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Abstract

Suppose Bi := B(p, ri) are nested balls of radius ri about a point p in

a dynamical system (T,X, µ). The question of whether T ix ∈ Bi infinitely

often ( i. o.) for µ a.e. x is often called the shrinking target problem. In

many dynamical settings it has been shown that if En :=
∑n

i=1 µ(Bi) diverges

then there is a quantitative rate of entry and limn→∞
1
En

∑n
j=1 1Bi

(T ix) → 1

for µ a.e. x ∈ X. This is a self-norming type of strong law of large num-

bers. We establish self-norming central limit theorems (CLT) of the form

limn→∞
1
an

∑n
i=1[1Bi

(T ix) − µ(Bi)] → N(0, 1) (in distribution) for a variety

of hyperbolic and non-uniformly hyperbolic dynamical systems, the normal-

ization constants are a2n ∼ E[
∑n

i=1 1Bi
(T ix) − µ(Bi)]

2. Dynamical systems to
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which our results apply include smooth expanding maps of the interval, Rych-

lik type maps, Gibbs-Markov maps, rational maps and, in higher dimensions,

piecewise expanding maps. For such central limit theorems the main difficulty

is to prove that the non-stationary variance has a limit in probability.

1 Introduction

Suppose (T,X, µ) is an ergodic dynamical system and Bi(p) is a nested sequence

of balls about a point p ∈ X . Recently there have been many papers concerning

the behavior of the almost sure limit of the normalized sum 1
En

∑n
i=1 1Bi(p)(x) where

En :=
∑n

i=1 µ(Bi(p)) diverges [4, 25, 11, 13, 14, 19, 23]. If the limit is known to

exist almost surely then {Bi(p)} is said to satisfy the Strong Borel Cantelli property.

Many of the references we mentioned consider more general sequences of sets than

nested balls. The study of hitting time statistics to a sequence of nested balls is

sometimes called the shrinking target problem. In this paper we study self-norming

central limit theorems for the shrinking target problem, namely the distribution limit

of 1
an

∑n
i=1[1Bi(p) − En] where an is a sequence of norming constants. For reasons of

exposition we focus on the case where µ(Bi(p)) =
1
i
, a critical case, where En = log n.

Our results extend (with obvious modifications to the norming sequences) to balls

satisfying C1

iγ1
≤ µ(Bi(p)) ≤ C2

iγ2
where C1, C2 are positive constants and 0 < γ2 ≤

γ1 ≤ 1. The main difficulty is to establish that the non-stationary variance has a

limit in probability. Our results are limited to non-uniformly expanding systems i.e.

those without a contracting direction and are based upon the Gordin [12] martingale

approximation approach (see also [26]).

More generally, this paper is also an attempt to study the statistics of non-

stationary stochastic processes arising as observations (which perhaps change over

time) on an underlying dynamical system (which may change over time). Conze

and Raugi [6] studied similar problems for sequential expanding dynamical systems.

Somewhat related results were obtained by Nándori, Szász and Varjú [29] who ob-

tained central limit theorems in the setting in which a fixed observation φ : X → R

was considered on a space on which a sequence of different transformations acted
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Ti : X → X act, preserving a common invariant measure µ. The main difficulty

in [29] was also controlling the variance, but the setting in which the underlying maps

change but the observation is fixed is simpler in some respects and more difficult in

others.

We obtain fairly complete results in the case in which the transfer operator with

respect to the invariant measure is quasicompact in the bounded variation norm.

These results are contained in Proposition 5.1 and Theorem 6.4. For systems in which

the transfer operator is quasicompact in a Hölder or Lipschitz space we show that

under the assumption we call (SP) (derived from a Gal-Koksma lemma as formulated

by Sprindzuk [33]) or a form of short returns assumption called Assumption C we

have a central limit theorem ( Theorem 3.1). Assumption C and the SP property

have been shown to hold for generic points in a variety of non-uniformly expanding

systems [5, 15, 21].

In Section 2 we discuss the set-up, describe the martingale approach we use,

prove some general results on variance and discuss the SP property and Assumption

C. Section 3 gives our results under the assumption of quasi-compactness in Hölder

norms and also some applications. In Section 4 we give our results when we have

quasi-compactness of the transfer operator in the bounded variation norm, and we

give applications to piecewise expanding maps in higher dimensions. The last section

is a concluding discussion, while the Appendices describe the Gal-Koksma lemma

we use and show that Assumption C is satisfied for generic points in many of our

applications.

2 The setup.

We suppose that (T,X, µ) is an ergodic dynamical system. Let the transfer operator

P be defined by
∫
φψ◦Tdµ =

∫
Pφψdµ for all φ, ψ ∈ L2(µ) so that P is the adjoint of

the Koopman operator Uφ := φ◦T with respect to the invariant measure µ. Suppose

Bα is a Banach space of functions and ‖φ‖1 ≤ C‖φ‖α where ‖.‖α is the Banach space

norm and ‖.‖1 is the L1 norm with respect to µ. We assume P restricts to an operator
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P : Bα → Bα such that ‖P nφ‖α ≤ C1θ
n‖φ‖α for all φ ∈ Bα such that

∫
φ dµ = 0.

This implies exponential decay of correlations of the form, that for some 0 < θ < 1,

|
∫
φψ ◦ T n dµ− (

∫
φ dµ)(

∫
ψ dµ)| ≤ Cθn‖φ‖α‖ψ‖1

for all φ ∈ Bα, ψ ∈ L 1µ. In our applications we will have the pairs (BV (X),L 1(µ))

or (Hγ(X),L 1(X)) where BV (X) is the space of function of bounded variation and

Hγ(X) is the space of Hölder functions of exponent γ. For example if T is a smooth

uniformly expanding map of the unit interval X then Bα could be taken as the Banach

space of functions of bounded variation BV (X). In this paper we will consider Lips-

chitz rather than Hölder functions, as our results and proofs immediately generalize

to the Hölder setting with the obvious changes.

Remark 2.1 The weaker assumption of exponential decay of correlations

|
∫
φψ ◦ T n dµ− (

∫
φ dµ)(

∫
ψ dµ)| ≤ Cθn‖φ‖α‖ψ‖∞

implies that ‖P nφ‖1 ≤ Cθn‖φ‖α (by taking ψ to be sign(P nφ)) and hence P contracts

exponentially in the L 1 norm. This assumption is sufficient for all our results on

variance in Section 2, with the exception of the proof of the boundedness of the

terms wj , given in Lemma 2.9 which seems to require our stronger assumption that

‖P nφ‖α ≤ C1θ
n‖φ‖α. These estimates on the growth of wj are used in the proof of

Theorem 3.1. If Bα is the space of functions of bounded variation then the wj terms

are easily seen to be uniformly bounded under the assumption ‖P nφ‖BV ≤ Cθn‖φ‖BV .

Let p ∈ X and letBn(p) be a sequence of nested balls about p such that µ(Bn(p)) =
1
n
. Let 1Bn(p) be the characteristic function of Bn(p). We will sometimes write E[φ]

or
∫
φ for the integral

∫
φ dµ when the context is understood. Our results generalize

immediately to sequences of nested balls with bounds C1

nγ1
≤ µ(Bn(p)) ≤ C2

nγ2
for

constants C1, C2 > 0 and 0 < γ2 ≤ γ1 ≤ 1 (only the norming constants change) but

for simplicity we discuss in detail only the case µ(Bn(p)) =
1
n
.

1Bn(p) may not lie in Bα but we assume we may take an approximation to it, φ̃α
n

such that:
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(i) |1Bn(p) − φ̃α
n|1 ≤ 1

n3 and;

(ii) ‖φ̃α
n‖α ≤ Cnk where C, k are independent of n;

(iii) φ̃α
n ≥ 0, φ̃α

n ≥ φ̃α
n+1

Remark 2.2 If we are taking a Hölder approximation then condition (ii) is satisfied

for the balls Bi = B(p, ri) if there exists δ(p) > 0 and C > 0 such that µ{x : r <

d(x, p) < r + ǫ} < Cǫδ(p). This condition is satisfied if the invariant measure µ has

a density h with respect to Lebesgue measure m such that h ∈ L 1+η(m) for some

η > 0.

We define φα
n = φ̃α

n −
∫
φ̃α
n so that

∫
φα
n = 0. For ease of notation we will subse-

quently drop the superscript α on φα
n and φ̃α

n.

Define φ0 = 0 and for n ≥ 1

wn = Pφn−1 + P 2φn−2 + . . .+ P nφ0 =
n∑

j=1

P jφn−j

so that w1 = Pφ0, w2 = Pφ1+P
2φ0, w3 = Pφ2+P

2φ1+P
3φ0 etc... For n ≥ 1 define

ψn = φn − wn+1 ◦ T + wn

Recall our assumptions ‖φ̃n‖α ≤ Cnk(so ‖φn‖α ≤ C̃nk) and ‖P nφ‖α ≤ C1θ
n‖φ‖α for

all φ ∈ Bα such that
∫
φdµ = 0. Hence ‖wn‖α ≤ C2‖φn‖α , ‖wn ◦ T‖α ≤ C3‖φn‖α

(since ‖UPφ‖α ≤ C‖φ‖α for all φ ∈ Bα) and hence ‖ψn‖α ≤ C4‖φn‖α. Using the fact

that P (wn+1 ◦ T ) = wn+1P1 = wn+1 one may show that Pψn = 0.

Since UP (·) = E[·|T−1B], Pψj = 0 implies that E[ψj |T−1B] = 0 and in turn

E[ψj ◦T j|T−1−jB] = 0 (since T preserves µ). Furthermore ψj ◦T j is T−jB measurable

for all j ≥ 0.

Following the approach of Gordin we will express
∑n

j=1 φj ◦ T j as the sum of a

(non-stationary) martingale difference array and a controllable error term and then

use the following Theorem 3.2 from Hall and Heyde [16]:
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Theorem 2.3 (Theorem 3.2 [16]) Let {Sn,i,Fn,i, 1 ≤ i ≤ kn, n ≥ 1} be a zero-

mean square-integrable martingale difference array with differences Xn,i and let η2 be

an almost sure finite random variable. Suppose that:

(a) maxi |Xn,i| → 0 in probability;

(b)
∑

iX
2
n,i → η2 in probability;

(c) E(maxiX
2
n,i) is bounded in n;

(d) the σ-fields are nested: Fn,i ⊂ Fn+1,i for 1 ≤ i ≤ kn, n > 1.

Then Sn,kn → Z (in distribution) where the random variable Z has the character-

istic function E(exp(−1
2
η2t2)).

As is common in the application of martingale theory to non-invertible dynamical

systems we will have to consider the natural extension so that we have a martingale

in backwards time. We outline our scheme of proof.

Let (σ,Ω, m) be the natural extension of (T,X, µ). Each ψj lifts to to a function

ψ∗
j on Ω in a natural way, ψ∗

j (. . . ω−2ω−1.ω0ω1 . . .) := ψj(ω0). To simplify notation we

write simply ψj instead of ψ∗
j .

We define scaling constants by a2n = E(
∑n

j=1 φj ◦T j)2. This sequence of constants

play the role of non-stationary variance. Giving estimates on the growth and non-

degeneracy of an in this non-stationary setting is more difficult than in the usual

stationary case.

We define a triangular array Xn,i = 1
an
ψn−i ◦ σ−i, i = 1, . . . , n, n ∈ N, and

put Sn,i =
∑i

j=1Xn,j for the partial sums (along rows). Then Xn,i is Fi := σiB0

measurable where B0 is the σ-algebra B lifted to Ω. Note that in Theorem 2.3

we take Fn,i := Fi for all n and kn = n. The Fi form an increasing sequence

of σ-algebras. We obtain E[Sn,i+1|Fi] = Sn,i + E[Xn,i+1|Fi] where by stationarity

E[Xn,i+1|Fi] = E[ψn−i−1|σ−1B0] = 0. Hence E[Sn,i+1|Fi] = Sn,i and for every n ∈ N

Xn,i is a martingale difference array with respect to Fi.

We will then verify conditions (a), (b), (c) and (d) of Theorem 2.3. The hard part

lies in establishing (b). This is in contrast with the stationary setting where condition

(b) is usually a straightforward consequence of the ergodic theorem. Condition (b) is

established in [29] by using [36, Lemma 3.3.], however in our setting the Lipschitz
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norms of the observations φ̃i are unbounded and other techniques have to be used.

Once we have established (a), (b), (c) and (d) it follows that limn→∞
1
an

∑n−1
j=0 ψj ◦

T j → N(0, 1) in distribution. In the final step we show that 1
an

∑n
j=1[wj ◦ T j − wj ◦

T j+1] → 0 in L 1 which implies that limn→∞
1
an

∑n−1
j=0 φj◦T j → N(0, 1) in distribution.

2.1 Some lemmas on variance

In this section we establish some preliminary results on the growth of the variance

E[(
∑n

j=1 φj)
2] that will be useful in determining the scaling constants an.

For further reference let us notice that ‖P nφ‖α ≤ C1θ
n‖φ‖α and ‖φ‖1 ≤ C1‖φ‖α

and that there exists a constant a such that

‖
∑

j>a log i

P jφi‖1 ≤
1

i3
. (2.1)

Lemma 2.4

lim sup
n→∞

1

log n
E(

n∑

i=1

φi ◦ T i)2 ≥ 1

Proof: By exponential decay of correlations and (2.1) we get for the long term

interactions: ∑

j>a log i+i

∣∣∣∣
∫
φi ◦ T iφj ◦ T j

∣∣∣∣ ≤
c1
i2
,

where we used exponential decay and our bound ‖φj‖1 ≤ C1‖φj‖α ≤ Cjk, where C,k

are independent of j. This bound is from assumption (ii). Recall φj = φ̃j −
∫
φ̃j and

‖φ̃j‖1 ≤ C3

j
(for some C3). Thus for the short term interactions we get

i+a log i∑

j=i+1

∫
φi ◦ T iφj ◦ T j =

i+a log i∑

j=i+1

∫
φ̃i ◦ T iφ̃j ◦ T j +O(

a log i

i2
)

whence

n∑

i=1

∑

j>i

E[φi ◦ T iφj ◦ T j] = O(1) +
n∑

i=1

i+a log i∑

j=i+1

E[φ̃i ◦ T iφ̃j ◦ T j].

Since

E(

n∑

i=1

φi ◦ T i)2 =

n∑

i=1

E(φ2
i ) + 2

n∑

i=1

∑

j>i

E[φi ◦ T iφj ◦ T j]
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and
∑n

i=1

∑i+a log i
j=i+1 E[φ̃i ◦ T iφ̃j ◦ T j] ≥ 0 the lemma is proved.

Lemma 2.5
n∑

i=1

n∑

j=i+1

∫
φi ◦ T iφj ◦ T j =

n∑

i=1

∫
(φiwi) ◦ T i

Proof: Recalling that φ0 = 0 this follows by a direct calculation and rearrangement

of terms as

n−1∑

i=1

n∑

j=i+1

∫
φi ◦ T iφj ◦ T j =

n∑

j=2

j−1∑

i=1

∫
φi ◦ T iφj ◦ T j

=

n∑

j=2

j−1∑

i=1

∫
P j−iφiφj

=

n∑

j=2

∫
(

j−1∑

i=1

P j−iφi)φj

=
n∑

j=2

∫
wjφj.

The following lemma is the main result of this subsection:

Lemma 2.6

an = E(
n∑

i=1

φi ◦ T i)2 =
n∑

i=1

E[ψ2
i ]−

∫
w2

1 +

∫
w2

n+1

Proof: Let us first observe that factoring out yields

ψ2
j = φ2

j + 2φj(wj − wj+1 ◦ T ) + (wj − wj+1 ◦ T )2

= φ2
j + 2φj(wj − wj+1 ◦ T ) + w2

j + w2
j+1 ◦ T − 2wjwj+1 ◦ T

8



which when integrated leads to
∫
ψ2
j =

∫
φ2
j + 2

∫
φj(wj − wj+1 ◦ T ) +

∫
w2

j +

∫
w2

j+1 − 2

∫
wjwj+1 ◦ T

=

∫
φ2
j + 2

∫
φjwj − 2

∫
Pφjwj+1 +

∫
w2

j +

∫
w2

j+1 − 2

∫
Pwjwj+1

=

∫
φ2
j + 2

∫
φjwj − 2

∫
Pφjwj+1 +

∫
w2

j +

∫
w2

j+1 − 2

∫
(wj+1 − Pφj)wj+1

=

∫
φ2
j + 2

∫
φjwj +

∫
w2

j −
∫
w2

j+1.

Since by Lemma 2.5

an =
n∑

i=1

E(φ2
i ) + 2

n∑

i=1

n∑

j=i+1

∫
φi ◦ T iφj ◦ T j =

n∑

i=1

(
E(φ2

i ) + 2

∫
(φiwi) ◦ T i

)

the statement follows by substituting
∫
ψ2
j −

∫
w2

j +
∫
w2

j+1 for the terms inside the

sum on the RHS and then telescoping out the expected values of w2
j .

2.2 Property (SP)

Several authors [24, 4] have used a property derived from the Gal-Koksma theorem

(see Appendix) to prove the SBC property for sequences of balls. Later we will show

that in certain settings the (SP) property also implies a CLT.

Suppose Bi are balls and let fi = 1Bi
◦ T i. If

n∑

i=m

n∑

j=i+1

E(fifj)− E(fi)E(fj) ≤ C

n∑

i=m

E(fi) (SP )

for arbitrary integers n > m then the balls are said to have the (SP) property.

2.3 Short returns and Assumption (C)

In this section we discuss a condition on short return times first considered, to our

knowledge, by P. Collet [5]. We have called it Assumption (C). This condition has

been used to establish extreme value statistics [5, 21, 15] and dynamical Borel-Cantelli

lemmas [14, 19].
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Suppose p ∈ X and Bi(p) is a nested sequence of balls centered at a point p, with

limi µ(Bi(p)) = 0.

Assumption (C): We say (Bi(p)) satisfies assumption (C) if there exists η(p) ∈
(0, 1) and κ(p) > 1 such that for all i sufficiently large

µ(Bi(p) ∩ T−rBi(p)) ≤ µ(Bi(p))
1+η

for all r = 1, . . . , logκ i.

If (Bi(p)) satisfies assumption (C) then we can say more about the behavior of

the constants an.

Lemma 2.7 Under Assumption (C) there exists a constant C1 so that

∫
|φjwj| ≤

C1 log j

j1+η
.

Proof: By the contraction property of the transfer operator one has by (2.1) for a

sufficiently large constant a

∑

i<j−a log j

∫
φjP

j−iφi ≤
1

j2
.

Let φj = φ̃j −
∫
φ̃j where φ̃j is the Bα approximation to 1Bj(p) and note that

‖φ̃j‖1, ‖φj‖1 ≤ c1
j
(for some c1). Hence we obtain in the L 1-norm: (as φ̃j ≥ 0)

∫
|φjwj| ≤

a log j∑

n=1

(∫
φ̃jP

nφ̃j−n +

∫
φ̃2
j−n +

∫
φ̃j

∫
P nφ̃j−n +

∫
φ̃j

∫
φ̃j−n

)
+O

(
1

j2

)

=

a log j∑

n=1

(∫
φ̃jP

nφ̃j−n + 3µ(φ̃j−n)
2

)
+O

(
1

j2

)

=

a log j∑

n=1

∫
φ̃jP

nφ̃j−n +O
(
log j

j2

)
,

where we used that
∫
φ̃j = O(j−1). Now by assumption (C) we have

∫
φ̃jP

nφ̃j−n ≤
∫
φ̃j−n ◦ T nφ̃j−n ≤ µ(Bj−n ∩ T−nBj−n) ≤

c2
(j − n)1+η

,

10



for n ≤ a log j, and thus

a log j∑

n=1

∫
φ̃jP

nφ̃j−n ≤ c3
j1+η

a log j,

proving the lemma.

Lemma 2.8 If (Bi(p)) satisfies Assumption (C) then

E(

n∑

i=1

φi ◦ T i)2 =

n∑

i=1

E[φ2
i ] +O(1) = logn +O(1).

Proof: Rearranging the sums yields by Lemma 2.5

E(

n∑

i=1

φi ◦ T i)2 =

n∑

i=1

E[φ2
i ] + 2

n−1∑

i=1

n∑

j=i+1

∫
φi ◦ T iφj ◦ T j

=
n∑

i=1

E[φ2
i ] + 2

n∑

j=2

∫
wjφj

and hence the result follows by Lemma 2.7 as η > 1

2.4 Bounds on wj

We now assume that ‖φ‖∞ ≤ C‖φ‖α which under our assumption on the transfer

operator implies that for a mean-zero function φ ∈ B, ‖P nφ‖∞ ≤ Cθn‖φ‖α for some

C, 0 < θ < 1 independently of φ. For example if ‖.‖α were the Banach space of

Hölder functions of exponent γ on the unit interval then ‖φ‖∞ ≤ C‖φ‖α. In the

BV or quasi-Hölder norm indicator functions are bounded, and the proof that wj is

uniformly bounded is straightforward in this case.

Lemma 2.9 Assume ‖P nφ‖∞ ≤ Cθn‖φ‖α then there exist a constant C2 such that

‖wj‖∞ < C2 for all j where En =
∑n

j=1 µ(Bi).

Proof: For some a > 0 we can achieve
∑n

j=a logn |P jφn−j|∞ ≤ c1
∑n

j=⌊a logn⌋ θ
j(n −

j)k = O(n−2) and in particular |P jφn−j|∞ = O(n−2) for all j ≥ a logn and all n. As

in the previous lemma let φ̃j be the Bα approximation for 1Bj
and φj = φ̃j−µ(φ̃j). In

11



view of the tail estimate it is only necessary to bound
∑⌊a logn⌋

j=1 P jφn−j independently

of n.

(i) Bound from below: Since φj ≥ −µ(φ̃j) = O(j−1) one obtains
∑⌊a logn⌋

j=1 P jφn−j ≥
∑⌊a logn⌋

j=1 c2(n − j)−γ1 ≥ −c3 logn
nγ1

for some constants c2, c3 inde-

pendent of j and n. Hence wn ≥ −c4 for some c4 > 0 and all n (independent of

γ1, γ2).

(ii) Bound from above: Since 1Bj+1
≤ 1Bj

one has φ̃j+1 ≤ φ̃j and in particular

µ(φ̃j+1) ≤ µ(φ̃j). Hence φj+1 − φj ≤ µ(φ̃j)− µ(φ̃j+1) and (as φ0 = 0)

wm − wm−1 =

m−1∑

j=1

P j(φm−j − φn−1−j) + Pmφ0

≤
m−1∑

j=1

(
µ(φ̃m−1−j)− µ(φ̃m−j)

)

≤
⌊a logm⌋∑

j=1

(
µ(φ̃m−1−j)− µ(φ̃m−j)

)
+O(m−2).

Consequently (w1 = Pφ0 = 0)

wn =

n∑

m=2

(wm − wm−1) + w1

≤
n∑

m=2




⌊a logm⌋∑

j=1

(
µ(φ̃m−1−j)− µ(φ̃m−j)

)
+O(m−2)





=

⌊a logn⌋∑

j=1

n∑

m=2∨⌈e
j
a ⌉

(
µ(φ̃m−1−j)− µ(φ̃m−j) +O(m−2)

)

=

⌊a logn⌋∑

j=1

(
µ(φ̃

2∨⌈e
j
a ⌉−j

)− µ(φ̃n−j) +O((2 ∨ e j

a )−1)
)

≤ C3

for a constant C3 independent of n because

⌊a logn⌋∑

j=1

µ(φ̃n−j) ≤ c5
a log n

nγ2
→ 0

12



as n→ ∞ and
⌊a logn⌋∑

j=1

µ(φ̃
2∨⌈e

j
a ⌉−j

) ≤ c6

⌊a logn⌋∑

j=1

(e
j

a )−γ2 = O(1)

for constants c5, c6 independent of n.

3 Decay in Lipschitz versus L 1

We take Bα to be the space of Lipschitz functions, the arguments we give hold for

Hölder norms with obvious modification. We assume that the transfer operator P ,

when restricted to Lip(X), contracts exponentially:

||P nφ||Lip ≤ Cθn||φ||Lip (3.1)

for all Lipschitz functions φ such that
∫
φ dµ = 0 for some θ ∈ (0, 1), where θ and C

independent of φ.

This implies

∣∣∣∣
∫
φψ ◦ T ndµ− E[φ]E[ψ]

∣∣∣∣ ≤ Cθn‖φ‖Lip ‖ψ‖L1 (3.2)

for the same θ ∈ (0, 1) and C independent of φ, ψ.

For a sequence of (nested) balls Bi we put En =
∑n

i=1 µ(Bi) and Sn =
∑n

i=1 1Bi
◦T i

for the ‘hit counter’ for an orbit segment of length n. The sequence of balls Bi satisfies

the strong Borel-Cantelli (SBC) property if

lim
n→∞

Sn(x)

En
= 1 (3.3)

for almost every x ∈ X .

Theorem 3.1 Assume that the transfer operator, when restricted to Lip(X), con-

tracts exponentially as in (3.1) for some θ ∈ (0, 1).

Suppose Bi(p) be nested balls about a point p with µ(Bi) = 1
i
. Let a2n =

E(
∑n

j=1(1Bi
− 1

i
))2.

13



(I) If the nested sequence of balls (Bi(p)) satisfies Assumption (C) and the SBC prop-

erty (3.3) then

a2n = logn +O(1)

and
1√
log n

n∑

j=1

(
1Bi

− 1

i

)
→ N(0, 1)

in distribution.

(II) If (Bi(p)) has the SP property then

1√
an

n∑

j=1

(1Bi
◦ T i − 1

i
) → N(0, 1).

Proof: We will let φj = φ̃j−
∫
φ̃j,where φ̃j be a Lipschitz approximation to 1Bj

, such

that 



‖φ̃j − 1Bj
‖1 < 1

j2

‖φ̃j‖Lip ≤ Cjk

φ̃j ≥ 0

.

We define wn = Pφn−1 + P 2φn−2 + . . . + P nφ0 and put ψn = φn − wn+1 ◦ T + wn.

Then Pψn = Pφn −wn+1+
∑n

j=2 P
jφn−j+1 = 0 which corresponds to

∫
ψnχ ◦ T dµ =

∫
χPψn dµ = 0 for any integrable χ. Note that ||φj||∞ ≤ ||φj||Lip, ||φj||1 ≤ ||φj||Lip.

Lemma 3.2 There exist constants C4, k, a so that

(I) ‖wn‖Lip ≤ C4n
k,

(II) ‖wn‖∞ ≤ C4,

(III) ‖wn‖1 ≤ C4
logn
n

.

Proof of Lemma 3.2. (I) By the contraction of the transfer operator for Lipschitz

continuous functions one obtains

‖wn‖Lip ≤
∞∑

j=0

‖P jφn‖Lip ≤
∞∑

j=0

C1θ
j‖φn‖Lip ≤ c1n

k

(II) Is a consequence of Lemma 2.9.

14



(III) For sufficiently large a we get

||wn||1 ≤
a logn∑

j=1

||P jφn−j||1 +
n∑

j=a logn+1

||P jφn−j||1

≤
a logn∑

j=1

||φn−j||1 +
∞∑

j=a logn+1

||P jφn−j||Lip

≤
a logn∑

j=1

||φn−j||1 +
n∑

j=a logn+1

C1θ
j||φn−j||Lip

≤ a logn

n− a logn
+ c4

log2 n

n2

≤ c5
log n

n

for some c4, c5 independent of n.

Now put C4 = max(c1, c5).

As before let (σ,Ω, m) be the natural extension of (T,X, µ) and put a2n = E(
∑n

j=1 φj ◦
T j)2 for the rescaling factors where the ψj lift to Ω in a natural way. By Assump-

tion (C), a2n ∼ logn by Lemma 2.8. Again we put Xn,i =
1
an
ψn−i ◦ σ−i, i = 1, . . . , n

which are Fi = σiB0 measurable where B0 is the σ-algebra B lifted to Ω. The Fi

form an increasing sequence of σ-algebras. We put Sn,i =
∑i

j=1Xn,j, i = 1, . . . , n

(kn = n), where the Xn,i and obtain E[Sn,i+1|Fi] = Sn,i + E[Xn,i+1|Fi] but by sta-

tionarity E[Xn,i+1|Fi] = E[φn−i−1|σ−1B] = 0. Hence E[Sn,i+1|Fi] = Sn,i and Xn,i is a

martingale difference array with respect to Fi.

We now show condition (a) and (c) hold (clearly (d) holds). To see (a) and (c)

calculate
∫
ψ2
ndµ ≤ ‖ψn‖∞‖ψn‖1 ≤ C log2 n

n
. Hence condition (a) and (c) hold.

We now prove (I) and show that under Assumption (C),
∑n

i=1X
2
n,i → 1 in prob-

ability and hence condition (b) holds.

Lemma 3.3
1

log n

n∑

j=1

ψ2
j ◦ T j → 1

in probability as n→ ∞.

15



Proof. We follow an argument given by Peligrad [30]. As ψj = φj + wj − wj+1 ◦ T
we obtain

ψ2
j = φ2

j + 2φjwj + w2
j + w2

j+1 ◦ T − 2wj+1 ◦ T (φj + wj)

= (φ2
j + 2φjwj + w2

j + w2
j+1 ◦ T − 2wj+1 ◦ T (ψj + wj+1 ◦ T )

= φ2
j + (w2

j − w2
j+1 ◦ T )− 2ψjwj+1 ◦ T + 2φjwj.

We want to sum over j = 1, . . . , n and normalize by logn and wish to estimate the

error terms which are the last four terms on the RHS. The terms w2
j − w2

j+1 ◦ T are

bounded and telescope so may be neglected.

In order to estimate the third of the error terms, ψjwj+1 ◦ T we proceed like

Peligrad (page 9) using a truncation argument. Let wǫ
j = wj1{|wj |≤ǫ

√
logn}, where for

simplicity of notation we have left out the dependence on n. Then

∫ ( n∑

j=1

ψj ◦ T jwǫ
j+1 ◦ T j+1

)2

=

n∑

j=1

∫ (
ψj ◦ T jwǫ

j+1 ◦ T j+1
)2 ≤ ǫ2

n∑

j=1

∫
ψ2
j

since the cross terms vanish (for j > i), as
∫
(ψjw

ǫ
j+1 ◦ T ) ◦ T j(ψiw

ǫ
i+1 ◦ T ) ◦ T i =

∫
(ψjw

ǫ
j+1 ◦ T ) ◦ T j−i(ψiw

ǫ
i+1 ◦ T )

=

∫
(ψjw

ǫ
j ◦ T ) ◦ T j−i−1P (ψiw

ǫ
i ◦ T )

=

∫
(ψjw

ǫ
j+1 ◦ T ) ◦ T j−i−1wǫ

i+1Pψi = 0

as P (ψiw
ǫ
i+1 ◦ T ) = wǫ

i+1Pψi.

For any a > ǫ we obtain using Tchebycheff’s inequality (on the second term):

P

(∣∣∣∣∣
1

log n

n∑

j=1

ψj ◦ T jwj+1 ◦ T j+1

∣∣∣∣∣ > a

)

≤ P

(
max
1≤j≤n

∣∣∣∣
1√
logn

wj+1 ◦ T j+1

∣∣∣∣ > ǫ

)
+ P

(∣∣∣∣∣
1

logn

n∑

j=1

ψj ◦ T jwǫ
j+1 ◦ T j+1

∣∣∣∣∣ > a

)

≤ P ( max
1≤j≤n

|wj+1 ◦ T j+1| > ǫ
√

log n) +
ǫ2

a2 log n

n∑

j=1

∫
ψ2
j

= P ( max
1≤j≤n

|wj ◦ T j+1| > ǫ logn) + c1
ǫ2

a2
.
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In the last line we used
∑n

j=1E[ψ
2
j ] ∼ log n by Lemma 2.6 and Lemma 2.8. By

boundedness of the wj (Lemma 2.9) one gets that P (max1≤j≤n |wj+1 ◦ T j+1| >
ǫ
√
log n) → 0 for every ǫ > 0 as n → ∞. Choosing a = ǫ

1

2 we conclude that
1
an

∑n
j=1 ψj ◦ T jwj+1 ◦ T j+1 converges to zero in probability as n→ ∞.

For the fourth error term 1
logn

2
∑n

j=1(φjwj) ◦ T j we obtain by Lemma 2.8:

∥∥∥∥∥

n∑

j=1

(φjwj) ◦ T j

∥∥∥∥∥
1

≤
n∑

j=1

‖φjwj‖1 ≤ c2

∞∑

j=1

log j

j1+η
<∞

uniformly in n. Thus 2
logn

∑n
j=1(φjwj) ◦ T j → 0 in probability.

Since the term 1
logn

∑n
j=1 φ

2
j ◦T j converges to 1 almost surely by the SBC property

the proof is complete.

Lemma 3.3 completes the proof of part (I) of the theorem. In order to show (II)

we proceed as in the proof of (I) except for the verification of condition (b). We will

prove a SBC property for φ2
j+2wjφj. Decomposing φj = φ̃j−µ(φ̃j) and defining w̃j =

P φ̃j−1+...+P
[a log j]φ̃j−[a log j] we see that ‖φ2

j−φ̃2
j‖1 ≤ C

j2
and ‖wjφj−w̃jφ̃j‖1 ≤ C log j

j2
so

it suffices to consider the sequence φ̃2
j +2w̃jφ̃j . This is because

∑n
j=1E[φ̃

2
j +2w̃jφ̃j] =∑n

j=1E[φ
2
j + 2wjφj] + O(1) and µ almost surely,

∑n
j=1(φ̃

2
j ◦ T j + 2(w̃jφ̃j) ◦ T j) =

∑n
j=1(φ

2
j ◦ T j + 2(wjφj) ◦ T j) +O(1).

Note that both w̃j and φ̃j are positive functions. Let En :=
∑n

j=1E[φ̃
2
j + 2w̃jφ̃j].

We will use Proposition 8.1, a form of the Gal and Koksma theorem as stated by

Sprindzuk (see Appendix) to show that 1
En

∑n
j=1 φ̃

2
j ◦ T j + 2(w̃jφ̃j) ◦ T j → 1 almost

surely. For this we want to use Proposition 8.1 with fj = φ̃2
j +2w̃jφ̃j, gj =

∫
fj and hj

to be determined below. We need to estimate the terms in
∫ (∑n

i=m

∫
φ̃2
j + 2w̃jφ̃j

)2

In order to verify the condition of the proposition we look at the three individual

sums as follows:

(i) The fact that condition (SP) holds for the functions φ̃j implies

n∑

i=m

n∑

j=i+1

∣∣∣∣
∫
φ̃j ◦ T j−i(φ̃i)− E[φ̃j]E[φ̃i]

∣∣∣∣ ≤ C
n∑

i=m

E[φ̃j].

17



Since E(φ̃2
j)− E(φ̃j) = O(j−k) we obtain

n∑

i=m

n∑

j=i+1

∣∣∣∣
∫
φ̃2
j ◦ T j−iφ̃2

i − E[φ̃2
j ]E[φ̃

2
i ]

∣∣∣∣ ≤ C
n∑

i=m

E[φ̃j] +
n∑

i=m

O(i−k+1).

(ii) Lemma 3.2 (|w̃j|∞ ≤ C4∀j) now yields

n∑

i=m

n∑

j=i+1

∣∣∣∣
∫
(φ̃jw̃j) ◦ T j−i(φ̃iw̃i)−E[φ̃jw̃j]E[φ̃iw̃i]

∣∣∣∣ ≤ CC2
4

n∑

i=m

E[φ̃j] +

n∑

i=m

O(i−k+1).

(iii) In the same way we obtain for the ‘mixed’ terms

n∑

i=m

n∑

j=i+1

∣∣∣∣
∫

(φ̃jw̃j) ◦ T j−iφ̃2
i −E[φ̃jw̃j]E[φ̃

2
i ]

∣∣∣∣ ≤ CC4

n∑

i=m

E[φ̃j] +

n∑

i=m

(
O(i−k+1)

)
.

Combining (i), (ii) and (iii) yields for all m < n and some constant c1:

∫ ( n∑

i=m

∫
φ̃2
j + 2w̃jφ̃j

)2

≤ c1

n∑

i=m

(
E(φ̃j) +O(i−k+1)

)

which by Proposition 8.1 implies that 1
En

∑n
j=1

(
φ̃2
j ◦ T j + 2(w̃jφ̃j) ◦ T j

)
→ 1 almost

surely, provided k ≥ 2.

4 Applications to dynamical systems.

Theorem 3.1 applies to a variety of dynamical systems including Gibbs-Markov

maps [1] and rational maps [17]. For Gibbs-Markov maps it has been shown [14,

Theorem 1] that nested sequences of balls (Bi(p)) satisfy both the Strong Borel Can-

telli property and assumption C, so that (I) applies. For rational maps [17, Theorem

10] shows that the transfer operator contracts exponentially in the L∞ norm hence if

the (SP) property is also proved then (II) holds. More generally (II) shows that prov-

ing the (SP) property for systems whose associated transfer operator has exponential

decay suffices to prove the SBC property and the CLT for shrinking targets.
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5 Decay in BV (X) versus L 1

It is known that summable decay of correlations in BV (X) versus L 1 implies the

SP property by work of Kim [25, Proof of Theorem 2.1] (see also Gupta et al [14,

Proposition 2.6]). Hence the statement in this setting is simpler.

Let the transfer operator P be defined by
∫
φψ ◦ Tdµ =

∫
Pφψ dµ for all φ, ψ ∈

L 2(µ), that is P is the adjoint of the Koopman operator Uφ := φ ◦ T .
We assume that the restriction of P to the space BV (X) is exponentially con-

tracting, i.e. P : BV (X) → BV (X) satisfies

‖P nφ‖BV ≤ Cθn‖φ‖BV (5.1)

for all φ ∈ BV (X) such that
∫
φ dµ = 0.

This implies that (T,X, µ) has exponential decay of correlations in BV versus L1,

so that for some 0 < θ < 1,

∣∣∣∣
∫
φψ ◦ T n dµ− (

∫
φ dµ)(

∫
ψ dµ)

∣∣∣∣ ≤ Cθn‖φ‖BV ‖ψ‖1 (5.2)

for all φ ∈ BV (X), ψ ∈ L 1(µ). In particular the measure µ is ergodic.

Proposition 5.1 Assume the transfer operator P contracts exponentially as given

by (5.1)

Let Bi := B(p, ri) be nested balls of radius ri about a point p such that µ(Bi) =
1
i
,

and a2n = E(
∑n

j=1(1Bi
◦ T i − 1

i
))2. Then:

(I) lim supn→∞
an√
logn

≥ 1 and

1

an

n∑

j=1

(1Bi
◦ T i − 1

i
) → N(0, 1).

(II) If the nested sequence of balls (Bi(p)) about p satisfies Assumption (C) then

a2n = E[(
n∑

j=1

(1Bi
◦ T i − 1

i
))2] = log n+O(1)
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and
1√
logn

n∑

j=1

(1Bi
◦ T i − 1

i
) → N(0, 1)

in distribution.

Proof: The proof is the same as for Theorem 3.1 with the simplification that the SP

property holds automatically as we have summable decay of correlations in BV (X)

versus L 1 (see proof of [25, Theorem 2.1]). Furthermore Lemma 2.4 shows that the

variance is unbounded and Lemma 2.8 gives a precise rate of growth in the case that

Assumption (C) holds.

Remark 5.2 For one-dimensional maps of the interval, Proposition 5.1 is basically

a consequence of Conze and Raugi [6, Theorem 5.1]. Follow the proof of [6, Theorem

5.1] taking Tk = T for all k, m to be the invariant measure µ and choosing fn =

1Bn
(p). The rates of growth are given by Lemma 2.4 which shows that the variance is

unbounded. Lemma 2.8 gives a precise rate of growth in the case that Assumption (C)

holds. In Proposition 6.2 we extend these results to piecewise expanding maps in

higher dimensions.

6 Applications of Proposition 5.1.

Proposition 5.1 applies to certain classes of one-dimensional maps such as piecewise

expanding maps of the interval T : X → X with 1
T ′

of bounded variation and pos-

sessing an absolutely continuous invariant measure with density bounded away from

zero (those maps satisfying the assumptions of [25, Theorem 2.1], see also [14]). For

these systems, Assumption (C) has been shown to hold for nested balls about µ

a.e. p ∈ X [21, 15]. In the next subsection we generalize these results to piecewise

expanding maps in higher dimensions.

6.0.1 Piecewise expanding maps in higher dimensions

In this section we prove the Strong Borel Cantelli property and the CLT for shrinking

balls in a class of expanding maps in higher dimensions. We also show that assumption
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C holds for µ-a.e. point.

The Banach spaces will be given by L 1, defined with respect to the Lebesgue

measure on R
n, and a quasi-Hölder space with properties analogous to BV which we

define below. A key property of the quasi-Hölder space is that characteristic functions

of balls have bounded norm (as in the BV norm) which turns out to be a very useful

property.

The maps are defined on compact sets Z ∈ R
N . Denote by dist(·, ·) the usual

metric in R
N and for ε > 0 let Bε(x) = {y ∈ R

N : dist(x, y) < ε} be the ε-ball

centred at x. Let Bε(A) = {y ∈ R
N : dist(y, A) ≤ ε} and write Z◦ for the interior of

Z and Z its closure.

A map T : Z → Z is said to be a multidimensional piecewise expanding map, if

there exists a family of finitely many disjoint open sets {Zi} such that Leb(Z\
⋃

i Zi) =

0 and there exist open sets Z̃i ⊃ Zi and C
1+α maps Ti : Z̃i → R

N (for some 0 < α ≤ 1)

and some sufficiently small real number ε1 > 0 such that for all i,

• (H1) Ti(Z̃i) ⊃ Bε1(T (Zi)) and Ti|Zi
= T |Zi

;

• (H2) For x, y ∈ T (Zi) with dist(x, y) ≤ ε1,

| detDT−1
i (x)− detDT−1

i (y)| ≤ c| detDT−1
i (x)|dist(x, y)α;

• (H3) There exists s = s(f) < 1 such that ∀x, y ∈ T (Z̃i) with dist(x, y) ≤ ε1, we

have

dist(T−1
i x, T−1

i y) ≤ s dist(x, y).

• (H4) Let G(ε, ε1) := supxG(x, ε, ε1) where

G(x, ε, ε1) :=
∑

i

Leb(T−1
i Bε(∂TZi) ∪B(1−s)ε1(x))

Leb(B(1−s)ε1(x))
(6.1)

and assume that

sup
δ≤ε1

(
sα + 2 sup

ε≤δ

G(ε)

εα
δα
)
< 11 (6.2)

1This condition could be greatly simplified as follows. Suppose the boundaries of Zi are C1
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We now introduce the Banach space of quasi-Hölder functions in which the spec-

trum of the Perron-Frobenius operator P is investigated. Given a Borel set Γ ⊂ Z,

we define the oscillation of ϕ ∈ L
1(Leb) over Γ as

osc(ϕ,Γ) := ess sup
Γ

ϕ− ess inf
Γ

ϕ.

The function x 7→ osc(ϕ,Bε(x)) is measurable (see [?, Proposition 3.1]) For 0 <

α ≤ 1 and ε0 > 0, we define the α-seminorm of ϕ as

|ϕ|α = sup
0<ε≤ε0

ε−α

∫

RN

osc(ϕ,Bε(x)) dLeb(x).

Let us consider the space of functions with bounded α-seminorm

Vα = {ϕ ∈ L
1(Leb) : |ϕ|α <∞},

and endow Vα with the norm

‖ · ‖α = ‖ · ‖1 + | · |α

which makes it into a Banach space. We note that Vα is independent of the choice

of ε0 and that Vα is continuously injected in L ∞(Leb). According to [?, Theorem

5.1], there exists an absolutely continuous invariant probability measure (a.c.i.p.) µ,

with density bounded above, and bounded below from zero, which has exponential

decay of correlations against L 1 observables on the finitely many mixing components

of Vα: in view of the next Theorem 6.4 we will from now restrict ourselves to one of

those components, by taking a mixing iterate of T . More precisely, if the map T is as

codimension one embedded compact submanifold, then define the quantity:

η0(T ) := sα +
4s

1− s
Y (T )

γN−1

γN

where

Y (T ) = sup
x

∑

i

# {smooth pieces intersecting ∂Vi containing x} ,

is the maximal number of smooth components of the boundaries that can meet in one point and

γN = πN/2

(N/2)! , the N -volume of the N -dimensional unit ball of RN . We require that η0(T ) < 1, and

this may replace the condition (6.2) above.
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defined above and if µ is the mixing a.c.i.p., then there exist constants C < ∞ and

γ < 1 such that

∣∣∣
∫

Z

ψ ◦ T n h dµ−
∫
ψdµ

∫
hdµ

∣∣∣ ≤ C‖ψ‖L 1‖h‖αγn (6.3)

for all ψ ∈ L 1 and for all h ∈ Vα. Moreover ‖P nφ‖α ≤ C‖φ‖α for all φ ∈ Vα and

thus equation 5.1 holds.

We now show that characteristic functions of balls are bounded in the ‖ · ‖α norm.

Lemma 6.1 Let Bi(p) be a nested sequence of balls about a point p ∈ X, then there

exists a constant C3(α) such that

‖1Bi
‖α ≤ C3(α)

for all i.

Proof: Take any set A with a rectifiable boundary. If p is not in a 2ǫ neighborhood

of the boundary of A, then the oscillation is zero, otherwise it is 1. Therefore we have
∫
osc(1A, Bǫ(p)) dLeb(p) ≤ c1ǫ. Then we must divide by ǫα. As α ≤ 1 we have the

ratio bounded by c1 ∗ (ǫ0)1−α.

The boundedness of the characteristic functions in the ‖·‖α-norm allows us to proceed

as in Proposition 5.1 (see also [6]) and to obtain the following result.

Proposition 6.2 Assume a piecewise expanding map T on a compact set Z ⊂ R
n

satisfies conditions (H1)–(H4) and is mixing with respect to its absolutely continuous

invariant measure µ. Let Bi := B(p, ri) be nested balls of radius ri about a point p

such that µ(Bi) =
1
i
. Then the variance a2n := E[(

∑n
j=1(1Bi

◦ T i − 1
i
))2] satisfies

an√
log n

≥ 1

and
1√
an

n∑

j=1

(1Bi
◦ T i − 1

i
) → N(0, 1)

in distribution.
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Proof: The SBC property (I) is immediate from the decay of correlations, Equa-

tion 6.3 and the bound ‖1Bi
‖α ≤ C3(α) by the proof of Proposition 6.1. The growth

estimate follows from Lemma 2.3.

We now make an additional assumption. Suppose that we have M domains of local

injectivity for the map T ; if we take the join Zj :=
∨j−1

i=0 T
−iZ, where Z denotes

the partition, mod-0, into the closed sets Zi, i = 1, · · · ,M , then on each element

Z
(j)
l , l = 1, · · · , |Zj|, each of which is the closure of its interior, the map T j is injective

and of class C1+α on an open neighborhood of Z
(j)
l : we call Z̃

(j)
l such an extension.

In order to prove condition (C) we require a further assumption which is also called

the finite range structure. We assume:

• (H5) Let U (j) := {f jZ
(j)
l , ∀l = 1, · · · , |Zj|}, and put U = ∪∞

j=1U (j). Then U
consists of only finitely many subsets of Z with positive Lebesgue measure,

hence Um = infU∈U m(U) is bounded below.

Lemma 6.3 Under the assumptions (H1)–(H5) Assumption (C) is satisfied.

Proof. Denote

Ek(ε) := {x; dist(fkx, x) ≤ ε}.

By Lemma 8.2 (see Appendix) it is enough to prove that there exists C > 0, δ > 0

such that for all k and ε,

µ(Ek(ε))) < Cετ .

We now fix j and consider the cylinder, say, Z
(j)
l . Let us suppose that {zk}k≥1 is

a sequence of points in Z
(j)
l converging to x ∈ Z

(j)
l , namely dist(zk, x) → 0 when

k → ∞, and that dist(T j(zk), x) → 0 for k → ∞. With abuse of definition we say

that such a point x is fixed. If there are points in the sequence {zk}k≥1 which are

on the boundary of Z
(j)
l , we think of T j as its C1+α extension on Z̃

(j)
l . We want

to show that in Z̃
(j)
l there is only one fixed point x. By contradiction, suppose y

is another fixed point and {wk}k a sequence converging to y and whose T j images

converge to y as well. Suppose that Z̃
(j)
l is a convex set in such a way the segment
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[x, y] is contained in Z̃
(j)
l

2. We now fix η small enough and take k big enough and

such that dist(x, zk), dist(x, T
j(zk)), dist(y, wk), dist(y, T

j(wk)), are all smaller than

η. We also put Dm,j := inf{||DT j(x)||} > 1, where the inf is taken over the points

x where the derivative is defined. The norm is the operator norm, which is strictly

larger than 1 since the map is uniformly expanding. Then we have

dist(x, y) ≥ dist(T j(zk), T
j(wk))− dist(x, T j(zk))− dist(y, T j(wk))

and by applying Taylor’s formula

dist(x, y) ≥ Dm,jdist(zk, wk)− 2η ≥ Dm,j [dist(x, y)− 2η]− 2η

which gives a contradiction, since Dm,j > 1, by sending η to 0. Hence x is the only

fixed point.

Let us now take a measurable set V ⊂ Z̃
(j)
l containing the fixed point x ∈ Z̃

(j)
l .

We require that the diameter of the image T j(V ) be at most ε; such an image will

therefore be contained in the ball of center T j(x) and of radius ε. The Lebesgue

measure of this ball will be equal to γNε
N , where the factor γN was defined in the

preceding footnote. Then we have

Leb(Bε(x)) = γNε
N ≥ Leb(T j(V )) ≥ | det(DT j(κ))|Leb(V )

for a suitable point κ ∈ Z̃j
l , where in the last inequality we used a local change

of variable and the continuity of DT j, finally κ is a point in Z̃
(j)
l . By distor-

tion, we could replace this point by another one, say ι such that Leb(T j(Z
(j)
l ) =

| det(DT j(ι))|Leb(Z(j)
l ). We therefore get (with the constant B from (BD))

Leb(V ) ≤ γNε
NB

| det(DT j(ι))| ≤
γNε

NB Leb(Z
(j)
l )

Um

Since the density of the absolutely continuous invariant measure µ is bounded from

above (remember it is in L ∞(Leb)), by, say, hM , and since each Z
(j)
l will contribute

2If not we could join x and y with a chain of segments contained each in
˜

Z
(j)
l : the argument will

work again since the sum of the lengths of those segments is larger than the distance between x and

y and this is what we need in bounding from below.
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with at most one fixed point, by taking the sum over the l we finally get

µ{x; dist(T jx, x)} ≤ γNhM εNB

Um
.

and this bound is independent of j.

As a consequence of Lemma 2.8 we have,

Theorem 6.4 Assume a piecewise expanding map T on a compact set Z ⊂ R
n satis-

fies conditions (H1)–(H5) and is mixing with respect to its absolutely continuous in-

variant measure µ. For µ a.e. p if Bi(p) are nested balls about p such that µ(Bi) =
1
i
.

Then

a2n = E[(
n∑

j=1

(1Bi
◦ T i − 1

i
))2] = log n+O(1)

and
1√
logn

n∑

j=1

(1Bi
◦ T i − 1

i
) → N(0, 1)

in distribution.

7 Discussion.

There are several natural questions remaining unanswered. In particular can the

CLT for shrinking targets be proved for Anosov systems or non-uniformly hyperbolic

diffeomorphisms? Chernov and Kleinbock have proved the SBC property for balls in

Anosov systems [4] but the SBC property is unknown for non-uniformly hyperbolic

diffeomorphisms. More generally can a limit theory be developed for the statistics

of non-stationary stochastic processes arising as observations (which change in time)

on deterministic dynamical systems which may also may evolve in time, such as

sequential dynamical systems?
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8 Appendices

8.1 Gal-Koksma Theorem.

We recall the following result of Gal and Kuksma as formulated by W. Schmidt [34, 35]

and stated by Sprindzuk [33]:

Proposition 8.1 Let (Ω,B, µ) be a probability space and let fk(ω), (k = 1, 2, . . .) be

a sequence of non-negative µ measurable functions and gk, hk be sequences of real

numbers such that 0 ≤ gk ≤ hk ≤ 1, (k = 1, 2, . . . , ). Suppose there exists C > 0 such

that ∫ ( ∑

m<k≤n

(fk(ω)− gk)

)2

dµ ≤ C
∑

m<k≤n

hk (∗)

for arbitrary integers m < n. Then for any ǫ > 0

∑

1≤k≤n

fk(ω) =
∑

1≤k≤n

gk +O(Θ1/2(n) log3/2+ǫ Θ(n))

for µ a.e. ω ∈ Ω, where Θ(n) =
∑

1≤k≤n hk.

8.2 Assumption (C) for expanding systems

In this appendix we show that if we define

Ek(ǫ) := {x : d(T kx, x) ≤ ǫ}

and if the invariant measure has a density bounded above with respect to Lebesgue

then assumption C is valid.

Lemma 8.2 Suppose µ has a density ρ with respect to Lebesgue measure which sat-

isfies 0 < C1 < ρ < C2and there exists C > 0, δ > 0 such that for all k, ǫ,

µ(Ek(ǫ)) < Cǫδ

Then for µ a.e. p ∈ X there exists η(p) ∈ (0, 2) and κ(p) > 1 such that for all i

sufficiently large

µ(Bi(p) ∩ T−rBi(p)) ≤ µ(Bi(p))
1+η
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for all r = 1, . . . , logκ i.

Proof. Let C2 = max ρ(x), C1 = min ρ(x) where ρ(x) = dµ
dm

(x) is the density of µ

with respect to Lebesgue measure m.

Let σ ≥ 1 and γ > σ. We choose ǫk so that for all x a ball of radius ǫk about x,

denoted B(x, ǫk), satisfies C1/k
σ ≤ µ(B(x, ǫk)) ≤ C2/k

σ.

Let Ak := {x : d(T jx, x) ≤ ǫk for some 1 ≤ j ≤ log(k)ρ}. Evidently Ak ⊂
⋃logρ k

j=1 Ej . By the estimate on Ek(ǫ) for all large k, µ(Ak) ≤ Cǫτk where τ < δ. Let

Fk := {x : µ(B(x, ǫk) ∩Ak) ≥ 1/kγ}

and define the Hardy-Littlewood maximal function Mk for φ(x) = 1Ak
(x)ρ(x) by

Mk(x) := sup
a>0

1

m(Ba(x))

∫

Ba(x)

1Ak
(y)ρ(y) dm(y).

If x ∈ Fk then Mk > C1k
σ−γ .

A theorem of Hardy and Littlewood ([10] Theorem 3.17) states that

m(|Mk| > C) ≤ c3
‖1Ak

ρ‖1
C

for some constant c3, where ‖ · ‖1 is the L 1 norm with respect to m.

Hence

m(Fk) ≤ m(Mk > C1k
σ−γ)

≤ µ(Ak)C1k
γ−σ

≤ kγ−σ(1+τ̃ )

where 0 < τ̃ < τ . We need to alter τ to τ̃ to take into account the fact that a ball of

radius ǫ has measure roughly ǫD.

Choosing σ < γ < σ(1 + τ̃) and σ > 1 the series
∑

km(Fk) converges.

So for m a.e. x0 there exists an N(x0) such that x0 6∈ Fk for all k > N(x0). Since

m(B(x, ǫk) − m(B(x, ǫk+1)) ≤ 2C2

k2
this implies that for µ a.e. x ∈ X there exists

η > 0 , κ > 0 such that for all sufficiently large i, if Bi(x) is a sequence of nested

balls about x, µ(Bi(p)) ∼ 1
i
then

µ(Bi(x) ∩ T−rBi(x)) ≤ µ(Bi(x))
1+η

for 1 ≤ r ≤ log(i)κ. This is Assumption (C).
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[29] P. Nándori, D. Szász and T. Varjú. A central limit theorem for time-dependent

dynamical systems. Journal of Statistical Physics, DOI 10.1007/s10955-012-0451-

8.

[30] M. Peligrad, Central limit theorem for triangular arrays of non-homogeneous

Markov chains To appear in Prob. Theory and Related Fields.

31



[31] W. Phillipp, Some metrical theorems in number theory, Pacific J. Math. 20 (1967)

109–127.

[32] W. Rudin. Real and Complex Analysis, Third Edition, 1987, McGraw Hill.

[33] Vladimir G. Sprindzuk, Metric theory of Diophantine approximations, V. H.

Winston and Sons, Washington, D.C., 1979, Translated from the Russian and

edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta

Series in Mathematics. MR MR548467 (80k:10048).

[34] W. Schmidt, A metrical theory in diophantine approximation, Canad. J. Math,

12, (1960), 619–631.

[35] W. Schmidt, Metrical theorems on fractional parts of sequences, Trans. Amer.

Math. Soc., 110, (1964), 493–518.

[36] S. Sethuraman and S. R. S Varadhan. A martingale proof of Dobrushin’s theo-

rem for non-homogeneous Markov chains, Electronic journal of proabability, 10,

(2005), 1221-1235.

[37] M. Viana. Stochastic dynamics of deterministic systems, Brazillian Math. Col-

loquium 1997, IMPA, Lecture Notes.

32


	1 Introduction
	2 The setup.
	2.1 Some lemmas on variance
	2.2 Property (SP)
	2.3 Short returns and Assumption (C)
	2.4 Bounds on wj

	3 Decay in Lipschitz versus L1
	4 Applications to dynamical systems.
	5 Decay in BV(X) versus L1
	6 Applications of Proposition 5.1.
	6.0.1 Piecewise expanding maps in higher dimensions

	7 Discussion.
	8 Appendices
	8.1 Gal-Koksma Theorem.
	8.2 Assumption (C) for expanding systems


