−βJi(1+|xi|) (39)

Since

− lim
N→∞

1

N
〈log Z(J0 · · · JN−1)〉 = − lim

N→∞

1

N

∫ +∞

−∞
log Z.

∏

i

P (Ji)dJi (40)

where P (Ji) represents the probability distributions of the random variables

{Ji}, we get

γquenched
AB/C = − 1

β
lim

N→∞

1

N

∑

∫ +∞

−∞
log

(

2e−βJi

βJi

)

P (Ji)d(Ji) (41)

= c.γA/C + (1 − c).γB/C (42)

5see section A.1.1
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A.1.1 Proof of the equation (39)

We explain here the form of the equation (39). We apply for this a central

limit theorem for which the random variables do not have identical probabil-

ity distributions.

Let

Z(J0, · · · , JN−1) =

∫ +∞

−∞
dh0 · · ·

∫ +∞

−∞
dhN exp[−β

N−1
∑

i=0

Ji(1+|hi+1−hi|]δ(h0)δ(hn)

(43)

We then have

log Z(J0, · · · , JN−1) = log
∏

i

∫ +∞

−∞
dxi exp−βJi(1+|xi|) + log fhN

(0) (44)

where

fhN
(x) =

{

∫ +∞

−∞
dh0 · · ·

∫ +∞

−∞
dhN exp[−β

N−1
∑

i=0

Ji(1 + |hi+1 − hi|) (45)

+ z
N−1
∑

i=0

(hi+1 − hi)]δ(h0)δ(hN − x)

}

(46)

×
{

∫ +∞

−∞
dh0 · · ·

∫ +∞

−∞
dhN exp[−β

N−1
∑

i=0

Ji(1 + |hi+1 − hi|) (47)

+ z

N−1
∑

i=0

(hi+1 − hi)]δ(h0)

}−1

(48)

Let

hN =
N−1
∑

i=0

(hi+1 − hi) =
N−1
∑

i=0

Xi (49)

where the Xi are independent random variables which are not identically

distributed with distribution Ui. Now, we show that limN→∞
1
N

log fhN
(0) →

16



0 for N → ∞. According to the probability measure

dν(x) = [e−βJi(1+|x|)]/[

∫ +∞

−∞
dxe−βJi(1+|x|)+zx]

= fhN
(x) =

∏

i

fXi
(x) (50)

where z is chosen such that

N−1
∑

i=0

E(Xi) = 0 (51)

Let Ui be the distributions of Xi and FN the distribution of
∑

i Xi

sN
where

sN =
∑

i σ
2
i (sN

N→∞→ ∞). FN(x) is defined by a convolution

FN(x) = U1 ∗ · · · ∗ UN(sNx) (52)

We denote by ϕXi
and ϕhN/sN

the characteristic functions of Ui and FN ,

respectively. Then

φhN/sN
(t) =

∏

i

ϕXi
(

t

sN

) (53)

for any real t with the conditions that E(X3
i ) exists and that |ϕ|ν is integrable

for some ν ≥ 1, we obtain as N → ∞

fN(x) −N (x) − µ
(N−1)
3

6s3
N

(x3 − x)N (x) = 0(
N

s3
N

) (54)

where N (x) is the normal density and µ
(N−1)
3 =

∑N−1
i=0 E(X3

i ) [19]. Thus we

can apply this extended central limit theorem to obtain

hN/sN
N→∞→ gaussian random variable. (55)

Since the density of hN/sN tends to the gaussian density and satisfies

fhN/sN
(x) = sNfhN

(sNx) (56)
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one has

log fhN/sN
(x) = log[sNfhN

(sNx)] (57)

= log sN + log fhN
(sNx) (58)

Taking x = 0 and multiplying by 1
N

,

1

N
log fhN/sN

(0) =
1

N
log sN +

1

N
log fhN

(0) (59)

we can conclude that, when N → ∞

1

N
log fhN

(0) → 0 (60)

This ends the proof.

A.2 Proof of the equation (18)

As in the subsection A.1, we have Z(J0 · · · JN−1) ∼ ∏

i

∫ +∞
−∞ dxie

−βJi(1+|xi|)

where xi has been introduced in (38). Therefore,

− lim
N→∞

1

N
log〈Z〉 = − lim

N→∞

1

N
log

∫ +∞

−∞
Z(J0, · · · , JN−1)

∏

i

P (Ji)dJi (61)

We get

βγannealed
AB/C = − lim

N→∞

1

N

∑

i

log

∫ +∞

−∞

2e−βJi

βJi

P (Ji)dJi (62)

= − log[c.e−βγA/C + (1 − c).e−βγB/C ] (63)
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Figures captions

Figure 1: The considered binary mixture always in contact with C.

Figure 2: Fluctuating interface between the two media A and C.

Figure 3: The d = 2 Solid-On-Solid interface between the two media A

and C.

Figure 4: The perfect solution case within the annealed approach.

Figure 5: The interfacial tension γannealed
AB/C for a non-ideal binary mixture

as a function of the concentration c, for βγAC = 4 + ln 2, βγBC = 1 − ln 2,

and different values of the parameter q.

Figure 6: Comparison between experimental data of a Acetone-Diethylether

mixture, our formula (26) for q = 13.797 and Guggenheim’s formula (5) for

m = 0.25 and ω = 450cal/mole.
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Figure 4
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Figure 5
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