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Abstract
The spectrum F(t) of Poincaré recurrence times for the standard map exhibits
two distinct limits: an integrable weak-coupling limit with an inverse power
law and a chaotic strong-coupling limit with exponential decay. In the domain
where chaotic regions coexist with integrable structures, the spectrum F(t)

exhibits a superposition of exponential and power law decay. Such a law can
be proved to occur in a model of area-preserving map at the boundary of the
mixing and integrable components.

PACS numbers: 05.45.−a, 05.45.Df, 05.45.Tp

(Some figures in this article are in colour only in the electronic version)

The dynamical behaviour of an area-preserving map M is well understood in two limit
cases, integrable and uniformly mixing, and when small perturbations are introduced. The
intermediate region, where regular and chaotic structures coexist, hierarchically organized on
an infinite number of scales, is still open to investigation [1]. The numerical exploration
of the global structure is performed by associating, with each orbit O, a dynamical or
thermodynamical variable f : rotation number, Lyapounov exponent, fractal dimension,
entropy and reversibility error. This provides an intuitive picture of the global behaviour
of M and its effectiveness depends on the sensitivity of f to the nature of the orbit. The
fine structure of an orbit O can be detected in some cases by computing a spectrum rather
than the evolution of a dynamical variable [2, 3]. The decay of correlations and the return
times spectrum are well-known examples. The decay of correlations in the thin stochastic
layer around a chain of islands, for instance, appears to follow a power law [4–7], which
implies anomalous transport [8, 9]. The presence of a slow diffusion in these regions has also
been detected with the frequency map analysis [10, 11]. The dynamical behaviour of weakly
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chaotic regions is still an open problem, even from the numerical viewpoint. A qualitative
picture of the local structure on different scales is provided by renormalization theory, but a
satisfactory interpretation of the statistical properties is not yet available. We suggest that the
spectrum of Poincaré recurrences is a useful tool to investigate an area-preserving map due to
its universality in the invariant regions with mixing properties and in the domains foliated by
invariant curves. When both components are present, the properties of the spectrum depend,
in a precise way, on their extension and their proportion in the neighbourhood of the chosen
point. This is confirmed by numerical analysis. The stochastic layer surrounding a chain
of islands is not a channel uniformly hyperbolic with a finite number of islands foliated by
invariant curves, to which our predictions would rigorously apply. Nevertheless in the case of
the standard map, a similar naive picture allows us to interpret most of the observed properties
of the spectrum and its changes when we move in phase space and vary the size of the initial
domain.

The statistics of Poincaré recurrences has been analysed both numerically [12] and
theoretically for area-preserving maps. For strongly mixing systems, the return times spectrum
F(t) is exponential and bounds on the convergence rate have been given [13]. For irrational
translations on the 1D torus, Slater’s theorem [14] states that for any interval there are at
most three values for the return times at any point of the interval. For Diophantine numbers
and a special choice of the interval, the return times are only two and a limit spectrum
exists, when the length of the interval goes to zero [15]. For a skew integrable map, which
foliates the 2D torus into invariant 1D tori, the spectrum exists and follows a power law
[16]. As a consequence, in any integrable region the spectrum is universal, a power law with
exponent −2, as we can prove for the standard map in the weak-coupling limit and check
numerically within any island where no chaoticity is visible. In a model map having a finite
number of integrable and chaotic regions, the spectrum is determined.

Given a dynamical system (A,M,µ) where µ is the invariant measure on the space A,
we define the recurrence time τA(x), where A is any measurable set in A, as

τA(x) = inf
k�1

{x ∈ A, T k(x) ∈ A}. (1)

The average recurrence time 〈τA〉 is defined by

〈τA〉 =
∫

τA(x) dµA(x) µA(B) = µ(A ∩ B)

µ(A)
(2)

where µA is the conditional measure of the set. If the system is ergodic, the average recurrence
time is given by Kac’s lemma according to

〈τA〉 = 1

µ(A)
. (3)

The statistical distribution is conveniently defined after scaling the return time with respect
to the average time 〈τA〉. We introduce the spectrum F(t) and a density ρ(t), for t ∈ R+,
defined by

F(t) ≡
∫ +∞

t

ρ(s) ds = lim
µ(A)→0

FA(t) (4)

when the limit exists and where

FA(t) = µA(A>t) A>t ≡
{
x ∈ A :

τA(x)

〈τA〉 > t

}
. (5)

The convergence of the distribution FA(t) (which is in general a piecewise continuous
function since τA(x) takes integer values), to a continuous function, is a remarkable
property of recurrences of dynamical systems. In particular, for strongly mixing systems,
F(t) = ρ(t) = e−t , for µ almost every point x around which A shrinks. This holds if x is
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not a periodic point whereas, if x is a periodic point, we have instead F(t) = e−αt , where α

depends on the period [17–19].
In this letter, we announce the existence of another limiting distribution function, different

from the exponential one, that is a rather new result. In any domain of the plane foliated by
the invariant curves of an area-preserving map M, the asymptotic spectrum of return times is
F(t) = c/t2. This result is obtained for the skew integrable map S of the cylinder T

1 × [a, b]
defined by x ′ = x + y mod 1, y ′ = y, to which M is diffeomorphic. For the fixed point
(0, 0) letting Aε be the square whose opposite vertex is (ε, ε), we have rigorously proved that
FAε

(t) = 1 for 0 � t < ε and FAε
(t) = 1

2 for ε � t < 1 and FAε
(t) = (1 − ε)2/(2t (t − ε))

for t � 1 + kε, where k is any positive integer. In the limit ε → 0 and k → ∞ while keeping
t finite the following result holds

F(t) =




1 t = 0

1/2 0 < t < 1

1/2t2 t � 1.

(6)

For any other point (x, y), denoting with Aε the square whose opposite vertices are(
x ± 1

2ε, y ± 1
2ε

)
, the geometric construction needed to evaluate FAε

(t) was carried out with
a computer assisted procedure [20]. Since the inaccuracies are only due to the accumulation
of round off errors, the limit ε → 0 could be investigated (the statistical error of the standard
computational method is absent). The asymptotic spectrum is still F(t) = c/tα where α = 2
with an error less than 10−3 for all the tested values of y: rational numbers, ‘quadratic
irrationals’ and randomly generated numbers in [0, 1].

The reason why a continuous spectrum exists is that, even though the system is not
ergodic, it has a ‘local-mixing’ property due to filamentation. Indeed consider the dynamical
system (M,Aε, µε), where Aε = ∪∞

n=0M
n(Aε) is the cylinder T

1 × [
y − 1

2ε, y + 1
2ε

]
and µε is

the Lebesgue measure µL times ε−1. It can be easily shown that µε(M
n(Aε) × Aε) − µ2

ε(Aε)

is zero for n → ∞ and decays to zero as n−1. The average return time is〈
τAε

〉 = 1

µε(Aε)
= ε

µL(Aε)
= 1

ε
. (7)

The spectrum F(t) can be computed for a dynamical system consisting of two (or more)
invariant components. Supposing the set D, where it is defined, splits into two invariant
subsets with a common boundary: Dp and Dm where the map M is integrable and mixing
respectively, and that the measure µ is the suitably normalized Lebesgue measure, it can
be proved [16] that, given a set A having nonempty intersections Ap,Am with Dp,Dm, the
spectrum of return times to A is given by

FA(t) = (1 − p)FAm

(
t
〈τA〉〈
τAm

〉
)

+ pFAp

(
t
〈τA〉〈
τAp

〉
)

(8)

where p = µL(Ap)/µL(A). Since the motion in the region Dp is not mixing but rather,
for initial conditions in Ap, it takes place in the subset Dp = ∪∞

n=0M
n(Ap) ⊆ Dp, which

is again foliated by invariant curves, we expect the following behaviour for the average
return time

〈
τAp

〉 = µL(Dp)/µL(Ap) in analogy with (7). Using the Kac theorem in
the mixing region

〈
τAm

〉 = µL(Dm)/µL(Am) and the average return time in A given by
〈τA〉 = p

〈
τAp

〉
+ (1 − p)

〈
τAm

〉
, the ratio of return times becomes 〈τA〉/〈

τAp

〉 = p/P and
〈τA〉/〈

τAm

〉 = (1 − p)/(1 − P) where P = µL(Dp)/µL(D). When µL(A) approaches zero,
the functions FAp

(t), FAm
(t) can be replaced by their limits given by e−t and by equation (6)

respectively so that we have

FA(t) � (1 − p) exp

(
−t

1 − p

1 − P

)
+

p

2

(
P

pt

2)
(9)



L212 Letter to the Editor

0 5 10 15
t

1e-05

0.0001

0.001

0.01

0.1

1

F(
t)

Figure 1. Return times spectrum F(t) of the standard map MI with λ = 10 (upper continuous (red)
line) and of the perturbed cat map MII with λ = 0.1 (lower continuous (blue) line) obtained with
N = 105 initial points chosen in a square of side ε = 0.01 and centre (0.45, 0.05) in a semi-log
scale. The black broken line corresponds to the exact spectrum F(t) = e−t .

where the second term is replaced by p if t = 0 and by p/2 if 0 < t < P/p. Equation (9)
has been written by sending first µ(A) to zero, waiting to take the limit P → 0 (see below),
just to show finite size effects. By using the exact formula for FAp

, written before (6), one
can show that its contribution θ(t), which is zero except for t = 0, where its value is 1.
In fact in the limit µ(A) → 0 the weight p may be kept constant, while P approaches zero
because letting µ(A) = ε2 we have P ∝ εp1/2. The limit spectrum becomes therefore
F(t) = (1 − p) e−(1−p)t + pθ(t): choosing a point at the boundary between Dp and Dm

the exponential decay rate is 1 − p and varies from 1 to 0. The same effect is obtained by
translating a set A from the Dm to Dp: the exponential decay rate decreases to zero when A

leaves Dm and the power law decay (6) is recovered. We assume a similar description holds
when the region Dp is a layer of weak chaos surrounding an island. It has been observed
that the spectrum there follows a power law and we suppose, for simplicity, the exponent is
still −2. Letting µL(A) = ε2 so that µL(Ap) = ε2p, we can only bound the measure of the
cylinder Dp according to c(p)ε � µL(Dp) � µL(Dp). As a consequence P may have a finite
limit when ε → 0 and the limit spectrum F(t) may exhibit an algebraic component. Letting
P 
 1, as we expect for the standard map when λ � 1, since the measure of the chaotic sea
is of order 1, the decay of F(t) is exponential, but, for t large enough, the power law decay
prevails.

In order to compare the previous results with the numerical spectra of physically relevant
models, we considered the following area-preserving maps

MI :

{
y ′ = y − λ

2π
sin(2πx) mod 1

x ′ = x + y ′ mod 1
MII :

{
y ′ = y + x − λ

2π
sin(2πx) mod 1

x ′ = x + y ′ mod 1.
(10)

The first one is the standard Chirikov map, which becomes the skew integrable map S for
λ = 0, the second is a perturbation of the Arnold cat map, to which it reduces for λ = 0. The
maps M

I
for λ � 1 and M

II
for 0 � λ < 1 have a similar behaviour and their recurrence

times spectra agree with F(t) = e−t , see figure 1, within the numerical errors due to statistical
uncertainty (finite number of points) and the finite size of the initial set Aε . The map M

II
for

|λ| < 1 is an Anosov system and F(t) = e−t is a rigorous result [21].
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Figure 2. Return times spectra for the standard map MI: the N = 105 initial points are taken in a
box of side ε = 0.005 centred at the point (0.01, y) belonging to the orbit with golden mean rotation
number. The curves on a log–log scale correspond to λ = 0.2 with y = 0.6133 (continuous grey
(red) line), λ = 0.5 with y = 0.6074 (continuous dark (blue) line) and λ = 0.9 with y = 0.6008
(continuous light grey (green) line). The black broken line is the theoretical return times spectrum
given by equation (6).

For λ 
 1, the standard map M
I

is quasi-integrable and the return times spectrum has a
power law behaviour. Indeed for any domain A ⊂ T

2, letting Atori be the intersection of A

with all the invariant tori in T
2, the KAM theorem states that µ(Atori) → µ(A) as λ → 0.

Moreover, the existing tori can be smoothly interpolated. As a consequence, in the limit
λ → 0, the same spectrum is found as for the skew integrable map corresponding to λ = 0.
Consider the strip around the orbit y(x), having a Diophantine winding number ω, delimited
by orbits y±(x) having winding numbers ω ± 1

2ε, respectively. For λ and ε sufficiently small,
all the orbits within the strip are smoothly conjugated with the orbits of the skew integrable
map X′ = X + Y mod 1, Y ′ = Y within the cylinder T

1 × (|Y − ω| < 1
2

)
(the conjugation is

given by the perturbative expansion in λ truncated at a suitable order). The spectrum FAε
(t)

for the skew integrable map S with respect to the square Aε with vertices
(± 1

2ε, ω ± 1
2ε

)
and

the spectrum of the standard map M
I

with respect to its image (	(Aε) where M ◦ 	 � 	 ◦ S)
are the same, up a to small controlled error. In figure 2, we show the return times spectra
FAε

(t) for a square of side ε and centre (2ε, y) belonging to the orbit with golden mean
rotation number, for different values of λ. The decay follows closely the power law defined
by equation (6). Choosing initial points with a different rotation number, the spectrum does
not change appreciably and the exponent of the power law decay is compatible with −2.

The dynamics of the standard map, in the intermediate region (1 < λ < 5) after the
break up of the last KAM curve, and before the area of islands has come very close to zero,
is characterized by the presence of a major region of stable orbits (a single island bifurcating
into two at λ ∼ 4.3) surrounded by a layer of variable thickness, where Cantori are present
and limit the communication of the homoclinic tangle with the exterior region. The iteration
of a domain Aε in the chaotic sea, intersects this region affecting the return times spectra.
The net result is the same as if Aε had a small intersection with a region of regular orbits and
consequently the behaviour of the return times spectrum may be described by (9). As shown
by figure 3, the spectrum of the return times, where Aε is a box in the middle of the chaotic
sea (centre (0.45, 0.05) and side ε = 0.01), shows an exponential behaviour e−t with a tail
decaying as t−2 according to (9) with p = P = 0.04 for λ = 2 and p = P = 0.016 for
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Figure 3. Spectrum of return times for the map MI with λ = 2. The initial N = 105 points are
chosen in a square centred at (0.45, 0.05) of side ε = 0.01. The spectra are shown for λ = 2 (upper
continuous (red) line), λ = 3 (bottom continuous dark (blue) line), λ = 4 (medium continuous
(purple) line), λ = 5 (bottom continuous grey (green) curve). A fit to the spectrum, obtained with
formula (9) with P = p = 0.04 for λ = 2 and P = p = 0.016 for λ = 4 respectively, is shown
by the black broken lines.
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Figure 4. Spectrum of return times for the map MI with λ = 0.8 (continuous (blue) line). The
initial N = 105 points are chosen in a square centred at (0.45, 0.05) of side ε = 0.01. A fit to the
spectrum, obtained with formula (9) with P = 0.5 and p = 0.1, is shown by the black broken line.

λ = 4. For λ = 3 the chaotic layer is thinner and the spectrum is fit with p = P = 0.003;
for λ = 5 the layer is so thin and its area so small that the algebraic tail in the spectrum is
hardly detectable. Decreasing λ, below the critical value P increases and the weight p of the
power law component in the spectrum also increases as shown in figure 4, where for λ = 0.8
the decay is described by p = 0.1 and P = 0.5. We would like to underline that the spectrum
changes somehow with the size of the box (the quality of the fit changes too), whereas it is
not sensitive to a change of the initial point, provided it does not approach the stochastic layer
around the region of invariant curves. We have verified that, choosing Aε within the region of
invariant curves surrounding the origin, within a primary or secondary chain of islands, FAε

(t)
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is nicely described by (6). The change of the spectrum entering an integrable region from a
chaotic sea is nicely described by F(t) ∼ e−(1−p)t as one can see for λ = 3, since the layer
around the major island is thin (choose for instance a box of side ε = 0.02 and centre (x, 0.1)

moving x from 0.12 to 0.17).
To conclude we underline that the return times spectra exhibit two distinct types of

behaviour in the integrable and strongly chaotic regimes. In the transition regions, the
spectrum changes exhibiting a combination of the previous laws, as already observed in a
model of stationary flow with hexagonal symmetry, where the transport is anomalous [9].
The spectrum, derived for a system with two invariant components, provides an effective
way to quantify the relative size of the regular versus mixing domains in the regions of the
phase space where both coexist. The analogy we propose with the two-component model,
where such a law can be proved to hold, suggests a possible research pathway for a better
understanding of mixed regions exhibiting weak chaos, anomalous transport and power law
decay of correlations.

Acknowledgment

We would like to thank L Rossi for contributing to the computed assisted proof, which will be
reported elsewhere in detail.

References

[1] Channon S R and Lebowitz G L 1980 Numerical experiments in stochasticity and heteroclinic oscillations Non
Linear Dynamics ed R H C Hellmann (Ann. N. Y. Acad. Sci.)

[2] Voglis N and Contopoulos J 1998 J. Phys. A. Math. Gen. 27 4899
[3] Skokos C 2001 J. Phys. A: Math. Gen. 34 1029
[4] Artuso R, Casati G and Guarnieri I 1996 J. Stat. Phys. 83 145
[5] Artuso R 1999 Physica D 131 68–77
[6] Chirikov B and Shepelyansky D L 1984 Physica D 13 395
[7] Karney C 1983 Physica D 8 360
[8] Zavlavsky G M and Edelman M 2001 Chaos 11 295
[9] Zavlavsky G M and Tippet M K 1991 Phys. Rev. Lett. 67 3251

[10] Laskar J 1993 Physica D 67 257
[11] Bazzani A et al 1996 Part. Accel. 52 147
[12] Chirikov B and Shepelyansky D L 1999 Phys. Rev. Lett. 82 528
[13] Hirata M, Saussol B and Vaienti S 1999 Commun. Math. Phys. 206 33–35
[14] Slater N B 1967 Proc. Camb. Phil. Soc. 63 1115
[15] Buric N, Rampioni A and Turchetti G Statistics of Poincaré recurrences for a class of smooth circle maps
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