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Abstract. The object of this paper is twofold. From one side we study the
dichotomy, in terms of the Extremal Index of the possible Extreme Value Laws,
when the rare events are centred around periodic or non-periodic points. Then

we build a general theory of Extreme Value Laws for randomly perturbed
dynamical systems. We also address, in both situations, the convergence of
Rare Events Point Processes. Decay of correlations against L1 observables will

play a central role in our investigations.
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1. Introduction

Deterministic discrete dynamical systems are often used to model physical phe-
nomena. In many situations, inevitable observation errors make it more realistic to
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consider random dynamics, where the mathematical model is adjusted by adding
random noise to the iterative process in order to account for these practical im-
precisions. The behaviour of such random systems has been studied thoroughly in
the last decades. We mention, for example, [22,23] for excellent expositions on the
subject.

Laws of rare events for chaotic (deterministic) dynamical systems have also been
exhaustively studied in the last years. When these results first appeared these no-
tions were described as Hitting Times Statistics (HTS) or Return Times Statistics
(RTS). In this setting, rare events correspond to entrances in small regions of the
phase space, and the goal is to prove distributional limiting laws for the normalised
waiting times before hitting/returning to these asymptotically small sets. We refer
to [29] for an excellent review. More recently, rare events have also been studied
through Extreme Value Laws (EVLs), i.e., the distributional limit of the partial
maxima of stochastic processes arising from such chaotic systems simply by eval-
uating an observable function along the orbits of the system. Very recently, in
[10, 11], the two perspectives have been proved to be linked so that, under general
conditions on the observable functions, the existence of HTS/RTS is equivalent to
the existence of EVLs. These observable functions achieve a maximum (possibly
∞) at some chosen point ζ in the phase space so that the rare event of occurring an
exceedance of a high level corresponds to an entrance in a small ball around ζ. The
study of rare events may be enhanced if we enrich the process by considering mul-
tiple exceedances (or hits/returns to target sets) that are recorded by Rare Events
Point Processes (REPP), which count the number of exceedances (or hits/returns)
in a certain time frame. Then one looks for limits in distribution for such REPP
when time is adequately normalised.

Surprisingly, not much is known about rare events for random dynamical sys-
tems. One of the main goals here is to establish what we believe to be the first
result proving the existence of EVLs (or equivalently HTS/RTS) as well as the
convergence of REPP, for randomly perturbed dynamical systems.

We remark that in the recent paper [26] the authors defined the meaning of first
hitting/return time in the random dynamical setting. To our knowledge this was
the first paper to address this issue of recurrence for random dynamics. There,
the authors define the concepts of quenched and annealed return times for systems
generated by the composition of random maps. Moreover, they prove that for
super-polynomially mixing systems, the random recurrence rate is equal to the
local dimension of the stationary measure.

Here we are interested in establishing the right setting in order to have the
connection between EVL and HTS/RTS, for random dynamics, and, eventually,
to prove the existence of EVLs and HTS/RTS for random orbits. Moreover, we
also study the convergence of the REPP for randomly perturbed systems. These
achievements are, in our opinion, the main accomplishments of this paper.

In general terms, we will consider uniformly expanding and piecewise expanding
maps. Then we randomly perturb these discrete systems with additive, indepen-
dent, identically distributed (i.i.d.) noise introduced at each iteration. The noise
distribution is absolutely continuous with respect to (w.r.t.) Lebesgue measure.
The details will be given in Section 2.

The main ingredients will be decay of correlations against all L1 observables
(we mean decay of correlations of all observables in some Banach space against all
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observables in L1, which will be made more precise in Definition 2.2 below) and
the notion of first return time from a set to itself.

We realised that the techniques we were using to study the random scenario
also allowed us to give an answer to one of the questions raised in [12]. There
the connection between periodicity, clustering of rare events and the Extremal
Index (EI) was studied. In certain situations, like when rare events are defined
as entrances in balls around (repelling) periodic points, the stochastic processes
generated by the dynamics present clustering of rare events. The EI is a parameter
ϑ ∈ [0, 1] which quantifies the intensity of the clustering. In fact, in most situations
the average cluster size is just 1/ϑ. No clustering means that ϑ = 1 and strong
clustering means that ϑ is close to 0. In [12, Section 6], it is shown that, for
uniformly expanding maps of the circle equipped with the Bernoulli measure, f :
S1 → S1 with f(z) = z2, there is a dichotomy in terms of the possible EVL: either
the rare events are centred at (repelling) periodic points and ϑ < 1 or at non-
periodic points and the EI is 1. This was proved for cylinders, in the sense that
rare events corresponded to entrances into dynamically defined cylinders (instead
of balls), and one of the questions it raised was if this dichotomy could be proved
more generally for balls and for more general systems. In [8], the authors build up
on the work of [17] and eventually obtain the dichotomy for balls and for conformal
repellers.

One of our results here, Theorem A, allows us to prove the dichotomy for balls
and for systems with decay of correlations against L1 which include, for example,
piecewise expanding maps of the interval-like Rychlik maps (Proposition 3.2) or
piecewise expanding maps in higher dimensions, like the ones studied by Saussol
in [28] (Proposition 3.3). Moreover, as an end product of our approach, we can
express the dichotomy for these systems in the following more general terms (see
Propositions 3.2 and 3.3): either we have, at non-periodic points, the convergence
of the REPP to the standard Poisson process or we have, at repelling periodic
points, the convergence of REPP to a compound Poisson process consisting of an
underlying asymptotic Poisson process governing the positions of the clusters of
exceedances and a multiplicity distribution associated to each such Poisson event,
which is determined by the average cluster size. In fact, at repelling periodic points,
we always get that the multiplicity distribution is the geometric distribution (see
[13,16]).

We also consider discontinuity points of the map as centres of the rare events (see
Proposition 3.4). A very interesting immediate consequence of this study is that,
when we consider the REPP, we can obtain convergence to a compound Poisson
process whose multiplicity distribution is not a geometric distribution. To our
knowledge this is the first time these limits are obtained for the general piecewise
expanding systems considered and in the balls’ setting (rather than cylinders), in
the sense that exceedances or rare events correspond to the entrance of the orbits
in topological balls.

In the course of writing this paper we came across a paper by Keller, [20], where
he proved the dichotomy of expanding maps with a spectral gap for the correspond-
ing Perron-Frobenius operator (which also include Rychlik maps and the higher-
dimensional piecewise expanding maps studied by Saussol [28], for example). He
uses of a powerful technique developed in [21], based on an eigenvalue perturbation
formula. Our approach here is different since we use an EVL kind of argument and
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our assumptions are based on decay of correlations against L1 observables. More-
over, in this paper we also deal with the convergence of the REPP and obtain, in
particular, the interesting fact that at discontinuity points we observe multiplicity
distributions other than the geometric one.

We also mention the very recent paper [24], where the dichotomy for cylinders
is established for mixing countable alphabet shifts, but also in the context of non-
conventional ergodic sums. It also includes examples of non-convergence of the
REPP, in the cylinder setting.

We remark that in most situations, decay of correlations against L1 observables is
a consequence of the existence of a gap in the spectrum of the map’s corresponding
Perron-Frobenius operator. However, in [7], Dolgopyat proves exponential decay of
correlations for certain Axiom A flows, but along the way he proves it for semiflows
against L1 observables. This is done via estimates on families of twisted transfer
operators for the Poincaré map, but without considering the Perron-Frobenius op-
erator for the flow itself. This means that the discretisation of this flow by using
a time 1 map, for example, provides an example of a system with decay of corre-
lations against L1 for which it is not known if there exists a spectral gap of the
corresponding Perron-Frobenius operator. Apparently, the existence of a spectral
gap for the map’s Perron-Frobenius operator, defined in some nice function space,
implies decay of correlations against L1 observables. However, the latter is still a
very strong property. In fact, from decay of correlations against L1 observables,
regardless of the rate, as long as it is summable, one can actually show that the sys-
tem has exponential decay of correlations of Hölder observables against L∞. (See
[1, Theorem B].) So an interesting question is:

Question. If a system presents summable decay of correlations against L1 observ-
ables, is there a spectral gap for the system’s Perron-Frobenius operator, defined
in some appropriate function space?

We note that, as we point out in Remark 3.1, we do not actually need decay of
correlations against L1 in its full strength.

Returning to the random setting, our main result asserts that the dichotomy
observed for deterministic systems vanishes, and regardless of the centre being a
periodic point or not, we always get standard exponential EVLs or, equivalently,
standard exponential HTS/RTS (which means that ϑ = 1). Moreover, we also show
that the REPP converges in distribution to a standard Poisson process. We will
prove these results in Section 4 using an EVL approach, where the main assumption
will be decay of correlations against L1.

Still in the random setting, motivated by the deep work of Keller, [20], in Sec-
tion 5 we prove results in the same directions as before but based on the spectral
approach used by Keller and Liverani to study deterministic systems. As a byprod-
uct we get an HTS/RTS formula with sharp error terms for random dynamical
systems (see Proposition 5.1). We will point out the differences between the two
techniques (which we name here as direct and spectral, respectively) at the begin-
ning of Section 5; let us simply stress that we implemented the spectral technique
in a random situation only for one-dimensional systems and the existence of EI
was proved for a substantially large class of noises. On the other hand, the direct
technique worked for systems in higher dimensions as well, but it required additive
noise with a continuous distribution. However, the latter was necessary to prove
that EI is 1 in the spectral approach too.
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2. Statement of results

Consider a discrete time dynamical system (X ,B,P, T ) which will denote two
different but interrelated settings throughout the paper. X is a topological space,
B is the Borel σ-algebra, T : X → X is a measurable map and P is a T -invariant
probability measure, i.e., P(T−1(B)) = P(B), for all B ∈ B. Also, given any A ∈ B
with P(A) > 0, let PA denote the conditional measure on A ∈ B, i.e., PA := P|A

P(A) .

Firstly, it will denote a deterministic setting where X = M is a compact Rie-
mannian manifold, B is the Borel σ-algebra, T = f : M → M is a piecewise
differentiable map and P = µ is an f -invariant probability measure. Let dist(·, ·)
denote a Riemannian metric on M and Leb a normalized volume form on the Borel
sets of M that we call Lebesgue measure.

Secondly, it will denote a random setting which is constructed from the deter-
ministic system via perturbing the original map with random additive noise. We
assume that M is a quotient of a Banach vector space V, like M = T

d = R
d/Zd,

for some d ∈ N. In the case d = 1, we will also denote the circle T
1 by S1. Let

dist(·, ·) denote the induced usual quotient metric on M and Leb a normalised vol-
ume form on the Borel sets of M that we call Lebesgue measure. Also denote the
ball of radius ε > 0 around x ∈ M by Bε(x) := {y ∈ M : dist(x, y) < ε}. Consider
the unperturbed deterministic system f : M → M. For some ε > 0, let θε be a
probability measure defined on the Borel subsets of Bε(0), such that

(2.1) θε = gεLeb and 0 < gε ≤ gε ≤ gε <∞.

For each ω ∈ Bε(0), we define the additive perturbation of f that we denote by fω
as the map fω : M → M, given by1

(2.2) fω(x) = f(x) + ω.

Consider a sequence of i.i.d. random variables (r.v.) W1,W2, . . . taking values on
Bε(0) with common distribution given by θε. Let Ω = Bε(0)

N denote the space
of realisations of such a process and θNε the product measure defined on its Borel
subsets. Given a point x ∈ M and the realisation of the stochastic process ω =
(ω1, ω2, . . .) ∈ Ω, we define the random orbit of x as x, fω(x), f

2
ω(x), . . ., where the

evolution of x, up to time n ∈ N, is obtained by the concatenation of the respective
additive randomly perturbed maps in the following way:

(2.3) fnω (x) = fωn ◦ fωn−1
◦ · · · ◦ fω1

(x),

with f0ω being the identity map on M. The next definition gives a notion that plays
the role of invariance in the deterministic setting.

1In the general theory of randomly perturbed dynamical systems one could consider pertur-

bations other than the additive ones and distributions θε which are not necessarily absolutely
continuous. Our choice is motivated by the fact that our main result for the extreme values in
presence of noise could be relatively easily shown with those assumptions, but it is also clear
from the proof where possible generalizations could occur. We were especially concerned with

constructing the framework and finding good assumptions for the theory, which is surely satisfied
for more general perturbations and probability distributions. Let us notice that other authors ba-
sically used additive noise when they studied statistical properties of random dynamical systems

[2–4], for instance.
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Definition 2.1. Given ε > 0, we say that the probability measure µε on the Borel
subsets of M is stationary if

∫∫
φ(fω(x)) dµε(x) dθε(ω) =

∫
φ(x) dµε(x),

for every φ : M → R integrable w.r.t. µε.

The previous equality could also be written as
∫

Uεφ dµε =
∫
φ dµε,

where the operator Uε : L∞(Leb)→L∞(Leb), is defined as

(Uεφ)(x)=
∫

Bε(0)

φ(fω(x))dθε

and is called the random evolution operator.
The adjoint of this operator is called the random Perron-Frobenius operator,

Pε : L1(Leb) → L1(Leb), and it acts by duality as
∫

Pεψ · φ dLeb =

∫
Uεφ · ψ dLeb,

where ψ ∈ L1 and φ ∈ L∞.
It is immediate from this definition to get another useful representation of this

operator, namely for ψ ∈ L1:

(Pεψ)(x) =
∫

Bε(0)

(Pωψ)(x) dθε(ω),

where Pω is the Perron-Frobenius operator associated to fω.
We recall that the stationary measure µε is absolutely continuous w.r.t. the

Lebesgue measure and with density hε if and only if such a density is a fixed point
of the random Perron-Frobenius operator: Pεhε = hε.

2

We can give a deterministic representation of this random setting using the
following skew product transformation:

(2.4) S : M× Ω −→ M× Ω,
(x, ω) 7−→ (fω1

, σ(ω)),

where σ : Ω → Ω is the one-sided shift σ(ω) = σ(ω1, ω2, . . .) = (ω2, ω3, . . .). We
remark that µε is stationary if and only if the product measure µε × θNε is an
S-invariant measure.

Hence, the random evolution can fit the original model (X ,B,P, T ) by taking
the product space X = M×Ω, with the corresponding product Borel σ-algebra B,
where the product measure P = µε × θNǫ is defined. The system is then given by
the skew product map T = S.

For the systems we will consider, P has very good mixing properties, which in
loose terms means that the system loses memory quite fast. In order to quantify
the memory loss we look at the system’s rates of decay of correlations w.r.t. P.

2The duality explains why we take Pε acting on L1 and Uε on L∞. Moreover, our station-
ary measures will be absolutely continuous with density given by the fixed point of the Perron-

Frobenius operator Pε.



Prepublication copy provided to Jose Antonio O Freitas. Please give confirmation to AMS by November 3, 2014.

Not for print or electronic distribution. This file may not be posted electronically.

LAWS OF RARE EVENTS FOR DYNAMICAL SYSTEMS 7

Definition 2.2 (Decay of correlations). Let C1, C2 denote Banach spaces of real
valued measurable functions defined on X . We denote the correlation of non-zero
functions φ ∈ C1 and ψ ∈ C2 w.r.t. a measure P as

CorP(φ, ψ, n) :=
1

‖φ‖C1
‖ψ‖C2

∣∣∣∣
∫
φ (ψ ◦ Tn) dP−

∫
φ dP

∫
ψ dP

∣∣∣∣ .

We say that we have decay of correlations, w.r.t. the measure P, for observables
in C1 against observables in C2 if, for every φ ∈ C1 and every ψ ∈ C2, we have

CorP(φ, ψ, n) → 0, as n→ ∞.

In the random setting, we will only be interested in Banach spaces of functions
that do not depend on ω ∈ Ω. Hence, we assume that φ, ψ are actually functions
defined on M and the correlation between these two observables can be written
more simply as

CorP(φ, ψ, n) : =
1

‖φ‖C1
‖ψ‖C2

∣∣∣∣
∫ (∫

ψ ◦ fnω dθNε

)
φ dµε −

∫
φ dµε

∫
ψ dµε

∣∣∣∣

=
1

‖φ‖C1
‖ψ‖C2

∣∣∣∣
∫

Unε ψ · φ dµε −
∫
φ dµε

∫
ψ dµε

∣∣∣∣ ,(2.5)

where (Unε ψ)(x) =
∫
· · ·
∫
ψ(fωn ◦ · · · ◦ fω1

x) dθε(ωn) . . . dθε(ω1) =
∫
ψ ◦ fnω (x) dθNε .

We say that we have decay of correlations against L1 observables whenever we
have decay of correlations, with respect to the measure P, for observables in C1
against observables in C2 and C2 = L1(Leb) is the space of Leb-integrable functions
on M and ‖ψ‖C2

= ‖ψ‖1 =
∫
|ψ| dLeb. Note that when µ, µε are absolutely

continuous with respect to Leb and the respective Radon-Nikodym derivatives are
bounded above and below by positive constants, then L1(Leb) = L1(µ) = L1(µε).

The goal is to study the statistical properties of such systems regarding the
occurrence of rare events. There are two approaches for this purpose which were
recently proved to be equivalent.

We first turn to the existence of an EVL for the partial maximum of observations
made along the time evolution of the system. To be more precise consider the
time series X0, X1, X2, . . . arising from such a system simply by evaluating a given
random variable (r.v.) ϕ : M → R ∪ {+∞} along the orbits of the system:

(2.6) Xn = ϕ ◦ fn, for each n ∈ N.

Note that when we consider the random dynamics, the process will be

(2.7) Xn = ϕ ◦ fnω , for each n ∈ N,

which can also be written as Xn = ϕ̄ ◦ Sn, where
(2.8) ϕ̄ : M× Ω −→ R ∪ {+∞},

(x, ω) 7−→ ϕ(x).

Clearly, X0, X1, . . . defined in this way is not an independent sequence. However,
invariance of µ and stationarity of µε guarantee that the stochastic process is sta-
tionary in both cases.

We assume that the r.v. ϕ : M → R ∪ {±∞} achieves a global maximum at
ζ ∈ M (we allow ϕ(ζ) = +∞). We also assume that ϕ and P are sufficiently
regular so that:
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(R1) for u sufficiently close to uF := ϕ(ζ), the event

U(u) = {X0 > u} = {x ∈ M : ϕ(x) > u}
corresponds to a topological ball centred at ζ. Moreover, the quantity
P(U(u)), as a function of u, varies continuously on a neighbourhood of uF .

In what follows, an exceedance of the level u ∈ R at time j ∈ N means that the
event {Xj > u} occurs. We denote by F the distribution function (d.f.) of X0,
i.e., F (x) = P(X0 ≤ x). Given any d.f. G, let Ḡ = 1−G and uG denote the right
endpoint of the d.f. G, i.e., uG = sup{x : G(x) < 1}.

The idea then is to consider the extremal behaviour of the system for which we
define a new sequence of random variables M1,M2, . . . given by

(2.9) Mn = max{X0, . . . , Xn−1}.
Definition 2.3. We say that we have an EVL for Mn if there is a non-degenerate
d.f. H : R → [0, 1] with H(0) = 0 and, for every τ > 0, there exists a sequence of
levels un = un(τ), n = 1, 2, . . ., such that

(2.10) nP(X0 > un) → τ, as n→ ∞,

and for which the following holds:

(2.11) P(Mn ≤ un) → H̄(τ), as n→ ∞.

Remark 2.1. We remark that one of the advantages of the EVL approach for the
study of rare events for random dynamics is that its definition follows straightfor-
wardly from the deterministic case. In fact, the only difference is that for random
dynamical systems, the r.v. Mn’s are defined on M×Ω where we use the measure
P = µε × θNε as opposed to the deterministic case where the ambient space is M
and P = µ.

The motivation for using a normalising sequence un satisfying (2.10) comes from
the case when X0, X1, . . . are independent and identically distributed. In this i.i.d.
setting, it is clear that P(Mn ≤ u) = (F (u))n. Hence, condition (2.10) implies that

P(Mn ≤ un) = (1− P(X0 > un))
n ∼

(
1− τ

n

)n
→ e−τ ,

as n → ∞. Moreover, the reciprocal is also true. Note that in this case H(τ) =
1− e−τ is the standard exponential d.f.

For every sequence (un)n∈N satisfying (2.10) we define:

(2.12) Un := {X0 > un}.
When X0, X1, X2, . . . are not independent, the standard exponential law still

applies under some conditions on the dependence structure. These conditions are
the following:

Condition (D2(un)). We say that D2(un) holds for the sequence X0, X1, . . . if for
all ℓ, t and n,

|P (X0 > un ∩max{Xt, . . . , Xt+ℓ−1 ≤ un})− P(X0 > un)P(Mℓ ≤ un)| ≤ γ(n, t),

where γ(n, t) is decreasing in t for each n and nγ(n, tn) → 0 when n→ ∞ for some
sequence tn = o(n).

Now, let (kn)n∈N be a sequence of integers such that

(2.13) kn → ∞ and kntn = o(n).
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Condition (D′(un)). We say that D′(un) holds for the sequence X0, X1, X2, . . . if
there exists a sequence (kn)n∈N satisfying (2.13) and such that

(2.14) lim
n→∞

n

⌊n/kn⌋∑

j=1

P(X0 > un, Xj > un) = 0.

By [9, Theorem 1], if conditions D2(un) and D′(un) hold for X0, X1, . . ., then
there exists an EVL for Mn and H(τ) = 1 − e−τ . Besides, as can be seen in
[9, Section 2], condition D2(un) follows immediately if X0, X1, . . . is given by (2.6)
and the system has a sufficiently fast decay of correlations.

Now, we turn to the other approach which regards the existence of HTS and
RTS. In the deterministic case, consider a set A ∈ B. We define a function that we
refer to as first hitting time function to A and denote it by rA : X → N ∪ {+∞}
where

rA(x) = min
{
j ∈ N ∪ {+∞} : f j(x) ∈ A

}
.

The restriction of rA to A is called the first return time function to A. We define
the first return time to A, which we denote by R(A), as the minimum of the return
time function to A, i.e.,

R(A) = min
x∈A

rA(x).

In the random case, we have to make a choice regarding the type of definition we
want to play the roles of the first hitting/return times (functions). Essentially, there
are two possibilities. The first is the quenched perspective, which consists of fixing
a realisation ω ∈ Ω and defining the objects in the same way as in the deterministic
case. The second is the annealed perspective, which consists of defining the same
objects by averaging over all possible realisations ω. Here, we will use the quenched
perspective to define hitting/return times because it will facilitate the connection
between EVLs and HTS/RTS in the random setting. (We refer to [26] for more
details on both perspectives.)

For some ω ∈ Ω fixed, some x ∈ M and A ⊂ M measurable, we may define the
first random hitting time

r
ω
A(x) := min{j ∈ N : f jω(x) ∈ A}

and the first random return from A to A as

Rω(A) = min{rωA(x) : x ∈ A}.
Definition 2.4. Given a sequence of measurable subsets of X , (Vn)n∈N, so that
P(Vn) → 0, the system has (random) HTS G for (Vn)n∈N if for all t ≥ 0

(2.15) P

(
rVn ≤ t

P(Vn)

)
→ G(t) as n→ ∞,

and the system has (random) RTS G̃ for (Vn)n∈N if for all t ≥ 0

(2.16) PVn

(
rVn ≤ t

P(Vn)

)
→ G̃(t) as n→ ∞.

In the deterministic case, X = M, P = µ and T = f . In the random case,
X = M× Ω, P = µε × θNε , T = S defined in (2.4), Vn = V ∗

n × Ω, where V ∗
n ⊂ M

and µε(V
∗
n ) → 0, as n→ ∞.
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Note that

P

(
rVn ≤ t

P(Vn)

)
= µε × θNε

(
r
ω
V ∗
n
≤ t

µε(V ∗
n )

)
.

The normalising sequences to obtain HTS/RTS are motivated by Kac’s Lemma,
which states that the expected value of rA w.r.t. µA is

∫
A
rA dµA = 1/µ(A). So

in studying the fluctuations of rA on A, the relevant normalising factor should be
1/µ(A).

The existence of exponential HTS is equivalent to the existence of exponential
RTS. In fact, according to the Main Theorem in [15], a system has HTS G if and

only if it has RTS G̃ and

(2.17) G(t) =

∫ t

0

(1− G̃(s)) ds.

In [10], the link between HTS/RTS (for balls) and EVLs of stochastic processes
given by (2.6) was established for invariant measures µ absolutely continuous w.r.t.
Leb. Essentially, it was proved that if such time series have an EVL H, then the
system has HTS H for balls “centred” at ζ and vice versa. (Recall that having

HTS H is equivalent to saying that the system has RTS H̃, where H and H̃ are
related by (2.17).) This was based on the elementary observation that for stochastic
processes given by (2.6) we have

(2.18) f−1({Mn ≤ u}) = {r{X0>u} > n}.
This connection was exploited to prove EVLs using tools from HTS/RTS and the
other way around. In [11], we carried the connection further to include more general
measures, which, in particular, allows us to obtain the connection in the random
setting. To check this we just need to use the skew product map to look at the
random setting as a deterministic system and take the observable ϕ̄ : M × Ω →
R ∪ {+∞} defined as in (2.8) with ϕ : M → R ∪ {+∞} as in [11, equation (4.1)].
Then Theorems 1 and 2 from [11] guarantee that if we have an EVL, in the sense
that (2.11) holds for some d.f. H, then we have HTS for sequences {Vn}n∈N, where
Vn = Bδn × Ω and δn → 0 as n→ ∞, with G = H and vice versa.

Lemma 2.1.

S−1({Mn ≤ un}) = {(x, ω) ∈ M× Ω : r
ω
Un

(x) > n}.
Proof.

S−1({Mn ≤ un}) = S−1({(x, ω) ∈ M× Ω : x /∈ Un, r
ω
Un

(x) ≥ n}) =: S−1(A)

= {(x, ω) ∈ M× Ω : S(x, ω) = (fω1
(x), σ(ω)) ∈ A}

= {(x, ω) ∈ M× Ω : fω1
(x) /∈ Un, r

σ(ω)
Un

(fω1
(x)) ≥ n}

= {(x, ω) ∈ M× Ω : r
ω
Un

(x) > n}.
�

If we consider multiple exceedances we are led to point processes of rare events
counting the number of exceedances in a certain time frame. For every A ⊂ R we
define

Nu(A) :=
∑

i∈A∩N0

1Xi>u.
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In the particular case where A = I = [a, b) we simply write N b
u,a := Nu([a, b)). Ob-

serve that N n
u,0 counts the number of exceedances amongst the first n observations

of the process X0, X1, . . . , Xn or, in other words, the number of entrances in U(u)
up to time n. Also, note that

(2.19) {N n
u,0 = 0} = {Mn ≤ u}.

In order to define a point process that captures the essence of an EVL and HTS
through (2.19), we need to re-scale time using the factor v := 1/P(X > u) given by
Kac’s Theorem. However, before we give the definition, we need some formalism.
Let S denote the semi-ring of subsets of R+

0 whose elements are intervals of the type
[a, b), for a, b ∈ R

+
0 . Let R denote the ring generated by S. Recall that for every

J ∈ R there are k ∈ N and k intervals I1, . . . , Ik ∈ S such that J =
⋃k
i=1 Ij . In order

to fix notation, let aj , bj ∈ R
+
0 be such that Ij = [aj , bj) ∈ S. For I = [a, b) ∈ S

and α ∈ R, we denote αI := [αa, αb) and I + α := [a + α, b + α). Similarly, for
J ∈ R define αJ := αI1 ∪ · · · ∪ αIk and J + α := (I1 + α) ∪ · · · ∪ (Ik + α).

Definition 2.5. We define the Rare Event Point Process (REPP) by counting
the number of exceedances (or hits to U(un)) during the (re-scaled) time period
vnJ ∈ R, where J ∈ R. To be more precise, for every J ∈ R, set

(2.20) Nn(J) := Nun(vnJ) =
∑

j∈vnJ∩N0

1Xj>un .

Under dependence conditions similar to the ones just seen above, the REPP just
defined converges in distribution to a standard Poisson process, when no clustering
is involved, and to a compound Poisson process with intensity θ and a geometric
multiplicity d.f., otherwise. For completeness, here we define what we mean by a
Poisson and a compound Poisson process. (See [18] for more details.)

Definition 2.6. Let T1, T2, . . . be an i.i.d. sequence of random variables with com-
mon exponential distribution of mean 1/θ. LetD1, D2, . . . be another i.i.d. sequence
of random variables, independent of the previous one, and with d.f. π. Given these
sequences, for J ∈ R, set

N(J) =

∫
1J d

( ∞∑

i=1

DiδT1+...+Ti

)
,

where δt denotes the Dirac measure at t > 0. Whenever we are in this setting, we
say that N is a compound Poisson process of intensity θ and multiplicity d.f. π.

Remark 2.2. In this paper, the multiplicity will always be integer valued, which
means that π is completely defined by the values πk = P(D1 = k), for every
k ∈ N0. Note that, if π1 = 1 and θ = 1, then N is the standard Poisson process
and, for every t > 0, the random variable N([0, t)) has a Poisson distribution of
mean t.

Remark 2.3. When clustering is involved, we will see that π is actually a geometric
distribution of parameter θ ∈ (0, 1], i.e., πk = θ(1 − θ)k, for every k ∈ N0. This
means that, as in [16], here the random variable N([0, t)) follows a Pólya-Aeppli
distribution, i.e.:

P(N([0, t)) = k) = e−θt
k∑

j=1

θj(1− θ)k−j
(θt)j

j!

(
k − 1

j − 1

)
,
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for all k ∈ N and P(N([0, t)) = 0) = e−θt.

When D′(un) holds, since there is no clustering, then, due to a criterion proposed
by Kallenberg [18, Theorem 4.7], which applies only to simple point processes,
without multiple events, we can simply adjust condition D2(un) to this scenario of
multiple exceedances in order to prove that the REPP converges in distribution to
a standard Poisson process. We denote this adapted condition by:

Condition (D3(un)). Let A ∈ R and t ∈ N. We say that D3(un) holds for the
sequence X0, X1, . . . if

|P ({X0 > un} ∩ {N (A+ t) = 0})− P({X0 > un})P(N (A) = 0)| ≤ γ(n, t),

where γ(n, t) is non-increasing in t for each n and nγ(n, tn) → 0 as n → ∞ for
some sequence tn = o(n), which means that tn/n→ 0 as n→ ∞.

Condition D3(un) follows, as easily as D2(un), from sufficiently fast decay of
correlations.

In [10, Theorem 5] a strengthening of [9, Theorem 1] is proved, which essentially
says that, under D3(un) and D

′(un), the REPP Nn defined in (2.20) converges in
distribution to a standard Poisson process.

Next, we give an abstract result, in the deterministic setting, that allows us to
check conditions D2(un) and D

′(un) for any stochastic process X0, X1, . . . arising
from a system which has decay of correlations against L1 observables. As a conse-
quence of this result in Section 3, more precisely in Propositions 3.2, 3.3 and 3.4,
we will obtain the announced dichotomy for the EI based on the periodicity of the
point ζ.

Theorem A. Consider a dynamical system (M,B, µ, f) for which there exists a
Banach space C of real valued functions such that for all φ ∈ C and ψ ∈ L1(µ),

(2.21) Corµ(φ, ψ, n) ≤ Cn−2,

where C > 0 is a constant independent of both φ, ψ. Let X0, X1, . . . be given by
(2.6), where ϕ achieves a global maximum at some point ζ for which condition
(R1) holds. Let un be such that (2.10) holds, Un be defined as in (2.12) and set
Rn := R(Un).

If there exists C ′ > 0 such that for all n we have 1Un ∈ C, ‖1Un‖C ≤ C ′ and
Rn → ∞, as n→ ∞, then conditions D2(un) and D

′(un) hold for X0, X1, . . .. This
implies that there is an EVL for Mn defined in (2.9) and H(τ) = 1− e−τ .

In light of the connection between EVLs and HTS/RTS it follows immediately:

Corollary B. Under the same hypothesis as Theorem A we have HTS/RTS for

balls around ζ with G(t) = G̃(t) = 1− et.

Since, under the same assumptions of Theorem A, condition D3(un) holds triv-
ially, then applying [10, Theorem 5] we obtain:

Corollary C. Under the same hypothesis as Theorem A, the REPP Nn defined in

(2.20) is such that Nn
d−→ N , as n → ∞, where N denotes a Poisson Process with

intensity 1.

Remark 2.4. Note that condition Rn → ∞, as n → ∞, is easily verified if the
map is continuous at every point of the orbit of ζ. We will state this formally in
Lemma 3.1.
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Remark 2.5. Observe that decay of correlations as in (2.21) against L1(µ) observ-
ables is a very strong property. In fact, regardless of the rate (in this case n−2),
as long as it is summable, one can actually show that the system has exponential
decay of correlations of Hölder observables against L∞(µ), i.e., C1 is the space of
Hölder continuous and C2 is L∞(µ). (See [1, Theorem B].)

Now, we give an abstract result in the random setting which concludes by stating
that by adding random noise, regardless of the point ζ chosen, we always get an EI
equal to 1.

Theorem D. Consider a dynamical system (M × Ω,B, µε × θNε , S), where M =
T
d, for some d ∈ N, f : M → M is a deterministic system which is randomly

perturbed as in (2.2) with noise distribution given by (2.1) and S is the skew product
map defined in (2.4). Assume that there exists η > 0 such that dist(f(x), f(y)) ≤
ηdist(x, y), for all x, y ∈ M. Assume also that the stationary measure µε is such
that µε = hεLeb, with 0 < hε ≤ hε ≤ hε < ∞. Suppose that there exists a
Banach space C of real valued functions defined on M such that for all φ ∈ C and
ψ ∈ L1(µε),

(2.22) Corµε×θNε (φ, ψ, n) ≤ Cn−2,

where Corµε×θNε (·) is defined as in (2.5) and C > 0 is a constant independent of
both φ, ψ.

For any point ζ ∈ M, consider that X0, X1, . . . is defined as in (2.7), let un be
such that (2.10) holds and assume that Un is defined as in (2.12). If there exists
C ′ > 0 such that for all n we have 1Un ∈ C and ‖1Un‖C ≤ C ′, then the stochastic
process X0, X1, . . . satisfies D2(un) and D

′(un), which implies that we have an EVL
for Mn such that H̄(τ) = e−τ .

Again, using the connection between EVLs and HTS/RTS we get

Corollary E. Under the same hypothesis as Theorem D, we have exponential
HTS/RTS for balls around ζ, in the sense that (2.15) and (2.16) hold with G(t) =

G̃(t) = 1− et and Vn = Bδn(ζ)× Ω, where δn → 0, as n→ ∞.

Moreover, appealing to [10, Theorem 5] once again, we have

Corollary F. Under the same hypothesis as Theorem D, the stochastic process
X0, X1, . . . satisfies D3(un) and D′(un), which implies that the REPP Nn defined

in (2.20) is such that Nn
d−→ N , as n → ∞, where N denotes a Poisson Process

with intensity 1.

Remark 2.6. We remark that we do not need to consider that M is a d-dimensional
torus in order to apply the theory. Basically, we only need that fω(M) ⊂ M, for
all ω ∈ Bε(0). As we will see in more detail in Section 4, for example, piece-
wise expanding maps of the interval, with finitely many branches, satisfy all the
conclusions of Theorem D .

3. Extremal Index dichotomy for deterministic systems

In this section we will start by proving Theorem A, Corollary C and a simple
lemma asserting that continuity is enough to guarantee that Rn → ∞, as n→ ∞.

Next, we give examples of systems to which we can apply Theorem A in order
to prove a dichotomy regarding the existence of an EI equal to 1 or less than 1,
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depending on whether ζ is non-periodic or periodic, respectively. This will be done
for uniformly expanding and piecewise expanding maps, when all points in the orbit
of ζ are continuity points of the map.

In the third subsection, we will consider Rychlik maps, which are piecewise
expanding maps of the interval, and will analyse the EI also in the cases when the
orbit of ζ hits a discontinuity point of the map.

3.1. Decay against L1 implies exponential EVL at non-periodic points.

Proofs of Theorem A and Corollary C. As explained in [14, Section 5.1], condi-
tions D2(un) and D3(un) are designed to follow easily from decay of correlations.
In fact, if we choose φ = 1Un and ψ = 1{Mℓ≤un}, in the case of D2(un), and
ψ = 1N (A)=0, for some A ∈ R, in the case of D3(un), we have that we can take

γ(n, t) = C∗t−2, where C∗ = CC ′. Hence, conditions D2(un) and D3(un) are
trivially satisfied for the sequence (tn)n given by tn = n2/3, for example.

Now, we turn to condition D′(un). Taking ψ = φ = 1Un in (2.21) and since
‖1Un‖C ≤ C ′, we easily get

µ
(
Un ∩ f−j(Un)

)
≤(µ(Un))

2 +C ‖1Un‖C ‖1Un‖L1(µ) j
−2 ≤ (µ(Un))

2+C∗µ(Un)j
−2,

(3.1)

where C∗ = CC ′ > 0. By definition of Rn, estimate (3.1) and since nµ(Un) → τ as
n→ ∞, it follows that there exists some constant D > 0 such that

n

⌊n/kn⌋∑

j=1

µ(Un ∩ f−j(Un))

= n

⌊n/kn⌋∑

j=Rn

µ(Un ∩ f−j(Un)) ≤ n
⌊
n
kn

⌋
µ(Un)

2 + nC∗µ(Un)

⌊n/kn⌋∑

j=Rn

j−2

≤ (nµ(Un))
2

kn
+ nC∗µ(Un)

∞∑

j=Rn

j−2 ≤ D


 τ2

kn
+ τ

∞∑

j=Rn

j−2


 −−−−→

n→∞
0.

�

Remark 3.1. In the above demonstration it is important to use the L1-norm to
obtain the factor µ(Un) in the second summand of the last term in (3.1), which is
crucial to kill off the n factor coming from the definition of D′(un). However, note
that we actually do not need decay of correlations against L1 in its full strength,
which means that it holds for all L1 functions. In fact, in order to prove D′(un) we
only need it to hold for the functions 1Un .

Also, note that we do not need such a strong statement regarding the decay
of correlations of the system in order to prove D2(un) or D3(un). In particular,
even if 1Un /∈ C (as when C is the space of Hölder continuous functions), we can
still verify these conditions by using a suitable Hölder approximation. (See [14,
Proposition 5.2].)

According to Theorem A, in general terms, if the system has decay of correlations
against L1 observables, then to prove D′(un) one has basically to show that Rn →
∞, as n→ ∞. Next lemma gives us a sufficient condition for that to happen.
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Lemma 3.1. Assume that ζ is not a periodic point and that f is continuous at
every point of the orbit of ζ, namely ζ, f(ζ), f2(ζ), . . .. Then limn→∞Rn = ∞,
where Rn is as in Theorem A.

Proof. Let j ∈ N. We will show that if n ∈ N is sufficiently large, then Rn > j. Let
ǫ = mini=1,...,j dist(f

i(ζ), ζ). Our assumptions assure that each f i, for i = 1, . . . , j,
is continuous at ζ. Hence, for every i = 1, . . . , j, there exists δi > 0 such that

f i(Bδi(ζ)) ⊂ Bǫ/2(f
i(ζ)). Let U :=

⋂j
i=1Bδi(ζ). If we choose N sufficiently

large that Un ⊂ U for all n ≥ N , then using the definition of ǫ it is clear that
f i(Un) ∩ Un = ∅, for all i = 1, . . . , j, which implies that Rn > j. �

3.2. The dichotomy for specific systems. One of the results in [12] is that for
uniformly expanding systems like the doubling map, there is a dichotomy in terms
of the type of laws of rare events that one gets at every possible centre ζ. Namely,
it was shown that either ζ is non-periodic, in which case one always gets a standard
exponential EVL/HTS, or ζ is a periodic (repelling) point, in which case one obtains
an exponential law with an EI 0 < ϑ < 1 given by the expansion rate at ζ (see
[12, Section 6]). This was proved for cylinders rather than balls, meaning that the
sets Un are dynamically defined cylinders (see [12, Section 5] or [11, Section 5], for
details). Results for cylinders are weaker than the ones for balls, since, in rough
terms, it means that the limit is only obtained for certain subsequences of n ∈ N

rather than for the whole sequence.
In [12], it was conjectured that this dichotomy should hold in greater generality,

namely for balls rather than cylinders and more general systems. As a consequence
of Theorem A we will be able to show that the dichotomy indeed holds for balls
and more general systems. We remark that from the results in [8], one can also
derive the dichotomy for conformal repellers and, in [20], the dichotomy is also
obtained for maps with a spectral gap for their Perron-Frobenius operator. In both
these papers, the results were obtained by studying the spectral properties of the
Perron-Frobenius operator.

3.2.1. Rychlik maps. We will introduce a class of dynamical systems considered by
Rychlik in [27]. This class includes, for example, piecewise C2 uniformly expanding
maps of the unit interval with the relevant physical measures. We first need some
definitions.

Definition 3.1. Given a potential ψ : Y → R on an interval Y , the variation of ψ
is defined as

Var(ψ) := sup

{
n−1∑

i=0

|ψ(xi+1)− ψ(xi)|
}
,

where the supremum is taken over all finite ordered sequences (xi)
n
i=0 ⊂ Y .

We use the norm ‖ψ‖BV = sup |ψ|+Var(ψ), which makes BV := {ψ : Y → R :
‖ψ‖BV <∞} into a Banach space. We also define

Snψ(x) := ψ(x) + · · ·+ ψ ◦ fn−1(x).

Definition 3.2. For a measurable potential ψ : X → R, we define the pressure of
(X , f, φ) to be

P (φ) := sup
P∈Mf

{
h(P) +

∫
φ dP : −

∫
φ dP <∞

}
,
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where Mf is the set of f -invariant probability measures and h(P) denotes the
metric entropy of the measure P; see [31] for details. If P is an invariant probability
measure such that h(Pφ) +

∫
φ dP = P (φ), then we say that P is an equilibrium

state.

Definition 3.3. A measure m is called a φ-conformal measure if m(M) = 1 and if
whenever f : A→ f(A) is a bijection, for a Borel set A, thenm(f(A)) =

∫
A
e−φ dm.

Therefore, if fn : A→ fn(A) is a bijection, then m(fn(A)) =
∫
A
e−Snφ dm.

Definition 3.4 (Rychlik system). (Y, f, ψ) is a Rychlik system if Y is an interval,
{Yi}i is an at most countable collection of open intervals such that

⋃
i Y i ⊃ Y

(where Y i is the closure of Yi), f :
⋃
i Yi → Y is a function continuous on each

Yi, which admits a continuous extension to the closure of Yi that we denote by
fi : Y i → Y and ψ : Y → [−∞,∞) is a potential such that

(1) fi : Y i → f(Y i) is a diffeomorphism;
(2) Var eψ < +∞, ψ = −∞ on Y \⋃i Yi and P (ψ) = 0;
(3) there is a ψ-conformal measure mψ on Y ;
(4) (f, ψ) is expanding: supx∈Y ψ(x) < 0.

Rychlik [27] proved that these maps have exponential decay of correlations
against L1 observables. To be more precise, if (Y, f, ψ) is a topologically mixing
Rychlik system, then there exists an equilibrium state µψ = hmψ where h ∈ BV
andmψ and µψ are non-atomic and (Y, f, µψ) has exponential decay of correlations,
i.e., there exists C > 0 and γ ∈ (0, 1) such that

(3.2)

∣∣∣∣
∫
ς ◦ fn · φ dµψ −

∫
ς dµψ

∫
φ dµψ

∣∣∣∣ ≤ C‖ς‖L1(µψ)‖φ‖BV γn,

for any ς ∈ L1(µψ) and φ ∈ BV . Note that, in the original statement, instead
of the L1(µψ)-norm, the L1(mψ)-norm appeared. However, we will assume that
h > c, for some c > 0, which means that we can write (3.2) as it is. We remark
that h being bounded below by a positive constant is not very restrictive. That
is the case if, for example, h is lower semi-continuous (see [5, Theorem 8.2.3]) or
if the system has summable variations as does uniformly expanding systems with
Hölder continuous potentials.

Let S = Y \ ⋃i Yi and define Λ := {x ∈ Y : fn(x) /∈ S, for all n ∈ N0}. As a
consequence of Theorem A, Corollary C and Lemma 3.1 it follows immediately:

Proposition 3.2. Suppose that (Y, f, ψ) is a topologically mixing Rychlik system,
ψ is Hölder continuous on each Y i, and µ = µψ is the corresponding equilibrium

state such that
dµψ
dmψ

> c, for some c > 0. Let X0, X1, . . . be given by (2.6), where

ϕ achieves a global maximum at some point ζ. Then we have an EVL for Mn and

(1) if ζ ∈ Λ is not a periodic point, then the EVL is such that H̄(τ) = e−τ and
the REPP Nn converges in distribution to a standard Poisson process N of
intensity 1;

(2) if ζ ∈ Λ is a (repelling) periodic point of prime period p, then the EVL is
such that H̄(τ) = e−ϑτ , where the EI is given by ϑ = 1 − eSpψ(ζ) and the
REPP Nn converges in distribution to a compound Poisson process N with
intensity ϑ and multiplicity d.f. π given by π(κ) = ϑ(1 − ϑ)κ, for every
κ ∈ N0.
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Proof. We start by noting that statement (2) has already been proved in [12, Propo-
sition 2] and [13, Corollary 3].

Regarding statement (1), first note that for Rychlik maps, (3.2) clearly implies
that condition (2.21) is satisfied. Besides, since Un must be an interval, then
1Un ∈ BV and ‖1Un‖BV ≤ 2. Moreover, by definition of Λ, we can apply Lemma 3.1
and consequently obtain that limn→∞Rn = ∞. Hence, we are now in a condition
of applying Theorem A and Corollary C to obtain the result. �

3.2.2. Piecewise expanding maps in higher dimensions. As a second example, we
will consider multidimensional piecewise uniformly expanding maps for which we
follow the definition given by Saussol [28]. As pointed out in [1], these maps general-
ize Markov maps which also contain one-dimensional piecewise uniformly expanding
maps.

We need some notation: dist(·, ·) being the usual metric in R
N , given any ε > 0,

we introduce Bε(x) = {y ∈ R
N : dist(x, y) < ε}. Moreover, Z being a compact

subset of RN , for any A ⊂ Z and given a real number c > 0, we write Bc(A) =
{x ∈ R

N : dist(x,A) ≤ c}; Z◦ stands for the interior of Z, and Z is the closure.

Definition 3.5 (Multidimensional piecewise expanding system). (Z, f, µ) is a mul-
tidimensional piecewise expanding system if Z is a compact subset of R

N with
Z◦ = Z, f : Z → Z and {Zi} is a family of at most countably many disjoint open

sets such that Leb(Z \⋃i Zi) = 0 and there exist open sets Z̃i ⊃ Zi and C
1+α maps

fi : Z̃i → R
N , for some real number 0 < α ≤ 1 and some sufficiently small real

number ε1 > 0 such that for all i,

(1) fi(Z̃i) ⊃ Bε1(f(Zi));

(2) for x, y ∈ f(Zi) with dist(x, y) ≤ ε1,

| detDf−1
i (x)− detDf−1

i (y)| ≤ c| detDf−1
i (x)|dist(x, y)α;

(3) there exists s = s(f) < 1 such that ∀x, y ∈ f(Z̃i) with dist(x, y) ≤ ε1, we
have

dist(f−1
i x, f−1

i y) ≤ s dist(x, y);

(4) let us put G(ε, ε1) := supxG(x, ε, ε1), where

(3.3) G(x, ε, ε1) :=
∑

i

Leb(f−1
i Bε(∂fZi) ∪B(1−s)ε1(x))

Leb(B(1−s)ε1(x))

and assume that sup
δ≤ε1

(
sα + 2 sup

ε≤δ

G(ε)
εα δα

)
< 1.

Now, let us introduce the space of quasi-Hölder functions in which the spectrum
of the corresponding Perron-Frobenius operator is investigated. Given a Borel set
Γ ⊂ Z, we define the oscillation of ϕ ∈ L1(Leb) over Γ as

osc(ϕ,Γ) := ess sup
Γ

ϕ− ess inf
Γ

ϕ.

It is easy to verify that x 7→ osc(ϕ,Bε(x)) defines a measurable function (see
[28, Proposition 3.1]). Given real numbers 0 < α ≤ 1 and ε0 > 0, we define the
α-seminorm of ϕ as

|ϕ|α = sup
0<ε≤ε0

ε−α
∫

RN

osc(ϕ,Bε(x)) dLeb(x).
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Let us consider the space of functions with bounded α-seminorm,

Vα = {ϕ ∈ L1(Leb) : |ϕ|α <∞},
and endow Vα with the norm

‖ · ‖α = ‖ · ‖L1(Leb) + | · |α
which makes it into a Banach space. We note that Vα is independent of the choice
of ε0. According to [28, Theorem 5.1], there exists an absolutely continuous invari-
ant probability measure (a.c.i.p.) µ. Also in [28, Theorem 6.1], it is shown that
on the mixing components µ enjoys exponential decay of correlations against L1

observables on Vα. More precisely, if the map f is as defined above and if µ is the
mixing a.c.i.p., then there exist constants C <∞ and γ < 1 such that
(3.4)∣∣∣
∫

Z

ψ ◦ fn h dµ
∣∣∣ ≤ C‖ψ‖L1‖h‖αγn, ∀ψ ∈ L1, where

∫
ψ dµ = 0 and ∀h ∈ Vα.

We refer the reader to [28] for the exact values of the above constants. We point out
that the L1-norm on the right hand side should be intended with respect to Leb.
Whenever the density of µ is bounded from below and Lebesgue almost everywhere
by a strictly positive constant, such an L1-norm could be extended to µ; see also
Appendix C.4 in [1] for a similar derivation.

Let S = Z \ ⋃i Zi and define Λ := {x ∈ Z : fn(x) /∈ S, for all n ∈ N0}. As a
consequence of Theorem A, Corollary C and Lemma 3.1 it follows immediately:

Proposition 3.3. Suppose that (Z, f, µ) is a topologically mixing multidimensional
piecewise expanding system and µ is its a.c.i.p. with a Radon-Nikodym density
bounded away from zero. Let X0, X1, . . . be given by (2.6), where ϕ achieves a
global maximum at some point ζ. Then we have an EVL for Mn and

(1) if ζ ∈ Λ is not a periodic point, then the EVL is such that H̄(τ) = e−τ and
the REPP Nn converges in distribution to a standard Poisson process N of
intensity 1;

(2) if ζ ∈ Λ is a (repelling) periodic point of prime period p, then the EVL is
such that H̄(τ) = e−ϑτ , where the EI is given by ϑ = 1 − | detD(f−p)(ζ)|
and the REPP Nn converges in distribution to a compound Poisson process
N with intensity ϑ and multiplicity d.f. π given by π(κ) = ϑ(1 − ϑ)κ, for
every κ ∈ N0.

Proof. Statement (2) has already been proved in [13, Corollary 4].
For proving (1), we can start by remarking that condition (2.21) is satisfied

since we have (3.4). Since Un corresponds to a ball, by definition of | · |α, it follows
easily that 1Un ∈ Vα and ‖1Un‖α is uniformly bounded by above. Now, consid-
ering the definition of Λ, we can apply Lemma 3.1 and consequently obtain that
limn→∞Rn = ∞. The result then follows by applying Theorem A and Corol-
lary C. �

3.3. The extremal behaviour at discontinuity points. In this section, we go
back to Rychlik maps introduced in Section 3.2.1, but with finitely many branches,
and study the extremal behaviour of the system when the orbit of ζ hits a discon-
tinuity point of the map.

Consider a point ζ ∈ Y . Note that here we consider at most finitely many
collections of open intervals such that

⋃
i Y i ⊃ Y . If ζ ∈ Λ, then we say that
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ζ is a simple point. If ζ is a non-simple point, which means that rS(ζ) is finite,
then let ℓ = rS(ζ) and z = f ℓ(ζ). We will always assume that z ∈ S is such
that: there exist i+, i− ∈ N so that z is the right end point of Yi− and the left
end point of Yi+ . We consider that the point z is doubled and has two versions,
z+ ∈ Yi+ and z− ∈ Yi− , so that f(z+) := fi+(z) = limx→z, x∈Y

i+
f(x) and f(z−) :=

fi−(z) = limx→z, x∈Y
i−
f(x). When ζ is a non-simple point we consider that its

orbit bifurcates when it hits S and consider its two possible evolutions. We express
this fact by saying that when ζ is non-simple we consider the “orbits” of ζ+ and
ζ− which are defined in the following way:

• for j = 1, . . . , ℓ we let f j(ζ±) := f j(ζ);
• for j = ℓ+ 1, we define f j(ζ±) := fi±(f

j−1(ζ±));
• for j > ℓ+ 1 we consider two possibilities:

– if j− 1 is such that f j−1(ζ±) /∈ S, then we set f j(ζ±) := f(f j−1(ζ±)),
– otherwise we set f j(ζ±) := fi(f

j−1(ζ±)), where i is such that f j−ℓ(z±)
∈ Yi.

Remark 3.2. Note that for the “orbits” of ζ± just defined above, there is a sequence
(i±j )j∈N such that, for all n ∈ N, we have fn(ζ±) ∈ Y i±n and fn(ζ±) = fi±n ◦ · · · ◦
fi±1

(ζ). Also observe that, in the notation above, i±ℓ = i±.

A non-simple point ζ is aperiodic if for all j ∈ N we have f j(ζ+) 6= ζ 6= f j(ζ−).

If there exists p± such that fp
±

(ζ±) = ζ and for j = 1, . . . , p± − 1 we have
f j(ζ±) 6= ζ, but, for all j ∈ N, we have f j(ζ∓) 6= ζ, then we say that ζ is singly

returning. If ζ is singly returning and f±(ζ±) = ζ±, which means that fp
±

(z±) ∈
Yi± , then we say that ζ is a singly periodic point of period p±.

ζ

6

fp
+

Figure 1. Singly returning, singly periodic ζ

If ζ is singly returning and fp
±

(ζ±) = ζ∓, which means that fp
±

(z±) ∈ Yi∓ ,
then we say that ζ is an eventually aperiodic point.

ζ

6

fp
+

Figure 2. Singly returning, eventually aperiodic ζ

If there exist p+ and p− such that fp
+

(ζ+) = ζ = fp
−

(ζ−) and for j = 1, . . . ,
p+ − 1 and k = 1, . . . , p− − 1 we have f j(ζ+) 6= ζ 6= fk(ζ−), then we say that ζ is
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doubly returning. In the case ζ is a doubly returning point and both fp
+

(ζ+) = ζ+

and fp
−

(ζ−) = ζ−, then we say that ζ is doubly periodic with periods p+ and p−,
respectively.

ζ

6

fp
+

6

fp
−

Figure 3. Doubly returning, doubly periodic ζ (no switches)

If ζ is doubly returning, fp
±

(ζ±) = ζ± and fp
∓

(ζ∓) = ζ±, then we say that ζ is
doubly returning with one switch.

ζ

6

fp
+

6

fp
−

Figure 4. Doubly returning ζ with one switch

If ζ is doubly returning, fp
±

(ζ±) = ζ∓ and fp
∓

(ζ∓) = ζ±, then we say that ζ is
doubly returning with two switches.

ζ

6

fp
−

6

fp
+

Figure 5. Doubly returning ζ with two switches

In what follows consider that

U±
n = Un ∩ f−ℓ(Yi±).

The main goals of this section are to compute the EI and also the limit for the
REPP at non-simple points as defined above. In the case of aperiodic non-simple
points, the analysis is very similar to the one held for non-periodic points, in the
previous sections, and we get an EI equal to 1 and the convergence of the REPP
to the standard Poisson process. In the case of singly returning and doubly return-
ing points, we have periodicity and consequently clustering. This means that the
analysis should follow the footsteps of [12,13] with the necessary adjustments. For
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completeness we include a brief review of the results needed in Appendix A and in
particular the formulas (B.1) and (B.2) in Appendix B, that we will use to compute
the EI and the multiplicity distribution of the limiting compound Poisson process.

Proposition 3.4. Suppose that (Y, f, ψ) is a topologically mixing Rychlik system
with finitely many branches, ψ is Hölder continuous on each Y i, and µ = µψ is the
corresponding equilibrium state. Let X0, X1, . . . be given by (2.6), where ϕ achieves
a global maximum at some point ζ ∈ Y \Λ. Let un be such that (2.10) holds and Un
be defined as in (2.12). We assume that µ(U±

n ) ∼ α±µ(Un), where 0 < α−, α+ < 1
and α− + α+ = 1. Then we have an EVL for Mn and

(1) if ζ is an aperiodic non-simple point, then the EVL is such that H̄(τ) = e−τ ;
(2) if ζ is a non-simple, repelling singly returning point, then the EVL is such

that H̄(τ) = e−ϑτ , where the EI is given by ϑ = 1− α±eSp±ψ(ζ
±);

(3) if ζ is a non-simple, repelling doubly returning point, then the EVL is

such that H̄(τ) = e−ϑτ , where the EI is given by ϑ = 1 − α+eSp+ψ(ζ
+) −

α−eSp−ψ(ζ
−), when ζ has no switches; ϑ = 1− α±(eSp+ψ(ζ

+) + eSp−ψ(ζ
−)),

when ζ has one switch; ϑ = 1 − α−eSp+ψ(ζ
+) − α+eSp−ψ(ζ

−), when ζ has
two switches.

Remark 3.3. We remark that, in the particular case when µψ is absolutely contin-
uous with respect to the Lebesgue measure and the invariant density is continuous
at the points ζ considered in the proposition above, the formulas for the EI can be
seen as special cases of the formula in [20, Remark 8].

Proof. If ζ is an aperiodic non-simple point, then we just have to mimic the ar-
gument for non-periodic points in the previous sections. The proof of D2(un) is
done exactly as before. Using decay of correlations against L1, stated in (3.2), the
proof that D′(un) holds for these points follows the same footsteps except for the
adjustments in order to consider the two possible evolutions corresponding to the
“orbits” of ζ+ and ζ−. For example, to prove that R(Un) → ∞, as n→ ∞, in the
argument of Lemma 3.1 we would define

ǫ = min

{
min

k=1,...,j
dist(fk(ζ+), ζ), min

k=1,...,j
dist(fk(ζ−), ζ)

}
,

and proceed as before.
When ζ is a non-simple (singly or doubly) returning point, we just need to adjust

the definition (A.1) of Qp(un) to cope with the two possibly different evolutions of
ζ+ and ζ−. Everything else, namely the proofs of conditions Dp(un) and D

′
p(un),

follows from decay of correlations against L1, stated in (3.2), exactly along the same
lines as in the proof of [13, Theorem 2]. Hence, essentially, for each different case
we have to define coherently Qp(un) and compute the EI using formula (B.1).

Assume first that ζ is a singly returning (eventually aperiodic or not) non-simple
point. Without loss of generality (w.l.o.g.), we also assume that there exists p such
that fp(ζ+) = ζ+. In this case, we should define Qp(un) = U−

n ∪ (U+
n \ f−p(Un)),

as seen in Figure 6.
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6 6

U−
n U+

n \ f−p(Un)

ζ

6

fp
Figure 6. Qp = U−

n ∪ (U+
n \ f−p(Un))

We can now compute the EI:

ϑ = lim
n→∞

µ(Qp(un))

µ(Un)
= lim
n→∞

µ(U−
n ) + (1− eSpψ(ζ

+))µ(U+
n )

µ(Un)

= lim
n→∞

α−µ(Un) + α+(1− eSpψ(ζ
+))µ(Un)

µ(Un)
= 1− α+eSpψ(ζ

+).

Let ζ be a non-simple, repelling doubly returning point and p−, p+ be such that

fp
−

(ζ−) = ζ and fp
+

(ζ+) = ζ . For definiteness, we assume w.l.o.g. that p− < p+.
First we consider the case where no switching occurs. In this case, we have

two different “periods”, hence we should define Qp−,p+(un) =
(
U−
n \ f−p−(U−

n )
)
∪

(
U+
n \ f−p+(U+

n )
)
.

6 6

U−
n \ f−p−(U−

n ) U+
n \ f−p+(U+

n )

ζ

6

fp
+

6

fp
−

Figure 7. Qp−,p+(un) =
(
U−
n \ f−p−(U−

n )
)
∪
(
U+
n \ f−p+(U+

n )
)

It follows that

ϑ = lim
n→∞

α−(1− eSpψ(ζ
−))µ(Un) + α+(1− eSpψ(ζ

+))µ(Un)

µ(Un)

= 1− α−eSpψ(ζ
−) − α+eSpψ(ζ

+).

Next, we consider the case with one switch. In this case, we also have two dif-

ferent “periods”, and for definiteness we assume w.l.o.g. that fp
−

(ζ−) = ζ− and

fp
+

(ζ+)=ζ−. Then we defineQp−,p+(un)=
(
U−
n \ f−p−(U−

n )
)
∪
(
U+
n \ f−p+(U−

n )
)
.
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6 6

U−
n \ f−p−(U−

n ) U+
n \ f−p+(U−

n )

ζ

6

fp
+

6

fp
−

Figure 8. Qp−,p+(un) =
(
U−
n \ f−p−(U−

n )
)
∪
(
U+
n \ f−p+(U−

n )
)

It follows that

ϑ = lim
n→∞

α−(1− eSpψ(ζ
−))µ(Un) + α−(1− eSpψ(ζ

+))µ(Un)

µ(Un)

= 1− α−eSpψ(ζ
−) − α−eSpψ(ζ

+).

Finally, we consider the case with two switches. In this case, we also have

two different “periods” and we should define Qp−,p+(un) =
(
U−
n \ f−p−(U+

n )
)
∪

(
U+
n \ f−p+(U−

n )
)
.

6 6

U−
n \ f−p−(U+

n ) U+
n \ f−p+(U−

n )

ζ

6

fp
−

6

fp
+

Figure 9. Qp−,p+(un) =
(
U−
n \ f−p−(U+

n )
)
∪
(
U+
n \ f−p+(U−

n )
)

It follows that

ϑ = lim
n→∞

α+(1− eSpψ(ζ
−))µ(Un) + α−(1− eSpψ(ζ

+))µ(Un)

µ(Un)

= 1− α−eSpψ(ζ
+) − α+eSpψ(ζ

−).

�

The next result gives the convergence of the REPP at non-simple points. Note
that, contrary to the usual geometric distribution obtained, for example, in [6,
13, 16], here the multiplicity distribution is quite different. In fact, for eventually
aperiodic returning points, for example, we have that π(κ) = 0 for all κ ≥ 3.

Proposition 3.5. Let a± := eSp±ψ(ζ
±). Under the same assumptions as Proposi-

tion 3.4, we have:
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(1) if ζ is an aperiodic non-simple point, then the REPP converges to a standard
Poisson process of intensity 1;

(2) if ζ is a non-simple, singly returning point
(a) not eventually aperiodic, then the REPP converges to a compound

Poisson process of intensity ϑ, given in Proposition 3.4, and multi-
plicity distribution defined by:

π(1) = ϑ−(1−ϑ)(1−a±)
ϑ , π(κ) = α±(1−a±)2(a±)−(κ−1)

ϑ , κ ≥ 2.

(b) eventually aperiodic, then the REPP converges to a compound Pois-
son process of intensity ϑ, given in Proposition 3.4, and multiplicity
distribution defined by:

π(1) = 2ϑ−1
ϑ , π(2) = 1−ϑ

ϑ , π(κ) = 0, κ ≥ 3.

(3) if ζ is a non-simple, repelling doubly returning point
(a) with no switches, then the REPP converges to a compound Poisson

process of intensity ϑ, given in Proposition 3.4, and multiplicity dis-
tribution defined by:

π(1) = 2ϑ−1+α−(a−)2+α+(a+)2

ϑ ,

π(κ) = α−(1−a−)2(a−)−(κ−1)+α−(1−a+)2(a+)−(κ−1)

ϑ , κ ≥ 2.

(b) with one switch, then the REPP converges to a compound Poisson
process of intensity ϑ, given in Proposition 3.4, and multiplicity dis-
tribution defined by:

π(1) = 2ϑ−1+a±(1−ϑ)
ϑ , π(κ) = (1−ϑ)(a±)κ−2(1−a±)2

ϑ , κ ≥ 2.

(c) with two switches, then the REPP converges to a compound Poisson
process of intensity ϑ, given in Proposition 3.4, and multiplicity dis-
tribution defined by:

π(1) = 1−2(1−ϑ)+a−a+
ϑ , π(2j) =

(a−a+)j−1((1−ϑ)(1+a−a+)−2a−a+)
ϑ ,

π(2j + 1) =
(a−a+)j(1−2(1−ϑ)+a−a+)

ϑ , j ≥ 1.

Proof. When ζ is an aperiodic non-simple point, then as we have seen in Proposi-
tion 3.4, condition D′(un) holds. Clearly, D3(un) follows from decay of correlations
and, by [10, Theorem 5], we easily conclude that the REPP converges to the stan-
dard Poisson process of intensity 1.

When ζ is a non-simple (singly or doubly) returning point, we just need to adjust
the definition of the sets U (κ) given in (A.3), which ultimately affects the sets Qκp(u),

given in (A.4), in order to cope with the two possibly different evolutions of ζ+ and
ζ−. Everything else, namely the proofs of conditions Dp(un)

∗ and D′
p(un)

∗, follows
from decay of correlations against L1, stated in (3.2), exactly along the same lines
as in the proof of [13, Theorem 2]. Hence, essentially, for each different case we
have to define coherently the sets U (κ) and compute the multiplicity distribution
using formula (B.2).

In all cases, U (0) = Un = U−
n ∪ U+

n .
Let ζ be a singly returning non-simple point which is not eventually aperiodic.

We assume w.l.o.g. that there exists p such that fp(ζ+) = ζ+ and f j(ζ−) 6= ζ, for
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all j ∈ N. For every κ ∈ N, we define

U (κ) :=

(
κ⋂

i=0

f−ip(U+
n )

)
.

Using (A.4), we can now easily define Qκ := U (κ) \ U (κ+1), for all κ ≥ 0. We have
P(Q0) ∼ P(Un) − a+P(U+

n ) ∼ P(Un)(1 − α+a+). The same computations would
lead us to P(Qκ) ∼ P(Un)(α

+(1− a+)(a+)κ). Using formula (B.2), it follows that

π(1) = lim
n→∞

P(Q0)−P(Q1)
P(Q0) = (1−α+a+)−(α+(1−a+)a+)

(1−α+a+) = ϑ−(1−ϑ)(1−a±)
ϑ ,

π(κ) = lim
n→∞

P(Qκ−1)−P(Qκ)

P(Q0) = (α+(1−a+)(a+)κ−1)−(α+(1−a+)(a+)κ)
(1−α+a+)

= α+(1−a+)2(a+)κ−1

ϑ .

Let ζ be a singly returning non-simple point which is eventually aperiodic. We
assume w.l.o.g. that there exists p such that fp(ζ+) = ζ− and f j(ζ−) 6= ζ, for all
j ∈ N. For every κ ∈ N, we define

U (1) :=
(
U+
n ∩ f−ip(U−

n )
)
, U (κ) := ∅, κ ≥ 2.

Note that Q0 = Un \ U (1), Q1 = U (1) and Qκ = ∅, for all κ ≥ 2. We have
P(Q0) ∼ P(Un)− a+P(U−

n ) ∼ P(Un)(1− α−a+), P(Q1) ∼ P(Un)α
−a+, P(Qκ) = 0,

for all κ ≥ 2. Using formula (B.2), it follows that

π(1) = lim
n→∞

P(Q0)−P(Q1)
P(Q0)

= (1−α−a+)−(α−a+)
(1−α−a+) = 2ϑ−1

ϑ ,

π(2) = lim
n→∞

P(Q1)−P(Q2)
P(Q0) = α−a+

(1−α−a+)

= 1−ϑ
ϑ , π(κ) = 0, k ≥ 3.

Let ζ be a doubly returning non-simple point with no switches. Let p−, p+ be

such that fp
−

(ζ−) = ζ− and fp
+

(ζ+) = ζ+. For every κ ∈ N, we define

U (κ) :=

(
κ⋂

i=0

f−ip
−

(U−
n )

)
∪
(

κ⋂

i=0

f−ip
+

(U+
n )

)
.

Note that using (A.4), we can now easily define Qκ := U (κ) \ U (κ+1), for all κ ≥ 0.
We have P(Q0) ∼ P(Un)− a−P(U−

n )− a+P(U+
n ) ∼ P(Un)(1−α−a− −α+a+). The

same computations would lead us to

P(Qκ) ∼ P(Un)(α
−(1− a−)(a−)κ + α+(1− a+)(a+)κ).

Using formula (B.2), it follows that

π(1) = lim
n→∞

P(Q0)−P(Q1)
P(Q0) = (1−α−a−−α+a+)−(α−(1−a−)a−+α+(1−a+)a+)

(1−α−a−−α+a+)

= 2ϑ−1+α−(a−)2+α+(a+)2

ϑ ,

π(κ) = lim
n→∞

P(Qκ−1)−P(Qκ)

P(Q0) = α−(1−a−)2(a−)κ−1+α+(1−a+)2(a+)κ−1

ϑ .
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Let ζ be a doubly returning non-simple point with one switch. We assume

w.l.o.g. that there exist p−, p+ such that fp
−

(ζ−) = ζ− and fp
+

(ζ+) = ζ−. For
every κ ∈ N, we define

U (κ) :=

(
κ⋂

i=0

f−ip
−

(U−
n )

)
∪
(
U+
n ∩ f−p+(U−

n ) ∩
κ⋂

i=0

f−p
+−ip−(U−

n )

)
.

Using (A.4), we can now easily define Qκ := U (κ) \ U (κ+1), for all κ ≥ 0. We have
P(Q0) ∼ P(Un) − a−P(U−

n ) − a+P(U−
n ) ∼ P(Un)(1 − α−a− − α−a+). The same

computations would lead us to

P(Qκ) ∼ P(Un)(α
−(1− a−)(a−)κ + α−(1− a−)a+(a−)κ−1).

Using formula (B.2), it follows that

π(1) = lim
n→∞

P(Q0)−P(Q1)
P(Q0) = (1−α−(a−+a+))−(α−(1−a−)a−+α−(1−a−)a+)

(1−α−a−−α−a+)

= 2ϑ−1+a−(1−ϑ)
ϑ ,

π(κ) = lim
n→∞

P(Qκ−1)−P(Qκ)

P(Q0) = α−(1−a−)2(a−)κ−1+α−(1−a−)2a+(a−)κ−2

ϑ

= (1−ϑ)(a−)κ−2(1−a−)2

ϑ .

Let ζ be a doubly returning non-simple point with two switches. We assume that

there exist p−, p+ such that fp
−

(ζ−) = ζ+ and fp
+

(ζ+) = ζ−. For every j ∈ N0,
we define

U (2j+1) :=

(
U−
n ∩

j+1⋂

i=1

f−ip
−−(i−1)p+(U+

n ) ∩
j⋂

i=1

f−ip
−−ip+(U−

n )

)

∪
(
U+
n ∩

j+1⋂

i=1

f−ip
+−(i−1)p−(U−

n ) ∩
j⋂

i=1

f−ip
+−ip−(U+

n )

)
,

U (2j) :=

(
U−
n ∩

j⋂

i=1

f−ip
−−(i−1)p+(U+

n ) ∩
j⋂

i=1

f−ip
−−ip+(U−

n )

)

∪
(
U+
n ∩

j⋂

i=1

f−ip
+−(i−1)p−(U−

n ) ∩
j⋂

i=1

f−ip
+−ip−(U+

n )

)
.

Using (A.4), we can now easily define Qκ := U (κ) \ U (κ+1), for all κ ≥ 0. We have
P(Q0) ∼ P(Un) − a−P(U+

n ) − a+P(U−
n ) ∼ P(Un)(1 − α+a− − α−a+). The same

computations would lead us to P(Q2j) ∼ P(Un)(1 − α+a− − α−a+)(a−a+)j and
P(Q2j) ∼ P(Un)(α

+a− + α−a+ − a−a+)(a−a+)j . Using formula (B.2), it follows
that, for every j ∈ N,

π(1) = lim
n→∞

P(Q0)−P(Q1)
P(Q0) = (1−α+a−−α−a+)−(α+a−+α−a+−a−a+)

(1−α+a−−α−a+) = 1−2(1−ϑ)+a−a+
ϑ ,

π(2j) = lim
n→∞

P(Q2j−1)−P(Q2j)
P(Q0) = (a−a+)j−1(α+a−(1+a−a+)+α−a+(1+a−a+)−2a−a+)

ϑ ,

π(2j + 1) = lim
n→∞

P(Q2j)−P(Q2j+1)
P(Q0) = (a−a+)j(1−2α+a−−2α−a++a−a+)

ϑ .

�
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4. Extremes for random dynamics

In this section we will start with the proof of Theorem D which states that
the dichotomy observed in Section 3 vanishes when we add absolutely continuous
noise (w.r.t. Lebesgue) and for every chosen point in the phase space we have a
standard exponential distribution for the EVL and HTS/RTS weak limits. We will
also certify that the REPP converges to a Poisson Process with intensity 1. Next,
we will give some examples of random dynamical systems for which we can prove
the existence of EVLs and HTS/RTS as well as the convergence of REPP.

In what follows, we denote the diameter of set A ⊂ M by

|A| := sup{dist(x, y) : x, y ∈ A},

and for any x ∈ M we define the translation of A by x as the set A+ x := {a+ x :
a ∈ A}.

4.1. Laws of rare events for random dynamics.

Proof of Theorem D. Firstly, we want to show that, as in the deterministic case,
the condition D2(un) can be deduced from the decay of correlations.

From our assumption the random dynamical system has (annealed) decay of
correlations, i.e., there exists a Banach space C of real valued functions such that
for all φ ∈ C and ψ ∈ L1(µε),

(4.1)
∣∣∣
∫
φ(U tεψ)(x) dµε −

∫
φ dµε

∫
ψ dµε

∣∣∣ ≤ C‖φ‖C‖ψ‖L1(µε)t
−2,

where C > 0 is a constant independent of both ϕ and ψ.
In proving D2(Un), the main point is to choose the right observable. We take

φ(x) = 1{X0>un} = 1{ϕ(x)>un},

ψ(x) =

∫
1{ϕ(x), ϕ◦fω̃1

(x), ... , ϕ◦fℓ−1
ω̃

(x)≤un} dθ
ℓ−1
ε (ω̃).

Substituting ψ in the random evolution operator, we get

(U tεψ)(x) =
∫∫

1{ϕ◦ftω(x), ... , ϕ◦fℓ−1
ω̃

◦ftω(x)≤un}
dθℓ−1
ε (ω̃)dθtε(ω).

Since all ωi’s and ω̃j ’s are chosen in an i.i.d. structure, we can rename the random
iterates, i.e., we lose no information in writing

(U tεψ)(x) =
∫

1{ϕ◦ftω(x), ... , ϕ◦ft+ℓ−1
ω (x)≤un}dθ

N

ε (ω).

Therefore, we get

∫
φ(x) (U tεψ)(x) dµε

=

∫
µε

(
ϕ(x) > un, ϕ ◦ f tω(x) ≤ un, . . . , ϕ ◦ f t+ℓ−1

ω (x) ≤ un

)
dθNε (ω).
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On the other hand,

∫
φ(x)dµε = µε(X0(x) > un) =

∫
µε(X0(x) > un) dθ

N

ε (ω),

∫
ψ(x)dµε =

∫ (∫
1{ϕ(x),ϕ◦fω1

(x), ... ,ϕ◦fℓ−1
ω (x)≤un}dµε

)
dθNε (ω)

=

∫
µε

(
ϕ(x) ≤ un, ϕ ◦ fω1

(x) ≤ un, . . . , ϕ ◦ f ℓ−1
ω (x) ≤ un

)
dθNε (ω).

Now, the decay of correlations can be written as

∣∣∣
∫
µε
(
X0(x) > un, ϕ ◦ f tω(x) ≤ un, . . . , ϕ ◦ f t+ℓ−1

ω (x) ≤ un
)
dθNε (ω)

−
∫
µε(ϕ(x) > un) dθ

N

ε (ω)

×
∫
µε
(
ϕ(x) ≤ un, ϕ ◦ fω1

(x) ≤ un, . . . , ϕ ◦ f ℓ−1
ω (x) ≤ un

)
dθNε (ω)

∣∣∣

≤ C‖φ‖C‖ψ‖L1(µε)t
−2,

which leads us to the conclusion that the condition D2(un) holds with

(4.2) γ(n, t) = γ(t) = C∗t−2

for some C∗ > 0 and tn = nβ , with 1/2 < β < 1.
For proving D′(un), the basic idea is to use the fact that we have decay of

correlations against L1 as in Theorem A and then to show that except for a small
set of ω’s, Rω(Un) grows at a sufficiently fast rate. Hence, we split Ω into two parts:
the ω’s for which Rω(Un) > αn and for which Rω(Un) ≤ αn, where (αn)n is some
sequence such that

(4.3) αn → ∞ and αn = o(log kn),

which is designed, on one hand, to guarantee that for the ω’s for which Rω(Un) >
αn, the argument using decay of correlations against L1 is still applicable and, on
the other hand, the set of the ω’s for which Rω(Un) ≤ αn has θNε small measure. To
show the latter we make an estimate on the ω’s that take the orbit of ζ too close
to itself.

First, note that since f is continuous (which implies that f jω is also continuous

for all j ∈ N) and η is the highest rate at which points can separate, the diameter of
f jω(Un) grows at most at a rate given by ηj , so, for any ω ∈ Ω we have |f jω(Un)| ≤
ηj |Un|. This implies that

(4.4) if dist(f jω(ζ), ζ) > 2ηj |Un| > |Un|+ ηj |Un|, then f jω(Un) ∩ Un = ∅.

Note that, by equation (4.4), if for all j = 1, . . . , αn we have dist(f jω(ζ), ζ) >

2ηj |Un|, then clearly Rω(Un) > αn. Hence, we may write that
{
ω : Rω(Un) ≤

αn
}
⊂ ⋃αn

j=1

{
ω : f jω(ζ) ∈ B2ηj |Un|(ζ)

}
. It follows that, there exists some C > 0
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such that

θNε
({
ω : Rω(Un) ≤ αn

})
≤

αn∑

j=1

∫
θε

({
ωj : f

(
f j−1
ω (ζ)

)
+ ωj ∈ B2ηj |Un|(ζ)

})
dθNε

=

αn∑

j=1

∫
θε

({
ωj : ωj ∈ B2ηj |Un|(ζ)− f

(
f j−1
ω (ζ)

)})
dθNε

=

αn∑

j=1

∫∫

B2ηj |Un|(ζ)−f(f
j−1
ω (ζ))

gε(x)dLeb dθ
N

ε

≤
αn∑

j=1

gεLeb
(
B2ηj |Un|(ζ)

)
=

αn∑

j=1

gεCη
jLeb(Un) ≤ CgεLeb(Un)

η

η − 1
ηαn .

Now, observe that

n

⌊n/kn⌋∑

j=1

P(Un ∩ f−jω (Un)) ≤ n

⌊n/kn⌋∑

j=αn

P

({
(x, ω) : x ∈ Un, f

j
ω(x) ∈ Un

})

+ n

⌊n/kn⌋∑

j=1

P

({
(x, ω) : x ∈ Un, R

ω(Un) ≤ αn
})

:= I + II.

Let us start by estimating I, which will be dealt with as in Section 3. Taking
ψ = φ = 1Un in (4.1) and since ‖1Un‖C ≤ C ′, we get

P
(
{(x, ω) : x ∈ Un, f

j
ω(x) ∈ Un}

)
≤ (µε(Un))

2 + C ‖1Un‖C ‖1Un‖L1(µε)
j−2

≤ (µε(Un))
2 + C∗µε(Un)j

−2,(4.5)

where C∗ = CC ′ > 0. Now observe that by definition of Un and (2.10), we have
that µǫ(Un) ∼ τ/n. Using this observation together with the definition of R

ω
n and

the estimate (4.5), it follows that there exists some constant D > 0 such that

n

⌊n/kn⌋∑

j=αn

P
(
{(x, ω) : x ∈ Un, f

j
ω(x)∈ Un}

)
≤ n

⌊
n
kn

⌋
µε(Un)

2 + nC∗µε(Un)

⌊n/kn⌋∑

j=αn

j−2

≤ (nµε(Un))
2

kn
+ nC∗µε(Un)

∞∑

j=αn

j−2 ≤ D


 τ2

kn
+ τ

∞∑

j=αn

j−2


 −−−−→

n→∞
0.

For the term II, as µε(Un) ∼ τ/n and since dµε/dLeb is bounded below and above
by positive constants, there exists some positive constant C∗ > 0 so that

n

⌊n/kn⌋∑

j=1

P
(
{(x, ω) : x ∈ Un, R

ω(Un) ≤ αn}
)

≤ n2

kn
µε(Un)CgεLeb(Un)

η

η − 1
ηαn

≤ C∗ η
αn

kn
−−−−→
n→∞

0 by (4.3).(4.6)

�

Proof of Corollary F. The only extra step we need to do is to check that D3(un)
also holds. To do that we just have to slightly change the definition of ψ that we
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used to prove D2(un) by using (4.1). Let A ∈ R. We set

ψ(x) =

∫
1⋂

i∈A∩N
{fi
ω̃
(x)≤un} dθ

N

ε (ω̃).

The rest of the proof follows exactly as in the proof of D2(un) in the proof of
Theorem D. �

4.2. Laws of rare events for specific randomly perturbed systems.

4.2.1. Expanding and piecewise expanding maps on the circle with a finite number of
discontinuities. We give a general definition from [30] of piecewise expanding maps
on the circle which also includes the particular case of the continuous expanding
maps:

(1) there exist ℓ ∈ N0 and 0 = a0 < a1 < · · · < aℓ = 1 = 0 = a0 for which the
restriction of f to each Ξi = (ai−1, ai) is of class C

1, with |Df(x)| > 0 for
all x ∈ Ξi and i = 1, . . . , ℓ. In addition, for all i = 1, . . . , ℓ, gΞi = 1/|Df |Ξi |
has bounded variation for i = 1, . . . , ℓ.

We assume that (f |Ξi) and gΞi admit continuous extensions to Ξi = [ai−1, ai], for
each i = 1, . . . , ℓ. Since modifying the values of a map over a finite set of points does
not change its statistical properties, we may assume that f is either left-continuous
or right-continuous (or both) at ai, for each i = 1, . . . , ℓ (possibly for all i’s at the
same time). Then let P(1) be some partition of S1 into intervals Ξ such that Ξ ⊂ Ξi
for some i and (f |Ξ) is continuous. Furthermore, for n ≥ 1, let P(n) be the partition
of S1 such that P(n)(x) = P(n)(y) if and only if P(1)(f j(x)) = P(1)(f j(y)) for all

0 ≤ j < n. Given Ξ ∈ P(n), denote g
(n)
Ξ = 1/|Dfn|Ξ|. Then

(2) there exist constants C1 > 0, λ1 < 1 such that sup g
(n)
Ξ ≤ C1λ

n
1 for all

Ξ ∈ P(n) and all n ≥ 1;
(3) for every subinterval J of S1, there exists some n ≥ 1 such that fn(J) = S1.

According to [30, Proposition 3.15], one has exponential decay of correlations
for randomly perturbed systems derived from maps satisfying conditions (1)− (3)
above, taking C as the space of functions with bounded variation (BV ); i.e., given
ϕ in BV and ψ ∈ L1(Leb),

(4.7)

∣∣∣∣
∫
(Uεψ)ϕdLeb−

∫
ψ dµε

∫
ϕdLeb

∣∣∣∣ ≤ Cλn‖ϕ‖BV ‖ψ‖L1(Leb),

where 0 < λ < 1 and C > 0 is a constant independent of both ϕ,ψ.
Hence, in the particular case of f being a continuous expanding map of the circle,

(4.7), Theorem D, and Corollaries E and F allow us to obtain

Corollary 4.1. Let f : S1 → S1 be a continuous expanding map satisfying (1)−(3)
above, which is randomly perturbed as in (2.2) with noise distribution given by
(2.1). For any point ζ ∈ M, consider that X0, X1, . . . is defined as in (2.7) and
let un be such that (2.10) holds. Then the stochastic process X0, X1, . . . satisfies
D2(un), D3(un) and D

′(un), which implies that we have an EVL for Mn such that
H̄(τ) = e−τ and we have exponential HTS/RTS for balls around ζ. Moreover, the

REPP Nn defined in (2.20) is such that Nn
d−→ N , as n → ∞, where N denotes a

Poisson Process with intensity 1.
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In the proof of Theorem D, we used the continuity of the map, in particular, in
(4.4). However, we can adapt the argument in order to allow a finite number of
discontinuities for expanding maps of the circle.

Proposition 4.2. Let f : S1 → S1 be a map satisfying conditions (1)− (3) above,
which is randomly perturbed as in (2.2) with noise distribution given by (2.1). For
any point ζ ∈ M, consider that X0, X1, . . . is defined as in (2.7) and let un be such
that (2.10) holds. Then the stochastic process X0, X1, . . . satisfies D2(un), D3(un)
and D′(un), which implies that we have an EVL for Mn such that H̄(τ) = e−τ and
we have exponential HTS/RTS for balls around ζ. Moreover, the REPP Nn defined

in (2.20) is such that Nn
d−→ N , as n → ∞, where N denotes a Poisson Process

with intensity 1.

Proof. The proof of D2(un) follows from (4.7) as in the continuous case. Regarding
the proof of D′(un), in order to use the same arguments as in the continuous case,
we want to avoid coming close to the discontinuity points along the random orbit
of ζ (up to time αn). Since there are finitely many discontinuity points, say ξi’s for
i = 1, . . . , ℓ, we can control this by asking for some “safety regions” around each
of them. By doing so, we ensure that the random orbit of ζ is sufficiently far away
from the ξi’s so that the iterates of Un consist of only one connected component.
We can formulate these “safety regions” as

(4.8) dist(f jω(ζ), ξi) > 2ηj |Un| for all i = 1, . . . , ℓ.

Now, we make an estimate on the ω’s that take the orbit of ζ too close to the
discontinuity points as well as close to ζ itself, and our aim is to show that the
θNε measure of this set is small. Let us set ξ0 = ζ to simplify the notation. Then,{
ω : Rω(Un) ≤ αn

}
⊂ ⋃αnj=1

⋃ℓ
i=0

{
ω : f jω(ζ) ∈ B2ηj |Un|(ξi)

}
. Thus, we have

θNε
({
ω : Rω(Un) ≤ αn

})

≤
ℓ∑

i=0

αn∑

j=1

∫
θε

({
ωj : f

(
f j−1
ω (ζ)

)
+ ωj ∈ B2ηj |Un|(ξi)

})
dθNε

≤
ℓ∑

i=0

αn∑

j=1

gε
∣∣B2ηj |Un|(ξi)

∣∣ =
ℓ∑

i=0

αn∑

j=1

gε4η
j |Un| ≤ 4(ℓ+ 1)gε|Un|

η

η − 1
ηαn .

The proof now follows the same lines as the proof of Theorem D and Corollary F.
�

4.2.2. Expanding and piecewise expanding maps in higher dimensions. Let us now
consider the multidimensional piecewise expanding systems defined in Section 3.2.2
but only with a finite number, K, of domains of local injectivity; moreover, let
us restrict ourselves to a mixing component which, for simplicity, we will take
as the whole space Z; we will take µ as the unique absolutely continuous in-
variant measure with density h. In addition, we ask each ∂Zi to be included
in piecewise C1 codimension-1 embedded compact submanifolds and for Z(f) =

supx
∑K
i=1 #{ smooth pieces intersecting ∂Zi containing x}

(4.9) sα +
4s

1− s
Z(f)

γN−1

γN
< 1,
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where γN is the N -volume of the N -dimensional unit ball of RN . Then, we know
that by Lemma 2.1 in [28], item (4) in Definition 3.5 is satisfied.3 Notice that
formula (4.9) gives an exponential decay of correlations for the adapted pair: L1

functions against functions in the quasi-Hölder space Vα.
We perturb again this kind of map with additive noise by asking that the image

of Z be strictly included in Z. We will also require that the density h is bounded
from below by the positive constant hm. We will now prove the exponential decay of
correlations for the random evolution operator Uε, by using the perturbation theory
in [21], which we will also quote and use later on in Section 5.2. This theory ensures
us that the perturbed Perron-Frobenius operator Pǫ is mixing on the adapted pair
(L1, Vα) whenever we have:

(i) a uniform Lasota-Yorke inequality for Pǫ, i.e., all the constants in that in-
equality are independent of the noise ε,

(ii) the closeness property (see also hypothesis H4 in Section 5.2 below): there
exists a monotone upper semi-continuous function p : Ω → [0,∞) such that
limε→0 pε = 0 and ∀ϕ ∈ Vα, ∀ε ∈ Ω : ||Pϕ− Pεϕ||1 ≤ pε||ϕ||α.

Condition (i) follows easily by observing that the derivatives of the original
and of the perturbed maps are the same, which does not change the contraction
factor s, and the multiplicity of the boundaries’ intersection, Z(f), is invariant too.
Finally we invoke the observation written in the preceding footnote. Therefore
the Perron-Frobenius operators Pω associated to the perturbed maps fω verify the
same Lasota-Yorke inequality and therefore the same is true for Pε.

Our next step is to prove condition (ii); in particular, we have

Proposition 4.3. There exists a constant C such that for any ϕ ∈ Vα we have

‖Pϕ− Pεϕ‖1 ≤ Cεα||ϕ||α.
Proof. We have

‖Pϕ− Pεϕ‖1 ≤
∫

Z

∫

Ω

|Pωϕ(x)− Pϕ(x)|dθε(ω)dx.

Putting G(x) = 1
| detDf(x)| , we can write

|Pωϕ(x)− Pϕ(x)|
≤

∑

Zi,i=1,...,K

|ϕ(f−1
i x)G(f−1

i x)1fZi(x)− ϕ(f−1
ω,ix)G(f

−1
i x)1fωZi(x)|

+
∑

Zi,i=1,...,K

|ϕ(f−1
ω,ix)||G(f−1

i x)−G(f−1
ω,ix)|1fωZi(x)

:= I + II,

(4.10)

where fω(x) = f(x) + ω and ω is a vector in R
N with each component being less

than ε in modulus. Moreover, f−1
ω,i denotes the inverse of the restriction of fω to

Zi, which is denoted by fω,i itself. We now bound the first sum, I, in (4.10) by
considering two cases:

3The inequality (4.9) ensures that for the unperturbed map the quantity η(ε1) < 1; see the
definition of this quantity after the formula (3.3). The value of η(ε1) is one of the constants in

the Lasota-Yorke inequality (see item (i) below), and we will require that it be independent of the
noise. This will be the case for the additive noise since the determinant of the perturbed maps will

not change, and this is what is used in (3.3) to control the Lebesgue measure of f−1
i
Bε(∂fZi).

The other factor in the Lasota-Yorke inequality is also given in terms of the quantity (3.3).
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(i) Let us suppose first that x ∈ fZi ∩ fω,iZi. Then since both f and fω,i
are injective, there will be two points, yi and yω,i, in Zi such that x = f(yi) =

fω,i(yω,i) = f(yω,i) + ω. This immediately implies that dist(yi, yω,i) ≤ s
√
Nε,

if dist is the Euclidean distance. For such an x we continue to bound the first
summand, I, in (4.10) as:

I ≤
∑

Zi,i=1,...,K

G(f−1
i x)osc(ϕ,Bs

√
Nε(f

−1
i (x)))1fZi(x).

By integrating over Z we get
∫

Z

( ∑

Zi,i=1,...,K

G(f−1
i x)osc(ϕ,Bs

√
Nε(f

−1
i (x)))1fZi(x)

)
dx

=

∫

Z

P(osc(ϕ,Bs
√
Nε(x)))dx

=

∫

Z

osc(ϕ,Bs
√
Nε(x))dx ≤ (s

√
Nε)α|ϕ|α.

(ii) We now consider the case when x ∈ fZi∆fω,iZi; the Lebesgue measure of
this last set is bounded by ε times the codimension-1 volume of ∂fZi: let r denote
the maximum of those volumes for i = 1, · · · , k. Thus we get

(4.11)

∫

Z

|Pωϕ(x)− Pϕ(x)|dx ≤ rε‖ϕ‖∞‖P1‖∞.

We notice that the inclusion Vα →֒ L∞
m is bounded; namely, there exists cv such

that ‖ϕ‖∞ ≤ cv‖ϕ‖α. We therefore continue (4.11) as

(4.11) ≤ rεcv‖ϕ‖α‖P
h

h
‖∞ ≤ rεcv‖ϕ‖α

‖h‖∞
hm

.

We now come to the second summand, II, in (4.10). We begin by observing that

|G(f−1
i x)−G(f−1

ω,ix)| =
∣∣∣∣∣

1

| detDf(f−1
i x)| −

1

| detDf(f−1
ω,ix)|

∣∣∣∣∣

=
∣∣∣| detDf−1

i (x)| − | detDf−1
i (z)|

∣∣∣

≤ | detDf−1
i (x)− detDf−1

i (z)|,

where z = f(yω,i) and dist(x, z) ≤
√
Nε. By using the Hölder assumption (2) in

Definition 3.5, we have

II ≤ c(
√
Nε)α

∑

Zi,i=1,...,K

|ϕ(f−1
ω,ix)|| detDf−1

i (z)|1fωZi(x)

≤ c(
√
Nε)α

∑

Zi,i=1,...,K

|ϕ(f−1
ω,ix)|

1

| detDf(f−1
ω,i (x))|

1fωZi(x).

By integrating over Z we get the contribution

c(
√
Nε)α

∫

Z

Pω(|ϕ|)dx ≤ c(
√
Nε)α

∫

Z

|ϕ|dx ≤ c(
√
Nε)α||ϕ||L1(Leb).

In conclusion we get ‖Pϕ − Pεϕ‖1 ≤ Cεα‖ϕ‖α, where the constant C collects
the various constants introduced above. �
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As a consequence of Proposition 4.3 we obtain exponential decay of correlations
of quasi-Hölder functions (in Vα), against L

1 functions, in particular, for uniformly
expanding maps on the torus T

d. Since 1Un ∈ Vα, ‖1Un‖α is uniformly bounded
by above, then it follows by Theorem D and Corollary E that

Corollary 4.4. Let f : Td → T
d be a C2 uniformly expanding map on T

d, which
is randomly perturbed as in (2.2) with noise distribution given by (2.1). For any
point ζ ∈ M, consider that X0, X1, . . . is defined as in (2.7) and let un be such that
(2.10) holds. Then the stochastic process X0, X1, . . . satisfies D2(un), D3(un) and
D′(un), which implies that we have an EVL for Mn such that H̄(τ) = e−τ and we
have exponential HTS/RTS for balls around ζ. Moreover, the REPP Nn defined in

(2.20) is such that Nn
d−→ N , as n → ∞, where N denotes a Poisson Process with

intensity 1.

As in the previous case of maps on the circle, we may adapt the argument
used in the continuous case to consider more general piecewise expanding maps of
Definition 3.5, as long as there is a finite number of domains of local injectivity.

Proposition 4.5. Suppose that (Z, f, µ) is a topologically mixing multidimensional
piecewise expanding system as in Definition 3.5, and µ is the a.c.i.p. with a Radon-
Nikodym density bounded away from 0. We assume that there are K ∈ N domains
of injectivity of the map and there exists η > 1 such that for all i = 1, . . . ,K and
all x, y ∈ Zi we have dist(f(x), f(y)) ≤ η dist(x, y). Consider that such a map is
randomly perturbed with additive noise as in (2.2) with noise distribution given by
(2.1) and such that the image of Z is strictly included in Z. For any point ζ ∈ M,
consider that X0, X1, . . . is defined as in (2.7) and let un be such that (2.10) holds.
Then the stochastic process X0, X1, . . . satisfies D2(un), D3(un) and D

′(un), which
implies that we have an EVL for Mn such that H̄(τ) = e−τ and we have exponential
HTS/RTS for balls around ζ. Moreover, the REPP Nn defined in (2.20) is such

that Nn
d−→ N , as n→ ∞, where N denotes a Poisson Process with intensity 1.

Proof. Previously, for maps on the circle, by putting some “safety regions” around
the discontinuity points we guaranteed that the iterates of f jω(Un), j = 0, 1, . . . , αn,
had one connected component. Since in this case the border of the domains of
injectivity are codimension-1 submanifolds instead of single points (as in the one-
dimensional case), we must proceed to a more thorough analysis. To that end, for
each ω, for j = 1 let 1 ≤ l1 ≤ K be the number of intersections with non-empty
interior between fω(Un) and Zi, with i = 1, . . . ,K. For each ℓ = 1, . . . , l1, let iℓ
denote the index of the partition element Ziℓ for which such intersection has non-

empty interior, define U
(1,ℓ)
n := fω(Un)∩Ziℓ and let ζ1,ℓ be a point in the interior of

U
(1,ℓ)
n . For any j = 2, . . . , αn, given the sets U

(j−1,k)
n , with k = 1, . . . , lj−1, let lj be

the total number of intersections of non-empty interior between fσj−1(ω)

(
U

(j−1,k)
n

)

and Zi, with i = 1, . . . ,K. For each ℓ = 1, . . . , lj , let iℓ denote the index of the

partition element Ziℓ and kℓ the super index of the sets U
(j−1,k)
n for which the

intersection between fσj−1(ω)

(
U

(j−1,kℓ)
n

)
and Ziℓ has non-empty interior, define

U
(j,ℓ)
n = fσj−1(ω)

(
U

(j−1,kℓ)
n

)
∩ Ziℓ and let ζj,ℓ be a point in the interior of U

(j,ℓ)
n .
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In order to avoid the first return time to Un occurring before αn in a similar way
to the previous proofs, we require that

(4.12) dist(fσj−1(ω)(ζj−1,ℓ), ζ) > 2ηj |Un| for all j = 2, . . . , αn, ℓ = 1, . . . , lj−1.

Note that, as in the proof of Theorem D, for any ω ∈ Ω, we have |U (j,ℓ)
n | ≤ ηj |Un|.

This implies that

(4.13) if dist(fσj−1(ω)(ζj−1,ℓ), ζ) > 2ηj |Un| > |Un|+ ηj |Un|, then U (j,ℓ)
n ∩ Un = ∅.

Note that, by equation (4.13), if (4.12) holds, then clearly Rω(Un) > αn. Hence,
letting l0 = 1 and ζ0,1 = ζ, we may write that

{
ω : Rω(Un) ≤ αn

}
⊂

αn⋃

j=1

lj−1⋃

ℓ=1

{
ω : fσj−1(ω)(ζj−1,ℓ) ∈ B2ηj |Un|(ζ)

}
.

Recalling that lj ≤ Kj , for all j = 1, . . . , αn, it follows that there exists some C > 0
such that

θNε
({
ω : Rω(Un) ≤ αn

})
≤

αn∑

j=1

lj−1∑

ℓ=1

∫
θε

({
ωj : f (ζj−1,ℓ) + ωj ∈ B2ηj |Un|(ζ)

})
dθNε

≤
αn∑

j=1

lj−1∑

ℓ=1

gεLeb
(
B2ηj |Un|(ζ)

)

≤
αn∑

j=1

KjgεCη
jLeb(Un) ≤ CgεLeb(Un)

ηK

ηK − 1
(ηK)αn .

Now, the proof follows in exactly the same way as the proof of Theorem D and
Corollary F, except that in the final estimate (4.6), η should be replaced by ηK,
which will not make any difference by the choice of αn defined in (4.3). �

5. Extremes for random dynamics from a spectral approach

In this section, we want to prove our results for the random case using another
approach introduced by Keller in [20]. His technique is based on an eigenvalue per-
turbation formula which was given in [21] under a certain number of assumptions
that we recall in the first subsection and adapt to our situation. We check those
assumptions in Section 5.3 for a large class of maps of the interval whose properties
are listed in the conditions (H1-H5). Possible generalisations deserve to be investi-
gated, and we point out here a major difficulty in higher dimensions. In this case one
should control (any kind of) variation/oscillation on the boundaries of the preim-
ages of the complement of balls (the set U cm in the proof of Proposition 5.2 below;
it is important that such variation/oscillation grows at most sub-exponentially).
To sum up, the direct technique introduced in Section 4 and the spectral one in
this section are complementary. The direct technique is easily adapted to higher
dimensions but it requires assumptions on the noise in order to control the short
returns (see the quantity Rω(Un) in Proposition 4.5), which follows easily for ad-
ditive noise. The spectral technique is an alternative method and for the moment
particularly adapted to the 1-D case, and, as we will see in a moment, the noise
could be chosen in a quite general way to prove the existence of the EI, formula
(5.7). Instead, if we want to characterise such an EI and show that it is always
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equal to 1, we need to consider special classes of uniformly expanding maps, and
particularly the noise should be chosen as additive and with a continuous distribu-
tion (Proposition 5.3). The fact that the existence of EI follows for general classes
of noises is clear by looking at the proof of Proposition 5.2. Indeed, what is really
necessary is that the derivatives of the randomly chosen maps are close enough to
each other in order to guarantee the uniformity of the Lasota-Yorke inequality for
the perturbed Perron-Frobenius operator. This could be achieved quite widely and
with discrete distributions as well. Nevertheless, in order to make the exposition
simpler and coherent with the previous sections, we will consider additive noise,
together with any kind of distribution to prove Proposition 5.2 and with absolutely
continuous distributions to prove Proposition 5.3.

5.1. The setting. Given a Banach space (V, ‖·‖), and a set of parameters E which
is equipped with some topology, let us suppose there are λε ∈ C, ϕε ∈ V , νε ∈ V ′

(V ′ denotes the dual of V) and linear operators Pε, Qε : V → V such that

λ−1
ε Pε = ϕε ⊗ νε +Qε (assume λ0 = 1) ,(5.1)

Pε(ϕε) = λεϕε, νεPε = λενε, Qε(ϕε) = 0, νεQε = 0,(5.2)
∞∑

n=0

sup
ε∈E

‖Qnε ‖ =: C1 <∞,(5.3)

∃C2 > 0, ∀ε ∈ E : ν0(ϕε) = 1 and ‖ϕε‖ ≤ C2 <∞,(5.4)

lim
ε→0

‖ν0(P0 − Pε)‖ = 0,(5.5)

‖ν0(P0 − Pε)‖ · ‖(P0 − Pε)ϕ0‖ ≤ const · |∆ε|,(5.6)

where

∆ε := ν0((P0 − Pε)(ϕ0)).

Under these assumptions, Keller and Liverani obtained the following formula as
the main result in [21]:

(5.7) 1− λε = ∆εϑ(1 + o(1)) in the limit as ε→ 0,

where ϑ is said to be a constant to take care of short time correlations, which is later
identified as the extremal index in extreme value theory context as mentioned in
[20, Section 1.2]. Actually ϑ is given by an explicit and, in some cases, computable
formula, and, in fact, we will be able to compute it for our random systems. This
formula is the content of Theorem 2.1 in [21] and states that under the above
assumptions, in particular when ∆ε 6= 0, for ε small enough, and whenever the
following limit exists,

(5.8) qk := lim
ε→0

qk,ε := lim
ε→∞

ν0((P0 − Pε)P
k
ε (P0 − Pε)(ϕ0))

∆ε
,

we have

(5.9) lim
ε→0

1− λε
∆ε

= ϑ := 1−
∞∑

k=0

qk.

We now state equivalent ways to verify assumptions (5.1)-(5.6); we refer to [20] for
the details.
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(A1) There are constants A > 0, B > 0, D > 0 and a second norm | · |ω ≤ ‖ · ‖
on V (it is enough to be a seminorm) such that:

∀ε ∈ E, ∀ψ ∈ V, ∀n ∈ N : |Pnε ψ|ω ≤ D|ψ|ω,(5.10)

∃α ∈ (0, 1), ∀ε ∈ E, ∀ψ ∈ V, ∀n ∈ N : ‖Pnε ψ‖ ≤ Aαn‖ψ‖+B|ψ|ω.(5.11)

Moreover the closed unit ball of (V, ‖·‖) is | · |ω-compact.
(A2) The unperturbed operator verifies the mixing condition

P = ϕ⊗ ν +Q0 (assume λ0 = 1).

(A3) ∃C > 0 such that

(5.12) ηε := sup
‖ψ‖≤1

∣∣∣∣
∫
(P0 − Pε)ψ dν0

∣∣∣∣→ 0, as ε→ 0

(A4) and

(5.13) ηε ‖(P0 − Pε)ϕ0‖ ≤ C ∆ε.

Keller called this framework Rare events Perron-Frobenius operators, REPFO.
We will construct a perturbed Perron-Frobenius operator which satisfies the previous
assumptions and which will give us information on extreme value distributions and
statistics of first returns to small sets.

Before continuing, we should come back to our extreme distributions, namely to
the quantity {Mm ≤ um} = {r{φ>um} > m} where Um := {φ > um} is a topological
ball shrinking to the point ζ (see (2.12); we changed Un into Um here). Now we
consider the first time r

ω
Um

(x) where the point x enters Um under the realization
ω, namely under the composition · · · ◦ fωk ◦ fωk−1

◦ · · · ◦ fω1
(x). For simplicity we

indicate it by r
ω
m(x) and consider its annealed distribution:

(5.14) (µε x θNε )((x, ω) : r
ω
m(x) > m) = (µε x θNε )(Mm ≤ um).

Let us write the measure on the left hand side of (5.14) in terms of integrals: it is
given by
(5.15)∫∫

{rωm>m}

d(µε x θNε ) =

∫∫
hε1Ucm(x)1Ucm(fω1

x) · · ·1Ucm(fωm−1
◦ · · · ◦ fω1

x) dLeb dθNε ,

which is in turn equal to

(5.16)

∫

M

P̃mε,mhε(x) dLeb,

where we have now defined

(5.17) P̃ε,mψ(x) := Pε(1Ucmψ)(x).

Let us note that the operator P̃ε,m depends on m via the set Um, and not on

ε which is kept fixed, and that P̃ε,m “reduces” to Pε as m → ∞. It is therefore

tempting to consider P̃ε,m as a small perturbation of Pε when m is large and to
check if it shares the spectral properties of a REPFO operator. We will show in a
moment that it will be the case; let us now see what that implies for our theory.
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5.2. Limiting distributions. We now indicate the correspondences between the
general notation of Keller’s results and our own quantities:

P0 ⇒ Pε,
Pε ⇒ P̃ε,m; Qε ⇒ Qε,m,

ϕε ⇒ ϕε,m; ϕ◦
0 ⇒ hε,

λε ⇒ λε,m,

νε ⇒ νε,m; ν0 ⇒ Leb,

∆ε ⇒ ∆ε,m = µε(Um) = Leb((Pε − P̃ε,m)hε).

The framework for which we will prove the assumptions (A1)-(A4) for our REPFO

P̃ε,m are those behind the system and its perturbations which we introduced in the
previous sections and which we summarize here:

Hypotheses on the system and its perturbations. We consider piecewise
expanding maps f of the circle or of the interval I which verify:

H1 The map f admits a (unique) a.c.i.p. which is mixing.
H2 We will require that

(5.18) inf
x∈I

|Df(x)| ≥ β > 1

and

(5.19) sup
x∈I2

∣∣∣∣
D2f(x)

Df(x)

∣∣∣∣ ≤ C1 <∞,

whenever the first and the second derivatives are defined.
H3 The couple of adapted spaces upon which the REPFO operators will act are:

the space of functions of bounded variation (as in Definition 3.1, we will indicate
with Var the total variation), and L1(Leb), with norm ‖·‖1. This time, we will
write ‖·‖BV = Var(·) + ‖·‖1 for the associated Banach norm.

H4 There exists a monotone upper semi-continuous function p : Ω → [0,∞) such
that limε→0 pε = 0 and ∀f ∈ BV, ∀ε ∈ Ω : ||Pf − Pεf ||1 ≤ pε||f ||BV .4

H5 The density hε of the stationary measure is bounded from below Leb-a.e.
and we call this bound hε.

Extreme values. Let us therefore write P̃ε,mϕε,m = λε,mϕε,m, νε,mP̃ε,m =

λε,mνε,m, and λ−1
ε,mP̃ε,m = ϕε,m ⊗ νε,m +Qε,m.

4This condition can be checked in several cases. We did it, for instance, in the previous section

in 4.2.2. A general theorem is presented in Lemma 16 in [19] for piecewise expanding maps of the
interval endowed with our pair of adapted spaces and with the noise given by a convolution kernel.
This means that θε is absolutely continuous with respect to Lebesgue on the space Ω with density
sε, and our two operators are related by the convolution formula Pεg(x) =

∫
Ω(Pg)(x−ω)sε(ω)dω,

where g ∈ BV . In the case of additive noise, it is straightforward to check that the previous formula
is equivalent to Pεg(x) =

∫
Ω(Pωg)(x)sε(ω)dω, where Pω is the Perron-Frobenius operator of the

transformation fω .
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Then formula (5.7) implies that 1− λε,m = ∆ε,mϑε(1 + o(1)). We can therefore
write

(µε × θNε )(Mm ≤ um)

=

∫

M

P̃mε,mhε(x) dLeb = λmε,m

∫
hε dνε,m + λmε,m

∫
Qε,mhε dLeb

= e−(ϑεmµε(Um)+mo(µε(Um)))

∫
hε dνε,m +O(λmε,m ‖Qε,m‖BV ).

Remember that we are under the assumption that

m (µε × θNε )(φ > um) = mµε(φ > um) = mµε(Um) → τ,

when m → ∞; moreover, it follows from the theory of [21] that
∫
hε dνε,m →∫

hε dLeb = 1, as m goes to infinity. In conclusion we get

(µε × θNε )(Mm ≤ um) = e−τϑε(1 + o(1))

in the limit m → ∞ and where ϑε will be the extremal index, and this will be
explicitly computed later on for some particular maps thanks to formula (5.9) and
shown to be equal to 1 for any point ζ; see Proposition 5.3 below.

Random hitting times. Let us denote again with r
ω
Um

(x) the first entrance into
the ball Um. A direct application of [20, Proposition 2], and which is true for
REPFO operators, allows us to get the following result, which we adapted to our
situation and which provides an explicit formula for the statistics of the first hitting
times in the annealed case. Notice that this result strengthens our Corollary E since
it provides the error in the convergence to the exponential law.

Proposition 5.1. For the REPFO P̃ε,m which verifies the hypotheses H1-H5, and
using the notation introduced above, there exists a constant C > 0 such that for all
m big enough there exists ξm > 0 s.t. for all t > 0,

∣∣∣∣(µε × θNε )

{
r
ω
Um

>
t

ξm µε(Um)

}
− e−t

∣∣∣∣ ≤ Cδm(t ∨ 1)e−t,

where δm = O(ηm log ηm),

ηm := sup

{∣∣∣
∫

Um

ψ dLeb
∣∣∣; ‖ψ‖BV ≤ 1

}
= Leb(Um)

and ξm goes to ϑε as m→ ∞.

5.3. Cheking assumptions (A1)-(A4).

Proposition 5.2. For the REPFO P̃ε,m which verifies the hypotheses H1-H5, the
assumptions (A1)-(A4) hold.

Proof. Condition (A1) means to prove the Lasota-Yorke inequality for the oper-

ator P̃ε,m. We recall that the constants A and B there must independent of the
perturbation parameter which in our case is m. We begin with the total variation.

The structure of P̃ε,m’s iterates is
(5.20)

(P̃nε,mψ) =
∫

· · ·
∫

Pωn(1UcmPωn−1
(1Ucm · · · Pω1

(ψ 1Ucm))) dθε(ω1) · · · dθε(ωn).
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Let us call Al,ωj the l-domain of injectivity of the map fωj and call f−1
l,ωj

the

inverse of fωj restricted to Al,ωj . We have:

Υω1,...,ωn := Pωn(1UcmPωn−1
(1Ucm · · · Pω1

(ψ 1Ucm)))(x)

=
∑

kn,...,k1

(ψ · 1Ucm · 1Ucm ◦ fω1
· · ·1Ucm ◦ fωn−1

◦ · · · ◦ fω1
)((f−1

k1,ω1
◦ · · · ◦ f−1

kn,ωn
)(x))

|D(fωn ◦ · · · ◦ fω1
)((f−1

k1,ω1
◦ · · · ◦ f−1

kn,ωn
)(x))|

× 1fωn◦···◦fω1
Ωk1,...,knω1,...,ωn(x).

The sets

Ωk1,...,knω1,...,ωn := f−1
k1,ω1

◦ · · · ◦ f−1
kn−1,ωn−1

Akn,ωn ∩ f−1
k1,ω1

◦ · · · ◦ f−1
kn−2,ωn−2

Akn−1,ωn−1

∩ · · · ∩ f−1
k1,ω1

Ak2,ω2
∩Ak1,ω1

are intervals and they give a mod-0 partition of I = [0, 1]; moreover, the image
Hk1,...,kn
ω1,...,ωn := fωn ◦ · · · ◦ fω1

Ωk1,...,knω1,...,ωn for a given n-tuple {kn, . . . , k1} is a connected
interval. We also note for future purposes that we could equivalently write:

gn := 1Ucm · 1Ucm ◦ fω1
· . . . · 1Ucmfωn−1

◦ · · · ◦ fω1
= 1Ucm∩f−1

ω1
Ucm∩···∩f−1

ω1
◦···◦f−1

ωn−1
Ucm
.

Now we observe that the set

U cm(n) := U cm ∩ f−1
ω1
U cm ∩ f−1

ω1
◦ f−1

ω2
U cm ∩ · · · ∩ f−1

ω1
◦ · · · ◦ f−1

ωn−1
U cm ∩ Ωk1,...,knω1,...,ωn

is actually given by

U cm(n) := U cm∩f−1
k1,ω1

U cm∩f−1
k1,ω1

◦f−1
k2,ω2

U cm∩· · ·∩f−1
k1,ω1

◦· · ·◦f−1
kn−1,ωn−1

U cm∩Ωk1,...,knω1,...,ωn .

Since U cm is the disjoint union of two connected intervals, the number of connected
intervals in U cm(n) is bounded from above by n + 1 and it is important that it
grows linearly with n. We now take the total variation Var(Υω1,...,ωn). We begin
to remark that, by standard techniques,

Var

(
(ψgn)((f

−1
k1,ω1

◦ · · · ◦ f−1
kn,ωn

)(x))

|D(fωn ◦ · · · ◦ fω1
)((f−1

k1,ω1
◦ · · · ◦ f−1

kn,ωn
)(x))|1fωn◦···◦fω1

Ωk1,...,knω1,...,ωn(x)

)

≤ 2Var
H
k1,...,kn
ω1,...,ωn

(
(ψgn)((f

−1
k1,ω1

◦ · · · ◦ f−1
kn,ωn

)(x))

|D(fωn ◦ · · · ◦ fω1
)((f−1

k1,ω1
◦ · · · ◦ f−1

kn,ωn
)(x))|

)

+
2

βn
1

Leb(Ωk1,...,knω1,...,ωn)

∫

Ω
k1,...,kn
ω1,...,ωn

|ψgn| dLeb,

where β is given by (5.18) in H2.
The variation above can be further estimated by standard techniques:

≤ 2

βn
Var

Ω
k1,...,kn
ω1,...,ωn

(ψgn) +
2

βn
1

Leb(Ωk1,...,knω1,...,ωn)

∫

Ω
k1,...,kn
ω1,...,ωn

|ψgn| dLeb

+ 2 sup
ζ,ω1,...,ωn

|D2(fωn ◦ · · · ◦ fω1
)(ζ)|

[D(fωn ◦ · · · ◦ fω1
)(ζ)]2

∫

Ω
k1,...,kn
ω1,...,ωn

|ψgn| dLeb.
(5.21)
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We now have:

|D2(fωn ◦ · · · ◦ fω1
)(ζ)|

[D(fωn ◦ · · · ◦ fω1
)(ζ)]2

=

n−1∑

k=0

D2fωn−k

(
n−1−k∏
l=1

Tωn−l(ζ)

)

[
Dfωn−k

(
n−1−k∏
l=1

fωn−l(ζ)

)]2 k∏
j=0

Dfωn−j+1

(
n−j∏
l=1

fωn−l(ζ)

) .

By (5.19) in H2 and again using (5.18), the previous sum will be bounded by C1

times the sum of a geometric series of reason β−1; we call C the upper bound thus
found. Our variation above is therefore bounded by

(5.21) ≤ 2

βn
Var

Ω
k1,...,kn
ω1,...,ωn

(ψgn) +
2

βn
1

Leb(Ωk1,...,knω1,...,ωn)

∫

Ω
k1,...,kn
ω1,...,ωn

|ψgn|dLeb

+ 2C

∫

Ω
k1,...,kn
ω1,...,ωn

|ψgn|dLeb.
(5.22)

Now:

Var
Ω
k1,...,kn
ω1,...,ωn

(ψgn) ≤ Var
Ω
k1,...,kn
ω1,...,ωn

(ψ) + 2(n+ 1) sup
Ω
k1,...,kn
ω1,...,ωn

|ψ|

≤ [2(n+ 1) + 1]Var
Ω
k1,...,kn
ω1,...,ωn

(ψ)

+
1

Leb(Ωk1,...,knω1,...,ωn)

∫

Ω
k1,...,kn
ω1,...,ωn

|ψ| dLeb,

(5.23)

where 2(n + 1) is an estimate from above of the number of jumps of gn. We
now observe that for a finite realization of length n, ω1, . . . , ωn, the quantity
Ψn,ω1,...,ωn = infk1,...,kn Leb(Ω

k1,...,kn
ω1,...,ωn), where each kj runs over the finite branches

of fωj , is surely strictly positive and also implies that Ψ−1
n :=

∫
Ψ−1
n,ω1,...,ωndθ

N
ε > 0.

We now replace (5.23) into (5.22), we sum over the k1, . . . , kn and we integrate
w.r.t. θNε ; finally we get

Var(P̃nε,mψ) ≤
2

βn
(2n+ 3)Var(ψ) + [

4

βn
1

Ψn
+ 2C]

∫

I

|ψ| dLeb.

In order to get the Lasota-Yorke inequality one should get a certain n0 and a number
β > κ > 1 and such that

(5.24)
2

βn0
(2n0 + 3) < κ−n0 ;

the Lasota-Yorke inequality (5.10) will then follow with standard arguments.5

We now compute the L1-norm of our operator. We have to compute ‖P̃nε,mψ‖1;
by splitting ψ into the sum of its positive and negative parts and by using the
linearity of the transfer operator, we may suppose that ψ is non-negative. This

5By defining A = 2(2n0 + 3) and B =
[

4
Ψn0

+ 2C
]

2
1−κ−n0

, we have

Var(P̃n
ε,mψ) ≤ Aκ−nVar(ψ) +B

∫

I

|ψ| dLeb.
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allows us to interchange the integrals w.r.t. the Lebesgue measure and θNε and to
use duality for each of the Pω. In conclusion we get

‖P̃nε,mψ‖1 ≤
∫

|ψ|hε1Ucm(x)1Ucm(fω1
x) · · ·1Ucm(fωn−1

◦ · · · ◦ fω1
x) dLeb ≤ ‖ψ‖1.

This concludes the proof of the Lasota-Yorke inequality, (A1). We now have to

show that the operator Pε, which is the unperturbed operator w.r.t. P̃ε,m, verifies
the mixing condition (A2). Now the Perron-Frobenius operator P for the original
map f , which is in turn the unperturbed operator w.r.t. Pε, is mixing (1 is the only
eigenvalue of finite multiplicity on the unit circle), since our original map f was
chosen to be mixing (hypothesis H1), and therefore, by the perturbation theory in
[21] and the closeness of the two operators expressed by assumption H4, Pε is also
a mixing operator. Let us discuss the assumption (A3).

Let us bound the following quantity, for any ψ of bounded variation and of total
variation less than or equal to 1:
∣∣∣∣
∫

I

(P̃ε,mψ(x)− Pεψ(x)) dLeb(x)
∣∣∣∣ =

∣∣∣∣
∫

I

Pε(1Umψ)(x) dLeb(x)
∣∣∣∣

≤
∣∣∣∣
∫ (∫

I

Pω(1Umψ) dLeb
)
dθε(ω)

∣∣∣∣ ≤ ‖ψ‖∞ Leb(Um),

where ‖ψ‖∞ ≤ ‖ψ‖BV and Leb(Um) goes to zero when m goes to infinity.
We now check assumption (A4) under the hypothesis H5.
We have:

‖(P̃ε,m − Pε)hε‖BV = ‖Pε(1Umhε)‖BV ≤ Aκ−1‖1Umhε‖BV +B‖1Umhε‖1.
The right hand side is bounded by a constant C∗ which is independent of m. We
recall that in our case ∆ε,m = µε(Um) and that

ηε,m := sup
‖ψ‖BV ≤1

∣∣∣∣
∫

I

(P̃ε,mψ(x)− Pεψ(x)) dLeb(x)
∣∣∣∣ ≤ Leb(Um)

(see the computation above). Then

‖(P̃ε,m − Pε)hε‖BV ≤ C∗ µε(Um)

hεLeb(Um)
≤ C∗∆ε,m

ηε,m
.

�

5.4. Extremal index. In this part, we investigate the quantity (see (5.8) and
(5.9)):

qk,m =
Leb((Pε − P̃ε,m)P̃kε,m(Pε − P̃ε,m)(hε))

µε(Um)
.

We recall that Um := Um(ζ) represents a ball around the point ζ. Our result is the
following.

Proposition 5.3. Let us suppose that f is either a C2 expanding map of the
circle or a piecewise expanding map of the circle with finite branches and verifying
hypotheses H1-H4. Then for each k,

lim
m→∞

qk,m ≡ 0,
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i.e., the limit in the definition of qk in (5.8) exists and equals zero. Also the extremal
index verifies ϑ = 1−∑∞

k=0 qk = 1, and this is independent of the point ζ, the center
of the ball Um.

Proof. Let us define Gk,m ≡
∫
(Pε − P̃ε,m)P̃kε,m(Pε − P̃ε,m)hε dLeb.

As (Pε − P̃ε,m)ψ = Pε(1Umψ), we may write

Gk,m =

∫
1Um(x)P̃kε,m(Pε − P̃ε,m)hε dLeb.

By using (5.20) we get

Gk,m =

∫∫
1Um(fωk+1

◦ fωk ◦ · · · ◦ fω1
x)1Ucm(fωk ◦ · · · ◦ fω1

x)

. . .1Ucm(fω1
x)1Um(x)hε(x) dLeb dθ

N

ε .

In order to simplify the notation let us put

ψk,Um,ω(x) = 1Um(fωk+1
◦fωk ◦· · ·◦fω1

x)1Ucm(fωk ◦· · ·◦fω1
x) . . .1Ucm(fω1

x)1Um(x).

Now let us prove that qk,m converges to 0. Our approach is very similar to what
we did to prove D′(um), and we now split the proof according to the regularity of
the map.

(i) Suppose that f : S1 → S1 is a C2, expanding map, i.e., there exists |Df(x)| >
λ > 1, for all x ∈ S1. First, note that since S1 is compact and f is C2, there exists
σ > 1 such that |Df(x)| ≤ σ. Hence the set Um grows at most at a rate given by
σ, so, for any ω ∈ ΩN we have |f jω(Um)| ≤ σj |Um|. This implies that

(5.25) if dist(f jω(ζ), ζ) > 2σj |Um| > |Um|+ σj |Um|, then f jω(Um) ∩ Um = ∅.

Note that, by inequality (5.25), if for all j = 1, . . . , k + 1 we have dist(f jω(ζ), ζ) >

2σj |Um|, then clearly ψk,Bm,ω(x) = 0, for all x. We define

(5.26) Wk,m =
k+1⋂

j=1

{
ω ∈ (−ε, ε)N : dist(f jω(ζ), ζ) > 2σj |Um|

}
.

Note that on Wk,m we have ψk,Um,ω = 0. We want to compute the measure of
W c
k,m.

Observe that W c
k,m ⊂ ⋃k+1

j=1

{
ω : f jω(ζ) ∈ B2σj |Um|(ζ)

}
. Hence, we have

θNε (W
c
k,m) ≤

k+1∑

j=1

∫
θε

({
ωj : f

(
f j−1
ω (ζ)

)
+ ωj ∈ B2σj |Um|(ζ)

})
dθNε

≤
k+1∑

j=1

gε
∣∣B2σj |Um|(ζ)

∣∣ =
k+1∑

j=1

gε4σ
j |Um| ≤ 4gε|Um| σ

σ − 1
σk+1.

Using this estimate we obtain:

Gk,m =

∫

Wk,m

∫
ψk,Um,ω(x)hε(x) dLeb dθ

N

ε +

∫

W c
k,m

∫
ψk,Um,ω(x)hε(x) dLeb dθ

N

ε

= 0 +

∫

W c
k,m

∫
ψk,Um,ω(x)hε(x) dLeb dθ

N

ε
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and because ψk,Um,ω(x) ≤ 1Um(x), we have:

≤
∫

W c
k,m

∫
1Um(x)hε(x) dLeb dθ

N

ε ≤ µε(Um) θNε (W
c
k,m)

≤ µε(Um)4gε|Um| σ

σ − 1
σk+1.

Now recall that qk,m =
Gk,m
µε(Um) . It follows that

qk,m ≤
µε(Um)4gε|Um| σ

σ−1σ
k+1

µε(Um)
≤ 4gε|Um| σ

σ − 1
σk+1 −−−−→

m→∞
0.

(ii) Using the same ideas as in the previous section, we can extend this result to
the piecewise expanding maps with finite branches. Recall that we need to define
some ‘safety boxes’ in order to use the same arguments as in the continuous case.
So, if for all j = 1, . . . , k + 1 and i = 1, . . . , ℓ, where ℓ stands for the number of
discontinuity points, we have

(5.27) dist(f jω(ζ), ξi) > 2σj |Um|,

then the set Um consists of one connected component at each iteration, and also we
have f jω(Um) ∩ Um = ∅ which means ψk,Um,ω(x) = 0, for all x. Now let us define

(5.28) Wk,m =

k+1⋂

j=1

ℓ⋂

i=0

{
ω ∈ (−ε, ε)N : dist(f jω(ζ), ξi) > 2σj |Um|

}
.

Observe that in this caseW c
k,m ⊂ ⋃k+1

j=1

⋃ℓ
i=0

{
ω : f jω(ζ) ∈ B2σj |Um|(ξi)

}
. Hence,

we have

θNε (W
c
k,m) ≤

ℓ∑

i=0

k+1∑

j=1

∫
θε

({
ωj : f

(
f j−1
ω (ζ)

)
+ ωj ∈ B2σj |Um|(ξi)

})
dθNε

≤
ℓ∑

i=0

k+1∑

j=1

gε
∣∣B2σj |Um|(ξi)

∣∣ =
ℓ∑

i=0

k+1∑

j=1

gε4σ
j |Um|

≤ 4(ℓ+ 1)gε|Um| σ

σ − 1
σk+1.

Using this estimate we obtain:

Gk,m =

∫

Wk,m

∫
ψk,Um,ω(x)hε(x) dLeb dθ

N

ε +

∫

W c
k,m

∫
ψk,Um,ω(x)hε(x) dLeb dθ

N

ε

= 0 +

∫

W c
k,m

∫
ψk,Um,ω(x)hε(x) dLeb dθ

N

ε

and because ψk,Um,ω(x) ≤ 1Um(x), we have:

≤
∫

W c
k,m

∫
1Um(x)hε(x) dLeb dθ

N

ε ≤ µε(Um)θNε (W
c
k,m)

≤ µε(Um)4(ℓ+ 1)gε|Um| σ

σ − 1
σk+1.
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Since qk,m =
Gk,m
µε(Um) , we get

qk,m ≤
µε(Um)4(ℓ+ 1)gε|Um| σ

σ−1σ
k+1

µε(Um)
≤ 4(ℓ+ 1)gε|Um| σ

σ − 1
σk+1 −−−−→

m→∞
0.

�

Remark 5.1. Let us note that D′(um) implies that all qk’s are well defined and
equal to 0. Assume that there exists k ∈ N and a subsequence (mi)i∈N such that

limj→∞
Gk,mj
µε(Umj )

= α > 0. Let us prove that D′(um) does not hold in this situation.

Recall that if D′(um) holds, then

lim
m→∞

m

⌊m/km⌋∑

j=1

µε × θNε (X0 > um, Xj > um) = 0,

where km (which should not be confused with k, here) is a sequence diverging to
∞ but slower than m, which implies that ⌊m/km⌋ → ∞, as m → ∞. Hence, let
M0 be sufficiently large so that for all m > M0 we have ⌊m/km⌋ > k. Hence, for i
sufficiently large so that mi > M0, we may write

mi

⌊mi/kmi⌋∑

j=1

µε × θNε (X0 > umi , Xj > umi)

≥ mi µε × θNε (X0 > umi , Xk+1 > umi)

≥ miGk,mi ∼
τ Gk,mi
µε(Umi)

→ τα > 0, as i→ ∞,

since Bm is such that mµε(Um) → τ , as m → ∞. This implies that D′(um) does
not hold.

Appendix A. Clustering and periodicity

Condition D′(un) prevents the existence of clusters of exceedances, which implies
that the EVL is standard exponential H̄(τ) = e−τ . However, when D′(un) fails,
clustering of exceedances is responsible for the appearance of a parameter 0 < ϑ < 1
in the EVL, called the EI, which implies that, in this case, H̄(τ) = e−ϑτ . In [12],
the authors established a connection between the existence of an EI less than 1
and periodic behaviour. This was later generalised for REPP in [13]. Namely, this
phenomenon of clustering appeared when ζ was a repelling periodic point. We
assume that the invariant measure P and the observable ϕ are sufficiently regular
so that besides (R1), we also have that

(R2) If ζ ∈ X is a repelling periodic point, of prime period6 p ∈ N, then we
have that the periodicity of ζ implies that for all large u, {X0 > u}∩
f−p({X0 > u}) 6= ∅, and the fact that the prime period is p implies that
{X0 > u} ∩ f−j({X0 > u}) = ∅ for all j = 1, . . . , p − 1. Moreover, the
fact that ζ is repelling means that we have backward contraction which

means that there exists 0 < ϑ < 1 so that
⋂i
j=0 f

−jp(X0 > u) corresponds

to another ball of smaller radius around ζ with P

(⋂i
j=0 f

−jp(X0 > u)
)
∼

(1− ϑ)iP(X0 > u), for all u sufficiently close to uF .

6That is, the smallest n ∈ N such that fn(ζ) = ζ. Clearly f ip(ζ) = ζ for any i ∈ N.
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The main obstacle when dealing with periodic points is that they create plenty
of dependence in the short range. In particular, using (R2) we have that for all
u sufficiently large, P({X0 > u} ∩ {Xp > u}) ∼ (1 − ϑ)P(X0 > u), which implies
that D′(un) is not satisfied, since for the levels un as in (2.10) it follows that

n
∑[n/kn]
j=1 P(X0 > un, Xj > un) ≥ nP(X0 > un, Xp > un) −−−−→

n→∞
(1 − ϑ)τ. To

overcome this difficulty around periodic points we make a key observation that
roughly speaking tells us that around periodic points one just needs to replace the
topological ball {X0 > un} by the topological annulus

(A.1) Qp(u) := {X0 > u, Xp ≤ u}.
Then much of the analysis works out as in the absence of clustering. Note that
Qp(u) is obtained by removing from U(u) the points that were doomed to return
after p steps, which form the smaller ball U(u) ∩ f−p(U(u)). Then, the crucial
observation is that the limit law corresponding to no entrances up to time n into
the ball U(un) is equal to the limit law corresponding to no entrances into the
annulus Qp(un) up to time n.

In what follows, for every A ∈ B we denote the complement of A as Ac := X \A.
For s ≤ ℓ ∈ N0, we define

(A.2) Qp,s,ℓ(u) =
s+ℓ−1⋂

i=s

f−i(Qp(u))
c,

which corresponds to no entrances in the annulus from time s to s+ℓ−1. Sometimes
to abbreviate we also write Qℓ(u) := Qp,0,ℓ(u).

Theorem G ([12, Proposition 1]). Let X0, X1, , . . . be a stochastic process defined
by (2.6) where ϕ achieves a global maximum at a repelling periodic point ζ ∈ X ,
of prime period p ∈ N, so that conditions (R1) and (R2) above hold. Let (un)n
be a sequence of levels such that (2.10) holds. Then, limn→∞ P(Mn ≤ un) =
limn→∞ P(Qn(un)).

Hence, the idea to cope with clustering caused by periodic points is to adapt
conditions D2(un) and D

′(un), letting annuli replace balls.

Condition (Dp(un)). We say that Dp(un) holds for the sequence X0, X1, X2, . . . if
for any integers ℓ, t and n, |P (Qp,0(un) ∩ Qp,t,ℓ(un))− P(Qp,0(un))P(Qp,0,ℓ(un))| ≤
γ(n, t), where γ(n, t) is non-increasing in t for each n and nγ(n, tn) → 0 as n→ ∞
for some sequence tn = o(n).

As with D2(un), the main advantage of this condition when compared to Lead-
better’sD(un) (or others of the same sort) is that it follows directly from sufficiently
fast decay of correlations as observed in [14, Section 5.1], contrary to D(un).

Assuming Dp(un) holds, let (kn)n∈N be a sequence of integers such that (2.13)
holds.

Condition (D′
p(un)). We say that D′

p(un) holds for X0, X1, X2, . . . if there exists
a sequence (kn)n∈N satisfying (2.13) and such that

lim
n→∞

n

[n/kn]∑

j=1

P(Qp,0(un) ∩Qp,j(un)) = 0.

One of the main results in [12] is:
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Theorem H ([12, Theorem 1]). Let (un)n∈N be such that (2.10) holds. Con-
sider a stationary stochastic process X0, X1, . . . to be a stochastic process defined
by (2.6) where ϕ achieves a global maximum at a repelling periodic point ζ ∈ X ,
of prime period p ∈ N, so that conditions (R1) and (R2) above hold. Assume
further that conditions Dp(un) and D′

p(un) hold. Then limn→∞ P(Mn ≤ un) =

limn→∞ P(Qp,0,n(un)) = e−ϑτ .

Regarding the convergence of the REPP, when there is clustering, one cannot
use the aforementioned criterion of Kallenberg because the point processes are
not simple anymore and possess multiple events. This means that a much deeper
analysis must be done in order to obtain convergence of the REPP. We carried this
out in [13] and describe below the main results and conditions needed. First, we
define the sequence

(
U (κ)(u)

)
κ≥0

of nested balls centred at ζ given by

(A.3) U (0)(u) = U(u) and U (κ)(u) = f−p(U (κ−1)(u)) ∩ U(u), for all κ ∈ N.

For i, κ, ℓ, s ∈ N ∪ {0}, we define the following events:

(A.4) Qκp,i(u) := f−i
(
U (κ)(u)− U (κ+1)(u)

)
.

Observe that for each κ, the set Qκp,0(u) corresponds to an annulus centred at

ζ. Besides, U(u) =
⋃∞
κ=0Q

κ
p,0(u), which means that the ball centred at ζ which

corresponds to U(u) can be decomposed into a sequence of disjoint annuli where
Q0
p,0(u) is the most outward ring and the inner ring Qκ+1

p,0 (u) is sent outward by fp

to the ring Qκp,0(u), i.e., f
p(Qκ+1

p,0 (u)) = Qκp,0(u).
We are now ready to state:

Condition (Dp(un)
∗). We say that Dp(un)

∗ holds for the sequence X0, X1, X2, . . .
if for any integers t, κ1, . . . , κς , n and any J =

⋃ς
i=2 Ij ∈ R with inf{x : x ∈ J} ≥ t,

∣∣∣∣∣∣
P


Qκ1

p,0(un) ∩




ς⋂

j=2

Nun(Ij) = κj




− P

(
Qκ1
p,0(un)

)
P




ς⋂

j=2

Nun(Ij) = κj



∣∣∣∣∣∣

≤ γ(n, t),

where for each n we have that γ(n, t) is non-increasing in t and nγ(n, tn) → 0 as
n→ ∞, for some sequence tn = o(n).

This mixing condition is stronger than Dp(un) because it requires a uniform
bound for all possible integer values of κ1; nonetheless, it still is much weaker
than the original D(un) from Leadbetter [25] or any of this kind. As with all the
other preceding conditions (D2, D3, D

p), it can be easily verified for systems with
sufficiently fast decay of correlations (see [14, Section 5.1]).

In [13], for technical reasons only, we also introduced a slight modification to
D′
p(un). The new condition was denoted by D′

p(un)
∗ and the difference is that we

require that limn→∞ n
∑[n/kn]
j=1 P(Qp,0(un) ∩ {Xj > un}) = 0 holds.

We can now state the main theorem in [13].

Theorem I ([13, Theorem 1]). Let X0, X1, . . . be given by (2.6), where ϕ achieves a
global maximum at the repelling periodic point ζ, of prime period p, and conditions
(R1) and (R2) hold. Let (un)n∈N be a sequence satisfying (2.10). Assume that
conditions Dp(un)

∗, D′
p(un)

∗ hold. Then the REPP Nn converges in distribution
to a compound Poisson process N with intensity ϑ and multiplicity d.f. π given by
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π(κ) = ϑ(1 − ϑ)κ, for every κ ∈ N0, where the extremal index ϑ is given by the
expansion rate at ζ stated in (R2).

Appendix B. Computing the EI and the multiplicity distribution

In order to prove the existence of an EI around a repelling periodic point, we may
use Theorem H and, basically, observe that, once conditions Dp(un) and D′

p(un)
are verified, by (R2) the EI may be computed from the formula

(B.1) ϑ = lim
n→∞

P(Qp,0(un))

P(Un)
.

In order to compute the multiplicity distribution of the limiting compound Poisson
process for the REPP, when ζ is a repelling periodic point, we can use the following
estimate:

Lemma B.1 ([13, Corollary 2.4]). Assuming that ϕ achieves a global maximum
at the repelling periodic point ζ, of prime period p, and conditions (R1) and (R2)
hold, there exists C > 0 depending only on ϑ given by property (R2) such that for
any s, κ ∈ N and u sufficiently close to uF = ϕ(ζ) we have for κ > 0
∣∣P
(
N

s+1
u,0 = κ

)
− s

(
P(Qκ−1

p,0 (u))− P(Qκp,0(u))
)∣∣

≤ 4s

s∑

j=p+1

P(Q0
p,0(u) ∩ {Xj > u}) + 2C P(X0 > un),

and in the case κ = 0
∣∣P
(
N

s+1
u,0 = 0

)
−
(
1− sP(Q0

p,0(u))
)∣∣

≤ 2s

s∑

j=p+1

P(Q0
p,0(u) ∩ {Xj > u}) + C P(X0 > u).

The idea then is to realise that in the proof of Theorem I one splits the first n r.v.
X0, . . . , Xn−1 into blocks of size ⌊n/kn⌋ with a time gap of size tn between them.
Then using the asymptotic “independence” obtained from Dp(un)

∗ and D′
p(un)

∗

we get the compound Poisson limit with multiplicity distribution determined by
the distributional limit of the number of exceedances in each block of size ⌊n/kn⌋,
given that at least one exceedance occurs. Hence, we need to compute, for all

κ ∈ N, limn→∞ P

(
N

⌊n/kn⌋+1
un,0

= κ|N ⌊n/kn⌋+1
un,0

> 0
)
. Since, by D′

p(un)
∗, we have

that ⌊n/kn⌋
∑⌊n/kn⌋
j=p+1 P(Q0

p,0(un) ∩ {Xj > un}) = o(1/kn), then by Lemma B.1 we
have that, for every κ ∈ N,

π(κ) = lim
n→∞

P

(
N

⌊n/kn⌋+1
un,0

= κ|N ⌊n/kn⌋+1
un,0

> 0
)

= lim
n→∞

(
P(Qκ−1

p,0 (un))− P(Qκp,0(un))
)

P(Q0
p,0(un))

.
(B.2)
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[26] Philippe Marie and Jérôme Rousseau, Recurrence for random dynamical systems, Dis-

crete Contin. Dyn. Syst. 30 (2011), no. 1, 1–16, DOI 10.3934/dcds.2011.30.1. MR2773129

(2012c:37108)

[27] Marek Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), no. 1,

69–80. MR728198 (85h:28019)
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