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Abstract. Let (Bi) be a sequence of measurable sets in a probability space
(X,B, µ) such that

∑

∞

n=1 µ(Bi) = ∞. The classical Borel–Cantelli lemma states
that if the sets Bi are independent, then µ({x ∈ X : x ∈ Bi infinitely often (i.o.) ) =
1.

Suppose (T, X, µ) is a dynamical system and (Bi) is a sequence of sets in X .
We consider whether T ix ∈ Bi for µ a.e. x ∈ X and if so, is there an asymptotic
estimate on the rate of entry. If T ix ∈ Bi infinitely often for µ a.e. x we call the
sequence Bi a Borel–Cantelli sequence. If the sets Bi := B(p, ri) are nested balls
about a point p then the question of whether T ix ∈ Bi infinitely often for µ a.e. x
is often called the shrinking target problem.

We show, under certain assumptions on the measure µ, that for balls Bi if
µ(Bi) ≥ i−γ , 0 < γ < 1, then a sufficiently high polynomial rate of decay of
correlations for Lipschitz observations implies that the sequence is Borel–Cantelli.
If µ(Bi) ≥ C log i

i
then exponential decay of correlations implies that the sequence

is Borel–Cantelli. If it is only assumed that µ(Bi) ≥ 1
i

then we give conditions in
terms of return time statistics which imply that for µ a.e. p sequences of nested
balls B(p, 1/i) are Borel–Cantelli. Corollaries of our results are that for planar
dispersing billiards and Lozi maps µ a.e. p sequences of nested balls B(p, 1/i) are
Borel–Cantelli. We also give applications of these results to a variety of non-
uniformly hyperbolic dynamical systems.

1. Introduction

Suppose (X,B, µ) is a probability space. For a measurable set A ⊂ X, let 1A

denote the characteristic function of A. The classical Borel–Cantelli lemmas (see for
example [11, Section 4]) state that

(1) if (An)∞n=0 is a sequence of measurable sets in X and
∑∞

n=0 µ(An) < ∞ then
µ(x ∈ An i.o.) = 0.

MN and TP wish to thank the Institut Mittag-Leffler for support and hospitality. MN wishes to
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(2) if (An)∞n=0 is a sequence of independent sets in X and
∑∞

n=0 µ(An) = ∞, then
for µ a.e. x ∈ X

Sn(x)

En
→ 1

where Sn(x) =
∑n−1

j=0 1Aj
(x) and En =

∑n−1
j=0 µ(Aj).

Suppose now T : X → X is a measure-preserving transformation of a probability
space (X,µ). If (An) is a sequence of sets such that

∑

n µ(An) = ∞ it is natural
in many applications to ask whether T n(x) ∈ An for infinitely many values of n for
µ a.e. x ∈ X and, if so, is there a quantitative estimate of the asymptotic number
of entry times? For example, the sequence (An) may be a nested sequence of balls
about a point, a setting which is often called the shrinking target problem.

The property limn→∞
Sn(x)
En

= 1 for µ a.e. x ∈ X is often called the Strong Borel–

Cantelli (SBC) in contrast to the Borel–Cantelli (BC) property that Sn(x) is un-
bounded for µ a.e. x ∈ X.

W. Phillipp [27] established the SBC property for sequences of intervals in the
setting of certain maps of the unit interval including the β transformation, the Gauss
transformation and smooth uniformly expanding maps.

There have been some results on Borel–Cantelli lemmas for uniformly hyperbolic
systems in higher dimensions. Chernov and Kleinbock [5] establish the SBC property
for certain families of cylinders in the setting of topological Markov chains and for
certain classes of dynamically-defined rectangles in the setting of Anosov diffeomor-
phisms preserving Gibbs measures. Dolgopyat [10] has related results for sequences
of balls in uniformly partially hyperbolic systems preserving a measure equivalent
to Lebesgue which have exponential decay of correlations with respect to Hölder
observations.

Kim [21] has established the SBC property for sequences of intervals in the setting
of 1-dimensional piecewise-expanding maps T with 1

|T ′ | of bounded variation.

Kim uses this result to prove some SBC results for non-uniformly expanding maps
with an indifferent fixed point. In particular, he considers intermittent maps of the
form

(1) Tα(x) =

{

x(1 + 2αxα) if 0 ≤ x < 1
2
;

2x− 1 if 1
2
≤ x ≤ 1.

These maps are sometimes called Liverani–Saussol–Vaienti maps [22]. If 0 < α < 1
then Tα admits an invariant probability measure µ that is absolutely continuous
with respect to Lebesgue measure m. We use the notation xn ∼ yn to denote
limn→∞

xn

yn
= 1. The measure µ has an unbounded density h(x) ∼ Cx−α near

0. Kim shows that if (In) is a sequence of intervals in (d, 1] for some d > 0 and
∑

n µ(In) = ∞ then In is an SBC sequence if (a) In+1 ⊂ In for all n (nested intervals)
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or (b) α < (3−
√

2)/2. Kim shows that the condition In ⊂ (d, 1] for some d > 0 is in
some sense optimal (with respect to the invariant measure µ) by showing that setting
An = [0, n−1/(1−α)) gives a sequence such that

∑

n µ(An) = ∞ yet T n
α (x) ∈ An for

only finitely many values of n for µ a.e. x ∈ [0, 1].
For the same class of maps Tα, Gouëzel [13] considers Lebesgue measure m (rather

than the invariant probability measure µ) and shows that if (In) is a sequence of
intervals such that

∑

nm(In) = ∞ then (In) is a BC sequence. Assumptions (a) or
(b) of Kim are not necessary for Gouëzel’s result. Gouëzel uses renewal theory and
obtains BC results but not SBC results.

At the end of this section we give an example of an intermittent type map which
preserve Lebesgue measure m yet for which there exists a sequence of nested inter-
vals In,

∑

nm(In) = ∞ yet (In) is not BC. Such maps may have arbitrarily high
polynomial rate of decay of correlations for Hölder observations.

In the context of flows, Maucourant [25] has proved the BC property for nested
balls in the setting of geodesic flows on hyperbolic manifolds of finite volume.

Recently, Gupta et al. [16] proved the SBC property for sequences of intervals in the
setting of Gibbs–Markov maps and also sequences of nested balls in one-dimensional
maps modeled by Young Towers. They also gave some applications to extreme value
theory of deterministic systems, in particular the almost sure behavior of successive
maxima of observations on such systems.

Fayad [12] has given an example of an analytic area preserving map of the three-
dimensional torus which is mixing of all orders, yet for which there exists a sequence
of nested balls (An) such that En diverges yet the sequence (An) is not BC.

In this short note we establish dynamical Borel–Cantelli lemmas using elementary
arguments, we try to avoid dynamical assumptions beyond decay of correlations as
much as we can. Our results are phrased in terms of the interplay between the
measure µ(An) of the sets and the rate of decay of correlations of observations in
various norms. For sets of measure µ(An) ≤ 1

n
we mainly restrict to the shrinking

target problem and need to make some dynamical assumptions in the guise of return
time statistics. We define E(φ) :=

∫

X
φ dµ for the expectation of an integrable

observation on a dynamical system (T,X, µ) where X is a metric and probability
space.

In applications it is common to have decay estimates for observations on a dynam-
ical system in various Banach space norms, for example:

(a) Bounded variation (BV) versus L1,

|E(φ ψ ◦ Tm) −E(φ)E(ψ)| ≤ p(m)‖φ‖BV ‖ψ‖1,

(b) Lipschitz versus L∞,

|E(φ ψ ◦ Tm) − E(φ)E(ψ)| ≤ p(m)‖φ‖Lip ‖ψ‖∞,
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(c) Lipschitz versus Lipschitz,

|E(φ ψ ◦ Tm) − E(φ)E(ψ)| ≤ p(m)‖φ‖Lip ‖ψ‖Lip,

where p(m) is a rate function which tends to zero in m. Hölder norms are sometimes
considered rather than Lipschitz but it is no essential loss to only consider Lipschitz.

In fact BV versus L1 is not so common for non-uniformly hyperbolic systems i.e.
those with a stable foliation. It is implicit in Kim [21] and explicitly stated in Gupta
et al. [16] that summable rate of decay (i.e.

∑

m p(m) <∞) for the norms BV versus
L1 implies the SBC property for any sequence of balls Bi such that En diverges.

Proposition 1.1 ([21, 16]). Suppose (T,X, µ) has summable decay of correlations
with respect to BV versus L1 in the sense that for φ ∈ BV , ψ ∈ L1(µ)

|E(φ ψ ◦ Tm) − E(φ) E(ψ)| ≤ p(m)‖φ‖BV ‖ψ‖1

where
∑

m p(m) <∞. If (Bi) is a sequence of balls in X and
∑∞

i=0 µ(Bi) = ∞ then
(Bi) is SBC.

The proof of this result is a straightforward application of a condition for SBC by
Sprindzuk [28] that we will soon state.

In this paper we will mainly consider decay of correlation of Lipschitz versus
Lipschitz. The modifications of our results for Hölder versus Hölder, Lipschitz versus
L∞ or Hölder versus L∞ are straightforward.

We will often use a proposition of Sprindzuk [28]:

Proposition 1.2. Let (Ω,B, µ) be a probability space and let fk(ω), (k = 1, 2, . . .)
be a sequence of non-negative µ measurable functions and gk, hk be sequences of real
numbers such that 0 ≤ gk ≤ hk ≤ 1, (k = 1, 2, . . . , ). Suppose there exist C > 0 such
that

(∗)
∫

(

∑

m<k≤n

(fk(ω) − gk)

)2

dµ ≤ C
∑

m<k≤n

hk

for arbitrary integers m < n. Then for any ǫ > 0
∑

1≤k≤n

fk(ω) =
∑

1≤k≤n

gk(ω) +O(θ1/2(n) log3/2+ǫ θ(n))

for µ a.e. ω ∈ Ω, where θ(n) =
∑

1≤k≤n hk.

Example 1.0.1. Cristadoro et. al. [9] consider an intermittent map T of the interval
[−1, 1] (actually on the unit circle as 1 and −1 are identified) with an unbounded
derivative at the origin. The map is implicitly defined by the equation

x =

{ 1
2γ

(1 + T (x))γ)γ if 0 ≤ x ≤ 1
2γ

;

T (x) + 1
2γ

(1 − T (x))γ if 1
2γ

≤ x ≤ 1.
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and extended as an odd function so that T (−x) = −T (x). See Figure 1.
We assume γ > 1. Let τ = 1

γ−1
and use the notation xn ∼ yn to denote

limn→∞
xn

yn
= 1.

The map preserves Lebesgue measure m and is mixing with a polynomial rate of
decay of correlations for Hölder observations. In fact

|
∫

φ ◦ T nψdm−
∫

φdm

∫

ψdm| ≤ C(φ, ψ)n−τ

for all Hölder φ, ψ ∈ L∞(m).
We define T+ := T|(0,1), T− := TI(−1,0), a0− = −1

2γ
, a−i = T−i

− a0− and bi =

T−1
+ a−(i−1). Note that T−1(−1, a−n) = (0, bn+1) ∪ (−1, a−n−1).
It is shown in [9, Lemma 2] thatm(−1, a−n) ∼ (2γτ)τn−τ ,m(0, bn) ∼ 1

2γ
(2γτ)γτ (n−

1)−γτ .
If we choose γ > 2 then 0 < τ < 1 so

∑

n>0m(−1, a−n) diverges. Since m(0, bn) ∼
1
2γ

(2γτ)γτ (n−1)−γτ and γτ > 1,
∑

n>0m(0, bn) converges. The only way for the orbit

of a generic point under the map T to enter (−1, a−n) infinitely often is to enter (0, bn)
infinitely often. Since

∑

n>0m(0, bn) converges, m a.e. satisfies T nx ∈ (−1, a−n) for
only finitely many n, although

∑

n>0m(−1, a−n) diverges.This is an example of a
sequence of nested sets An := (−1, a−n) such that

∑

n>0m(An) diverges yet T nx ∈ An

at most finitely many times for m a.e. x. In contradiction to the example of Kim,
the map T preserves Lebesgue measure rather than a measure with an unbounded
density. Note also that taking γ−1 := δ > 0 the rate of decay of correlation is Cn− 1

δ

is at an arbitrarily high polynomial rate.

2. Assumptions

Suppose (T,X, µ) is an ergodic measure preserving map of a probability space X
which is also a metric space. We assume:

(A) For all Lipschitz functions φ, ψ on X we have summable decay of correlations
in the sense that there exists C > 0, and a rate p(k) → ∞,

∑

k p(k) < ∞
(both independent of φ, ψ) such that

|E(φ ψ ◦ T k) −E(φ)E(ψ)| < p(k)‖φ‖Lip‖ψ‖Lip.

(B) There exists r0 > 0, 0 < δ < 1 such that for all p ∈ X and ǫ < r ≤ r0

µ{x : r < d(x, p) < r + ǫ} < ǫδ.

Remark 2.0.1. If the balls Bi = B(p, ri), (ri → 0), are nested balls centered at
a point p then we would only require there exist δ(p) > 0, r0(p) > 0 such that
µ{x : r < d(x, p) < r + ǫ} < ǫδ(p) for all ǫ < r ≤ r0.
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Figure 1. The graph of T .

Remark 2.0.2. We will call the sets Bi ‘balls’, but our results extend to any shapes
such that the indicator function of the set may be approximated closely in the L1

norm by a Lipschitz function of reasonable Lipschitz norm, for example our results
extend immediately to rectangles of bounded side ratio.

If p(k) ≤ Cαk for some constants C > 0, 0 < α < 1 then we say T has exponential
decay of correlations. We will also consider polynomial decay, where p(k) ≤ Ck−m

for some constants C > 0, m > 0.
Our results will be formulated in terms of the measure of the balls Bi and the

rate of decay of correlation. For balls Bi such that µ(Bi) = 1
i

we make additional
assumptions on return time distributions and short return times, detailed in later
sections.

3. Sequences of sets (Bi) such that µ(Bi) ≥ i−γ for 0 < γ < 1.

Define

Sn(x) =

n−1
∑

i=0

1Bk
◦ T k(x)

and

En =
∑

1≤k≤n

µ(Bk).
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Theorem 3.1. Let 0 < γ < 1 and µ(Bi) ≥ i−γ. Suppose (T,X, µ) satisfies (A) and

(B), with p(k) ≤ Ck−q. Then if q > 2/δ+γ+1
1−γ

lim
n→∞

Sn(x)

En

= 1

for µ a.e. x ∈ X.

Remark 3.1.1. The proof of Theorem 3.1 gives the following asymptotic bounds.

n−1
∑

i=0

1Bk
◦ T k(x) ≈

∑

1≤k≤n

µ(Bk) +O(θ1/2+ǫ(n) log3/2+ǫ θ(n))

for µ a.e. x ∈ X, where θ(n) =
∑

1≤k≤n µ(Bk).

Remark 3.1.2. We note that if µ(Bi) = 1
i

then no degree of polynomial decay in
the Lipschitz norm ensures that the sequence (Bi) is BC, even if the Bi are nested
balls. To see this consider the intermittent map example of Kim [21], Tα : [0, 1] →
[0, 1] with the balls Bi := [0, i−1/(1−α)) so that µ(Bi) ≡ 1

i
. The density h(x) = dµ

dm

behaves like x−α near 0 and the rate of decay of correlations with respect to Lipschitz
versus L∞ functions is n1− 1

α . The constant δ in the statement of the theorem (from
Property (B)) may be taken as 1 − α by observing

∫ ǫ

0
x−α dx ≤ Cǫ1−α. As α → 0,

δ(α) → 1 and q(α) → ∞ yet for each 0 < α < 1, the sequence Bi = [0, i−1/(1−α)) is
not BC.

Proof. For each k let f̃k be a Lipschitz function such that f̃k(x) = 1Bk
(x) if x ∈ Bk,

f̃k(x) = 0 if d(Bk, x) > (k(log k)2)−1/δ, 0 ≤ f̃k ≤ 1 and ‖f̃k‖Lip ≤ (k(log k)2)1/δ.
Clearly we may construct such functions by linear interpolation of 1Bk

and 0 on a
region r ≤ d(pk, x) ≤ r + (k(log k)2)−1/δ.

In the proposition above we will take fk = f̃k ◦ T k(x), gk = E(f̃k), where E(φ) =
∫

φ dµ for any integrable function φ ∈ L1(µ). The constants hk will be chosen later.
Note that for µ a.e. x ∈ Ω, fi(x) = 1Bi

(T ix) except for finitely many i by the
Borel–Cantelli lemma as µ(x : fi(x) 6= 1Bi

(T ix)) = µ(x : ri < d(T ix, pi) < ri +
(i(log i)2)−1/δ) < (i(log i)2)−1 by assumption (B). Furthermore

∑

k µ(Bk) =
∑

k gk +
O(1).

A rearrangement of terms in (∗) means that it suffices to show that there exists a
C > 0 such that

n
∑

i=m

n
∑

j=i+1

E(fifj) − E(fi)E(fj) ≤ C

n
∑

i=m

hi

for arbitrary integers n > m (where hi will be chosen later).
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We split each sum
∑n

j=i+1E(fifj) − E(fi)E(fj) into the terms

Ii =
i+∆
∑

j=i+1

E(fifj) −E(fi)E(fj)

and

IIi =
n
∑

j=i+∆+1

E(fifj) −E(fi)E(fj)

where here we put ∆ = [iσ] with the value of 0 < σ < 1 is to be chosen later.
The first term Ii is roughly estimated by

i+iσ
∑

j=i+1

E(fifj) − E(fi)E(fj) ≤
i+iσ
∑

j=i+1

E(fifj) ≤
i+iσ
∑

j=i+1

2

jγ
≤ iσ

2

iγ
.

The second term IIi we bound using the decay of correlations

IIi =

∞
∑

j=i+iσ

E(fifj) − E(fi)E(fj)

=

∞
∑

j=i+iσ

∫

X

fi(T
ix)fj(T

jx) dµ− E(fi)E(fj)

=
∞
∑

j=i+iσ

∫

X

fi(x)fj(T
j−ix) dµ− E(fi)E(fj)

≤
∞
∑

j=i+iσ

‖fi‖Lip‖fj‖Lipp(j − i)

≤
∞
∑

β=1

C[(i+ iσ + β)(log(i+ iσ + β))2]1/δ[i(log i)2]1/δ(iσ + β)−q.

If σ < 1− γ then (Ii) is bounded by Ci1−2γ−ρ for some ρ > 0. If qσ > 2
δ
+ γ+ 1 then

(IIi) is bounded by const.i−γ . Solving for σ < 1 − γ and then for q we see that if

q > 2/δ+γ+1
1−γ

then
∑

j=i+1

∫

E(fifj) −E(fi)E(fj) ≤ Cmax{i1−2γ−ρ, i−γ}.
In Sprindzuk’s theorem we now take hi = C max{i1−2γ−ρ, i−γ}. With this choice

of hi we have θ(n)1/2 ≤ C max{n(1−γ)/2, n1−γ−ρ}. This gives the Strong Borel–

Cantelli property as the error term O(θ1/2(n) log3/2+ǫ θ(n)) is negligible with respect
to
∑

1≤k≤n gk =
∑

1≤k≤nE(fk) ≃ Cn1−γ . �
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4. Return time distributions and sequences (Bi) such that µ(Bi) ≥ log i
i

We now consider the case µ(Bi) ≥ log i
i

. In this case we assume exponential decay
of correlations.

Theorem 4.1. Suppose µ(Bi) ≥ log i
i

and (T,X, µ) satisfies (A) and (B). Then if
(T,X, µ) has exponential decay of correlations

lim
n→∞

Sn(x)

En

= 1

for µ a.e. x ∈ X.

Proof. Let p(k) ≤ Cαk for some 0 < α < 1. In this setting we again split
∑n

j=i+1E(fifj)−
E(fi)E(fj) as above in two sums Ii and IIi where this time ∆ = [(log i)σ], where
σ > 1 will be chosen below. We obtain

Ii =

i+(log i)σ
∑

j=i+1

log j

j
≤ (log i)σ log i

i
=

(log i)σ+1

i

and, using the decay of correlations,

IIi =

N
∑

j=i+(log i)σ

∫

X

fi(T
ix)fj(T

jx) dµ− E(fi)E(fj)

≤ C

∞
∑

β=1

α(log i)σ+β((log i)σ + i+ β)2/δi2/δ.

As σ > 1 for large enough i the series above is bounded by log i
i

. We take 1 <

σ < 2 and hk = (log k)σ+1/k. Since σ < 2 the error O(θ(n)1/2 log3/2+ǫ θ(n)) is
negligible with respect to

∑n
k=1 gk ∼ ∑n

k=1
log k

k
∼ 1

2
(log n)2 as θ(n) =

∑n
k=1 hk ∼

∑n
k=1

(log k)σ+1

k
∼ (log n)σ+2. �

4.1. Applications of Theorem 3.1 and Theorem 4.1. We now list some dynam-
ical systems which satisfy assumptions (A) and (B). Recall that although we have
called the sets Bi balls, any sets Bi which are geometrically regular in the sense that
their indicator function may be approximated in the L1 norm by a Lipschitz function
of reasonable Lipschitz norm (for example rectangles) also satisfy the conclusions of
Theorem 3.1 and Theorem 4.1.
Dispersing billiard systems: satisfy assumption (B) (as the invariant measure is equiv-
alent to Lebesgue) and hence our results apply to these systems if they have suffi-
ciently high rates of decay of correlations. The class of dispersing billiards considered
by Young [29] and Chernov [4] have exponential decay of correlations.
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Lozi maps: it is shown in Gupta et al. [15] that assumption (B) is satisfied by a
broad class of Lozi mappings. Lozi mappings have exponential decay of correlations.
Compact group extensions of Anosov systems: Dolgopyat [10] has shown that com-
pact group extensions of Anosov diffeomorphisms are typically rapid mixing i.e. have
superpolynomial decay of correlations. These systems satisfy also Assumption B as
they are volume preserving.
Interval maps: one-dimensional non-uniformly expanding maps with an absolutely
continuous invariant probabiility measure µ and density h = dµ

dm
∈ L1+δ(m) for some

δ > 0 satisfy condition (A) and (B). For example the class of maps considered by
Collet [7].

5. Sequences of balls (Bi) such that µ(Bi) ≤ i−1 and
∑

i µ(Bi) = ∞.

If the measure of the balls Bi satisfies µ(Bi) ≤ i−1 then our arguments based solely
on decay of correlations break down and to obtain results we make more assumptions-
in particular we focus on the case of nested balls Bi+1 ⊂ Bi and make assumptions
on return time statistics.

In this section we focus on the shrinking target problem in which Bi(p) = B(p, ri)
the ball of radius ri about p about a point p ∈ X such that µ(B(p, ri)) = i−1.
Our proof and results generalize with no change to the setting where there exists a
constant C > 0 such that ri+1 < Cri and µ(B(p, ri)) ≥ C

i
.

We first observe, as remarked in Fayad [12], that the set of points G such that
T ix ∈ Bi(p) for infinitely many i has measure zero or one. This follows as T i+1x ∈
Bi+1(p) implies that T i(Tx) ∈ Bi(p) and hence G is T invariant. If (T,X, µ) is
ergodic this implies that µ(G) = 0 or µ(G) = 1.

5.1. Return time distributions. We now show how a return time distribution
implies Borel–Cantelli lemmas in certain settings. Fix p ∈ X and set Bi = B(p, ri)
where ri → 0 so that Bi is a sequence of nested balls with center p. Let τBi

be a
random variable defined on the set Bi = B(p, ri) which gives the first return time
i.e. τBi

(x) = inf{n ≥ 1 : T n(x) ∈ Bi}. We define the conditional probability measure

µBr on Br by µBr(A); = µ(A∩Br)
µ(Br)

.

For many dynamical systems distributional limit laws for return time statistics
have been proven, of the form: for µ a.e. p, if Br = B(p, r) for r > 0 then

lim
r→0

µBr{y ∈ Br : τBrµ(Br) < t} = F (t)

where F (t) is a distribution function. Commonly F (t) = 1−e−t, an exponential law.

Let Sn =
∑n−1

j=0 1Bj
, En =

∑n−1
j=0 µ(Bj) with limn→∞En = ∞. We now state a

simple lemma.
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Lemma 5.1. Suppose that Bi is a sequence of balls (not necessarily nested). If
E(Sn − En)2 ≤ g(n)(En)2 for a sequence g(n) such that limn→∞ g(n) = 0 then

lim sup Sn(x)
En

≥ 1 for µ a.e. x ∈ X.

Proof. The assumptions imply that E[( Sn

En
− 1)2] ≤ g(n). Hence E[| Sn

En
− 1| > ǫ] ≤

E(Sn−En)2

ǫ2
≤ g(n)

ǫ2
by Chebyshev’s inequality. If we take a subsequence nk such that

∑

k g(nk) < ∞, then by Borel–Cantelli for µ a.e. x ∈ X, |Sn(x)
En

− 1| > ǫ for only

finitely many nk. Let Gǫ = {x : |Sn(x)
En

− 1| > ǫ i. o.}, then µ(Gc
ǫ) = 1. Taking a

countable sequence ǫm = 1
m

and noting µ(∩mG
c
ǫm

) = 1 implies the result. �

In fact if the Bi are nested and (T,X, µ) is ergodic then the assumptions of the
lemma above may be weakened to

Lemma 5.2. Suppose that Bi is a nested sequence of balls and (T,X, µ) is ergodic.
If E(Sn − En)2 < η(En)2 for some η < 1 then T n(x) ∈ Bn infinitely often for µ a.e.
x ∈ X.

Proof. Let G be the set of points x such that T ix ∈ Bi for infinitely many i. Then
µ(G) = 1 or µ(G) = 0. We assume µ(G) = 0 and derive a contradiction.

η >

∫

X

(
Sn(x)

En
− 1)2 dµ ≥

∫

Gc

(
Sn(x)

En
− 1)2 dµ

Let AN := {x ∈ Gc : T i(x) 6∈ Bi for all i ≥ N}. Then

η >

∫

Gc

(
Sn(x)

En
− 1)2 dµ ≥

∫

AN

(
Sn(x)

En
− 1)2 dµ

But limn→∞
∫

AN
(Sn(x)

En
−1)2 dµ = µ(AN). Hence η > µ(AN) for all N , a contradiction.

�

We now state our main result of this section. Let Bi(p) be a decreasing sequence

of balls about a point p, Sn =
∑n−1

j=0 1Bj
and En =

∑n−1
j=0 µ(Bj).

Theorem 5.1. Suppose that (T,X, µ) has exponential decay of correlations, that
property (B) holds, that Bi = B(p, ri) for some point p and µ(Bi) ≥ i−1. Also
assume that

lim
i→∞

µBi
{y ∈ Bi : τBi

µ(Bi) < t} = F (t)

for some distribution function F (t) such that limt→0+ F (t) = 0. Then for µ a.e.
x ∈ X

lim sup
Sn(x)

En
≥ 1.
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Proof. We choose c ≥ 0 so that for all i

(∗)
∞
∑

β=1

C(i+ c log i+ β)2/δi2/δαc log i+β ≤ i−2.

Since Bj ⊂ Bi for j > i

i+c log i
∑

j=i

µ(Bi ∩ T−(j−i)Bj) ≤
i+c log i
∑

j=i

µ(Bi ∩ T−(j−i)Bi).

Since limt→0 F (t) = 0, given η > 0 there exists t∗ such that F (t)c < η for all
0 < t ≤ t∗. As

lim
i→∞

µBi
{y ∈ Bi : τBi

µ(Bi) < t} = F (t)

there exists a number n∗ such that for i ≥ n∗

µBi
{y ∈ Bi : τBi

< −c log µ(Bi)} ≤ F (t∗)

Hence for i > n∗

i+c log i
∑

j=i

µ(Bi ∩ T−(j−i)Bj) ≤
i+c log i
∑

j=i

µ(Bi ∩ T−(j−i)Bi) ≤ F (t∗)
c log i

i
.

Recalling that

E[(Sn −En)2] = 2

n
∑

i=1

∑

j>i

(µ(Bi ∩ T−(j−i)Bj) − µ(Bi)µ(Bj)) +

n
∑

i=1

(µ(Bi) − µ(Bi)
2)

we note first that
∑n

i=1(µ(Bi) − µ(Bi)
2) ≤ En and write

n
∑

i=1

∑

j>i

(µ(Bi∩T−(j−i)Bj)−µ(Bi)µ(Bj)) =
∑

n≥i>n∗

∑

j>i

(µ(Bi∩T−(j−i)Bj)−µ(Bi)µ(Bj))

+
∑

1≤i<n∗

∑

j>i

(µ(Bi ∩ T−(j−i)Bj) − µ(Bi)µ(Bj))

The term
∑

1≤i<n∗

∑

j>i(µ(Bi ∩ T−(j−i)Bj) − µ(Bi)µ(Bj)) we bound by n∗En while
∑

n≥i>n∗

∑

j>i

(µ(Bi ∩ T−(j−i)Bj) − µ(Bi)µ(Bj))

≤
n
∑

i=n∗

cF (t∗)
log i

i
+

n
∑

i=n∗

n
∑

j=i+c log i

(µ(Bi ∩ T−(j−i)Bj) − µ(Bi)µ(Bj))

≤ η

2
(log n)2 +K
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where we have used to the estimate (∗) to bound the second term by a constant K
. Thus for n > n∗, E[(Sn − En)2] < ηE2

n + 2K + n∗En. Since η was arbitrary and
En diverges this implies that given ǫ > 0 there exists an N such that for all n > N ,
E[(Sn − En)2] < ǫE2

n. Thus Lemma 5.1 implies the result.
�

5.2. Applications of Theorem 5.1. We now give a brief list of systems, beside
Axiom A [18], which have been shown to have the property that for µ a.e. p if
Bi = B(p, ri) then

lim
ri→0

(µBi
)−1{y ∈ Bi : τBi

µ(Bi) < t} = F (t)

for a distribution function F (t) such that limt→0 F (t) = 0. In the examples below
F (t) = 1 − e−t, an exponential law. We abbreviate this property by saying that the
system has an exponential law for first return times to balls (recall this holds only
for µ a.e. point).
Dispersing billiard systems: These systems satisfy assumption (B) (as the invariant
measure is equivalent to Lebesgue). The class of dispersing billiards considered by
Young [29] and Chernov [4] have exponential decay of correlations. An exponential
law for first return times to balls has been established by Gupta et al. [15] (and a
Poisson distribution for further visits to balls by Chazottes and Collet [3]).
Lozi maps [8, 26]: it is shown in Gupta et al. [15] that assumption (B) and an
exponential return time law is satisfied by a broad class of Lozi mappings (which
have exponential decay of correlations).
Compact group extensions of Anosov systems: Dolgopyat [10] has shown that com-
pact group extensions of Anosov diffeomorphisms are typically rapid mixing i.e. have
superpolynomial decay of correlations. These systems satisfy also Assumption (B)
as they are volume preserving. Gupta [14] has shown the existence of an exponential
law for the first return times to nested balls if the system is rapidly mixing.
Interval maps: one-dimensional non-uniformly expanding maps with an absolutely
continuous invariant probabiility measure µ and density h = dµ

dm
∈ L1+δ(m) for some

δ > 0 satisfy condition (A) and (B). The class of maps considered by Collet [7] have
been shown to have an exponential law for first return times to balls.

6. Short return times and sequences (Bi) such that µ(Bi) ≥ (i log i)−1

In the theory of return time statistics and extreme value theory a crucial role is
played by short return times. Recent research has established that for certain chaotic
dynamical systems short returns are rare in the sense that we call property (C):

(C) for µ a.e. p ∈ X there exists η > 0 and k > 1 such that for all i sufficiently
large

µ(Bi(p) ∩ T−rBi(p)) ≤ i−1−η
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for all r = 1, . . . , logk(i).
The property (C) is a form of non-recurrence which implies certain limit laws in

return time statistics and extreme value theory, to our knowledge first proved in
the setting of non-uniformly expanding maps by Collet [7]. It has been verified for
various systems, for example Sinai dispersing billiards and Lozi mappings [15]. We
give the proof of Property (C) for Sinai dispersing billiards as an appendix. Beside
Axiom A systems, dynamical systems for which Property (C) have been established
include:

(1) Billiard maps for dispersing billiards without cusps: for example the systems
described in [29, 4, 6]. For a proof of this property see the Appendix.

(2) Lozi maps [8, 26]: it is shown in Gupta et al. [15] that assumption (C) is
satisfied by a broad class of Lozi mappings. Gupta [14] shows the same for toral
extensions of certain non-uniformly and uniformly expanding intervals maps.

(3) Certain one-dimensional maps: Collet first established Property (C) in the
setting of 1-d non-uniformly expanding maps with acip with exponential decay of
correlations [7]. These results have been generalized to a broad class of 1d maps,
including Lorenz like maps [15, 19].

Theorem 6.1. Suppose (T,X, µ) has exponential decay of correlations and satisfies
conditions (B) and (C). Then for µ a.e. p ∈ X if Bi = B(p, ri) is a sequence of
decreasing balls about p with µ(Bi) ≥ (i log i)−1 then

lim
n→∞

Sn(x)

En
= 1

for µ a.e. x ∈ X, where as before Sn =
∑n−1

j=0 1Bi
and En = E(Sn) =

∑n−1
j=0 µ(Bj)

Corollary 6.1. If (T,X, µ) is a Sinai dispersing billiard map (see Appendix for
precise description) or a Lozi map (see [15]) then in the notation of Theorem 6.1 for
µ a.e. p ∈ X if Bi is a sequence of decreasing balls about p with µ(Bi) ≥ (i log i)−1

then

lim
n→∞

Sn(x)

En
= 1

for µ a.e. x ∈ X.

Proof of Corollary 6.1. The proof that Property (C) holds for Sinai dispersing bil-
liard maps with k = 5 is given in the Appendix. It is a very slight modification of the
proof in Gupta et al. [15] where the sequence µ(Bi) = i−1 was considered. A similar
straightforward modification of the proof of the corresponding result for sequences
(Bi) such that µ(Bi) = i−1 given in Gupta et al. [15] in the setting of Lozi maps
establishes the conclusions of the corollary for Lozi maps. �
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Proof of Theorem 6.1. We consider the case µ(Bi) = (i log i)−1, which implies the
corresponding result for µ(Bi) ≥ (i log i)−1. We define fk and gk as before and split
up
∑n

j=i+1E(fifj)−E(fi)E(fj) into the terms Ii and IIi with ∆ = [log2 i]. A rough
estimate yields

Ii =

i+log2 i
∑

j=i+1

E(fifj) − E(fi)E(fj)

≤
i+log2 i
∑

j=i+1

E(fifj)

≤ C(log2 i)(i log i)−1

≤ Ci−1−(η/2)

for large i and any positive η. For the second sum we obtain

IIi =
n
∑

j=i+log2 i

E(fifj) − E(fi)E(fj)

≤
∞
∑

β=1

Ci2/δ(i+ log2 i+ β)2/δαlog2 i+β

≤ C(i log i)−1

for sufficiently large i. As above in light of Proposition 1.2 this implies the conclusion
of the theorem. �

7. Discussion.

There are several questions that are prompted by this work. Here are some that
we have considered but not resolved as yet.
(1) If (T,X, µ) is a smooth dynamical system with acip and positive metric entropy
is it true that for µ a.e. p if Bi = B(p, ri) is a nested sequence of balls about p then

lim
ri→0

(µBi
)−1{y ∈ Bi : τBi

µ(Bi) < t} = Fp(t)

for a distribution function Fp(t) such that limt→0 Fp(t) = 0?
(2) Chazottes and Collet [3] have shown that if (T,X, µ) is a dynamical system mod-
eled by a Young tower, with exponential decay of correlations and a one-dimensional
unstable foliation then for µ a.e. point p, if Bi = B(p, ri) is a nested sequence of balls
about p then

lim
ri→0

(µBi
)−1{y ∈ Bi : τBi

µ(Bi) < t} = 1 − e−t
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In fact they have shown much more, including a Poisson law for multiple returns. If
such systems satisfied Property (B) (respectively Property (C)) then the conclusion
of Theorem 5.1 (respectively Theorem 6.1) would hold. Does Property (B) or (C)
hold for µ a.e. point in such systems?
(3) Is there an example of a smooth volume preserving dynamical system (T,X, µ)
which has exponential decay of correlations yet there is a sequence of balls Bi,
µ(Bi) ≥ i−1 which is not Borel–Cantelli?

7.1. Appendix: Property C for Planar Dispersing Billiard Maps. We first
describe the class of billiards for which we can prove Property C. For a good general
reference to billiards see [6].

Let Γ = {Γi, i = 1, . . . , k} be a family of pairwise disjoint, simply connected
C3 curves with strictly positive curvature on the two-dimensional torus T

2. The
billiard flow Bt is the dynamical system generated by the motion of a point particle
in Q = T

2/(∪k
i=1(interior Γi) with constant unit velocity inside Q and with elastic

reflections at ∂Q = ∪k
i=1Γi, where elastic means “angle of incidence equals angle of

reflection”. If each Γi is a circle then this system is called a periodic Lorentz gas. The
billiard flow is Hamiltonian and preserves a probability measure (which is Liouville
measure) µ̃ given by dµ̃ = CQdq dt where CQ is a normalizing constant and q ∈ Q,
t ∈ R are Euclidean coordinates.

We first consider the billiard map T : ∂Q → ∂Q. Let r be a one-dimensional
co-ordinatization of Γ corresponding to length and let n(r) be the outward normal
to Γ at the point r. For each r ∈ Γ we consider the tangent space at r consisting
of unit vectors v such that (n(r), v) ≥ 0. We identify each such unit vector v with
an angle θ ∈ [−π/2, π/2]. The boundary M is then parametrized by M := ∂Q =
Γ × [−π/2, π/2] so that M consists of the points (r, θ). T : M → M is the Poincaré
map that gives the position and angle T (r, θ) = (r1, θ1) after a point (r, θ) flows under
Bt and collides again with M , according to the rule angle of incidence equals angle
of reflection. Thus if (r, θ) is the time of flight before collision T (r, θ) = Bh(r,θ)(r, θ).
The billiard map preserves a measure dµ = cM cos θdrdθ equivalent to 2-dimensional
Lebesgue measure dm = dr dθ with density ρ(x) where x = (r, θ).

We say that the billiard map and flows satisfies the finite horizon condition if the
time of flight h(r, θ) is bounded above. A good reference for background results for
this section are the papers [1, 2, 29, 4].

It is known (see [4, Lemma 7.1] for finite horizon and [4, Section 8] for infinite
horizon) that dispersing billiard maps expand in the unstable direction in the Eu-

clidean metric | · | =
√

(dr)2 + (dφ)2 , in that |DT n
u v| ≥ Cλ̃n|v| for some constants

C, λ̃ > 1 which is independent of v. In fact |Ln| ≥ Cλ̃n|L0| where L0 is a segment
of unstable manifold (once again in the Euclidean metric) and Ln is T nL0.
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We choose N0 so that λ := Cλ̃N0 > 1 and then TN0 (or DTN0) expands unstable
manifolds (tangent vectors to unstable manifolds) uniformly in the Euclidean metric.

It is common to use the p-metric in proving ergodic properties of billiards. Young
uses this semi-metric in [29]. Recall that for any curve γ, the p-norm of a tangent
vector to γ is given as |v|p = cosφ(r)|dr| where γ is parametrized in the (r, φ) plane
as (r, φ(r)). The Euclidean metric in the (r, φ) plane is given by ds2 = dr2 +dφ2; this
implies that |v|p ≤ cosφ(r)ds ≤ ds = |v|. We will use lp(C) to denote the length of
a curve in the p-metric and l(C) to denote length in the Euclidean metric. If γ is a

local unstable manifold or local stable manifold then C1l(γ)p ≤ l(γ) ≤ C2

√

lp(γ).
For planar dispersing billiards there exists an invariant measure µ (which is equiv-

alent to 2-dimensional Lebesgue measure) and through µ a.e. point x there exists a
local stable manifold W s

loc(x) and a local unstable manifold W u
loc(x). The SRB mea-

sure µ has absolutely continuous (with respect to Lebesgue measure ) conditional
measures µx on each W u

loc(x). The expansion by DT is unbounded however in the
p-metric at cos θ = 0 and this may lead to quite different expansion rates at different
points on W u

loc(x). To overcome this effect and obtain uniform estimates on the den-
sities of conditional SRB measure it is common to define homogeneous local unstable
and local stable manifolds. This is the approach adopted in [1, 2, 4, 29]. Fix a large
k0 and define for k > k0

Ik = {(r, θ) :
π

2
− k−2 < θ <

π

2
− (k + 1)−2}

I−k = {(r, θ) : −π
2

+ (k + 1)−2 < θ < −π
2

+ k−2}
and

Ik0
= {(r, θ) : −π

2
+ k−2

0 < θ <
π

2
− k−2

0 }.

In our setting we call a local unstable (stable) manifold W u
loc(x), (W s

loc(x)) homo-
geneous if for all n ≥ 0 T nW u

loc(x) (T−nW s
loc(x)) does not intersect any of the

line segments in ∪k>k0
(Ik ∪ I−k) ∪ Ik0

. Homogeneous W u
loc(x) have almost con-

stant conditional SRB densities dµx

dmx
in the sense that there exists C > 0 such that

1
C
≤ dµx(z1)

dmx
/dµx(z2)

dmx
≤ C for all z1, z2 ∈ W u

loc(x) (see [4, Section 2] and the remarks

following Theorem 3.1).
From this point on all the local unstable (stable) manifolds that we consider will

be homogeneous. Bunimovich et al. [2, Appendix 2, Equation A2.1] give quantitative
estimates on the length of homogeneous W u

loc(x). They show there exists C, τ > 0
such that µ{x : l(W s

loc(x)) < ǫ or l(W u
loc(x)) < ǫ} ≤ Cǫτ where l(C) denotes 1-

dimensional Lebesgue measure or length of a rectifiable curve C. In our setting τ
could be taken to be 2

9
, its exact value will play no role but for simplicity in the

forthcoming estimates we assume 0 < τ < 1
2
.
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The natural measure µ has absolutely continuous conditional measures µx on lo-
cal unstable manifolds W u

loc(x) which have almost uniform densities with respect to
Lebesgue measure on W u

loc(x) by [4, Equation 2.4].
Let A√

ǫ = {x : |W u
loc(x)| >

√
ǫ} then µ(Ac√

ǫ) < Cǫτ/2. Let x ∈ A√
ǫ and con-

sider W u
loc(x). Since |T−kW u

loc(x)| < λ−1|W u
loc(x)| for k > N0 the optimal way

for points T−k(y) in T−kW u
loc(x) to be close to their preimages y ∈ W u

loc(x) is for
T−kW u

loc(x) to overlay W u
loc(x), in which case it has a fixed point and it is easy to

see l{y ∈ W u
loc(x) : d(y, T−ky) < ǫ} ≤ l{y ∈ R : d(y, y

λ
) < ǫ} ≤ (1 − λ−1)ǫ. Ac-

cordingly l{y ∈ W u
loc(x) : d(y, T−ky) < ǫ} ≤ C

√
ǫl{y ∈ W u

loc(x)}. Recalling that
the density of the conditional SRB-measure µx is bounded above and below with
respect to one-dimensional Lebesgue measure we obtain µx(A

c√
ǫ
) < C

√
ǫ. Inte-

grating over all unstable manifolds in A√
ǫ (throwing away the set µ(Ac√

ǫ)) we have

µ{x : d(T−kx, x) < ǫ) < Cǫτ/2. Since µ is T -invariant µ{x : d(T kx, x) < ǫ} < Cǫτ/2

for k > N0. Hence for any iterate T k, k > N0

Ek(ǫ) := µ{x : d(T kx, x) < ǫ} < Cǫτ/2.

Define

Ek := {x : d(T jx, x) ≤ 2√
k

for some 1 ≤ j ≤ (log k)5}.

We have shown that for any δ > 0, for all sufficiently large k, µ(Ek) ≤ k−τ/4+δ. For
simplicity we take µ(Ek) ≤ k−σ where σ < τ/4 − δ.

Define the Hardy–Littlewood maximal function Ml for φ(x) = 1El
(x)ρ(x) where

ρ(x) = dµ
dm

(x), so that

Ml(x) := sup
a>0

1

m(Ba(x))

∫

Ba(x)

1El
(y)ρ(y) dm(y).

A theorem of Hardy and Littlewood [23, Theorem 2.19] implies that

m(|Ml| > C) ≤ ‖1El
ρ‖1

C

where ‖ · ‖1 is the L1 norm with respect to m. Let

Fk := {x : µ(Bk−γ/2(x) ∩Ekγ/2) ≥ (k−γβ/2)kγ/2.

Then Fk ⊂ {Mkγ/2 > k−γβ/2} and hence

m(Fk) ≤ µ(Ekγ/2)kγβ/2 ≤ Ck−γσkγβ/2.

If we take 0 < β < σ and γ > σ/2 then for some δ > 0, k−γσkγβ/2 < k−1−δ and hence
∑

k

m(Fk) <∞.
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Thus for m a.e. (hence µ a.e.) x0 ∈ X there exists N(x0) such that x0 6∈ Fk for all
k > N(x0). Thus along the subsequence nk = k−γ/2, µ(Bnk

(x0) ∩ T−jBnk
(x0)) ≤

n−1−δ
k for k > N(x0). This is sufficient to obtain an estimate along the subsequence

(n logn)−1. Since limk→∞(k+1
k

)γ/2 = 1 if kγ/2 ≤ n log n ≤ (k + 1)γ/2 then for suffi-
ciently large n µ(B(n log n)−1(x0) ∩ T−jB(n log n)−1(x0)) ≤ µ(Bnk

(x0) ∩ T−jBnk
(x0)) ≤

n−1−δ
k ≤ 2(n log n)−1−δ. As dµ

dm
(p) is finite for µ a.e. p this implies the result for

µ(Bi) = i log i by the Lebesgue density theorem. We now control the iterates
1 ≤ j ≤ N0. If x0 is not periodic then min1≤i<j≤N0

d(T ix0, T
jx0) ≥ s(x0) > 0

and hence for large enough n, for all 1 ≤ j ≤ N0, µ(Bn−1(x0) ∩ T−jBn−1(x0)) = 0.
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