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Abstract. We develop and generalise the theory of extreme value for non-stationary stochastic processes, mostly by weakening
the uniform mixing condition that was previously used in this setting. We apply our results to non-autonomous dynamical systems,
in particular to sequential dynamical systems, given by uniformly expanding maps, and to a few classes of random dynamical
systems. Some examples are presented and worked out in detail.

Résumé. Nous développons et généralisons la théorie des valeurs extrêmes pour des processus stochastiques non-stationnaires,
en affaiblissant la condition de mélange uniforme qui avait été utilisée auparavant. Nous appliquons nos résultats à des systèmes
dynamiques non autonomes, en particulier aux systèmes dynamiques séquentiels engendrés par des applications dilatantes et à une
large classe de systèmes dynamiques aléatoires. Quelques exemples sont présentés et calculés en détail.
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1. Introduction

1.1. The motivation and the dynamical setting

One of the most successful directions of ergodic theory in the last decades was the application of probabilistic tools to
characterise the asymptotic evolution of a given dynamical system. There is now a well established domain known as
statistical properties of dynamical systems, which attempts to prove limit theorems under different degrees of mixing.
Mixing is the way to restore asymptotic independence and, in this way, mimic independent and identically distributed
(i.i.d.) sequences of random variables. A common distribution for the time series arising from the dynamical systems
is acquired from the existence of an invariant measure for such systems. In some sense, the existence of such a measure
is what defines a dynamical system. Relaxing this assumption gives rise to non-autonomous dynamical systems for
which the study of limit theorems is just at the beginning. In this paper, we will focus on one of those statistical
properties, namely on asymptotic extreme value distribution laws. Our first goal will be to improve and generalise
the previous results by Hüsler (see below), which held for non-identically distributed random variables but under a
uniform mixing condition, to the mixing situations typical in dynamical systems. Then we will apply our theoretical
results to two important examples of non-stationary processes arising in dynamical systems.
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The first example is given by sequential dynamical systems; they were introduced by Berend and Bergelson [6],
as a non-stationary system in which a concatenation of maps is applied to a given point in the underlying space,
and the probability is taken as a conformal measure, which is conformal for all maps considered and allows the
use of the transfer operator (Perron–Fröbenius) as a useful tool to quantify the loss of memory of any prescribed
initial observable. The theory of sequential systems was later developed in the fundamental paper by Conze and
Raugi [9], where a few limit theorems, in particular the Central Limit Theorem, were proved for concatenations of
one-dimensional dynamical systems, each possessing a transfer operator with a quasi-compact structure on a suitable
Banach space. For the same systems and others, even in higher dimensions, the Almost Sure Invariance Principle was
subsequently shown [18]; we will refer to the large class of systems investigated in [18] as concrete examples to which
the non-stationary extreme value theory presented in this article applies.

The second example pertains to random transformations, which are constructed on a skew-system whose base is an
invertible and hyperbolic system which codes a map on the second factor (this second factor could be seen as fibers,
which are all copy of the same set). On these fibers live a family of sample measures, each of them corresponding to
different ways to code the orbit of a given point. These sample measures will be taken as the probability measures
that describe the statistical properties along the factor and they do not give rise to stationary processes (although
they satisfy an interesting property when they move from one fiber to the other). Averaging along a sample measure
means to fix the particular initial fiber which supports it; the dynamics will transport this measure from one fiber to
the other, and this non-stationary process could be assimilated to a quenched process, where the map changes step
by step according to a given realisation. We defer to the books by L. Arnold [3] and Y. Kifer [23,24] for a detailed
account of these transformations, in particular for their ergodic properties. Limit theorems, in particular the CLT, were
investigated in [25]. There are a few attempts to investigate recurrence in the framework of random transformations:
see for instance [4,26,30–32].

1.2. Extreme Value Laws for general non-stationary processes

As mentioned in [10], the class of non-stationary stochastic processes is rather large and an extreme value theory for
such a general class does not exist. In [21,22], Hüsler developed the first approach to the subject. Under convenient
conditions, one can recover the usual extremal behaviour seen for i.i.d. or stationary sequences under Leadbetter’s
conditions. Of course the degree of freedom involved is so large that it is not difficult to give examples with pathologi-
cal behaviour (see [22, Section 3] or [10, Example 9.4.4]). However, for appropriate subclasses, such as for stochastic
processes of the form Xi = ai + biYi , with trend values ai , scaling values bi and a stationary (or i.i.d.) stochastic
process Y0, Y1, . . . , one can study them and obtain the expected behaviour (see [28]).

The existing theory of extreme values for non-stationary sequences (which is still mostly based on Hüsler’s results,
see [10]) is not applicable in a dynamical setting because it is built over a uniform mixing condition obtained by
adjusting to the non-stationary setting, Leadbetter’s D(un) condition for stationary processes. As was seen in the
stationary setting in [8,11], this type of condition is not appropriate for stochastic processes arising from dynamical
systems since it does not follow from usual properties regarding the loss of memory of chaotic systems, which are
usually formulated in terms of decay of correlations. See discussion in Section 2 of [15] and Remarks 2.1 and 3.5 of
the same paper.

Hence, the first goal of this paper is to develop a more general theory of extreme values for non-stationary stochastic
processes, which enables the study of the extremal behaviour of the non-stationary systems discussed in the preceding
Section. The major highlights of this generalisation are: the use of a much weaker mixing condition, motivated by an
idea of Collet (in [8]) and further developed in [11,14,15], that we will adapt to the non-stationary setting and denote
by a cyrilic D, i.e., Д, as in [15]; and a much more sophisticated way of dealing with clustering and the appearance
of an Extremal Index less than 1, which is based on an idea introduced in [14] and further developed in [15], which
basically says that when dealing with clustering due to the presence of a periodic phenomenon we can replace the role
of the occurrence of exceedances (which in the dynamical setting correspond to hits to target ball sets) by that of the
occurrence of escapes (which in the dynamical setting can be associated with hits to annuli target sets).

While in [21,22], Hüsler built on the existing theory of extreme values for stationary sequences developed by
Leadbetter and others, here we will follow Hüsler’s approach but adapt to the non-stationary setting the more refined
[15].
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2. A general result for Extreme Value Laws for non-stationary processes

In this section will try to keep as much as possible the notations used in [15,21,22].
Let X0,X1, . . . be a stochastic process, where each r.v. Xi : Y → R is defined on the measure space (Y,B,P).
We assume that Y is a sequence space with a natural product structure so that each possible realisation of the

stochastic process corresponds to a unique element of Y and there exists a measurable map T : Y → Y , the time
evolution map, which can be seen as the passage of one unit of time, so that

Xi−1 ◦ T = Xi, for all i ∈N.

The σ -algebra B can also be seen as a product σ -algebra adapted to the Xi ’s. For the purpose of this paper, X0,X1, . . .

is possibly non-stationary. Stationarity would mean that P is T -invariant. Note that Xi = X0 ◦Ti , for all i ∈N0, where
Ti denotes the i-fold composition of T , with the convention that T0 denotes the identity map on Y . In the applications
below to sequential dynamical systems, we will have that Ti = Ti ◦ · · · ◦ T1 will be the concatenation of i possibly
different transformations T1, . . . , Ti .

Each random variable Xi has a marginal distribution function (d.f.) denoted by Fi , i.e., Fi(x) = P(Xi ≤ x). Note
that the Fi , with i ∈ N0, may all be distinct from each other. For a d.f. F we let F̄ = 1 − F . We define uFi

= sup{x :
Fi(x) < 1} and let Fi(uFi

−) := limh→0,h>0 Fi(uFi
− h) = 1 for all i.

Our main goal is to determine the limiting law of

Pn = P(X0 ≤ un,0,X1 ≤ un,1, . . . ,Xn−1 ≤ un,n−1)

as n → ∞, where {un,i , i ≤ n − 1, n ≥ 1} is considered a real-valued boundary. We assume throughout the paper that

F̄n,max := max
{
F̄i(un,i), i ≤ n − 1

} → 0 as n → ∞, (2.1)

which is equivalent to

un,i → uFi
as n → ∞, uniformly in i.

Let us denote F ∗
n := ∑n−1

i=0 F̄i(un,i), and assume that there is τ > 0 such that

F ∗
n :=

n−1∑
i=0

F̄i(un,i) → τ, as n → ∞. (2.2)

To simplify the notation let ui := un,i .
In what follows, for every A ∈ B, we denote the complement of A as Ac := Y \ A.
Let A := (A0,A1, . . .) be a sequence of events such that Ai ∈ T −1

i B. For some s, � ∈ N0, we define

Ws,�(A) =
s+�−1⋂

i=s

Ac
i . (2.3)

We will write W c
s,�(A) := (Ws,�(A))c .

For some j ∈N0, we consider

A
(j)
n := (

A
(j)

n,0,A
(j)

n,1, . . .
)
,

where the event A
(j)
n,i is defined for j ∈ N as

A
(j)
n,i := {Xi > un,i ,Xi+1 ≤ un,i+1, . . . ,Xi+j ≤ un,i+j }

and, for j = 0, we simply define A
(0)
n,i (un,i) := {Xi > un,i}.
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For each i ∈ N0 and n ∈ N, let R
(j)
n,i = min{r ∈ N : A

(j)
n,i ∩ A

(j)
n,i+r 
= ∅}. We assume that there exists q ∈ N0 such

that:

q = min
{
j ∈N0 : lim

n→∞ min
i≤n

{
R

(j)
n,i

} = ∞
}
. (2.4)

When q = 0 then A
(0)
n,i (un,i) corresponds to an exceedance of the threshold un,i and we expect no clustering of

exceedances.
When q > 0, heuristically one can think that there exists an underlying periodic phenomenon creating short recur-

rence, i.e., clustering of exceedances, when exceedances occur separated by no more than q −1 units of time then they
belong to the same cluster. Hence, the sets A

(q)
n,i (un,i) correspond to the occurrence of exceedances that escape the

periodic phenomenon and are not followed by another exceedance in the same cluster. We will refer to the occurrence
of A

(q)
n,i (un,i) as the occurrence of an escape at time i, whenever q > 0.

The following result adapts to the non-stationary setting an idea introduced in [14] and further developed in [15,
Proposition 2.7], which essentially says the asymptotic distribution of Pn coincides with that of W0,n(A

(q)
n ), which

motivates the special role played by A
(q)
n and the conditions we propose next.

Proposition 2.1. Given events B0,B1, . . . ∈ B, let r, q,n ∈ N be such that q < n and define B = (B0,B1, . . .), Ar =
Br \ ⋃q

j=1 Br+j and A= (A0,A1, . . .). Then

∣∣P(
W0,n(B)

) − P
(
W0,n(A)

)∣∣ ≤
q∑

j=1

P
(
W0,n(A) ∩ (Bn−j \ An−j )

)
.

Now, we introduce a mixing condition which is specially designed for the application to the dynamical setting,
contrary to the existing ones in the literature.

Condition (Дq(un,i)). We say that Дq(un) holds for the sequence X0,X1, . . . if for every �, t, n ∈N,

∣∣P(
A(q)

n,i ∩ Wi+t,�

(
A

(q)
n

)) − P
(
A(q)

n,i

)
P
(
Wi+t,�

(
A

(q)
n

))∣∣ ≤ γi(q,n, t), (2.5)

where γi(q,n, t) is decreasing in t for each n and each i and there exists a sequence (t∗n )n∈N such that t∗n F̄n,max → 0
and

∑n−1
i=0 γi(q,n, t∗n ) → 0 when n → ∞.

Remark 2.2. Condition Дq(un,i) is a sort of mixing condition resembling Hüsler’s adjustment of Leadbetter’s con-
dition D(un) but with the great advantage that it can be checked for non-stationary dynamical systems, as we will
see in Sections 4.2 and 5.1, contrary to Hüsler’s D(un,i). This advantage resides on the fact that the event A

(q)
n,i (un,i)

depends only on a finite number of random variables, making Дq(un,i) a much weaker requirement in terms of uni-
formity when compared to Hüsler’s D(un,i). Recall that Hüsler’s D(un,i) required an uniform bound for all possible
i and all possible numbers of random variables of the process on which the first event depended.

In order to prove the existence of a distributional limit for Pn we use as usual a blocking argument that splits
the data into kn blocks separated by time gaps of size larger than t∗n , which are created by simply disregarding the
observations in the time frame occupied by the gaps. The precise construction of the blocks is given in Section 2.2 but
we briefly describe below some of the properties of this construction.

In the stationary context, one takes blocks of equal size, which in particular means that the expected number of
exceedances within each block is nP(X0 > un)/kn ∼ τ/kn. Here the blocks may have different sizes, which we will
denote by �n,1, . . . , �n,kn but, as in [21,22], these are chosen so that the expected number of exceedances is again
∼τ/kn. Also, for i = 1, . . . , kn, let Ln,i = ∑i

j=1 �n,j and Ln,0 = 0.
The time gaps are created by disregarding the last observations in each block so that the true blocks become the

remaining part. To do that, we have to balance the facts that we want the gaps to be big enough so that they are larger
than t∗n but on the other hand we also want the gaps to be sufficiently small so that the information disregarded does not
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compromise the computations. This is achieved by choosing the number of blocks, which correspond to the sequence
(kn)n∈N diverging but slowly enough so that the weight of the gaps is negligible when compared to that of the true
blocks.

As usual in extreme value theory, in order to guarantee the existence of a distributional limit one needs to impose
some restrictions on the speed of recurrence.

For q ∈ N0 given by (2.4), consider the sequence (t∗n )n∈N, given by condition Дq(un) and let (kn)n∈N be another
sequence of integers such that

kn → ∞ and knt
∗
n F̄n,max → 0 (2.6)

as n → ∞.

Condition (Д′
q(un,i)). We say that Д′

q(un,i) holds for the sequence X0,X1,X2, . . . if there exists a sequence (kn)n∈N
satisfying (2.6) and such that

lim
n→∞

kn∑
i=1

�i−1∑
j=0

�i−1∑
r>j

P
(
A(q)

Li−1+j ∩ A(q)
Li−1+r

) = 0. (2.7)

Condition Д′
q(un,i) precludes the occurrence of clustering of escapes (or exceedances, when q = 0).

Remark 2.3. Note that condition Д′
p(un,i) is an adjustment of a similar condition Д′

p(un) in [15] in the stationary
setting, which is similar to (although slightly weaker than) condition D(p+1)(un) in the formulation of [7, Equa-
tion (1.2)]

When q = 0, observe that Д′
q(un,i) is very similar to D′(un,i) from Hüsler, which prevents clustering of ex-

ceedances, just as D′(un) introduced by Leadbetter did in the stationary setting.
When q > 0, we have clustering of exceedances, i.e., the exceedances have a tendency to appear aggregated in

groups (called clusters). One of the main ideas in [14] that we use here is that the events A(q)
n,i play a key role in

determining the limiting EVL and in identifying the clusters. In fact, when Д′
q(un,i) holds we have that every cluster

ends with an entrance in A(q)
n,i , meaning that the inter cluster exceedances must appear separated at most by q units

of time.
In this approach, it is rather important to observe the prominent role played by condition Д′

q(un,i). In particular,
note that if condition Д′

q(un,i) holds for some particular q = q0 ∈ N0, then condition Д′
q(un,i) holds for all q ≥ q0.

Then, q as defined in (2.4) is indeed the natural candidate to try to show the validity of Д′
q(un).

We now give a way of defining the Extremal Index (EI) using the sets A(q)
n,i . For q ∈ N0 given by (2.4), we also

assume that there exists 0 ≤ θ ≤ 1, which will be referred to as the EI, such that

lim
n→∞ max

i=1,...,kn

{∣∣∣∣∣θkn

Ln,i−1∑
j=Ln,i−1

F̄ (un,j ) − kn

Ln,i−1∑
j=Ln,i−1

P
(
A

(q)
n,j

)∣∣∣∣∣
}

= 0. (2.8)

The following is the main theorem of this section.

Theorem 2.4. Let X0,X1, . . . be a stationary stochastic process and suppose (2.1) and (2.2) hold for some τ > 0.
Let q ∈ N0 be as in (2.4) and assume that (2.8) holds. Assume also that conditions Д(un,i) and Д′

q(un,i) are satisfied.
Then

lim
n→∞ Pn = e−θτ .

The rest of this section is devoted to the proof of Theorem 2.4.
To simplify notation, we will drop the index n ∈ N and write: ui := un,i , A

(q)
i := A

(q)
n,i , A(q) := A

(q)
n , �i := �n,i ,

Li := Ln,i .
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2.1. Preliminaries to the argument

We begin by proving the crucial observation stated in Proposition 2.1.

Proof of Proposition 2.1. Since Ar ⊂ Br , then clearly W0,n(B) ⊂ W0,n(A). Hence, we have to estimate the proba-
bility of W0,n(A) \ W0,n(B).

Let x ∈ W0,n(A) \ W0,n(B). We will see that there exists j ∈ {1, . . . , q} such that x ∈ Bn−j . In fact, suppose that
no such j exists. Then let � = max{i ∈ {1, . . . , n − 1} : x ∈ Bi}. Then, clearly, � < n − q . Hence, if x /∈ Bj , for all
i = � + 1, . . . , n − 1, then we must have that x ∈ A� by definition of A. But this contradicts the fact that x ∈ W0,n(A).
Consequently, we have that there exists j ∈ {1, . . . , q} such that x ∈ Bn−j and since x ∈ W0,n(A) then we can actually
write x ∈ Bn−j \ An−j .

This means that W0,n(A) \ W0,n(B) ⊂ ⋃q

j=1(Bn−j \ An−j ) ∩ W0,n(A) and then

∣∣P(
W0,n(B)

) − P
(
W0,n(A)

)∣∣ = P
(
W0,n(A) \ W0,n(B)

)
≤ P

(
q⋃

j=1

(Bn−j \ An−j ) ∩ W0,n(A)

)

≤
q∑

j=1

P
(
W0,n(A) ∩ (Bn−j \ An−j )

)
,

as required. �

We prove next some lemmata that pave the way for Proposition 2.7, which is the cornerstone of the argument
leading to the proof of Theorem 2.4

Lemma 2.5. For any fixed A= (A0,A1, . . .), Ai ∈ B for i = 0,1, . . . , and integers a, s, t,m, with a < s, we have:

∣∣P(
Wa,s+t+m(A)

) − P
(
Wa,s(A) ∩ Wa+s+t,m(A)

)∣∣ ≤
s+t−1∑
j=s

P(Aa+j ).

Proof.

P
(
Wa,s(A) ∩ Wa+s+t,m(A)

) − P
(
Wa,s+t+m(A)

) = P
(
Wa,s(A) ∩ W c

a+s,t (A) ∩ Wa+s+t,m(A)
)

≤ P
(
W c

a+s,t (A)
) = P

(
s+t−1⋃
j=s

(Aa+j )

)

≤
s+t−1∑
j=s

P(Aa+j ).
�

Lemma 2.6. For any fixed A= (A0,A1, . . .), Ai ∈ B for i = 0,1, . . . , and integers a, s, t,m, with a < s, we have:

∣∣∣∣∣P(
Wa,s(A) ∩ Wa+s+t,m(A)

) − P
(
Wa+s+t,m(A)

)(
1 −

s−1∑
j=0

P(Aa+j )

)∣∣∣∣∣
≤

∣∣∣∣∣
s−1∑
j=0

P(Aa+j )P
(
Wa+s+t,m(A)

) −
s−1∑
j=0

P
(
Aa+j ∩ Wa+s+t,m(A)

)∣∣∣∣∣ +
s−1∑
j=0

s−1∑
i>j

P(Aa+i ∩ Aa+j ).
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Proof. Observe that∣∣∣∣∣P(
Wa,s(A) ∩ Wa+s+t,m(A)

) − P
(
Wa+s+t,m(A)

)(
1 −

s−1∑
j=0

P(Aa+j )

)∣∣∣∣∣
≤

∣∣∣∣∣
s−1∑
j=0

P(Aa+j )P
(
Wa+s+t,m(A)

) −
s−1∑
j=0

P
(
Aa+j ∩ Wa+s+t,m(A)

)∣∣∣∣∣
+

∣∣∣∣∣P(
Wa,s(A) ∩ Wa+s+t,m(A)

) − P
(
Wa+s+t,m(A)

) +
s−1∑
j=0

P
(
Aa+j ∩ Wa+s+t,m(A)

)∣∣∣∣∣.
Regarding the second term on the right, we have

P
(
Wa,s(A) ∩ Wa+s+t,m(A)

) = P
(
Wa+s+t,m(A)

) − P
(
W c

a,s(A) ∩ Wa+s+t,m(A)
)
.

Now, since W c
a,s(A) ∩ Wa+s+t,m(A) = ⋃s−1

i=0(Aa+i ∩ Wa+s+t,m(A)), we have

P
(
W c

a,s(A) ∩ Wa+s+t,m(A)
) ≤

s−1∑
i=0

(
Aa+i ∩ P

(
Wa+s+t,m(A)

))

and so,

0 ≤
s−1∑
j=0

P
(
Aa+j ∩ Ws+t,m(A)

) − P
(
W c

a,s(A) ∩ Wa+s+t,m(A)
)

≤
s−1∑
j=0

s−1∑
i>j

P
(
Aa+i ∩ Aa+j ∩ Wa+s+t,m(A)

)
.

Hence, using these last computations we get:

∣∣∣∣∣P(
Wa,s(A) ∩ Wa+s+t,m(A)

) − P
(
Wa+s+t,m(A)

) +
s−1∑
j=0

P
(
Aa+j ∩ Wa+s+t,m(A)

)∣∣∣∣∣
=

∣∣∣∣∣−P
(
W c

a,s(A) ∩ Wa+s+t,m(A)
) +

s−1∑
j=0

P
(
Aa+j ∩ Wa+s+t,m(A)

)∣∣∣∣∣
≤

s−1∑
j=0

s−1∑
i>j

P
(
Aa+i ∩ Aa+j ∩ Wa+s+t,m(A)

)

≤
s−1∑
j=0

s−1∑
i>j

P(Aa+i ∩ Aa+j ).
�

2.2. The construction of the blocks

The construction of the blocks here, contrary to the stationary case, in which the blocks have equal size, is designed
so that the expected number of exceedances in each block is the same. We follow closely the construction in [21,22].
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For each n ∈ N we split the random variables X0, . . . ,Xn−1 into kn initial blocks, where kn is given by (2.6), of
sizes �1, . . . , �kn defined in the following way. Let as before Li = ∑i

j=1 �i and L0 = �0 = 0. Assume that �1, . . . , �i−1

are already defined. Take �i to be the largest integer such that:

Li−1+�i−1∑
j=Li−1

F̄ (un,i) ≤ F ∗
n

kn

.

The final working blocks are obtained by disregarding the last observations of each initial block, which will create
a time gap between each final block. The size of the time gaps must be balanced in order to have at least a size t∗n but
such that its weight on the average number of exceedances is negligible when compared to that of the final blocks. For
that purpose we define

ε(n) := (
t∗n + 1

)
F̄max

kn

F ∗
n

.

Note that by (2.2) and (2.6), it follows immediately that limn→∞ ε(n) = 0. Now, for each i = 1, . . . , kn let ti be the
largest integer such that

Li−1∑
j=Li−ti

F̄ (un,i) ≤ ε(n)
F ∗

n

kn

.

Hence, the final working blocks correspond to the observations within the time frame Li−1 + 1, . . . ,Li − ti , while
the time gaps correspond to the observations in the time frame Li − ti + 1, . . . ,Li , for all i = 1, . . . , kn.

Note that t∗n ≤ ti < �i , for each i = 1, . . . , kn. The second inequality is trivial. For the first inequality note that by
definition of ti we have

ε(n)
F ∗

n

kn

≤
Li−1∑

j=Li−ti

F̄ (un,i) + F̄ (un,Li−ti−1) ≤ (ti + 1)F̄max.

The first inequality follows easily now by definition of ε(n).

Proposition 2.7. For every, n ∈ N, let A := A
(q)
n for q defined by (2.4). Consider the construction of the kn blocks

above, the respective sizes �1, . . . , �kn and time gaps t1, . . . , tkn . Recall that Li = ∑i
j=1 �i . Assume that n ∈ N is large

enough so that F ∗
n /kn < 2. We have:

∣∣∣∣∣P(
W0,n(A)

) −
kn∏

i=1

(
1 −

Li−ti−1∑
j=Li−1

P(Aj )

)∣∣∣∣∣
≤

kn∑
i=1

Li−1∑
j=Li−1−ti

P
(
A

(q)
j

) +
n−1∑

j=Lkn

P
(
A

(q)
j

)

+
kn∑

i=1

∣∣∣∣∣
�i−ti−1∑

j=0

(
P(ALi−1+j )P

(
WLi ,Lkn−Li

(A)
) − P

(
ALi−1+j ∩ WLi ,Lkn−Li

(A)
))∣∣∣∣∣

+
kn∑

i=1

�i−1∑
j=0

�i−1∑
r>j

P(ALi−1+j ∩ ALi−1+r ).
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Proof. Using Lemma 2.5, we have:

∣∣P(
W0,n(A)

) − P
(
W0,Lkn

(A)
)∣∣ ≤

n−1∑
j=Lkn

P
(
A

(q)
j

)
. (2.9)

To simplify the notation let L̄i = Lkn −Li−1 = ∑kn

j=i �j . It follows by using (2.6) that

∣∣∣∣∣P(
WLi−1,L̄i

(A)
) −

(
1 −

Li−ti−1∑
j=Li−1

P(Aj )

)
P
(
WLi ,L̄i+1

(A)
)∣∣∣∣∣

≤ ∣∣P(
WLi−1,L̄i

(A)
) − P

(
WLi−1,�i−ti (A) ∩ WLi ,L̄i+1

(A)
)∣∣

+
∣∣∣∣∣P(

WLi−1,�i−ti (A) ∩ WLi ,L̄i+1
(A)

) −
(

1 −
Li−ti−1∑
j=Li−1

P(Aj )

)
P
(
WLi ,L̄i+1

(A)
)∣∣∣∣∣

≤
Li−1∑

j=Li−1−ti

P(Aj ) +
∣∣∣∣∣
Li−ti−1∑
j=Li−1

(P(Aj )P
(
WLi−1,L̄i

(A)
) − P

(
Aj ∩ WLi−1,L̄i

(A)
)∣∣∣∣∣

+
�i−1∑
j=0

�i−1∑
r>j

P(ALi−1+j ∩ ALi−1+r ). (2.10)

Let

ϒi :=
Li−1∑

j=Li−1−ti

P(Aj ) +
∣∣∣∣∣
Li−ti−1∑
j=Li−1

P(Aj )P
(
WLi−1,L̄i

(A)
) − P

(
Aj ∩ WLi−1,L̄i

(A)
)∣∣∣∣∣

+
�i−1∑
j=0

�i−1∑
r>j

P(ALi−1+j ∩ ALi−1+r ).

Note that, for i = kn in (2.10), |WLkn−1,L̄kn
(A)) − (1 − ∑Lkn−tkn−1

j=Lkn−1
P(Aj ))| ≤ ϒkn .

Since F ∗
n

kn
< 2 and, by construction, for all i = 1, . . . , kn, it is clear that

∑Li−ti−1
j=Li−1

P(Aj ) ≤ F ∗
n

kn
, then |1 −∑Li−ti−1

j=Li−1
P(Aj )| < 1, for all i = 1, . . . , kn.

Now, we use (2.10) recursively and obtain

∣∣∣∣∣P(
W0,Lkn

(A)
) −

kn∏
i=1

(
1 −

Li−ti−1∑
j=Li−1

P(Aj )

)∣∣∣∣∣ ≤
kn∑

i=1

ϒi. (2.11)

The result follows now at once from (2.9) and (2.11). �

2.3. Final argument

We are now in a position to prove Theorem 2.4.

Proof of Theorem 2.4. The theorem follows if we show that all the error terms in Proposition 2.7 converge to 0, as
n → ∞.
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For the first term, by choice of the ti ’s, we have

kn∑
i=1

Li−1∑
j=Li−1−ti

P
(
A

(q)
j

) ≤
kn∑

i=1

Li−1∑
j=Li−1−ti

F̄ (un,j ) ≤ knε(n)
F ∗

n

kn

= ε(n)F ∗
n ,

which tends to 0 as n → ∞, by (2.2) and definition of ε(n).
Regarding the second term observe first that

n−1∑
j=Lkn

P
(
A

(q)
j

) ≤
n−1∑

j=Lkn

F̄ (un,j ).

Since, by choice of �i , we have F ∗
n

kn
≤ ∑Li−1

j=Li−1
F̄ (un,j ) + F̄ (un,Li

) ≤ ∑Li−1
j=Li−1

F̄ (un,j ) + F̄max, then it follows
that

F ∗
n

kn

− F̄max ≤
Li−1∑

j=Li−1

F̄ (un,j ) ≤ F ∗
n

kn

. (2.12)

From the first inequality we get F ∗
n − knF̄max ≤ ∑kn

i=1

∑Li−1
j=Li−1

F̄ (un,j ), which implies that

n−1∑
j=Lkn

F̄ (un,j ) = F ∗
n −

kn∑
i=1

Li−1∑
j=Li−1

F̄ (un,j ) ≤ knF̄max,

which goes to 0 as n → ∞ by (2.6).
For the third term, recalling that, for each n and i, γi(q,n, t) from condition Дq(un,i) is decreasing in t , we have:

kn∑
i=1

∣∣∣∣∣
�i−ti−1∑

j=0

(
P
(
A(q)

Li−1+j

)
P
(
WLi ,Lkn−Li

(A)
) − P

(
A(q)

Li−1+j ∩ WLi ,Lkn−Li
(A)

))∣∣∣∣∣ ≤
n−1∑
i=0

γi(q,n, tn),

which tends to 0 as n → ∞ by condition Дq(un,i).
By condition Д′(un), we have that the fourth term goes to 0 as n → ∞.
Now, we will see that

∣∣∣∣∣
kn∏

i=1

(
1 −

Li−ti−1∑
j=Li−1

P
(
A(q)

j

)) − e−θτ

∣∣∣∣∣ −→
n→∞ 0.

By (2.8) we have that kn

∑Li−1
j=Li−1

P(A(q)
j ) = knθ

∑Li−1
j=Li−1

F̄ (un,j ) + o(1). Then

Li−1∑
j=Li−1

P
(
A(q)

j

) = θ

Li−1∑
j=Li−1

F̄ (un,j ) + o
(
k−1
n

)
.

Since by (2.6), we have F̄max = o(k−1
n ), then, by (2.12), it follows that

Li−1∑
j=Li−1

F̄ (un,j ) + o
(
k−1
n

) = F ∗
n

kn

+ o
(
k−1
n

)
.
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Also note that

Li−1∑
j=Li−ti

P
(
A(q)

j

) ≤
Li−1∑

j=Li−ti

F̄ (un,j ) ≤ ε(n)
F ∗

n

kn

= o
(
k−1
n

)
.

Hence, for all i = 1, . . . , kn we have

Li−ti−1∑
j=Li−ti

P
(
A(q)

j

) = θ
F ∗

n

kn

+ o
(
k−1
n

)
.

Finally, by (2.2), we have

kn∏
i=1

(
1 −

Li−ti−1∑
j=Li−ti

P
(
A(q)

j

)) ∼
(

1 − θ
F ∗

n

kn

+ o
(
k−1
n

))kn

−→
n→∞ e−θτ .

Finally, by Proposition 2.1 we have

∣∣Pn − P
(
W0,n

(
A

(q)
))∣∣ ≤

q∑
j=1

P
(
W0,n

(
A

(q)
) ∩ ({Xn−j > un,n−j } \ {

A
(q)
n−j

}))

≤
q∑

j=1

P
({Xn−j > un,n−j } \ {

A
(q)
n−j

})

≤
q∑

j=1

(
1 − Fn−j (un,n−j )

)
, (2.13)

which converges to 0 as n → ∞.
Note that when q = 0 both sides of inequality (2.13) equal 0. �

3. Sequential dynamical systems

3.1. General presentation

In this section we will give a first example of a non-stationary process, by considering families F of non-invertible
maps defined on compact subsets X of Rd or on the torus Td (still denoted with X in the following), and non-singular
with respect to the Lebesgue or the Haar measure, i.e. m(A) 
= 0 �⇒ m(T (A)) 
= 0. Such measures will be defined
on the Borel sigma algebra B. We will be mostly concerned with the case d = 1. A countable sequence of maps
{Tk}k≥1 ∈F defines a sequential dynamical system. A sequential orbit of x ∈ X will be defined by the concatenation

Tn(x) := Tn ◦ · · · ◦ T1(x), n ≥ 1. (3.1)

We denote by Pj the Perron–Fröbenius (transfer) operator associated to Tj defined by the duality relation∫
X

Pjfg dm =
∫

X

fg ◦ Tj dm, for all f ∈ L1
m,g ∈ L∞

m .

Note that here the transfer operator Pj is defined with respect to the reference Lebesgue measure m.
Similarly to (3.1), we define the composition of operators as

	n := Pn ◦ · · · ◦ P1, n ≥ 1. (3.2)
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It is easy to check that duality persists under concatenation, namely∫
X

g(Tn)f dm =
∫

X

g(Tn ◦ · · · ◦ T1)f dm =
∫

X

g(Pn ◦ · · · ◦ P1f )dm =
∫

X

g(	nf )dm. (3.3)

In [9] the authors begin a systematic study of the statistical properties of sequential dynamical systems by proving
in particular the law of large numbers and the central limit theorem. In [18], it was shown that the Almost Sure
Invariance Principle still holds. In order to establish such results a few assumptions are needed and some of them
are also relevant for the extreme value theory. We will recall them in this section and then we will provide a list of
examples which will go beyond the β transformations, which was the prototype case investigated by Conze and Raugi.

We first need to choose a suitable couple of adapted spaces in order to get and exploit the quasi-compactness of the
transfer operator. We will consider in particular a Banach space V ⊂ L1

m (1 ∈ V) of functions over X with norm ‖ · ‖α ,
such that ‖φ‖∞ ≤ C‖φ‖α .

For example, we could let V be the Banach space of bounded variation functions over X with norm ‖ · ‖BV given
by the sum of the L1

m norm and the total variation | · |BV, or we could take V to be the space of quasi-Hölder functions
with a suitable norm which we will define later on.

One of the basic assumption is the following:

Uniform Doeblin–Fortet–Lasota–Yorke inequality (DFLY): There exist constants A,B < ∞, ρ ∈ (0,1), such that
for any n and any sequence of operators Pn, . . . ,P1 associated to transformations in F and any f ∈ V we have

‖Pn ◦ · · · ◦ P1f ‖α ≤ Aρn‖f ‖α + B‖f ‖1. (3.4)

At this point one would like to dispose of a sort of quasi-compactness argument which would allow to get exponential
decay for the composition of operators. In all the examples we will present, the class F will be constructed around
(this will be made clear in a moment) a given map T0 for which the corresponding operator P0 will satisfy quasi-
compactness. Namely we require:

Exactness property: The operator P0 has a spectral gap, which implies that there are two constants C1 < ∞ and
γ0 ∈ (0,1) so that∥∥P n

0 f
∥∥

α
≤ C1γ

n
0 ‖f ‖α (3.5)

for all f ∈ V of zero (Lebesgue) mean and n ≥ 1.
The next step is to consider the following distance between two operators P and Q associated to maps in F and

acting on V :

d(P,Q) = sup
f ∈V,‖f ‖α≤1

‖Pf − Qf ‖1.

A very useful criterion is given in Proposition 2.10 in [9], and in our setting it reads: if P0 verifies the exactness
property, then there exists δ0 > 0, such that the set {P ∈F;d(P,P0) < δ0} satisfies the decorrelation (DEC) condition,
where

Property (DEC): Given the family F there exist constants Ĉ > 0, γ̂ ∈ (0,1), such that for any n and any sequence
of transfer operators Pn, . . . ,P1 corresponding to maps chosen from F and any f ∈ V of zero (Lebesgue) mean,1 we
have

‖Pn ◦ · · · ◦ P1f ‖α ≤ Ĉγ̂ n‖f ‖α. (3.6)

By induction on the Doeblin–Fortet–Lasota–Yorke inequality for compositions we immediately have

d
(
Pr ◦ · · · ◦ P1,P

r
0

) ≤ M

r∑
j=1

d(Pj ,P0), (3.7)

1Actually, the definition of the (DEC) property in [9] is slightly more general since it requires the above property for functions in a suitable
subspace, not necessarily that of functions with zero expectation.
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with M = 1 + Aρ−1 + B .
According to [9, Lemma 2.13], (3.5) and (3.7) imply that there exists a constant C2 such that

∥∥Pn ◦ · · · ◦ P1φ − P n
0 φ

∥∥
1 ≤ C2‖φ‖BV

(
p∑

k=1

d(Pn−k+1,P0) + (1 − γ0)
−1γ

p

0

)

for all integers p ≤ n and all functions φ ∈ V . We will use this bound to get a quantitative rate of the exponential
decay for composition of operators in the L1

m norm when we relate it to the following two assumptions:

Lipschitz continuity property: Assume that the maps (and their transfer operators) are parametrised by a sequence
of numbers εk , k ∈N, such that limk→∞ εk = ε0 (Pε0 = P0). We assume that there exists a constant C3 so that

d(Pεk
,Pεj

) ≤ C3|εk − εj |, for all k, j ≥ 0.

We will restrict in the following to the subclass Fexa of maps, and therefore of operators, for which

Fexa := {
Pεk

∈F; |εk − ε0| < C−1
3 δ0

}
.

The maps in Fexa will therefore verify the (DEC) condition, but we will sometimes need something stronger, namely:

Convergence property: We require algebraic convergence of the parameters, that is, there exist a constant C4 and
κ > 0 so that

|εn − ε0| ≤ C4

nκ
∀n ≥ 1.

With these last assumptions, we get a polynomial decay for (3.7) of the type O(n−κ) and in particular we obtain the
same algebraic convergence in L1

m of Pn ◦ · · · ◦ P1φ to h
∫

φ dm, where h is the density of the absolutely continuous
mixing measure of the map T0.

3.2. Stochastic processes for sequential systems

Similarly to [12] (in the context of stationary deterministic systems), we consider that the time series X0,X1, . . . arises
from these sequential systems simply by evaluating a given observable ϕ : X →R∪{±∞} along the sequential orbits.

Xn = ϕ ◦ Tn, for each n ∈ N. (3.8)

Note that, contrary to the setup in [12], the stochastic process X0,X1, . . . defined in this way is not necessarily
stationary.

We assume that the r.v. ϕ : X →R∪ {±∞} achieves a global maximum at ζ ∈ X (we allow ϕ(ζ ) = +∞) being of
following form:

ϕ(x) = g
(
dist(x, ζ )

)
, (3.9)

where ζ is a chosen point in the phase space X and the function g : [0,+∞) → R∪ {+∞} is such that 0 is a global
maximum (g(0) may be +∞); g is a strictly decreasing bijection g : V → W in a neighbourhood V of 0; and has one
of the following three types of behaviour:

Type g1: there exists some strictly positive function h : W → R such that for all y ∈ R

lim
s→g1(0)

g−1
1 (s + yh(s))

g−1
1 (s)

= e−y; (3.10)

Type g2: g2(0) = +∞ and there exists β > 0 such that for all y > 0

lim
s→+∞

g−1
2 (sy)

g−1
2 (s)

= y−β; (3.11)
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Type g3: g3(0) = D < +∞ and there exists γ > 0 such that for all y > 0

lim
s→0

g−1
3 (D − sy)

g−1
3 (D − s)

= yγ . (3.12)

It may be shown that no non-degenerate limit applies if
∫ g1(0)

0 g−1
1 (s) ds is not finite. Hence, an appropriate choice

of h in the Type 1 case is given by h(s) = ∫ g1(0)

s
g−1

1 (t) dt/g−1
1 (s) for s < g1(0).

Examples of each one of the three types are as follows: g1(x) = − logx (in this case (3.10) is easily verified with
h ≡ 1), g2(x) = x−1/α for some α > 0 (condition (3.11) is verified with β = α) and g3(x) = D−x1/α for some D ∈R

and α > 0 (condition (3.12) is verified with γ = α).

3.3. Examples

We now give a few examples of sequential systems satisfying the preceding assumptions. The family of maps F will
be parametrised by a small positive number ε (or a vector with small positive components) and we will tacitly suppose
that we restrict to Fexa having previously proved that the transfer operator P0 for a reference map T0 is exact. This
will impose restrictions on the choice of ε (less than a constant times δ0, see above), and in this case we will use
the terminology for ε small enough. The verification of the DFLY condition, which in turn will imply the analogous
condition for the unperturbed operator P0 will usually follow from standard arguments and the exactness of P0 will
be proved by assuming the existence of a unique mixing absolutely continuous invariant measure (for instance by
adding further properties to the map T0), or alternatively by restricting to one of the finitely many mixing components
prescribed by the quasi-compactness of P0.

The following examples have already been introduced and treated in [18], but in the latter paper a much stronger
condition was required, namely that there exists δ > 0 such that for any sequence Pn, . . . ,P1 in F we have the uniform
lower bound

inf
x∈M

Pn ◦ · · · ◦ P11(x) ≥ δ, ∀n ≥ 1. (3.13)

We do not need that property in the context of EVT.

3.3.1. β transformation
Let β > 1 and denote by Tβ(x) = βx mod 1 the β-transformation on the unit circle. Similarly, for βk ≥ 1 + c > 1,
k = 1,2, . . ., we have the transformations Tβk

of the same kind, x �→ βkx mod 1. Then F = {Tβk
: k} is the family

of transformations we want to consider here. The property (DEC) was proved in [9, Theorem 3.4(c)] and continuity
(Lip) is precisely the content of Section 5 still in [9].

3.3.2. Random additive noise
In this second example we consider piecewise uniformly expanding maps T on the unit interval M = [0,1] which
preserve a unique absolutely continuous invariant measure μ which is also mixing. We denote by Ak, k = 1, . . . ,m

the m open intervals of monotonicity of the map T which give a partition mod-0 of the unit interval. The map T is
C2 over the Ak and with a C2 extension on the boundaries. We put minx∈M |DT (x)| ≥ λ > 1;maxx∈M |DT (x)| ≤
�; supx∈M |D2Tε(x)

DTε(x)
| ≤ C1 < ∞. We will perturb with additive noise, namely we will consider a family of maps F

given by Tε(x) = T (x) + ε, where ε ∈ U and such that ∀ε ∈ U we have the images TεAk, k = 1, . . . ,m strictly
included in [0,1]. We will also suppose that ∃Aw such that ∀Tε ∈ F and k = 1, . . . ,m : TεAk ⊃ Aw; moreover there
exists 1 ≥ L′ > 0 such that ∀k = 1, . . . ,m and ∀Tε ∈ F , |Tε(Aw)∩ Ak| > L′. These conditions are useful in obtaining
distortion bounds. We note that our assumptions are satisfied if we consider C2 uniformly expanding maps on the
circle and again perturbed with additive noise, without, this time, any restriction of the values of ε. In particular, the
intervals of local injectivity Ak, k = 1, . . . ,m, of Tε are now independent of ε. The functional space V will coincide
with the functions of bounded variation with norm ‖ · ‖BV.

The (DFLY) inequality follows easily with standard arguments. The next step is to show that two operators are
close when the relative perturbation parameters are close: we report here for completeness the short proof already
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given in [18]. We thus consider the difference ‖P̂ε1f − P̂ε2f ‖1, with f in BV. We have

P̂ε1f (x) − P̂ε2f (x) =
m∑

l=1

f · 1Uc
n

(
T −1

ε1,l
x
)[ 1

DTε1(T
−1
ε1,l

x)
− 1

DTε2(T
−1
ε2,l

x)

]

+
m∑

l=1

1

DTε2(T
−1
ε2,l

x)

[
f · 1Uc

n

(
T −1

ε1,l
x
) − f · 1Uc

n

(
T −1

ε2,l
x
)] = E2(x) + E3(x).

In the formula above we considered, without restriction, the derivative positive and moreover we discarded those
points x which have only one pre-image in each interval of monotonicity. After integration this will give an error

(E1) as E1 ≤ 4m|ε1 − ε2|‖P̂εf ‖∞. But ‖P̂εf ‖∞ ≤ ‖f ‖∞
∑m

l=1
DTε2 (T −1

ε2,lx
′)

DTε2 (T −1
ε2,lx)

1
DTε2 (T −1

ε2,lx
′) , where x′ is the point where

DTε2(T
−1
ε2,l

x′)|Al | ≥ η, being η the minimum length of T (Ak), k = 1, . . . ,m. But the first ratio in the previous sum is
simply bounded by the distortion constant Dc = �λ−1; therefore we get

E1 ≤ 4m|ε1 − ε2|‖f ‖∞
Dc

η

m∑
l=1

|Al | ≤ 4m|ε1 − ε2|‖f ‖∞
Dc

η
.

We now bound E2. The term in the square bracket and for given l (we drop this index in the derivatives in the

next formulas), will be equal to D2T (ξ)

[DT (ξ)]2 |T −1
ε1

(x) − T −1
ε2

(x)|, being ξ a point in the interior of Al . The first factor is

uniformly bounded by C1. Since x = Tε1(T
−1
ε1

(x)) = T (T −1
ε1

(x)) + ε1 = T (T −1
ε2

(x)) + ε2 = Tε2(T
−1
ε2

(x)), we have

that |T −1
ε1

(x) − T −1
ε2

(x)| = |ε1 − ε2||DT (ξ ′)|−1, where ξ ′ is in Al . Replacing ξ ′ by T −1
ε1,l

x, because of distortion, we
get

∫ ∣∣E2(x)
∣∣dx ≤ |ε1 − ε2|C1Dc

∫ [
m∑

l=1

∣∣f (
T −1

ε1,l

)∣∣ 1

DTε1(T
−1
ε1,l

x)

]
dx

= |ε1 − ε2|C1Dc

∫
Pε1

(|f |)(x) dx = |ε1 − ε2|C1Dc‖f ‖1.

To bound the last term we use the formula (3.11), in [9],∫
sup

|y−x|≤t

∣∣f (y) − f (x)
∣∣dx ≤ 2t Var(f ),

by observing again that |T −1
ε1

(x) − T −1
ε2

(x)| = |ε1 − ε2||DT (ξ ′)|−1, where ξ ′ is in Al . By integrating E3(x) we get

∫ ∣∣E3(x)
∣∣dx ≤ 2mλ−2|ε1 − ε2|Var(f 1Uc

n
)

≤ 10mλ−2|ε1 − ε2|Var(f ).

Putting together the three errors we finally get that there exists a constant C̃ such that

‖P̂ε1f − P̂ε2f ‖1 ≤ C̃|ε1 − ε2|‖f ‖BV,

and we can complete the argument as in the first example of β transformations.

3.3.3. Multidimensional maps
We give here a multidimensional version of the maps considered in the preceding section; these maps were extensively
investigated in [2,4,19,20,33] and we defer to those papers for more details. Let M be a compact subset of RN which
is the closure of its non-empty interior. We take a map T : M → M and let A = {Ai}mi=1 be a finite family of disjoint
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open sets such that the Lebesgue measure of M \ ⋃
i Ai is zero, and there exist open sets Ãi ⊃ Ai and C1+α maps

Ti : Ãi → R
N , for some real number 0 < α ≤ 1 and some sufficiently small real number ε1 > 0, such that

(1) Ti(Ãi) ⊃ Bε1(T (Ai)) for each i, where Bε(V ) denotes a neighbourhood of size ε of the set V . The maps Ti are
the local extensions of T to the Ãi .

(2) there exists a constant C1 so that for each i and x, y ∈ T (Ai) with dist(x, y) ≤ ε1,

∣∣detDT −1
i (x) − detDT −1

i (y)
∣∣ ≤ C1

∣∣detDT −1
i (x)

∣∣dist(x, y)α;

(3) there exists s = s(T ) < 1 such that ∀x, y ∈ T (Ãi) with dist(x, y) ≤ ε1, we have

dist
(
T −1

i x, T −1
i y

) ≤ s dist(x, y);

(4) each ∂Ai is a codimension-one embedded compact piecewise C1 submanifold and

sα + 4s

1 − s
Z(T )

γN−1

γN

< 1, (3.14)

where Z(T ) = supx

∑
i #{smooth pieces intersecting ∂Ai containing x} and γN is the volume of the unit ball in

R
N .

Given such a map T , we define locally on each Ai the map Tε ∈ F by Tε(x) := T (x) + ε, where now ε is an n-
dimensional vector with all the components of absolute value less than one. As in the previous example the translation
by ε is allowed if the image TεAi remains in M : in this regard, we could play with the sign of the components of ε

or not move the map at all. As in the one dimensional case, we shall also make the following assumption on F . We
assume that there exists a set Aw ∈A satisfying:

(i) Aw ⊂ TεAk for all ∀Tε ∈F and for all k = 1, . . . ,m.
(ii) T Aw is the whole M , which in turn implies that there exists 1 ≥ L′ > 0 such that ∀k = 1, . . . , q and ∀Tε ∈ F ,

diameter(Tε(Aw) ∩ Ak) > L′.

As V ⊂ L1(m) we use the space of quasi-Hölder functions, for which we refer again to [20,33]. On this space, the
transfer operator satisfies a Doeblin–Fortet–Lasota–Yorke inequality. Finally, Lipschitz continuity has been proved
for additive noise in Proposition 4.3 in [4].

3.3.4. Covering maps: A general class
We now present a more general class of examples which were introduced in [5] to study metastability for randomly
perturbed maps. As before, the family F will be constructed around a given map T which is again defined on the unit
interval M . We therefore begin by introducing such map T .

(A1) There exists a partition A = {Ai : i = 1, . . . ,m} of M , which consists of pairwise disjoint intervals Ai . Let
Āi := [ci,0, ci+1,0]. We assume there exists δ > 0 such that Ti,0 := T |(ci,0,ci+1,0) is C2 and extends to a C2

function T̄i,0 on a neighbourhood [ci,0 − δ, ci+1,0 + δ] of Āi ;
(A2) There exists β0 < 1

2 so that infx∈I\C0 |T ′(x)| ≥ β−1
0 , where C0 = {ci,0}mi=1.

We note that Assumption (A2), more precisely the fact that β−1
0 is strictly bigger than 2 instead of 1, is sufficient

to get the uniform Doeblin–Fortet–Lasota–Yorke inequality (3.17) below, as explained in Section 4.2 of [17]. We now
construct the family F by choosing maps Tε ∈ F close to Tε=0 := T in the following way:

Each map Tε ∈ F has m branches and there exists a partition of M into intervals {Ai,ε}mi=1, Ai,ε ∩ Aj,ε = ∅ for
i 
= j , Āi,ε := [ci,ε, ci+1,ε] such that

(i) for each i one has that [ci,0 + δ, ci+1,0 − δ] ⊂ [ci,ε, ci+1,ε] ⊂ [ci,0 − δ, ci+1,0 + δ]; whenever c1,0 = 0 or cq+1,0 =
1, we do not move them with δ. In this way, we have established a one-to-one correspondence between the
unperturbed and the perturbed extreme points of Ai and Ai,ε . (The quantity δ is from Assumption (A1) above.)
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(ii) the map Tε is locally injective over the closed intervals Ai,ε , of class C2 in their interiors, and expanding with
infx |T ′

εx| > 2. Moreover there exists σ > 0 such that ∀Tε ∈F,∀i = 1, . . . ,m and ∀x ∈ [ci,0 −δ, ci+1,0 +δ]∩Ai,ε

where ci,0 and ci,ε are two (left or right) corresponding points, we have:

|ci,0 − ci,ε| ≤ σ (3.15)

and∣∣T̄i,0(x) − Ti,ε(x)
∣∣ ≤ σ. (3.16)

Under these assumptions and by taking, with obvious notations, a concatenation of n transfer operators, we have the
uniform Doeblin–Fortet–Lasota–Yorke inequality, namely there exist η ∈ (0,1) and B < ∞ such that, for all f ∈ BV,
all n and all concatenations of n maps of F , we have

‖Pεn ◦ · · · ◦ Pε1f ‖BV ≤ ηn‖f ‖BV + B‖f ‖1. (3.17)

About the continuity (Lip): looking carefully at the proof of the continuity for the expanding map of the intervals, one
sees that it extends to the actual case if one gets the following bounds:

|T −1
ε1

(x) − T −1
ε2

(x)|
|DTε1(x) − DTε2(x)|

}
= O

(|ε1 − ε2|
)
, (3.18)

where the point x is in the same domain of injectivity of the maps Tε1 and Tε2 , the comparison of the same functions
and derivative in two different points being controlled by the condition (3.15). The bounds (3.18) follow easily by
adding to (3.15), (3.16) the further assumptions that σ = O(ε) and requiring a continuity condition for derivatives
like (3.16) and with σ again being of order ε.

4. EVT for the sequential systems: An example of uniformly expanding map

In this section, we will give a detailed analysis of the application of the general result obtained in Section 2 to a
particular sequential system. It is constructed with β transformations; similar approach and technique can be used to
treat the other examples of sequential systems introduced above with suitable adaptations and modifications. We point
out that in this example we will take un,i = un, where (un)n∈N satisfies nμ(Un) = nμ(X0 > un) → τ , as n → ∞ for
some τ > 0, where μ is the invariant measure of the original map Tβ .

Consider the family of maps on the unit circle S1 = [0,1], with the identification 0 ∼ 1, given by Tβ(x) = βx mod1
for β > 1 + c, with c > 0. Note that for many such β , we have that Tβ(1) 
= 1 and, by the identification 0 ∼ 1, this
means that Tβ as a map on S1 is not continuous at ζ = 0 ∼ 1. For simplicity we assume that Tβ(0) = 0 but consider
that the orbit of 1 is still defined to be Tβ(1), T 2

β (1), . . . although, strictly speaking, 1 ∼ 0 should be considered a fixed
point. In what follows m denotes Lebesgue measure on [0,1].

Theorem 4.1. Consider an unperturbed map Tβ corresponding to some β = β0 > 1 + c, with invariant absolutely
continuous probability μ = μβ . Consider a sequential system acting on the unit circle and given by Tn = Tn ◦ · · · ◦T1,
where Ti = Tβi−1 , for all i = 1, . . . , n and |βn − β| ≤ n−ξ holds for some ξ > 1. Let X1,X2, . . . be defined by (3.8),
where the observable function ϕ, given by (3.9), achieves a global maximum at a chosen ζ ∈ [0,1]. Let (un)n∈N be
such that nμ(X0 > un) → τ , as n → ∞ for some τ ≥ 0. Then, there exists 0 < θ ≤ 1 such that

lim
n→∞m(X0 ≤ un,X1 ≤ un, . . . ,Xn−1 ≤ un) = e−θτ .

The value of θ is determined by the behaviour of ζ under the original dynamics Tβ , namely,

• If the orbit of ζ by Tβ never hits 0 ∼ 1 and ζ is periodic of prime period p2 then θ = 1 − β−p;
• If the orbit of ζ by Tβ never hits 0 ∼ 1 and ζ is not periodic then θ = 1;

2T
p
β (ζ ) = ζ and p is the minimum integer with such property.
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• If ζ = 0 ∼ 1 and 1 is not periodic,3 then θ = dμ
dm

(0)(1 − β−1) + dμ
dm

(1);

• If ζ = 0 ∼ 1 and 1 is periodic of prime period p then θ = dμ
dm

(0)(1 − β−1) + dμ
dm

(1)(1 − β−p).

We remark that if the decay rate of |βn − β| is slower than in the statement of the theorem then the observed
extremal index for the sequential system at periodic points of the original dynamics may be 1 as shown in Section 4.5.

4.1. Preliminaries

As we said above, we let μ denote the invariant measure of the original map Tβ and let h = dμ
dm

be its density.
We assume throughout this subsection that there exists ξ > 1 such that

|βn − β| ≤ 1

nξ
. (4.1)

Also let 0 < γ < 1 be such that γ ξ > 1. In what follows P denotes the transfer operator associated to the unperturbed
map Tβ . Recall that 	i = Pi ◦ · · · ◦ P1, where Pi is the transfer operator associated to Ti = Tβi

, while P i is the
corresponding concatenation for the unperturbed map Tβ . Note that by [9, Lemma 3.10], we have∥∥∥∥	i(g) −

∫
g dmh

∥∥∥∥
1
≤ C1

log i

iξ
‖g‖BV. (4.2)

Consider a measurable set A ⊂ [0,1]. Then

m
(
T −1

j (A)
) =

∫
1A ◦ Tj ◦ · · · ◦ T1 dm =

∫
1A	j (1) dm

=
∫

1Ahdm +
∫

1A

(
	j(1) − h

)
dm.

By (4.2), if j ≥ nγ (recall that γ ξ > 1) then we have
∫ |	j(1) − h|dm ≤ C1

log i

iξ
= o(n−1), which allows us to write:

m
(
T −1

j (A)
) = μ(A) + o

(
n−1). (4.3)

4.1.1. Verification of condition (2.2), i.e., limn→∞
∑n−1

i=0 m(Xi > un) = τ

We start with the following lemma.

Lemma 4.2. We have that

lim
n→∞

n−1∑
i=0

∫
Un

P i(1) dm = τ.

Proof. By hypothesis, for all j ∈ N and g ∈ BV we have P j (g) = h
∫

g · hdm + Qj(g), where ‖Qj(g)‖∞ ≤
αj‖g‖BV, for some α < 1. Then we can write:

n−1∑
i=0

∫
Un

P i(1) dm =
n−1∑
i=0

∫
h

(∫
1 · hdm

)
1Un dm +

n−1∑
i=0

∫
Qi(1)1Un dm

=
n−1∑
i=0

∫
Un

hdm +
n−1∑
i=0

∫
Qi(1)1Un dm

= nμ(Un) +
n−1∑
i=0

∫
Qi(1)1Un dm.

3T n
β (1) 
= 0 ∼ 1 for all n.
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The result follows if we show that the second term on the r.h.s. goes to 0, as n → ∞. This follows easily since

n−1∑
i=0

∫
Qi(1)1Un dm ≤

n−1∑
i=0

αi

∫
1Un dm = 1 − αn

1 − α
m(Un) −→

n→∞ 0.
�

Since

n−1∑
i=0

m(Xi > un) =
n−1∑
i=0

∫
Un

	i(1) dm =
n−1∑
i=0

∫
Un

P i(1) dm +
n−1∑
i=0

∫
Un

	i(1) − P i(1) dm,

then condition (2.2) holds if we prove that the second term on the r.h.s. goes to 0 as n → ∞.
Let ε > 0 be arbitrary. Now, since ξ > 1 then

∑
i≥0

log i

iξ
< ∞, so there exists N ∈N such that C0

∑
i≥N

log i

iξ
< ε/2.

On the other hand, using the Lasota–Yorke inequalities for both 	 and P , we have that there exists some C > 0
such that |	i(1) − P i(1)| ≤ C, for all i ∈ N. Let n be sufficiently large so that CNm(Un) < ε/2. Then

n−1∑
i=0

∫
Un

	i(1) − P i(1) dm =
N−1∑
i=0

∫
Un

	i(1) − P i(1) dm +
∞∑

i=N

∫
Un

	i(1) − P i(1) dm

≤ CNm(Un) + C0

∑
i≥N

log i

iξ
< ε/2 + ε/2 = ε.

4.2. Verification of Дq(un)

We start by proving the following statement about decay of correlations, which is just a slightly more general statement
then the one proved in [9, Section 3].

Proposition 4.3. Let φ ∈ BV and ψ ∈ L1(m). Then for the β transformations Tn = Tβn we have that∣∣∣∣
∫

φ ◦ Tiψ ◦ Ti+t dm −
∫

φ ◦ Ti dm

∫
ψ ◦ Ti+t dm

∣∣∣∣ ≤ Bλt‖φ‖BV‖ψ‖1,

for some λ < 1 and B > 0 independent of φ and ψ .

Remark 4.4. Note that as it can be seen in [9, Section 3], Proposition 4.3 holds for any sequence Tβ1, Tβ2 , . . . of β

transformations and not necessarily only for the ones that satisfy condition (4.1).

Proof of Proposition 4.3. Using the adjoint property, write

DC(φ,ψ, i, t) :=
∫

φ ◦ Tiψ ◦ Ti+t dm −
∫

φ ◦ Ti dm

∫
ψ ◦ Ti+t dm

=
∫

ψPi+t · · ·Pi+1
(
φ	i(1)

)
dm −

∫
φ	i(1) dm

∫
ψ	i+t (1) dm.

Using the fact that the Perron–Fröbenius operators preserve integrals we have∫
φ	i(1) dm

∫
ψ	i+t (1) dm =

∫ ∫
ψ	i+t (1) dmPi+t · · ·Pi+1

(
φ	i(1)

)
dm.

By linearity we also have∫
φ	i(1) dm

∫
ψ	i+t (1) dm =

∫
ψPi+t · · ·Pi+1

(∫
φ	i(1) dm	i(1)

)
dm.
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Again linearity and preservation of the integrals allow us to write:∫
φ	i(1) dm

∫
ψ	i+t (1) dm =

∫ ∫
ψ	i+t (1) dmPi+t · · ·Pi+1

(∫
φ	i(1) dm	i(1)

)
dm.

Consequently we have

DC(φ,ψ, i, t) =
∫

ψPi+t · · ·Pi+1
(
φ	i(1)

)
dm −

∫ ∫
ψ	i+t (1) dmPi+t · · ·Pi+1

(
φ	i(1)

)
dm

−
∫

ψPi+t · · ·Pi+1

(∫
φ	i(1) dm	i(1)

)
dm

+
∫ ∫

ψ	i+t (1) dmPi+t · · ·Pi+1

(∫
φ	i(1) dm	i(1)

)
dm

=
∫ (

ψ −
∫

ψ	i+t (1) dm

)
Pi+t · · ·Pi+1

(
	i(1)

(
φ −

∫
φ	i(1) dm

))
.

Let φ̃ = φ − ∫
φ	i(1) dm. Observe that

∫
	i(1)φ̃ dm = 0. This means that the observable function 	i(1)φ̃ ∈ V0,

where V0 is the set of functions with 0 integral that was defined in [9, Lemma 2.12]. Moreover, by (DFLY), there
exists a constant C0 independent of φ and ψ such that ‖	i(1)φ̃‖BV ≤ 3C0‖φ‖BV.

As it has been shown in [9, Section 3], condition (Dec) of the same paper is satisfied for any sequence of β

transformations as considered here. It follows that for all g ∈ V0 and i ∈ N we have that ‖Pi+t · · ·Pi+1(g)‖BV ≤
Kλt‖g‖BV, for some K > 0 and λ < 1 independent of g, which applied to 	i(1)φ̃ gives:∥∥Pi+t · · ·Pi+1

(
	i(1)φ̃

)∥∥
BV ≤ 3KC0λ

t‖φ‖BV. (4.4)

Let ψ̃ = ψ − ∫
ψ	i+t (1) dm. Again, by [9, (2.4)], we have ‖ψ̃‖1 ≤ 2C0‖ψ‖1. Hence, using (4.4) we obtain

∣∣DC(φ,ψ, i, t)
∣∣ =

∣∣∣∣
∫

ψ̃Pi+t · · ·Pi+1
(
	i(1)φ̃

)
dm

∣∣∣∣
≤ ∥∥Pi+t · · ·Pi+1

(
	i(1)φ̃

)∥∥
BV

∫
|ψ̃ |dm

≤ 6KC2
0λt‖φ‖BV‖ψ‖1. �

Condition Дq(un,i) follows from Proposition 4.3 by taking for each i ∈ N,

φi = 1
D

(q)
n,i

and ψi = 1
D

(q)
n,i+t

· 1
D

(q)
n,i+t+1

◦ Ti+t+1 · · · · · 1
D

(q)
n,i+t+�

◦ Ti+t+� ◦ · · · ◦ Ti+t+1,

where for every j ∈N we define

D
(q)
n,j = Un ∩ T −1

j+1

(
Uc

n

) ∩ · · · ∩ T −1
j+q

(
Uc

n

)
. (4.5)

Since we assume that (4.1) holds, there exists a constant C > 0 depending on q but not on i such that ‖φi‖BV < C.
Moreover, it is clear that ‖ψi‖ ≤ 1. Hence,

∣∣P(
A(q)

n,i ∩ Wi+t,�

(
A

(q)
n

)) − P
(
A(q)

n,i

)
P
(
Wi+t,�

(
A

(q)
n

))∣∣
=

∣∣∣∣
∫

φi ◦ Tiψi ◦ Ti+t dm −
∫

φi ◦ Ti dm

∫
ψi ◦ Ti+t dm

∣∣∣∣ ≤ constλt .

Thus, if we take γi(q,n, t) = constλt and tn = (logn)2 condition Дq(un,i) is trivially satisfied.
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4.3. Verification of condition Д′
q(un)

We start by noting that we may neglect the first nγ random variables of the process X0,X1, . . . , where γ is such that
γ ξ > 1, for ξ given as in (4.1).

In fact, by Lemma 2.5 and (DFLY) we have

m
(
max{Xnγ , . . . ,Xn−1} ≤ un

) − m(Mn ≤ un) ≤
nγ −1∑
i=0

m(Xi > un) =
nγ −1∑
i=0

∫
1Un	i(1) dm

≤ C0n
γ m(Un) −→

n→∞ 0.

This way, we simply disregard the nγ random variables of X0,X1, . . . and start the blocking procedure, described in
Section 2.2, in Xnγ by taking L0 = nγ . We split the remaining n − nγ random variables into kn blocks as described
in Section 2.2. Our goal is to show that

S′
n :=

kn∑
i=1

�i−1∑
j=0

�i−1∑
r>j

m
(
A(q)

Li−1+j ∩ A(q)
Li−1+r

)

goes to 0.
We define for some i, n, q ∈N0,

R
(q)
n,i := min

{
j > i : 1

A
(q)
i

· 1
A

(q)
j

(x) > 0 for some x ∈ [0,1]},
R̃

(q)
n := R̃

(q)
n

(
nγ

) = min
{
R

(q)
n,i , i = nγ , . . . , n

}
,

Ln = max{�n,i , i = 1, . . . , kn}.

We have

S′
n ≤

n∑
i=nγ

Ln∑
j>i+R

(q)
n,i

m
(
A

(q)
i ∩ A

(q)
j

) =
n∑

i=nγ

Ln∑
j>i+R

(q)
n,i

∫
1
D

(q)
n,i

◦ Ti · 1
D

(q)
n,j

◦ Tj dm,

where D
(q)
n,i and D

(q)
n,j are given as in (4.5). Using Proposition 4.3, with φ = 1

D
(q)
n,i

and ψ = 1
D

(q)
n,j

and the adjoint
property of the operators, it follows that∫

1
D

(q)
n,i

◦ Ti · 1
D

(q)
n,j

◦ Tj dm ≤
∫

1
D

(q)
n,i

	i(1) dm

∫
1
D

(q)
n,j

	j (1) dm + Bλj−i‖1
D

(q)
n,i

‖BV‖1
D

(q)
n,j

‖1.

Using (DFLY) and since there exists some C2 > 0 (independent of n) such that ‖1
D

(q)
n,i

‖BV ≤ C2, we have

∫
1
D

(q)
n,i

◦ Ti · 1
D

(q)
n,j

◦ Tj dm ≤ C2
0m(Un)

2 + BC2λ
j−1m(Un).

Hence,

S′
n ≤

n∑
i=nγ

Ln∑
j≥i+R

(q)
n,i

(
C2

0m(Un)
2 + BC2λ

j−1m(Un)
) ≤ C2

0nLnm(Un)
2 + BC2m(Un)n

Ln∑
k≥R̃

(q)
n

λk

≤ C2
0nLnm(Un)

2 + BC2m(Un)nλR̃
(q)
n

1

1 − λ
.
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Now we show that

Ln = n

kn

(
1 + o(1)

)
. (4.6)

To see this, observe that each �ni
is defined, in this case, by the largest integer �n such that

∑s+�n−1
j=s m(Xj > Un) ≤

1
kn

∑n−1
j=nγ m(Xj > un). Using (4.3), it follows that �nμ(Un)(1+o(1)) ≤ n−nγ

kn
μ(Un)(1+o(1)). On the other hand, by

definition of �n we must have
∑s+�n−1

j=s m(Xj > Un) > 1
kn

∑n−1
j=nγ m(Xj > un) − m(Xs+�n > un). Using (4.3) again,

we have �nμ(Un)(1 + o(1)) > n−nγ

kn
μ(Un)(1 + o(1)) − μ(Un)(1 + o(1)). Together with the previous inequality, (4.6)

follows at once.
Using estimate (4.6), the fact that limn→∞ nμ(Un) = τ and h ∈ BV, we have that there exists some positive

constant C such that

S′
n ≤ C

(
1

kn

+ λR̃
(q)
n

)
.

In order to prove that Д′
q(un) holds, we need to show that R̃

(q)
n → ∞, as n → ∞, for all q ∈ N0. To do that we

have to split the proof in several cases. First, we have to consider the cases when the orbit of ζ hits 1 or not. Then for
each of the previous two cases, we have to consider if ζ is periodic or not.

We will consider that the maps Ti , for all i ∈N0, are defined in S1 by using the usual identification 0 ∼ 1. Observe
that the only point of discontinuity of such maps is 0 ∼ 1. Moreover, limx→0+ Ti(x) = 0 and limx→1− Ti(x) = βi −
�βi�.

4.3.1. The orbit of ζ by the unperturbed Tβ map does not hit 1
We mean that for all j ∈ N0 we have T j (ζ ) 
= 1.

4.3.1.1. The orbit of ζ is not periodic. In this case, for all j ∈ N, we have that T j (ζ ) 
= ζ , we take q = 0 and in
particular D

(q)
n,i = Un, for all i ∈N0. Let J ∈ N.

We will check that for n sufficiently large R̃
(q)
n > J . Since ζ is not periodic, there exists some ε > 0 such that

minj=1,...,J dist(T j (ζ ), ζ ) > ε. Let N1 ∈ N be sufficiently large so that for all i ≥ N1, we have

min
j=1,...,J

dist
(
Ti+j ◦ · · · ◦ Ti(ζ ), T j (ζ )

)
< ε/4.

Let N2 ∈N be sufficiently large so that for all i ≥ N2 we have

diam
(
Ti+J ◦ · · · ◦ Ti(Un)

)
< ε/4.

This way for all i ≥ max{N1,N2}, for all x ∈ Un and for all j ≤ J we have

dist
(
Ti+j ◦ · · · ◦ Ti(x), ζ

)
> ε/2.

Hence, as long as nγ > max{N1,N2} we have R̃
(q)
n > J .

Note that for this argument to work we only need that βn → β and the stronger restriction imposed by (4.1) is not
necessary.

4.3.1.2. The orbit of ζ is periodic. In this case, there exists p ∈ N, such that T j (ζ ) 
= ζ for all j < p and T p(ζ ) = ζ .
We take q = p.

Let

εn := |βnγ − β|. (4.7)

By (4.1) and choice of γ , we have that εn = o(n−1). Also let δ > 0, be such that Bδ(ζ ) is contained on a domain of
injectivity of all Ti , with i ≥ nγ .
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Let J ∈N be chosen. Using a continuity argument, we can show that there exists C := C(J,p) > 0 such that

dist
(
Ti+j ◦ · · · ◦ Ti+1(ζ ), T j (ζ )

)
< Cεn, for all i = 1, . . . , J

and moreover Un ∩ Ti+j ◦ · · · ◦ Ti+1(Un) =∅, for all j ≤ J such that j/p − �j/p� > 0.

We want to check that if x ∈ A
(q)
i for some i ≥ nγ , i.e., Ti (x) ∈ D

(q)
n,i , then x /∈ A

(q)
i+j , for all j = 1, . . . , J , i.e.,

Ti+j (x) /∈ D
(q)
n,i+j ⊂ Un, for all such j . By the assumptions above, we only need to check the latter for all j = 1, . . . , J

such that j/p − �j/p� = 0, i.e., for all j = sp, where s = 1, . . . , �J/p�.
By definition of A

(q)
i the statement is clearly true when s = 1. Let us consider now that s > 1 and let x ∈ A

(q)
i . We

may write

dist
(
Ti+sp(x), Ti+sp ◦ · · · ◦ Ti+p+1(ζ )

)
> (β − εn)

(s−1)p dist
(
Ti+p(x), ζ

)
.

On the other hand,

dist
(
Ti+sp ◦ · · · ◦ Ti+p+1(ζ ), ζ

) ≤ Cεn.

Hence,

dist
(
Ti+sp(x), ζ

) ≥ dist
(
Ti+sp(x), Ti+sp ◦ · · · ◦ Ti+p+1(ζ )

) − dist
(
Ti+sp ◦ · · · ◦ Ti+p+1(ζ ), ζ

)
≥ (β − εn)

(s−1)p dist
(
Ti+p(x), ζ

) − Cεn

≥ (β − εn)
(s−1)p m(Un)

2
− Cεn, since x ∈ A

(q)
i ⇒ Ti+p(x) /∈ Un

>
m(Un)

2
, for n sufficiently large, since εn = o

(
n−1).

This shows that Tsp+i (x) /∈ Un, which means that Tsp+i (x) /∈ D
(q)
n,i and hence x /∈ A

(q)
i+sp .

4.3.2. ζ = 0 ∼ 1
In this case we proceed in the same way as in [4, Section 3.3], which basically corresponds considering two versions
of the same point: ζ+ = 0 and ζ− = 1. Note that ζ+ is a fixed point for all maps considered and ζ− may or not be
periodic. So we split again into two cases.

4.3.2.1. 1 is not periodic. This means that T i(1) 
= ζ for all i ∈ N. Note that Un can be divided into U+
n which

corresponds to the bit having 0 at its left border and U−
n which corresponds to the interval with 1 as its endpoint.

In this case, q = 1 and D
(1)
n,i has two connected components one of them being U−

n . Let J ∈ N be fixed as before.
A continuity argument as the one used in Section 4.3.1.1, allows us to show that the points of U−

n do not return before
J iterates. An argument similar to the one used in Section 4.3.1.2 would allow us to show also that the points of the
other connected component of D

(1)
n,i do not return to Un before time J , also.

4.3.2.2. 1 is periodic. This means that there exists p ∈ N such that T i(1) 
= ζ for all i < p and T p(1) = ζ . In this
case, we need to take q = p and observe that D

(q)
n,i has again two connected components, one to the right of 0 and

the other to the left of 1, where none of the two points belongs to the set. The argument follows similarly as in the
previous paragraph, except that this time both sides require mimicking the argument used in Section 4.3.1.2. Note
that, the maps are orientation preserving so there is no switching as described in [4, Section 3.3].

4.4. Verification of condition (2.8)

We only need to verify (2.8), when ζ has some sort of periodic behaviour. Let εn be defined as in (4.7). Let δn be
such that Un = Bδn(ζ ). For simplicity, we assume that we are using the usual Riemannian metric so that we have a
symmetry of the balls, which means that |Un| = m(Un) = 2δn.
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Let us assume first that ζ is a periodic point of prime period p with respect to the unperturbed map T = Tβ and the
orbit of ζ does not hit 0 ∼ 1. In this case, we take q = p, θ = 1 − β−p and check (2.8).

Using a continuity argument we can show that there exists C := C(J,p) > 0 such that

dist
(
Ti+p ◦ · · · ◦ Ti+1(ζ ), ζ

)
< Cεn.

We define two points ξu and ξl of Bδn(ζ ) on the same side with respect to ζ such that dist(ξu, ζ ) = (β −εn)
−pδn +Cεn

and dist(ξl, ζ ) = (β + εn)
−pδn − (β + εn)

−pCεn. Recall that for all i ≥ nγ , we have that (β − εn) ≤ βi · · · · · βi+p ≤
(β + εn).

Since we are composing β transformations, then for all i ≥ nγ , we have dist(Ti+p ◦· · ·◦Ti(ξu), Ti+p ◦· · ·◦Ti(ζ )) ≥
δn + (β − εn)

pCεn. Using the triangle inequality it follows that

dist
(
Ti+p ◦ · · · ◦ Ti(ξu), ζ

) ≥ δn.

Similarly, dist(Ti+p ◦ · · · ◦ Ti(ξl), Ti+p ◦ · · · ◦ Ti(ζ )) ≤ δn − Cεn and

dist
(
Ti+p ◦ · · · ◦ Ti(ξl), ζ

) ≤ δn.

If we assume that both ξu and ξl are on the right hand side with respect to ζ and ξ∗
u and ξ∗

l are the corresponding
points on the left hand side of ζ , then

(
ζ − δn, ξ

∗
u

] ∪ [ξu, ζ + δn) ⊂ D
(p)
n,i ⊂ (

ζ − δn, ξ
∗
l

] ∪ [ξl, ζ + δn).

Hence,

δn − (β − εn)
−pδn − Cεn ≤ 1

2
m

(
D

(p)
n,i

) ≤ δn − (β + εn)
−pδn + (β + εn)

−pCεn.

Since εn = o(n−1) = o(δn) then we easily get that

lim
n→∞

m(D
(p)
n,i )

m(Un)
= 1 − β−p.

Now, observe that by (4.3), m(A
(p)
n,i ) = m(T −1

i (D
(p)
n,i )) = μ(D

(p)
n,i ) + o(n−1) and m(Xi > un) = μ(Un) + o(n−1).

Hence, we have that

lim
n→∞

m(A
(p)
n,i )

m(Xi > un)
= lim

n→∞
μ(D

(p)
n,i )

μ(Un)
.

The density dμ
dm

, which can be found in [29, Theorem 2], is sufficiently regular so that, as in [15, Section 7.3], one
can see that

lim
n→∞

μ(D
(p)
n,i )

μ(Un)
= lim

n→∞
m(D

(p)
n,i )

m(Un)
.

It follows that

lim
n→∞

m(A
(p)
n,i )

m(Xi > un)
= 1 − β−p.

Since, as we have seen in (4.6), we can write that �n,i = n
kn

(1 + o(1)), then the previous equation can easily be used
to prove that condition (2.8) holds, with θ = 1 − β−p .
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In the case ζ = 0 ∼ 1, the argument follows similarly but this time we have to take into account the fact that the
density is discontinuous at 0 ∼ 1. By [29] we have that

dμ

dm
(x) = 1

M(β)

∑
x<T n(1)

1

βn
,

where M(β) := ∫ 1
0

∑
x<T n(1)

1
βn dm. In this case, we have θ = dμ

dm
(0)(1 − β−1) + dμ

dm
(1) if 1 is not periodic and

θ = dμ
dm

(0)(1 − β−1) + dμ
dm

(1)(1 − β−p) if 1 is periodic of period p.

4.5. An example with an EI equal to 1 at periodic points

In the previous subsections, we used (4.1), which imposes a fast accumulation rate of βn to β , to show that the EI
equals the EI observed for the unperturbed dynamics. If this condition fails then the EI for the sequential dynamics
does not need to be the same as the one of the original system.

Let β = 5/2 and T = Tβ = 5/2x mod 1. Let ζ = 2/3. Note that T (2/3) = 2/3. Consider a sequence βj = 5/2+ εj ,
with εj = j−α , where α < 1. Note that 1/n = o(εn).

Observe that Tj (2/3) = 2/3 + O(εj ). Also note that, since we are choosing, deliberately, εj > 0 for all j , then the
orbit of ζ is being pulled to the right everytime we iterate. Moreover, by letting j be sufficiently large we can keep it
inside a small neighbourhood of 2/3 at least up to a certain fixed number of iterates J ∈ N.

For δ > 0, we have that Tj (2/3 − δ) = 2/3 + O(δ) + O(εj ). So if we take δ = δn such that Bδn(ζ ) = Un then
δn = O(1/n) and we see that if j and n are sufficiently large then Tj (2/3 − δn) > 2/3 + δn. Hence, by continuity,
for some fixed J ∈ N, we can show that for j and n sufficiently large then for all i = 1, . . . , J we have Tj+i ◦ · · · ◦
Tj (Un) ∩ Un = ∅. This means that we would be able to show that Д′

0(un) would hold with A
(q)
n,i = Un (meaning that

q = 0).
The conclusion then is that at ζ = 2/3, although for the unperturbed system T shows an EI equal to 1 − 2/5 = 3/5,

for the sequential systems chosen as above the EI is equal to 1.

Remark 4.5. Note that condition (4.1) was used to prove (2.2) so, in this case, we may need to use different un,i

for each i but, since the invariant measure of each Ti is equivalent to Lebesgue measure, the corresponding δn,i still
satisfies δn,i = O(1/n) for all i ∈N.

5. Random fibered dynamical systems

We now provide a second example of non-stationary dynamical systems, this time arising from suitable random
perturbations.

We consider a probability space (�,G,P ) with an invertible P -preserving transformation ϑ : � → �; then we
let (�,F) another measurable space and � a measurable (with respect to the product G × F ) subset of � × �

with the fibers �ω = {ξ ∈ � : (ξ,ω) ∈ �} ∈ F . We define the (skew) map s : � → � by s(ξ,ω) = (fωξ,ϑω), with
fω : �ω → �ϑω being measurable fiber maps with the composition rule

f n
ω : �ω → �ϑnω, f n

ω = fϑn−1ω ◦ · · · ◦ fω.

We also put

f
j

ϑlω
: �ϑlω → �ϑl+j ω; f

j

ϑlω
= fϑl+j−1ω ◦ · · · ◦ fϑlω.

Moreover we set

f −1
ϑj ω

: �ϑj+1ω → �ϑj ω and
(
f k

ω

)−1 := f −1
ω ◦ · · · ◦ f −1

ϑk−1ω
.

This will allow us to introduce the σ -algebras T ω
k := (f k

ω)−1T ϑkω
0 where T ϑkω

0 is the restriction of the σ -algebra F
to �ω ⊂ �.
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It is well known that a measure μ disintegrated with respect to the measure P will be s-invariant if the conditional
measures μω will verify the quasi-invariant relation

(fω)∗μω = μϑω. (5.1)

An interesting case is whenever all the fibers �ω coincide with the metric space X. In this case we can also define a
marginal measure μ on X in the following way: given A ⊂ X, define

μ(A) = μ̃(� × A) =
∫

�

μω(A)dP (ω).

Also in this case, the stochastic process is defined by

Xi = ϕ ◦ f i
ω, (5.2)

where ϕ : X → R∪ {+∞} is as in (3.9). This stochastic process X0,X1, . . . is not necessarily stationary and, by (5.1),
the distribution function of Xi is given by

Fi(u) = μϑiω
({

x ∈ X : ϕ(x) ≤ u
})

.

In this setting, we will consider that the boundary levels un,0, un,1, . . . are such that un = un,0 = un,1 = · · · , where un

is determined by the marginal measure μ so that

un = inf

{
u ∈ R : μ({

x ∈ X : ϕ(x) ≤ u
}) ≥ 1 − τ

n

}
.

Then as a result of the theory developed in Section 1.2, we can write a quenched distributional limit for the partial
maxima of the process X0,X1, . . . . Namely, as a consequence of Theorem 2.4 we have

Corollary 5.1. Let X0,X1, . . . be a stationary stochastic process defined as above, based on the action of the fiber
maps f n

ω . Assume that for P -a.e. ω ∈ � conditions (2.1) and (2.2) hold for some τ > 0. Assume that there exists
q ∈N0, defined as in (2.4), and (2.8) holds for P -a.e. ω ∈ �. Assume moreover that conditions Дq(un,i) and Д′

q(un,i)

are satisfied for P -a.e. ω ∈ �. Then

lim
n→∞μω

(
max{X0, . . . ,Xn−1} ≤ un

) = e−θτ , for P -a.e. ω ∈ �.

To illustrate an application of the theory developed here and in particular of Corollary 5.1, we look into random
subshifts.

5.1. Random subshifts

We consider the random subshifts studied in [31] and [32], in the setting of Hitting Times. Here we will keep using
an Extreme Values approach and the statements can be seen as a translation of the corresponding results in [31,32], in
light of the connection between HTS and EVL proved in [12,13].

Since the target sets, in this example, are dynamically defined cylinders, we need to produce some adjustments to
the definition of the observable and to the time scale, as in [13, Section 5] (where the notion of cylinder EVL was
introduced), in order to properly use an EVL approach. We return to this issue below. Meanwhile, we introduce the
notions using mostly the notation of [32].

Let (�,ϑ,P ) be an invertible ergodic measure preserving system, set X =N
N0 and let σ : X → X denote the shift.

Let A = {A(ω) = (aij (ω)) : ω ∈ �} be a random transition matrix, i.e., for any ω ∈ �, A(ω) is in an N × N-matrix
with entries in {0,1}, with at least one non-zero entry in each row and each column and such that ω → aij (ω) is
measurable for any i ∈N and j ∈N. For any ω ∈ � define

Xω = {
x = (x0, x1, . . .) : xi ∈N and axixi+1

(
ϑiω

) = 1 for all i ∈ N
}
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and

E = {
(ω, x) : ω ∈ �,x ∈ Xω

} ⊂ � × X.

We consider the random dynamical system coded by the skew-product S : E → E given by S(ω,x) = (ϑω,σx).
While we allow infinite alphabets here, we nevertheless call S a random subshift of finite type (SFT). Assume that ν

is an S-invariant probability measure with marginal P on �. Then we let (μω)ω denote its decomposition on Xω, that
is, dν(ω,x) = dμω(x)dP (ω). The measures μω are called the sample measures. Note μω(A) = 0 if A∩Xω =∅. As
before, we denote by μ = ∫

μω dP the marginal of ν on X.
For any y ∈ X we denote by Cn(y) = {z ∈ X : yi = zi for all 0 ≤ i ≤ n − 1} the n-cylinder that contains y. Let Fn

0
be the σ -algebra in X, generated by all the n-cylinders.

We assume the following: there are constants h0 > 0, c0 > 0 and a summable function ψ such that for all m, n,
κ ∈ N, A ∈ Fn

0 and B ∈ Fm
0 :

(1) the marginal measure μ satisfies∣∣μ(
A ∩ σ−κ−nB

) − μ(A)μ(B)
∣∣ ≤ ψ(κ);

(2) for P -almost every ω ∈ �, if y ∈ Xω and n ≥ 1 then c−1
0 e−h0n ≤ μ(cn(y));

(3) for P -almost every ω ∈ �,∣∣μω
(
A ∩ σ−κ−nB

) − μω(A)μϑn+κω(B)
∣∣ ≤ ψ(κ)μω(A)μϑn+κω(B);

(4) the sample measure satisfies

essup
ω∈�

sup
x∈X

μω
(
C1(x)

)
< 1.

The following lemma has been proved in [32].

Lemma 5.2. For a random SFT such that assumptions (5.1) and (5.1) hold, there exist c1, c2 > 0 and h1 > 0 such
that for any y ∈ X, n ≥ 1 and m ≥ 1, for almost P -almost every ω ∈ �,

μω
(
Cn(y)

) ≤ c1e−h1n

and

n∑
k=m

μω
(
Cn(y) ∩ σ−kCn(y)

) ≤ c2e−h1mμω
(
Cn(y)

)
.

Since the target sets are cylinders, in order to state the result using an EVL approach, as mentioned earlier, we need
to make some adjustments to the definition of the observable function and to the time scale. Hence, proceeding as in
[13, Section 5], the stochastic process is defined by Xi = ϕ ◦ σ i , where ϕ : X → R∪ {+∞} instead of being given by
(3.9) is given by

ϕ(x) = g
(
μ

(
Cn(x)(ζ )

))
,

where n(x) := max{j ∈ N : x ∈ Cj(ζ )} and g is as in Section 3.2. As in [13, (5.5)] we let the sequence (un)n∈N be
such that {x ∈ X : ϕ(x) > un} = Cn(ζ ). Moreover, for the time scale we use the sequence (wn)n∈N given by [13,
(5.6)]:

wn = [
τμ

({
x ∈ X : ϕ(x) > un

})]
,

for some τ ≥ 0.
Now, we can apply Corollary 5.1 to obtain the following result, which is a translation to the EVL setting of [32,

Theorem 2.2].
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Theorem 5.3. Assume (5.1)–(5.1) hold and there exists a constant q > 2h0
h1

such that ψ satisfies ψ(κ)κq → as
κ → +∞. Let ζ ∈ X. Then for P -almost every ω, either

(a) ζ is a periodic point of period p and if the limit θ := limn→∞ μ(Cn(ζ )\Cn+p(ζ ))

μ(Cn(ζ ))
exists, then for all τ ≥ 0 we have

lim
n→∞μω(Mwn ≤ un) = e−θτ ;

or
(b) for all τ ≥ 0 we have

lim
n→∞μω(Mwn ≤ un) = e−τ .

In order to use Corollary 5.1 to prove Theorem 5.3, one needs to check that conditions (2.2), Дq(un,i), Д′
q(un,i)

and (2.8) hold for P -a.e. ω ∈ �.
Note that because of the adjustments required to the cylinder setting, for condition (2.2), one needs to check that

for P -a.e. ω ∈ � we have

lim
n→∞

wn∑
i=0

μϑi(ω)
(
Cn(ζ )

) = τ,

which follows immediately from [32, Lemma 4.5]. In the same way, conditions Дq(un,i), Д′
q(un,i) follow from [32,

Lemma 4.8] and [32, Lemma 4.9] respectively and condition (2.8) from the discussion in [32, Section 5].

6. Concluding remarks

The sequential systems considered in this paper were built on uniformly expanding maps, for which the transfer
operators admits a spectral gap and the correlations decay exponentially. In a different direction, a class of sequential
systems given by composition of non-uniformly expanding maps of Pomeau–Manneville type was studied in [1],
by perturbing the slope at the indifferent fixed point 0. Polynomial decay of correlations was proved for particular
classes of centred observables, which could also be interpreted as the decay of the iterates of the transfer operator on
functions of zero (Lebesgue) average, and this fact is better known as loss of memory. In the successor paper [27], a
(non-stationary) central limit theorem was shown for sums of centred observables and with respect to the Lebesgue
measure. In the forthcoming paper [16] we will continue the statistical analysis of these indifferent transformations by
proving the existence of extreme value distributions under suitable normalisation for the threshold of the exceedances.
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