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Abstract
We study analytically and numerically the extreme value distribution of observ-
ables defined along the temporal evolution of a dynamical system. The conver-
gence to the Gumbel law of observable recurrences gives information on the
fractal structure of the image of the invariant measure by the observable. We
provide illustrations on idealized and physical systems.
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1. Introduction

1.1. A general overview

Extreme value theory (EVT) has been used in dynamical systems in the last years to quantify
the probability of visiting a small set in the phase space, which constitutes a rare event. With
this approach, the asymptotic statistics of hitting times and of the number of visits [15] in small
sets can be described. Methods based on EVT and more generally on the recurrence properties
of chaotic systems have found applications in climate science [14, 23, 24, 27]. Quantifying
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the recurrence properties of weather patterns via dynamical indicators has proven useful to
solve a number of issues in climate and atmospheric sciences. In [27] the recurrence prop-
erties of the North-Atlantic sea-level pressure (SLP) fields have been studied. A number of
instantaneous metrics that track rarity, predictability and persistence of atmospheric jet states
and circulation patterns have been derived starting from quantities defined in the framework of
EVT for dynamical systems, e.g. the local dimensions and the extremal index (EI). In [12, 57]
the same metrics have been used to classify and evaluate the dynamical consistence of state-
of-the art climate models in representing the atmospheric dynamics. The impact of climate
change of the atmospheric dynamical features was identified through shifts of the local dimen-
sions between 1850 and 2100, in various datasets (observations, ensembles of scenario climate
model simulation) [23]. A critical discussion of the methods used in these studies is available
in [15, 16]. To justify them, one needs to work with data sampled from the original high dimen-
sional system, while experimentalists often have access to a lower dimensional representation
of the underlying attractor through measurements. A first approach to recover information on
the underlying system from observations is to use embedding techniques, which is allowed by
Takens’ theorem [59]. Thanks to the theory of extreme value distribution applied to observables
developed in this paper, we are able to propose an alternative technique and we will propose
an application to atmospheric sciences. On a more general ground, the aim of our work is to
study the statistics of recurrences of smooth observables in chaotic dynamical systems. We
will state some general results that could be applied in a wide range of situations. Our basic
inspirations were the works of [11, 41, 58], where the authors developed different theoretical
ideas and tools to derive, among others, recurrence rates for observations and compute them
for various dynamical systems.

1.2. Salient results of the paper

(a) Section 2 puts the basis of EVT for observations. We look at the distribution of the maxi-
mum of a sequence of random variables obtained by evaluating a vector valued observable
along the orbit of a dynamical system and approaching a limiting value of the observable
itself (the target set). We obtain rigorously a limit distribution of Gumbel type by using a
perturbation theory applied to dynamical systems of hyperbolic type.

(b) An EI modulates the limit distribution, by adding a factor to the Gumbel law. This EI is
related to the frequency of the occurrences (visits to the target sets), which is interpreted
as a clustering of the orbits. The EI becomes smaller than one when the target set exhibits
periodic patterns. In section 3 we first provide general formulae for the EI for a large class
of one-dimensional expanding maps and non-invertible observables. Then we show that
the observable could generate several coexisting clusters and we explicitly compute the
EI in a few cases.

(c) The numerical approach to the limit distribution via the generalized extreme value
(GEV) distribution, allows us to estimate the local properties of the image measure.
Section 4 is partially devoted to a brief exposition of the Hunt and Kaloshin the-
ory of prevalent spaces in relation with the point-wise dimension of image mea-
sures. We therefore study in details two examples, the baker map and the product
of two Cantor sets, and show that a few quite simple observables are not prevalent.
This means that the dimension of the image measure is not integer (that of the ambient
space), but smaller or larger and coinciding with that of the underlying attractor for the
dynamics. The theoretical results were supported by numerical computations using the
EVT techniques. This, combined with a suitable choice of the observable, is therefore a
very efficient tool to describe the fine geometric structure of the limit sets of the dynamics.
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(d) We go beyond the Gumbel law in section 5, by studying the statistics of the number of
visits of the observable in the neighbourhood of a value of interest. This is the point
process associated to the distribution of the first hitting time, and we show that it is
either purely Poisson distributed or it deviates from the usual Polyà–Aeppli distribu-
tion, which characterizes the point process when the rare set is around a periodic point.
A particular example is studied in detail and a limit compound Poisson distribution is
exhibited via its generating function and a recursive formula for the probability mass
function. Application to climate data shows a compound Poisson distribution, despite
the relative modest length of the time series and the unavoidable approximations in their
detection.

(e) In section 6 we consider what happens when the dynamical system and the observable
are randomly perturbed. We show with analytical and numerical arguments, that if the
perturbation of the map produces a smooth stationary measure or the observable changes
randomly but staying prevalent, then the dimension of the image measure becomes integer.
Stability behaviours are also discussed.

(f) We then move to open systems in section 7 by considering in the phase space the presence
of absorbing regions (holes), where the orbits could be trapped and disappear forever.
Nevertheless and under general conditions, a fractal repeller survives and it is possible
to study the recurrence properties of observables defined in a neighbourhood of such a
repeller.

(g) Section 8 gives a geometrical interpretation to our results and shows that our approach
can be used to compute the hitting time statistics in the neighbourhood of hypersur-
faces embedded in the phase space of the system. Applications to fractal sets are also
given.

(h) The experimental and numerical computation of the local dimension by EVT shows a dis-
crete variability of such dimensions, even if they are constant almost everywhere (at least
when they exist almost surely with respect to ergodic measures). The presence of those
(large) deviations, is revealed by the non-linearity of the so-called spectrum of general-
ized dimensions (the free-energy function of the process), which are accessible to analytic
and numerical computations. In section 9 we treat the large deviations of the dimensions
of the image measure and discuss how those deviations are influenced by the choice of
observable.

(i) We quoted in section 1.1 the embedding technique as a tool to reconstruct the attractor
by considering the iterates of a unidimensional projection of the dynamics. When con-
sidering enough delay coordinates, the dimension of the attractor becomes accessible. In
section 10 we propose an alternative approach that allows us to have access to the dimen-
sion of the attractor by using directly observational data. In particular, this is possible
when the dimensionality of the observations is larger than the information dimension of
the underlying system. To achieve this either we dispose of a vector-valued observable, or
we could use a scalar observable to construct several images just by composing with the
dynamics. In some sense, the delay coordinate observable used in embedding techniques
is a particular case of the smooth observables that we consider.

2. The formal approach

We now introduce the basic concepts on EVT and apply them to a sequence of observations.
The stationary random process that arises is then studied with a perturbative spectral technique,
which allows us to prove directly the convergence to the Gumbel law.
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2.1. Basics on EVT

Let us consider a dynamical system (X, T,μ), where T acts on the measurable space X and
preserves the invariant probability measureμ. In the following we will consider X as a compact
subset of Rn, (n � 1) and we put the Borel σ-algebra on it. We take f : X → Rl a measurable
function, called the observable; it will play a fundamental role in this paper, and additional
assumptions on its regularity will be progressively added.

Let us now construct the new measurable function

φ(x) = − log(dist( f (x) − f (z))), (1)

where z is given in X. This function has values in R ∪ {+∞} and achieves a global maximum
at the pre-images of f(z), where it is precisely infinite. With dist we take a distance defining
the metric on Rl. Consider the maximum of the process {φ ◦ Tk}k>0, namely

Mn(x) = max
{
φ(x), . . . ,φ (Tn−1(x)

}
(2)

and the distribution

μ(Mn � un) = μ(φ � un, . . . ,φ ◦ Tn−1 � un). (3)

Definition 1. We say that we have an extreme value law for Mn if there is a non-degenerate
distribution function H : R+ → [0, 1] and for every τ > 0 there exists a sequence of levels
un = un(τ ), n ∈ N, such that

nμ(φ > un) → τ , as n →∞ (4)

and for which the following holds:

μ(Mn � un) → H(τ ), as n →∞.

Remark 1. We name equation (4) the assumption F: it allows us to avoid a degenerate
limit for the distribution of Mn. We will see later on that the perturbative spectral technique
prescribes assumption F in a very natural way.

Notice that equation (4) is equivalent to

nμ(x ∈ X, f (x) ∈ B( f (z), e−un)) → τ , (5)

where B(a, r) denotes the ball of radius r centred at the point a in the metric given by the chosen
distance.

By introducing the image measure f∗μ defined as

f∗μ(A) = μ( f −1A), (6)

where A is any Borel set in Rl, we can equivalently rewrite equation (5) as

n f∗μ(Bn,z) → τ , (7)

where we set

Bn,z :=B( f (z), e−un) and Cn,z :=B( f (z), e−un)c. (8)

The superscript Ac is the complementary set of A in X.

Remark 2. The presence of the observable imposes some natural conditions on the com-
bined choice of f and T if we want to satisfy equation (5). For instance if f is locally constant

121



Nonlinearity 34 (2021) 118 T Caby et al

in the neighbourhood of the target point z and μ is not atomic in z, we see immediately that
equation (5) cannot hold for large n. A less trivial example is given by the direct product map
T on the unit square defined by

T(x, y) =

{
2x, x ∈ [0, 1/2]; 1− 2x, x ∈ [1/2, 1],

ay, 0 < a < 1, y ∈ [0, 1].

This map preserves the product of the Lebesgue measure on the x-axis times the Dirac mass
at 0 on the y-axis. If we now take the observable f(x, y) = y and the target point in (0, 0), we
see that the set T−1[B( f (0, 0), e−un)] is a strip of length 1 and of width e−un on the square and
the measure of this strip will be 1 for any n.

Notice that if the observable f is not locally constant in the neighbourhood of the target
point and the image measure is not atomic we can always choose a sequence un verifying for
each n: n f∗μ(Bn,z) = τ . We will see in the next section, in particular the scaling (26), that un

is an affine function of the variable y := − log τ which can be written as:

un =
y
an

+ bn, an > 0. (9)

When the sequence μ(Mn � un) = μ(an(Mn − bn) � y) converges to a non-degenerate distri-
bution function G(y), in the point of continuity of the latter, then we have an extreme value
law. The starting point of EVT, related to the affine choice for the sequence un, is that such
a G(y) could be only of three types, called Gumbel, Fréchet and Weibull (see [46] for a gen-
eral account of the theory). One of the main goal of this paper is to show that for the particular
observable equation (1), we will get the Gumbel law, see proposition 1. The scaling (26) shows
that the parameters an and bn are expressed in terms of the local dimension of the image mea-
sure, in equation (24). It would be therefore useful to have access to those parameters. In this
regard, we begin to notice that the distribution function of the form μ(Mn � y) is modelled
for n sufficiently large, by the so-called GEV distribution [56], which is a function depend-
ing upon three parameters ξ ∈ R, (the tail index), κ ∈ R, (the location parameter) and σ̂ > 0,
(the scale parameter):

GEV(y;κ, σ̂, ξ) = exp

{
−
[

1 + ξ

(
y − κ

σ̂

)]−1/ξ
}
.

The location parameter κ and the scale parameter σ̂ are scaling constants in place of bn and an.
The idea is now to use a block-maxima approach (see section 4.1) and fit our unnormalised data
to a GEV distribution; for that it will be necessary to find a linkage among an, bn,κ and σ̂. For
observables φ producing the Gumbel law, it has been shown in [25], that for n large we have

an ∼
1
σ̂

; bn ∼ κ; (10)

moreover the shape parameter ξ tends to zero. The systematic use of this approach from
section 4, will allow us to compute the local dimensions of the image measures and give
therefore a numerical and experimental support to the theoretical results: this is another relevant
aspect of our work. We finish this section by giving another definition.

Definition 2. We say that the process {φ ◦ Tk}k>0, for the observable (1), has an EI 0 � θ �
1, if we have a Gumbel distribution as

μ(Mn � un) → e−θτ , n →∞,

with the sequence un verifying assumption F.
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As we anticipated above, Gumbel’s law is the limiting distribution for the maxima. The next
sections will be devoted to the analytic computation of the EI. Besides rigorous estimates, we
will also proceed to numerical computations. The EI is less than one when clusters of successive
recurrences happen, which is the case, for instance, when the target point z is periodic. In our
paper [15] we showed that the usual algorithms to compute the EI have strong limitations
when clusters of higher order are present, and a new technique was proposed which consists in
computing the first five qk terms in the expansion of θ, see formula (20). We used this technique
for the numerical estimates of the EI all along the paper.

2.2. The perturbative spectral approach

In order to apply the aforementioned perturbative spectral technique, we suppose that the
system (X, T,μ) is REPFO (rare events Perron–Frobenius operators) according to the ter-
minology introduced by Keller [44, 45]. The definition of an REPFO dynamical system is
quite technical even if its assumptions are verified in several situations when the system is
uniformly hyperbolic or expanding. We must detail those assumptions because they impose
new constraints on the choice of the observable f. The basic object is the transfer (Per-
ron–Fröbenius) operator P associated to the map T. This operator acts on a suitable Banach
space (B, ‖ · ‖), equipped with a second (weak) norm | · | for which the closed unit ball of
(B, ‖ · ‖) is | · |-compact.

The Banach space is a space of functions or of distributions. We will mostly treat non-
invertible maps and in this case B will be the space of bounded variation (BV) functions and
the weak norm will be the L1 norm with respect to the Lebesgue measure. We will also consider
invertible maps and, in this case, B is a space of distribution and we defer to [21] for a nice
presentation of those spaces or to [4] for an easy description in the context of EVT. To make
the exposition simpler we will suppose that B is the space of BV functions and the weak norm
is the space of integrable functions with respect to the Lebesgue measure Leb.5

We will see below that the operator P is slightly perturbed to get a sequence of operators P̃n

which converge to P in a sense that we are going to precise: for the moment we retain that P̃n is
defined as P̃n(g) = P

(
1Wng

)
, g and 1Wng ∈ B, where the Lebesgue measure of the measurable

set Wn goes to one when n →∞, (see below for the explicit construction of such a Wn; its
complementary set Wc

n should be interpreted as a hole with vanishing measure, not necessarily
with vanishing diameter). The following four items define precisely what an REPFO system
is: they are taken from [44] and slightly modified to our situations:

• A1 The unperturbed operator P is quasi-compact: this means, in particular, that 1 is a sim-
ple isolated eigenvalue and there are no other eigenvalues on the unit circle. This implies
the existence of a unique mixing invariant measure μ for T which is absolutely continuous
with respect to Leb with the density h.

• A2 There are constants β, D > 0, such that ∀n sufficiently large, ∀ g ∈ B and ∀ k ∈ N we
have (Lasota–Yorke inequalities):

|P̃k
ng| � D|g|, (11)

‖P̃k
ng‖ � Dβk‖g‖+ D|g|. (12)

• A3 We can bound the weak norm of (P − P̃n)g, with g ∈ B, in terms of the norm of g as:

|(P − P̃n)g| � χn‖g‖,

5 Sometimes, especially in the integral, we will write dx instead of dLeb.
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where χn is a monotone upper semi-continuous sequence converging to zero; this is called
the triple norm estimate.

• A4 If we put for g ∈ B

ηn := sup
‖g‖�1

|
∫

P(g 1Wc
n )dLeb|, (13)

we must show that

lim
n→∞

ηn = 0, (14)

ηn‖P(1Wc
n h)‖ � const μ(Wc

n). (15)

We now associate to the space of BV functions a uniformly expanding endomorphism T
of the unit interval and preserving the absolutely continuous invariant mixing measure μ with
density h. The transfer operator has now a simple definition; for v ∈ L1(Leb) andw ∈ L∞(Leb),
we have {∫

P(v)w dx =
∫
vw ◦ T dx,

P(h) = h.

Using this duality relation, the distribution in equation (2) reads

μ(Mn � un) =
∫

(1Cn,z ◦ f )(x) · · · (1Cn,z ◦ f )(Tn−1x)h(x) dx =

∫
(P̃n

nh)(x) dx (16)

where

P̃ng :=P(1Cn,z ◦ f g), g ∈ BV. (17)

In the case of hyperbolic diffeomorphisms, we have a slightly different formula, since the
operator acts on measures, not on functions. When n →∞, the preceding assumptions allow
us to express the largest eigenvalue of P̃n, say χn, in terms of the largest eigenvalue of the
unperturbed operator, which is 1, as: χn = 1 − (θΔn + o(Δn)), where Δn = μ( f−1(Bn,z)). The
quantity θ is formally defined as θ = 1 −

∑∞
k=0 qk, and the qk are given by the following limits,

when they exist:

qk = lim
n→∞

qk,n, where qk,n :=

∫
(P − P̃n)P̃k

n(P − P̃n)(h)dx
Δn

. (18)

The operator P̃n now decomposes as the sum of a projection along the one dimensional
eigenspace associated to the eigenvalue χn and an operator with a spectral radius exponen-
tially decreasing to zero and which can be neglected in the limit of large n.6 Remembering
this, writing P̃nhn = χnhn, with hn converging to h in the L1(Leb) norm and replacing into the
right-hand side of equation (16) and after a few manipulations we get, by neglecting higher
order terms:

μ(Mn � un) ≈ e−θnΔn .

The product nΔn = n f∗μ(Bn,z) is now controlled by assumption F, which allows us to get
a limiting distribution. The justification of the previous statements is a direct application of
Keller’s theory [44] which gives the following

6 This is precisely what quasi-compactness means.
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Proposition 1. Let us suppose that (X, T,μ) is an REPFO system. Suppose moreover that
the assumption F holds. Then

μ(Mn � un) →
n→∞

e−θτ , (19)

where the EI θ is defined as

θ = 1 −
∞∑

k=0

qk, (20)

where

qk := lim
n→∞

qk,n. (21)

The quantities qk are given by the limit (18) where the quantities qk,n are equivalently expressed
as:

qk,n =
1

f∗μ(Bn,z)
μ
(

f −1Bn,z ∩ T−1( f −1Bn,z)c · · · ∩ T−k( f −1Bn,z)c ∩ T−(k+1) f −1Bn,z
)
. (22)

Comments. As we said above the proof of this proposition follows immediately from
Keller’s theory, see also our previous works [4, 15, 16, 22, 26]. Three issues deserve to be
discussed. The first two deal with the possibility to give examples which fit with the REPFO
assumptions. Whenever f is the identity function, the aforementioned references give a large
class of examples. The problem now is the presence of the observable f which could affect the
hypothesis A2–A4. The third issue concerns the computation of the EI.

(a) A particular attention must be drawn to the Lasota–Yorke inequalities A2 which has to do
with the characteristic function of sets of the type f−1(Cn,z), which could have a geometric
shape quite different from balls. We should guarantee that the Banach norm of these sets
is computable and allows to get the desired inequalities. This will be the case for all the
systems with associated observables which we will be treated analytically in this paper.
We will in fact consider the observables f as continuous and local C1 functions and in this
case the Lasota–Yorke inequalities for the perturbed operators can be proved using the
arguments in [7], lemma 2.6, or [47], lemma 7.4. For the baker map (see section 4), we
defer to the paper [4], section 3.1.

(b) The second issue concerns the Assumptions A3 and A4. They will follow if we could
prove that the L1(Leb) norm of (P̃n − P)g, with g ∈ BV, is bounded by the BV norm of g
and the image-Lebesgue ( f∗Leb) measure of Bn,z.We have∫

|(P̃n − P)g|h(x)dx =

∫
|P(1Bn,z ( f (x))g(x))|h(x)dx � ‖h‖∞

∫
P(1Bn,z ( f (x))|g(x)|)dx

� ‖h‖∞
∫

1Bn,z( f (x))|g(x)|dx � ‖h‖∞‖g‖BV f∗Leb(Bn,z), (23)

since both h and g are in BV and the infinity norm is bounded by the BV norm ‖ · ‖BV. The
perturbative theorem requires finally that f∗Leb(Bn,z) � constant f∗μ(Bn,z), which is surely
true if the density h is bounded from below: we will tacitly assume it if necessary.

(c) Finally we should check the existence of the limits (21) to give the fundamental expres-
sion of equation (20) for the EI. Note that the Poincaré recurrence theorem implies that∑∞

k=0 qk,n = 1; therefore whenever qk exists, the EI is at most 1. The quantities qk,n have a
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simple geometrical interpretation: they give the conditional measure of the points that are
at the beginning in the set f−1Bn,z, are iterated outside it for the next k times, and finally
return to it at the k + 1 iteration. As we will argue below, in particular in section 4, this
structure of the qk,n allows us to compute them explicitly in several situations, or guess
their possible behaviour.

We now define the local dimensions of the image measure. We put

d f
μ(x) := lim inf

r→0

log f∗μ(B( f (x), r))
log r

, (24)

d f
μ(x) := lim sup

r→0

log f∗μ(B( f (x), r))
log r

. (25)

Whenever d f
μ(x) = d f

μ(x) = d f
μ (x), we will say that the image measure f∗μ is exact

dimensional.
Notations: Sometimes instead of d f

μ (x) we will use the notation d f
μ ( f0), meaning that the

pointwise dimension is computed in the point f0 = f(z) without specifying the value of z. When
the measure is exact dimensional we will simply write d f

μ as the almost sure value. We will
also use the symbol d f

μ to denote what we presume to be the almost sure value of the image
measure in a few numerical computations for which the measure μ could only be reconstructed
numerically. This especially concerns the last chapter.

We now suppose that d f
μ (x) exists and express equation (7) as the scaling:

f∗μ(Bn,z) ∼ e−un d f
μ (z) ∼ τ/n. (26)

The result on the Gumbel law given by equation (19) could be reformulated by: if f is an
observable on the space X, and f(z) is the value at a given point z, then the probability that

the distance between f(Tnx) and f(z) after n iterations is less than ( τn )d f
μ for the first time, is

approximately e−θτ .
Let us come back to the results in [58]. The equality between the recurrence rate for the

observable defined as

R f (z) = lim
r→0

log inf{k ∈ N∗ : f (Tkz) ∈ B( f (z), r)}
log r

, (27)

and d f
μ (z) is proven for a class of systems with superpolynomial decay of correlations and

such that the image measure f∗μ is exact dimensional. In the spectral theory, the property of
superpolynomial decay of correlation is strengthened by the presence of the spectral gap for
the transfer operator, which implies exponential decay of correlations. We point out that our
approach is slightly different from the one of [58], in the sense that we get a recurrence rate
for hitting times instead of return times and its distribution for shrinking target sets. For this
reason we will not further elaborate on the connections with the quantity in equation (27).

3. The EI

The EI θ is usually considered as a measure of clustering, whenever several and repeated occur-
rences take place in the ball Bn,z. For the usual observable −log dist(x, z), this happens around
periodic points for the map T . When it comes to recurrence of observables, some clustering
can also occur when z is a periodic point. We now show that the EI for observables reveals new
interesting features.
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We start with a simple example.
Take a real observable f defined on the unit interval such that in any point where it is defined,

the derivative is bounded below away from zero and above from infinity.
Let us first consider the case on an invertible f and take T as a uniformly expanding map of

the interval which has z = f−1( f0), where f0 = f(z), as a fixed point and is continuous in such
a point together with the density of the absolutely continuous invariant measure h. Then we
have

q0,n =
1

f∗μ(Bn,z)
μ( f −1Bn,z ∩ T−1 f −1Bn,z). (28)

At this point we can repeat the standard argument (see, for example, section 4.2 of [36]) to
get immediately that

θ = 1 − 1
|T ′(z)| .

We now take a non-invertible f. In particular we suppose f has two branches: f1, f2.
Suppose the ball Bn,z is again centred at a point f0 = f(z) and the point z1 := f −1

1 (z) is the
inverse point of f such that

Tz1 = z1.

Moreover suppose that the other pre-image z := f −1
2 (z) is not periodic for T.

In equation (28) for the q0,n above, only the pre-images by T of the set f −1
1 (Bn,z) matter in

the computation of the EI, but we have to take into account the relative ratio of the measure
of f −1

1 (Bn,z), f −1
2 (Bn,z) in the denominator. These measures are obtained by pulling back the

Lebesgue measure of Bn,z with the reciprocal images of f, which amounts to multiply the length
of Bn,z with the reciprocal of the derivative of f in the pre-images of f0, and multiply what we
get by the density h in such pre-images. In conclusion we have

θ = 1 − 1
|T ′(z1)|

1

1 + h(z)| f ′(z1)|
h(z1)| f ′(z)|

. (29)

The preceding argument can be generalized to give an exact formula for the qk. As we will see,
the existence of several pre-images of the ball Bn,z could generate multiple clusters coexisting
with different degrees of periodicity.

Proposition 2. Let us suppose that T is a uniformly expanding map as above and the
observable f is differentiable with a derivative bounded away from zero and infinity. Fix z
in the unit interval M and put f0 = f(z); suppose also that f is a finite-to-one map. Consider the
set of the pre-images w of f0, one of them being z, and suppose that they do not belong to the
countable union of the pre-images of the boundary points of the domains of local injectivity of
T and that the invariant density h is continuous in such points. Consider the set

Ak = {w ∈ M : f (w) = f0, f (Tw) �= f0, . . . , f (Tkw) �= f0, f (Tk+1w) = f0}.

When Ak = ∅, then qk = 0. Conversely, whenever Ak is finite and non-empty, we have

qk =
∑
w∈Ak

1
|T (k+1)(w)′|

1

1 + | f ′(w)|
h(w)

∑
y∈Bω

k

h(y)
| f ′(y)|

, (30)
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where Bω
k = {y ∈ M : f (y) = f0}\{w}.

The EI is obtained by

θ = 1 −
∞∑

k=0

qk.

We point out that having fixed the centre z of the ball Bn,z and having f a finite number of
pre-images, there are only finitely many points in Ak and consequently finitely many terms in
the sum

∑∞
k=0 qk. Moreover we could relax the global assumption on f by asking that f be C1

in z and the pre-images of z as the next example will require.
Let us give two examples. In the first consider the map T(x) = 3x-mod 1. Then take a point

a > 1
2 which is not periodic for T (these points yield a full Lebesgue measure), and consider

a piece-wise continuous straight line with two branches (f1, f2), f1 passing through the points
(0, 0) and (a, 1), and f2 through the points (a, 1) and (1, 0). The equations are

⎧⎨
⎩

f1(x) = x/a,

f2(x) =
1

a − 1
x − 1

a − 1
.

We choose a point z1 that is a fixed point of T and z2 that have the same image by f but is not
periodic by T. We take⎧⎨

⎩z1 =
1
2

,

z2 = f −1
2 ( f (z1)) = (a − 1)/2a + 1.

We can choose a so that z2 is irrational. In this case, z2 is not periodic for T and the trajec-
tory starting from z2 will not pass through z1 which is rational. Therefore, we see easily from
formula (30) that qk = 0 for k > 0. We have h(z1) = h(z2) = 1 and

⎧⎨
⎩
| f ′(z1)| = 1/a,

| f ′(z2)| = 1
|a − 1| .

Therefore

θ = 1 − q0 = 1 − 1

3
(

1 + |a−1|
a

) .
We checked this formula numerically for various values of a. For example, taking a = 2/π,

we find a numerical value of 0.788 against a theoretical value of 0.7878. We used the estimate
θ̂5 introduced in [15], which consists in estimating the qk terms up to the order 5 and subtracting
them from 1.

We notice that in equation (30), the EI depends explicitly on the density of the invariant
measure, which was constant in the example above.

We give another example where h(z1) and h(z2) are different. We take the Hemmer map
defined in [−1, 1] by T(x) = 1 − 2

√
|x|. Its density is h(x) = 1

2 (1 − x), [40]. The point
z1 = 3 − 2

√
2 is a fixed point of the map. We choose the point z2 = −1/2, which is not

periodic and we take f piecewise linear with different slopes: f(x) = x for −1 � x � 0 and
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f (x) = −2x + 11/2 − 4
√

2 otherwise, so that f(z1) = f(z2) = −1/2. equation (3) gives

θ = 1 − q0 =

√
3 − 2

√
2

1 + 3
4(
√

2−1)

≈ 0.9104.

Our numerical computations confirm this result to the fourth digit with the estimate θ̂5.
We have given a quite general formula for the one dimensional case, and it is apparent from

it that the clustering structure can be quite complicated if the observable and the dynamics
have some kind of compatibility. For this reason, giving a general formula for the EI in higher
dimensional systems is out of the scope of this paper. We however believe that for large class
of observables, no clustering is detected and the EI should be equal to 1. This is confirmed by
several numerical simulations that will be described in the next chapter.

4. Phenomenology of the image measure

We are now interested in estimating the quantity d f
μ that appears in the distribution of maxima.

This question has been partially answered by Rousseau and Saussol in [58], in the case of
smooth observables and measures μ that are absolutely continuous with respect to Lebesgue.
In particular, theorem 9 in [58] states that d f

μ (z) exists μ almost everywhere, is integer valued
and is equal to the rank of Df(z) almost everywhere. For example, if f has values in R and
μ(∂xf(x) = 0) = 0, d f

μ (z) is equal to 1 for μ-almost any z. It implies also that if f is constant
on some regions of the phase space of positive measure, d f

μ (z) will be 0 in that region. A first
observation is that this result does not hold at some special points of the attractor. We now give
an example where d f

μ is not an integer.
Consider the map Tx = 2x mod1 defined on the circle, z = 0 and the observable f(x) = xa,

with a > 0. Then we have:

μ(− log | f (x) − f (0)| > un) = μ(− log |xa| > un) = μ(− log |x| > un

a
)

= μ(B(0, e−
un
a )) = 2e−

un
a .

Therefore,

d f
μ (0) = lim

n→∞

log 2e−
un
a

log e−un
= 1/a.

Depending on the value of a, this quantity can be non integer and either smaller or larger than
1.

In many physical applications, the measure is not smooth, but has a (multi)fractal structure.
This happens for chaotic dynamics in neuroscience and climate science [16, 63]. Being able
to compute the value of d f

μ in such situations is of crucial importance to describe the statistics
of recurrence of the observable. The simplest case to consider is when the observable f is a
diffeomorphism from Rk to Rk (where k is the dimension of the ambient space): the image of
the invariant set by f is then a deformation of the original attractor which preserves its local
structure. We therefore expect that d f

μ (z) = γμ(z), the pointwise dimension at the point z. Let us
now remind the definition of these local dimensions, since they will be used later on. Consider
the limits

γ−
μ (z) = lim inf

r→0

log μ(B(z, r))
log r

(31)
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γ+
μ (z) = lim sup

r→0

log μ(B(z, r))
log r

. (32)

They are called respectively the lower and upper pointwise dimensions of μ at z. If γ−
μ (z)

= γ+
μ (z), the common value γμ(z) is called the pointwise dimension of μ at z. We defer to our

paper [16] for a discussion of these pointwise dimensions with the associated references.
Most observables used in practice are not diffeomorphisms. The most general result con-

cerning the local dimension of image measures is due to Hunt and Kaloshin, in particular
theorem 4.1 in [41]. Before stating their theorem, we must recall the important notion of preva-
lence used in the aforementioned paper, see also [42, 53, 65]. We consider a real topological
vector space V and a Borel-measurable subset S of V. S is said to be prevalent if there exists
a finite-dimensional subspace P of V, called the probe set, such that for all v ∈ V we have
v + p ∈ S for LebP-almost all p ∈ P, where LebP denotes the P-dimensional Lebesgue mea-
sure on P. In the case of interest for us, V is the space of C1 functions f : Rn → Rm. The notion
of prevalence could be thought as the analogue of almost everywhere in infinite dimensional
spaces. We give a few properties and examples of prevalence to point out its significance. All
prevalent subsets S of V are dense in V. Then, if we declare that almost every means that the
stated property holds for a prevalent subset of the space in question, we have:

• almost every continuous function from the interval [0, 1] into R is nowhere differentiable.
Here, V is the space of continuous functions on the unit interval with the supremum norm
topology;

• take now V = L1(dx) the space of Lebesgue summable functions on the unit interval. Then
almost every function f ∈ V has the property that

∫ 1
0 f (x) dx �= 0.

• If A is a compact subset of Rn with Hausdorff dimension dH , m � dH , and 1 � k � ∞,
then, for almost every Ck function f : Rn → Rm, f(A) also has Hausdorff dimension dH .

Other examples will now be stated in terms of dimension of measures. We summarize them
in the following theorem:

Theorem 1 (Hunt and Kaloshin [41]).

• Let μ be a Borel probability measure on Rn with compact support. For a prevalent set of
C1 functions (also, for almost every linear transformation) f : Rn → Rm,

d f
μ(x) = min(m, γ−

μ (x))

for almost every x with respect to μ. If in addition d f
μ (x) exists for almost every x, then

for almost every f the pointwise dimension of f at f(x) exists and is given by

d f
μ (x) = min(m, γμ(x))

for almost every x.
• Let μ be a Borel probability measure on Rn with compact support. If the pointwise dimen-

sion γμ(x) exists and does not exceed m for almost every x with respect to μ, then for a
prevalent set of C1 functions (also, for almost every linear transformation) f : Rn → Rm,
the information dimension of f, D1( f(μ)) exists and is given by the information dimension
D1(μ) of μ:

D1( f (μ)) = D1(μ).
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The information dimension of a measure μ is defined as the following limit, when it exists7:

D1(μ) := lim
r→0

∫
log μ(B(x, r))dμ(x)

log r
.

We note that with the assumptions of the second item of the preceding theorem, we have

D1 ( f (μ) =
∫

d f
μ (x)d f∗μ(x); D1(μ) =

∫
γμ(x)dμ(x).

An important class of measures are those called exact dimensional: they enjoy the property
that

γμ(x) = D1(μ), x − μ a.e.

Notations. We will call typical a point x that belongs to the set of full measure giving D1(μ).
Sometimes we will simply write D1 instead of D1(μ) if the measure μ is clear from the context;
moreover and still for exact dimensional measures we will use the shortμ(B(x, r)) ≈ rd in place
of limr→0

log μ(B(x,r))
log r = d.

Several dynamical systems with hyperbolic properties have an invariant measure that is
exact dimensional. It is enough that the limit defining the local dimensions exists almost every-
where and that the measure is ergodic to have exact dimensionality [66]. In these cases the
information dimension can be expressed in terms of the Lyapunov exponents and of the metric
entropy.

Remark 3. In the rest of the section, we will consider a few cases where we compute d f
μ

and compare it with the conclusions of the Hunt and Kaloshin theorem. We will see that non-
prevalent observables arise very easily in simple examples. With abuse of language we will
say that an observable is prevalent if it belongs to the prevalent space of the Hunt–Kaloshin
theorem. We declare that an observable is not prevalent whenever it does not satisfy the theorem
above and for almost all choices of the target point x (typical points). Later on (example of
the product of two Cantor sets), we will show an example of observable that violates the
Hunt–Kaloshin theorem for a given point x. Even in that case we will say that the observable
is not-prevalent.

4.1. The baker map

We start with the two dimensional dynamics defined by the baker map, whose fractal SRB
measure has been extensively studied, [10, 54]. It is defined on the unit square Q = [0, 1] ×
[0, 1] by the equations

xn+1 =

{
λaxn, yn < α,

(1 − λb) + λbxn, yn > α,
(33)

and

yn+1 =

⎧⎪⎨
⎪⎩

yn

α
, yn < α,

yn − α

1 − α
, yn > α,

(34)

7 Otherwise one should turn to the liminf and lim sup. We defer to [16, 41] for the details.
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Figure 1. Action of baker’s map on the unit square. The lower part of the square is
mapped in the left part and the upper part in the right part.

where α ∈ (0, 1/2] and λa + λb � 1. The action of the map on the unit square is shown in
figure 1. The SRB measure is exact dimensional, and its information dimension is given by
[54]:

D1 = 1 + D1,s, (35)

with

D1,s :=
α log(α−1) + (1 − α) log((1 − α)−1)

α log(λ−1
a ) + (1 − α) log(λ−1

b )
.

The spectral approach to EVT used in section 2, applies to baker’s map [4]. Let us first
consider the mean value observable defined as

f (x, y) =
x + y

2
.

To compute numerically the quantity d f
μ , we generate a trajectory of M = 108 points start-

ing from a point x chosen at random on the square and compute at each iteration the value of
φz(T

ix) = −log| f0 − f(Tix)|.8 We then compute the empirical distribution of the maximum
taken by φz over blocks of size n = 5 × 104. The scale parameter σ̂ of the GEV distribu-
tion is computed with a maximum likelihood estimate, using the Matlab function gevfit [52].
An estimate for d f

μ is then given by 1/σ̂. The estimates of d f
μ are then averaged over 10 dif-

ferent trajectories. The results are displayed in table 1 (the error is the standard deviation of
the results over the 10 trajectories). Although the measure has a fractal structure, we found,
for different values of f0 and α, estimates for d f

μ that are very close to 1, as expected from the
result of Hunt and Kaloshin. Since the proof of their theorem does not allow a clear geometri-
cal understanding of what happens, we provide now an illustration and a heuristic explanation
for that result.

Let us take a typical point z = (z1, z2), not lying on the border of the square, such that
f(z) = c, 0 < c < 1 and let ε > 0. The points verifying | f(x, y) − c| � ε, are those on the
straight lines x+y

2 = s, c − ε < s < c + ε. This defines a strip where each couple (x, y) will

8 The orbit of x will approach quickly the attractor and it will give the the right statistical information by definition of
SRB (physical) measure.
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Table 1. Values of d f
μ ( f0) computed for the mean value observable,

for different values of α and f0. We took λa = 0.3, λb = 0.2.

α = 1/5 α = 1/4 α = 1/3

f0 = 0.1 1.00 ± 0.01 1.00 ± 0.02 1.00 ± 0.01
f0 = 0.3 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01
f0 = 0.8 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.02

Figure 2. Pictorial representation of the situation described in the main text for the
observable x+y

2 (left) and a Gaussian centred at z (right), in different regions of Q. The
baker attractor is depicted in blue, and the graphs {(x, y) : f(x, y) = f(z) ± ε} are dot-
ted lines. In both situations, these manifolds intersect the attractor an infinite number of
times.

meet infinitely many vertical unstable leaves foliating the attractor. Then the ball B(c, ε) is
completely filled and it could be reasonable to argue that d f

μ = 1. This would be true if the
measure f∗μ is absolutely continuous, as prescribed in [58]. But there is no reason that f∗μ has
such a property, if μ is not absolutely continuous. As figure 2 shows, we really found d f

μ = 1,
which fits with theorem 1 and suggests that f is prevalent. Before giving a rigorous direct proof
of this fact, we point out that the above example can be easily modified with a drastic change
in the dimension of the image measure, which therefore exhibits a non-prevalent observable.
We defer to the end of this section for such an example.

We therefore consider the observable f (x, y) = x+y
2 and the strip Σ′

ε defined through x+y
2 =

s, c − ε < s < c + ε. We begin to remind that the SRB measure μ disintegrates along the
vertical unstable leaves with absolutely continuous conditional measures (actually Lebesgue
measures normalized to 1), and with singular measures along the horizontal stable leaves, we
will use them later on. The unstable leaves Wu,ι are indexed by ι and counted by the counting
measure ζ ′; as we said, the conditional measure μu,ι is the linear Lebesgue measure of mass 1.
Then the SRB measure of the strip Σ′

ε reads:

μ(Σ′
ε) =

∫
μu,ι(Σ′

ε ∩ Wu,ι)dζ ′(ι).

But μu,ι(Σ
′
ε ∩ Wu,ι) = 2ε and what are left in the integral above are an ensemble of unstable

leaves of finite ζ ′ measure due to the affine term c cutting the y-axis. In conclusion μ(Σ′
ε) ≈ ε

in agreement with theorem 1. We notice that the previous proof adapts easily to all affine
observables of type f(x, y) = ax + by + c, provided that b is different from zero.
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Table 2. Values of θ computed for the mean value observable,
for different values of α and f0. We took λa = 0.3, λb = 0.2.
The error of 0 is the standard deviation of the estimates.

α = 1/5 α = 1/4 α = 1/3

f0 = 0.1 1 ± 0 1 ± 0 1 ± 0
f0 = 0.3 1 ± 0 1 ± 0 1 ± 0
f0 = 0.8 1 ± 0 1 ± 0 1 ± 0

As an interesting example of violation of prevalence, we take f as a multivariate Gaussian
function maximized at the typical point z = (x0, y0), with a covariance matrix equal to the
identity:

f (x, y) =
1

2π
exp

(
−1

2

(
(x − x0)2 + (y − y0)2

))
. (36)

The set of points on Q for which | f(x, y) − f(x0, y0)| � ε are the points belonging to the ball
B(z, 2

√
πε):

0 � (x − x0)2 + (y − y0)2 � 4πε.

Since the point (x0, y0) is typical, we have d f
μ = D1

2 .
As mentioned earlier, we expect to detect no clustering of high values for such generic

observables and non-periodic z. The EI is computed using the estimate θ̂5, using as a threshold
the 0.999-quantile of the observable distribution. Results are averaged over 10 trajectories and
are presented in table 2.

To get the quantity d f
μ different from 1 on a set of full measure, we should take an observable

with range at least in R2.
We performed numerical computations using the baker map with parametersα = 1/3,λa =

1/3, λb = 1/4 and by taking the observable f(x, y) = (x, x2 + y2). For different points z not
lying on the x−axis, we find indeed a value of d f

μ (z) that is close to the information dimension
= 1.2682, as it is computed from equation (35). For the point z = (0.9581, 0.0612) for
example, we find a local dimension equal to 1.26 ± 0.03. We used again the parameters
M = 108 and n = 2 × 105.

As promised above, we now give another example of a non-prevalent observable. Let us take
the function f(x, y) = x and f0 = f(z1, z2) = z1 = c, where (z1, z2) is a typical point. We need to
compute the scaling of the SRB measure of the vertical stripΣε := {(x, y) ∈ Q; |x − c| � ε}. To
this end, we disintegrate the SRB measure μ along the horizontal stable leaves. These measures
can be seen as generated by an iterated function system (IFS) with two scales λa,λb and two
weights α, 1 − α, [10]. We now evaluate the SRB measure of the strip Σε, as:

μ(Σε) =
∫

μs,ν(Σε ∩ Ws,ν )dζ(ν), (37)

where μs,ν is the conditional measure along the stable leaf Ws,ν , indexed by ν and counted by
the counting measure ζ . These conditional measures are the same on each Ws,ν and for almost
all choices of z1 they behave as exact dimensional fractal measure with the exponent given by
the term D1,s in equation (35):

μs,ν (Σ ∩ Ws,ν) ≈ εD1,s .
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Table 3. Values of d f
μ computed for the Gaussian observable, for different

points z. The error is the standard deviation of the results.

z (0.994, 0.0029) (0.6679, 0.9914) (0.0861, 0.2565)
d f
μ 0.61 ± 0.002 0.60 ± 0.002 0.62 ± 0.002

Since the counting measure ζ(Q) = 1, we finally get μ(Σε) ≈ εD1,s , which violates theorem
1 because the exponent should be equal to 1.

4.2. The product of two Cantor sets

As a second example which can be worked out analytically, we consider the Cartesian product
of two ternary Cantor sets K × K on the unit interval I. The dynamics is generated by two
independent IFS (see [54]), each of them defined by two linear contractive maps g1, g2 with
slope 1/3. On each factor K we take a measurable map, our dynamical system, T : K → K, with
T(x) = g−1

i (x), for x ∈ gi(K). The Cantor set K will be the invariant set for the transformation
T. The invariant measure μ(2) = μ× μ is the product of the two invariant measures on the
factor spaces. Each factor measure is a balanced measure with two equal weights 1/2, which
means that for any Borel set B on the unit interval we have μ(B) =

∑2
i=1

1
2μ(gi(B)). All these

measures are exact dimensional and the information dimension of μ(2) is D1 = 2 log 2
log 3 ≈ 1.26.

The spectral approach to EVT used in section 2, applies to this systems, see [26, 36]. As a
first observable, we take the standard multivariate Gaussian function (36). If we take a typical
point z := (x0, y0), we can repeat the argument given above for the baker’s map and found
d f
μ = D1/2, which shows that (36) is not prevalent. This result is confirmed by the numerical

simulations for which we used the same algorithm as described earlier for the baker map, using
the parameters M = 5 × 108 and n = 5 × 104. We used more data and a different size of blocks
because stable estimates are difficult to get. We detected no clustering, as for the baker’s map.
The results for the estimates of d f

μ are shown in table 3. We found for different points z a value
for d f

μ close to 0.61, which is comparable with D1/2 ≈ 0.63.
We now take f(x, y) = x and look at the strip Σε = {|x − c| � ε}, where c is chosen on a

typical line (c, y). Instead of disintegrating, we can now use Fubini’s theorem since μ(2) is a
product measure. We have

μ(2)(Σε) =
∫

μx(Σε ∩ K)dμy

where we write μx (resp. μy) for the factor measure on the Cantor set K on the x-axis (resp.
on the y-axis). The sectional measure μx(Σε ∩ K) is independent of y and since it is exact
dimensional it yields μx(Σε ∩ K) ≈ εD1/2, which finally gives d f

μ = D1/2, showing that the
observable is not prevalent. The same results holds for the observable f(x, y) = y.

A less trivial observable that violates prevalence is given by f(x, y) = y − x and f0 =
f(0, 0) = 0. We warn the reader that we are not sure that the point (0, 0) is typical, but we
discuss this situation since it could arise in concrete applications, in the same way the peri-
odic points are negligible in measure but play an important role in recurrence. We therefore
have to compute the logarithm of the μ(2) measure of the ε neighbourhood Σε of the diagonal
{x = y} and compare it with the logarithm of ε. It is easy to check that we can restrict our-
selves to countable sequences like εn = βn, with β > 1 and n →∞. In particular we now take
εn = 3· 3−n. Then we have as above μ(2)(Σε) =

∫
μx(Σε ∩ K)dμy.

Each time x ∈ K on the x-axis, Σε will meet the Cantor set K × K in the point (x, y). We
therefore evaluate the μy measure of the section Σε ∩ K by splitting it over the 2n cylinders of

135



Nonlinearity 34 (2021) 118 T Caby et al

Figure 3. For the product of Cantor sets, pictorial representation of the situation
described in the main text for the gaussian observable (left) and a generic linear observ-
able (right). The attractor is depicted in blue, and the graphs {(x, y) : f(x, y) = f(z) ± ε}
are dotted lines.

the nth generation in the construction of the Cantor set along the y-axis. There will be at least
one of these cylinders of μy-measure 2−n inside that section. Then

μ(2)(Σεn) =
∫

μx(Σεn ∩ K)dμy � 2−n.

With9 the prescribed choice of εn we finally get

lim sup
n→∞

log μ(2)(Σεn)
log εn

� log 2
log 3

,

which immediately implies d f
μ(2) (0, 0) � log 2

log 3 .

It is difficult to prove directly that d f
μ = 1 as prescribed by the Hunt–Kaloshin theorem for

the almost sure prevalence affine functions f(x, y) = ax + by + c (see figure 3 for a pictorial
representation). Numerical experiments confirm such a behaviour, although stable estimates
are difficult to get. We chose the parameters a, b and c at random in the unit interval. For the
point z = (0.893, 0.307), a = 0.557, b = 0.6596, c = 0.0046, we find that d f

μ = 0.993 ± 0.02.
We used the same parameters as for the Gaussian observable.

4.3. The Lorenz system

Let us now turn to a higher dimensional situation and consider the Lorenz 1963 system [48]
that we reconstruct with the Euler method with step h = 0.01. With this iterative procedure,
the system can be seen as a discrete mapping, for which the developed theory is applicable.
We chose an observable with image in R5. We tested several observables but the results are
displayed for the observable f(x, y, z) = (x2 + y2, z, y + z, πyz, 1/x). We find that the values of
d f
μ (x, y, z) are all close to D1 = 2.06. For the point (−1.7323, 8.9400, 32.6818) for example,

we have that d f
μ (x, y, z) = 2.05 ± 0.02 using the parameters M = 108 and n = 2 × 105 (the

results are averaged over 20 trajectories, and the error is the standard deviation of the results).

9 Actually we should remove from it a small contribution o(2−n) due to integration on the corners (0, 0), (1, 1), which
will not affect the final result.
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Instead, if we take a scalar observable, we find values very close to 1, indicating again
that when the observable decreases the dimensionality, the fractal structure of the attrac-
tor is smoothed in the image measure (we are supposing here that the invariant measure is
exact dimensional). These numerical results are in perfect agreement with the Hunt–Kaloshin
theorem.

4.4. Conclusions

We conclude this section by pointing out the few examples which we found and do not verify
the conclusions of the Hunt–Kaloshin theorem. It happens when f : Rn → Rm with m � n. If
the dimension of the attractor in Rn is larger than m, one expects to find d f

μ = m for a preva-
lent observable. We exhibit several examples where, in the same circumstances, d f

μ < m. This
shows that we are in presence of a non prevalent observable.

Another example of observable that does not belong to the prevalent set of the measure is a
function whose Jacobian does not have a full rank on a set of positive measure, for absolutely
continuous measures. This is a consequence of theorem 9 in [58]. We emphasize that the image
measure can have counter-intuitive properties. For instance, Rousseau [60] gives the example
of an image measure that is non atomic and yet d f

μ is 0 on a set of positive measure. This
example is built upon a Cantor set and the C∞ observable is defined as the limit of an iterative
process.

5. Statistics of visits for the observable

It can be interesting from a physical point of view to study the number of visits of the observable
f near a certain value f0 = f(z). This problem is well understood in the framework of EVT. Let
us consider the following counting function:

Nn(t) =

� t
f∗μ(B( f0,rn)) �∑

l=1

1B( f0,rn)( f (Tlx)), (38)

where the radius rn goes to 0 when n tends to infinity. We are interested in the distribution

μ(Nn(t) = k), k ∈ N (39)

when n →∞. It has been proved (see for instance [33, 34, 37]) that for f = Id and when z
is not a periodic point, μ(Nn(t) = k) converge to the Poisson distribution tke−t

k! , while for a
periodic point of minimal period p, μ(Nn(t) = k) converges to the Polyà–Aeppli distribution,
which is a particular kind of compound Poisson distribution. Before continuing, we remind
that a probability measure ν̃ on N0 is compound Poisson distributed with parameters tλ�,
� = 1, 2, . . . ., if its generating function ϕν̃ is given by ϕν̃(z) = exp

∫∞
0 (zx − 1)dρ(x), where ρ

is the measure on N defined by ρ =
∑

� tλ�δ�, with δ� being the point mass at �.
An important non-trivial compound Poisson distribution is the Pólya–Aeppli distribution

which holds when the random variables given by the hitting times of the ball B( f0, rn) is geomet-
rically distributed, which implies that λ� = (1 − p)p�−1 for � = 1, 2, . . . ., for some p ∈ (0, 1).
In this case

P(Nn(t) = k) → e−pt
k∑

j=1

pk− j(1 − p) j (pt) j

j!

(
k − 1
j − 1

)
, n →∞, (40)
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where p is the EI. In particular P(W = 0) = e−t. In the case of p = 1 this reverts to the usual
Poisson distribution. For more general target sets, the limit law of Nn(t) is given by a compound
Poisson distribution when the EI is different from 1, and by a pure Poisson distribution if no
clustering occurs [37, 38]. We refer also to our paper [15] for a discussion of this matter and
related references.

We now show that in presence of non-invertible observables f, we get compound Poisson
distributions which are not Pòlya–Aeppli.

Proposition 3. With the assumptions of proposition 2, suppose the ball B( f0, rn), f0 = f(z),
has two pre-images B1,n, B2,n, the first containing the periodic point w1 = z of period p1, the
second the periodic point w2 of period p2. Then the distribution Nn(t) is compound Poisson,
but not Pòlya–Aeppli.

Proof. We notice that equation (38) can be rewritten as

Nn(t) =

� t
f∗μ(B(z,rn)) �∑

l=1

1 f −1(B( f0,rn))(T
lx)

We can therefore apply the theory recently developed by [38], where entry times are considered
for sets whose measure goes to zero. In our case those sets are the pre-images of the ball B( f0, rn)
and they are located around the points wi ∈ Ak, k ∈ N, where the set Ak has been defined in
proposition 2; actually there are now only two pre-images.

If we now refer to the theory in [38] and in particular to section 8.3 therein, we can eas-
ily compute the quantity α̃l =

∑
ib

l
i, where bl

i := limn→∞ μBn (τ l−1
Bn

= i), being Bn = B1,n ∪ B2,n

and τ l−1
Bn

is the l − 1st return time into the set Bn; with μA we intend the conditional measure
to the set A. For a given l, only the terms (l − 1)b1 and (l − 1)b2 count in the sum defining α̃l.
By repeating the computation in lemma 4 in [38] we have

α̃l = bl−1
1 lim

n→∞

[
μ(B1,n)
μ(Bn)

]
+ bl−1

2 lim
n→∞

[
μ(B2,n)
μ(Bn)

]
,

where

b1 = lim
n→∞

[
μ(B1,n ∩ T−p1B1,n)

μ(B1,n)

]
, b2 = lim

n→∞

[
μ(B2,n ∩ T−p2B2,n)

μ(B2,n)

]
.

Notice that in the particular case we are considering and by repeating the computation in
section 3 we have

b1 =
1

|(T p1 )′(w1)| , b2 =
1

|(T p2 )′(w2)| , (41)

μ1 := lim
n→∞

[
μ(B1,n)
μ(Bn)

]
=

1

1 + h(w2)| f ′(w1)|
h(w1)| f ′(w2)|

, (42)

μ2 := lim
n→∞

[
μ(B2,n)
μ(Bn)

]
=

1

1 + h(w1)| f ′(w2)|
h(w2)| f ′(w1)|

. (43)

Moreover by recalling the definition of the quantities qk introduced in section 3 we have

qp1 = b1 μ1; qp2 = b2 μ2.
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According to the theory developed in [38], the parameter λl which we introduced before
equation (40) to define the compound Poisson distribution is given by

λl =
αl − αl+1

α1
, where αk = α̃k − α̃k+1,

and α1 is the EI defined as the reciprocal of the expected length of the clusters:

∞∑
k=0

kλk =
1
α1

.

In our case and using the expression for the quantities introduced above we have:

α1 = 1 − (qp1 + qp2 ).

The latter is an alternative way to define the EI, which in the present situation is consistent
with the formula found in section 3 for the EI θ using the spectral technique. We defer to
our article [15] for a critical discussion of these equivalent definitions. Moreover, putting 1 −
b1μ1 − b2μ2 = θ, we have

λl =
bl−1

1 μ1(1 − b1)2 + bl−1
2 μ2(1 − b1)2

θ

and for the generating function of the random variable given by the number of visits

φ(z) = exp

[ ∞∑
l=1

θtλl(z
l − 1)

]
= e−θte

tμ1(1−b1)2 z
1−zb1 e

tμ2(1−b2)2 z
1−zb2 , (44)

which gives a compound distribution different from the Polyà–Aeppli distribution.
�

We remind that deviations from the Pòlya–Aeppli distribution were exhibited in other sit-
uations, for instance when the target set is a neighbourhood of the diagonal in [15, 37] or a
neighbourhood of periodic points where the map is not continuous in [1].

We now give a recursive formula that produces the distribution of Nn(t). Let us denote

a1 = tμ1(1 − b1)2 and a2 = tμ2(1 − b2)2.

We first notice that

φ′(z) = φ(z)π(z)′, (45)

where

π(z) =
a1z

1 − b1z
+

a2z
1 − b2z

.

We easily see that the k derivatives of π (for k > 0) are given by

π(k)(z) =
k!a1bk−1

1

(1 − b1z)k+1
+

k!a2bk−1
2

(1 − b2z)k+1
. (46)

Using the Leibniz formula for derivations, we have from equation (45):

φ(n)(z) =
n−1∑
k=0

(
n − 1

k

)
φ(k)(z)π(z)(n−k)(z).
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Figure 4. Comparison between the empirical distributions of the number of visits of
the observable f(x) = (x − 1/2)(x − 1/4) in a ball centred at 0 and the theoretical
distribution described in the text for the map 3x mod1.

We now use this last formula and combine it with equation (46) to obtain:

φ(n)(0) =
n−1∑
k=0

(
n − 1

k

)
φ(k)(0)(n − k)!(a1bn−k−1

1 + a2bn−k−1
2 ). (47)

Keeping in mind that from equation (44), φ(0) = e−θt, we can use formula (47) to deter-
mine the probability that Nn(t) = k by computing recursively the derivatives of the generating
function φ at 0 and dividing by k!.

We now give an example. We take the map Tx = 3x mod1, the observable f(x) = (x −
1/2)(x − 1/4) and f0 = 0. The two pre-images of f0 are 1/2 and 1/4, of periods 1 and 2 respec-
tively. From proposition 2, θ = 7/9. Then we have: b1 = 1/3, b2 = 1/9, μ1 = μ2 = 1/2,
a1 = 2t/9 and a2 = 32t/81. In figure 4 we show the empirical distribution of the num-
ber of visits of 105 different trajectories of length 106 of the observable f in the interval
Ir = ( f0 − r, f0 + r), where r = e−u, u being the 0.995-quantile of the distribution of φ. We
notice very good agreement with the theory.

It is interesting to observe that if we take μ1 �= μ2, but b1 = b2 = b, which means we take
the same periodicity for the two points w1,w2, we recover the Pòlya–Aeppli distribution since
λl = bl−1(1 − b), with the EI θ = 1 − b. In fact, even when b1 �= b2, numerical experiments
suggest that the distribution stays close to a Pòlya–Aeppli distribution. In figure 5, we show
this effect by comparing the distribution associated with the example described in the text to a
Pólya–Aeppli distribution of parameters given by θ = 7/9 and t = 30. The vicinity between
the two distributions is striking and is found in a whole variety of examples. In [15], we also
observed this phenomenon in cases when the clustering structure is even more complex and
for systems perturbed with discrete noise.

As we mentioned earlier, for a whole variety of observables f, no clustering is detected and
the EI is 1. We therefore expect to have a Poisson distribution for the statistics of visits. This
is indeed what we observed for the baker map, with parameter α = 1/3, and the observable
f (x, y) = x+y

2 (see figure 6). We took a point z at random in the attractor (actually we iter-
ated a point in the basin several time to get it very close to the attractor), and computed the
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Figure 5. Comparison between the distributions of the number of visits for the example
in the text, a pure Poissonian distribution and a Polya Aeppli distribution with parameters
given by t = 30 and the EI θ = 7/9.

Figure 6. Comparison between the empirical distributions of the number of visits of the
observable ‘mean value’ in a ball centred at f(z) and a Poisson distribution for the baker
map.

empirical distribution of the number of visits of 105 different trajectories of length 106 for the
observable f in the interval Ir = ( f0 − r, f0 + r), where r = e−u, u being the 0.995-quantile of
the distribution.

6. Randomly perturbed systems

One could wonder what happens to the theory developed above when the dynamical system
is randomly perturbed; this has of course important physical applications when the system
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or its environment are affected by noise or when the available time series give only a partial
description of the evolution of the system variables. As we anticipated in the Introduction, we
will show that with suitable but very general choices of the perturbations on the map or on the
observable f with values in Rm, the dimension of the image measure will increase to m if less
than the dimension m before perturbation, and drops to m otherwise.

6.1. Perturbing the map

We defer to our paper [15] for an exhaustive presentation of different random perturbations in
connection with recurrence properties. For the purposes of this paper, we will consider ran-
dom transformations, where the iteration of the single map T is replaced by the concatenation
Tn
ω :=Tωn ◦ · · · ◦ Tω1 , where the ωk ∈ ω := (ω1, . . . ,ωk, · · · ) are i.i.d. random variables with

(common) distribution G. Sometimes it is possible to show the existence of the so-called sta-
tionary measure ρs, verifying for any real bounded function q:

∫
q dρs =

∫
q ◦ Tω dρs dG, see

[49] chapter 7, for a general introduction to the matter. The product P := ρs ×GN will give a
stationary measure for the random process q(Tn

ω (x), σn(w)), where σ denotes the shift. The
measure P will allow us to consider the limit theorems for such random processes in the so-
called annealed setting; it will also weight the sets Bn,z, Cn,z entering in the definition of the
quantities qn,k expressing the EI. We defer to our papers [1, 15] for the analytic derivation of
the EI in the annealed setting. We showed there in several examples, that whenever the distri-
bution G has a density, the EI becomes equal to 1, while it could be less than one for discrete
distributions. The same happens in the present situation as the following two relatively simple
situations indicate.

• Continuous noise. We consider a map T verifying the assumptions in proposition 2 and in
particular we define it on the circle; we will say later how to generalize the result to the
interval. We perturb T with additive noise, namely we put Tω(x) = T(x) + ω-mod 1 and
we choose ω with some smooth distribution G with density q bounded from below. It is
therefore possible to prove the existence of a stationary measure ρs = hsdLeb absolutely
continuous with respect to Lebesgue with density hs. The computation of the EI follows
now exactly the proof of proposition 5.3 in [1] with one difference: the connected ball
Um there is now replaced by the set f−1Bn,z which is, in general, the disjoint union of a
finite number of preimages. These sets are ‘centred’ at the pre-images {zl}l�1 of the target
point f(z). The key idea in [1] was to show that for the majority of the realizations, with
respect to GN, the numerator in the quantities qk,n was zero. The rest was of higher order
with respect to the denominator and vanished in the limit of large n. The control in the
numerator was based on the possibility to achieve, for a big portion of realizations ω , that
|T j

ω (z) − z| > 2(max |T ′|) j|Um|, where |Um| denotes the diameter of |Um| and the latter
is centred at z. It easy to see that the same lower bound persists when the random orbit
T j
ω is computed starting from, say, zl1 and the right-hand side of the bound is replaced by

the set f −1Bn,zl2
around another point of the sequence {zl}l�1. This is possible since the

diameters of the f −1Bn,zl are comparable, since f is piece-wise C1. We left the details to
the reader. At the end we get that all the ql = 0, and therefore the EI θ = 1. As we said
above the proof extends easily to the additive perturbation of a piece-wise expanding map
with finitely many branches verifying the other assumptions of proposition 2.

• Discrete noise. The purpose here is to give paradigmatic examples of the applicability
of our theory with observable, leaving specific cases to other occasions. For the discrete
noise we could adapt to our first example described at the beginning of section 3 with an
invertible f, the example studied in section 4.1.2 in our paper [15]. We considered there
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two maps on the circle T0 = 2x-mod 1 and T1 = 2x + b-mod 1, 0 < b < 1. If we now
take the observable f which is zero in 0, f(0) = 0, we can repeat the argument in [15] with
the set B(0, e−un) there replaced by our f −1B(0, e−un). The conclusion is that q0 > 0, and
that θ < 1.

We argued in section 3 that in presence of observables the EI is difficult to compute; we
believe that if in addition the system is randomly perturbed the EI is even more complicated
and in general it should be 1 or close to it.

The computation of d f
μ in presence of noise is also interesting. We first point out that our

proposition 1 easily generalizes to the annealed situation as we proved in [15] for discrete
distributions and in [1] for distributions with density. Moreover, we suppose that the target set
is fixed and the parameter τ defining the boundary level in equation (7) is independent of the
noise, so that what we estimate via the convergence to the Gumbel law is the stationary measure
of sets of type ρs (B( f (z), ε). It is therefore interesting to evaluate that stationary measures; there
are several ways to determine the existence of a stationary measures in connection with a given
random perturbation, see for instance [3, 6, 64]. Usually one needs a precise description of the
stationary measures in order to establish stochastic stability, namely to recover the statistical
properties of the unperturbed system when the noise is sent to zero. We are not interested in it;
instead we are interested in getting an experimental way to construct a stationary measure and
check its general properties. A useful result by Alves and Araujo [3] will provide us with what
we need. The idea is to look for a composition of maps close to a given one T and assume that
the noise will verify two nondegeneracy conditions, namely:

• (N1) The measure GN will be supported on a small set Sε := (supp G)N such that there is
χ = χ(ε), for which each random orbit Tn

ω (x) contains the ball of radius χ around Tn(x)
for all x ∈ X and n sufficiently large. As is written in [3], this ‘condition means that per-
turbed iterates cover a full neighbourhood of the unperturbed ones after a threshold for all
sufficiently small noise level.’

• (N2) We require that the measure
∫

1A(Tn
ω (x))dGN(ω) for any Borel set A be absolutely

continuous with respect to the Lebesgue measure Leb on X, for all x ∈ X and n sufficiently
large. This means that ‘sets of perturbation vectors of positive GN measure must send any
point x ∈ X onto subsets of X with positive Lebesgue measure after a finite number of
iterates’ [3].

We now fix x ∈ X and consider the measure, for any Borel set A ⊂ X:

ρn(A) :=
1
n

n−1∑
j=0

∫
1A(T j

ω (x))dGN(ω). (48)

It has been proved in [3], lemma 3.5, that every weak∗ accumulation point of the sequence
ρn is stationary and absolutely continuous with respect to the Lebesgue measure whenever
(N2) holds. Notice that the Cesaro mean in equation (48) is exactly the numerical proce-
dure to get the measure of a set by averaging over different realizations ω , so that we expect
that with noise verifying the assumptions (N1) and (N2), the stationary measure ρs is abso-
lutely continuous with respect to Lebesgue10. This has an interesting consequence for the

10 We notice that by general results on random perturbations, see for instance [3, 6], if the map T preserves a unique
absolutely continuous invariant measure, the absolutely continuous stationary measure is also unique.
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Figure 7. Influence of uniform noise of different intensities applied to the dynamics
(left) and to the observable (right), for the motion on the product of Cantor sets and the
non-prevalent observable f(x, y) = x − y, with f0 = f(0, 0) = 0.

computation of d f
ρs

, since in presence of smooth observable f and absolutely continuous mea-
sure ρs, theorem 9 in [58] states that the dimension of the observable exists ρs-almost every-
where, is integer and is equal to the rank of D f. We therefore expect that for such noises,
the non-integer dimensions computed in the preceding examples for non-prevalent observable,
become integer. For prevalent observable with large dimensionality, d f

μ = D1 < m, where m is
the dimension of the range of f, we expect that d f

μ drops to min(m, n), (n being the dimension
of the ambient space of the original system) in presence of a smooth stationary measure.

We tested this result by considering the dynamics on the product of two Cantor sets, with
the non prevalent observable f(x, y) = x − y, and f(z) = f(0, 0) = 0. The original dynamics
given by an iterative function system is perturbed by an additive noise drawn with a uniform
distribution in B(0, η), for a small η > 0. To avoid that the dynamics leaves the unit square, we
apply the mod-1 folding after having applied the additive perturbation. We observe in figure 7
that d f

μ , which is about 0.63 when η = 0 goes to 1 as η increases. To compute d f
μ , we simulated

trajectories of 107 points and considered blocks of size 103.
Of course, if the noise does not verify assumptions (N1) and (N2), we do not know anymore

if any weak limit of equation (48) is absolutely continuous. This is in particular true if the
unperturbed map T will not preserve an absolutely continuous invariant measure. Otherwise
and for uniformly expanding maps, it is always possible to get stationary measure which are
absolutely continuous and that independently of the nature of the noise [6].

If the stationary measure exists, the Hunt–Kaloshin theorem still applies for the perturbed
system, whatever the perturbation is. Indeed, this theorem concerns measures and not the
underlying dynamics.

When the perturbation is discrete, and the original measure has a fractal structure, the shape
of the stationary measure is not yet completely understood. We therefore choose to study
it numerically. We considered the successive iterations of a baker map with λa = λb = 0.4
and the parameter α equal to 1/4 and 1/3, each one with probability 1/2. For the observ-
able f(x, y) = (x + y, y2), we found values for d f

μ around 1.70 (we averaged the results over 20
points of the attractor), which we interpreted as the local dimensions of the stationary measure.
In fact, when we compute directly the local dimensions of this system, we also find a value
of around 1.70. If we now we take a scalar observable f(x, y) = x2 − y, we find as expected
values close to 1 for d f

μ .
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6.2. Perturbing the observable

We now suppose that the map T does not change, but the observable does. In particular we
assume that it changes in an i.i.d. way at each iteration. This could have physical importance
since it models the influence of a random environment on the deterministic dynamics, or the
uncertainty associated with the measurement process. By using the notations of section 1, we
now consider the maximum of the random variables, for k = 0, . . . , n − 1:

φ(Tk(x),ωk) = − log(dist( fωk(Tk(x)) − f (z))),

where the ωk are i.i.d. random variable with common distribution G and f(z) is the value of a
fixed observable at the point z. The probability will now be μ×GN and we indicate it with P.
We write againω for the vector with components {ωk}k=0··· ,∞. The maximum will therefore be
a function of x and ω , Mn :=Mn(x,ω). By setting ourselves in the framework of the uniformly
expanding maps considered in section 1, we immediately have

P(Mn � un) =
∫

(1Cn,z ◦ fω0 )(x) · · · (1Cn,z ◦ fωn−1)(Tn−1x)h(x) dx dGN(ω),

where the Cn,z have the same meaning as in section 1. Since the {ωk}k=0··· ,∞ are independent
and performing first the integration with respect to GN, we have

P(Mn � un) =
∫

Un(x)U(Tx) · · ·Un(Tn−1x)h(x)dx,

where

Un(x) :=
∫

(1Cn,z ◦ fω)(x)dG(ω).

For instance, if we keep an initial f with value in R and add to it a random term η with uniform
distribution in [−a, a] we have

Un(x) =
1
2a

∫ a

−a
1Cn,z ( f (x) + η)dη =

1
2a

Leb{[−a, a] ∩ [Cn,z − f (x)]}.

Another choice is to add to an unperturbed observable f two quantities η1, η2 taken with
respective probabilities p1, p2. In this case we have

Un(x) = 1 f −1[Cn,z−η1](x)p1 + 1 f −1[Cn,z−η2](x)p2.

Then

P(Mn � un) =
∫

P̃n
n(h)(x) dx,

where P̃n(h) :=P(Unh).
We are now in position to apply the spectral theory since we have just constructed an REPFO

system: we leave the details to the reader in order to check the necessary requirements. What
is important for us now, is to give an expression for the EI and for the boundary level un, which
will reflect on the dimension of the image of the observable. Let us begin with the EI. The
quantities qk,n are now defined as [44, 45]:

qk,n =

∫
(P − P̃n)P̃k

n(P − P̃n)(h)dx∫
(P − P̃n)(h)dx

.
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By posing

Vn(x) :=
∫

(1Bn,z ◦ fω)(x) dG(ω),

we immediately have

qk,n =

∫
Vn(Tk+1(x))Un(Tk(x)) · · ·Un(T(x))Vn(x)dμ∫

Vn dμ
,

which allows us to construct the EI θ.
As in the previous section, we now give the computation of the EI in two situations, with

continuous and discrete noise.

• Continuous noise
We put ourselves in the setting of proposition 2 plus other assumptions which we will

add during the proof. Let us consider the additive noise f(x) + η described above with η
much smaller than 1. The first and the last terms in the integral in the numerator of the qk,n

are:

1
2a

∫ a

−a
1Bn,z ( f (x) + η)dη and

1
2a

∫ a

−a
1Bn,z( f (Tk+1x) + η)dη. (49)

In particular both quantities are bounded by

1
2a

Leb[(Bn,z − f (T jx)) ∩ [−a, a]] � 1
2a

Leb(Bn,z), j = 0, k + 1,

and therefore the numerator in qk,n is bounded from above by 1
4a2 (Leb(Bn,z))2.

We now rewrite the denominator as∫
1

2a

∫ a

−a
1Bn,z ( f (x) + η)dη dμ =

1
2a

∫ a

−a

[
μ( f −1(Bn,z − η))

]
dη.

We now suppose that the preimages of the set Bn,z − η are at most L for any η and set
max| f′| = MD < ∞; moreover we suppose that the density h of μ is bounded from below
by hm. Then

μ( f −1(Bn,z − η)) � LhmM−1
D Leb(Bn,z − η)

which implies after integration with respect to η:∫
1

2a

∫ a

−a
1Bn,z ( f (x) + η)dη dμ � 1

2
LhmM−1

D Leb(Bn,z).

If we now divide the numerator with the denominator, we will find the ratio going to zero
for n →∞, which shows that all the qk,n are zero and the EI is one.

• Discrete noise
We give this example again in the setting of proposition 2. Take the discrete noise

with distributions {(η1, p1), (η2, p2)}, and the ball Bn,z around the point f(z). Put Bn,z,1 =
Bn,z − η1, Bn,z,2 = Bn,z − η2 and η1 < 0 < η2. If z is a point where f is monotone and we
choose n sufficiently large, the sets Bn,z,1, Bn,z,2 will be disjoint and the same for the four
sets f −1

i Bn,z, j, i, j = 1, 2. Call zi, j the point such that f(zi, j) ∈ Bn,z, j, f(zi, j) + η j = f(z).
Suppose now that the point z1,1 is a fixed point for T, but the remaining points zi, j are not
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periodic for T . Then the only term which could give a non zero contribution is q0,n, which
reads

q0,n =

∫
[1 f −1[Bn,z,1](x)p1 + 1 f −1[Bn,z,2](x)p2][1 f −1[Bn,z,1](Tx)p1 + 1 f −1[Bn,z,2](Tx)p2]h(x)dx∫

[1 f −1[Bn,z,1](x)p1 + 1 f −1[Bn,z,2](x)p2]h(x)dx
.

When n goes to infinity only the term

p2
1μ( f −1

1 (Bn,z,1) ∩ T−1 f −1
1 (Bn,z,1))

gives a non zero contribution. By using the same distortion arguments as in the proof of
proposition 2 we immediately get

q0 =
p1

|T ′(z1,1)|

⎡
⎣1 +

∑
i, j=1,2;i �= j

pj

p1

| f ′(z1,1)|h(zi, j)
| f ′(zi, j)|h(z1,1)

⎤
⎦
−1

and the EI will be θ = 1 − q0.

We now discuss the choice of the boundary levels un. First it is defined as

P
(
(x,ω);− log | fω(x) − f (z)| > un

)
→ τ/n.

By introducing the image measures

μ∗
ω := f ∗

ωμ,

we finally have∫
μ∗
ω (B( f (z), e−un)dG(ω) → τ/n.

It is interesting to explore whether we have a scaling of type

μ∗
ω (B( f (z), r) ≈ rd∗ ,

and finally ∫
μ∗
ω (B( f (z), r)dG(ω) ≈

∫
rd∗ dG(ω)

for some exponent d∗. Notice that contrarily to formula (24) we are now transporting the mea-
sure μ with some fω and computing this measure around the image of a point with a different
f.

A simple trick allows us to restore the right framework and a quite general example will
suggest some expected behaviour. Take a countable family of prevalent observable indexed by
fj, j = 1, . . . ,∞ each with a weight pj such that

∑
j pj = 1. This discrete measure is called G.

Fix one f and suppose that the range of each fj contains f(x); set μ∗
j = f ∗

j μ. Then

μ∗
j(B( f (x), r)) = μ

(
f −1
j (B( fj( f −1

j ( f (x))), r))
)
.

Call xj one of the pre-images of f(x) by fj, xj ∈ f −1
j ( f (x)). Then

μ∗
j(B( f (x), r)) = μ∗

j(B( fj(xj), r)).
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Each fj is prevalent so by theorem 1 we know that the quantity d
fj
μ (z) is equal to the minimum

between the dimension of the range of f, which we take equal to m, and the lower point-wise
dimension of μ at z, provided the latter is chosen μ-a.e. If we suppose that the point xj is typical
for fj and also that μ is exact dimensional, we have that

μ∗
j (B( f (x), r) ≈ rd

fj
μ (xj), with d

fj
μ (xj) = min(m, D1(μ)).

In conclusion ∫
μ∗
ω (B( f (z), r)dG(ω) ≈ r(min(m,D1(μ))).

Therefore for scalar functions (m = 1) and attractors of high dimensionality, we expect to get
a dimension equal to 1 when the observable is perturbed. Instead if the attractor, or repeller,
have dimension less than m, the dimension of the image measure will jump to m.

We studied the effect of uniform additive noise of different intensities to the observable
f(x, y) = x − y for the dynamics on the product of two Cantor sets described earlier. At each
iteration, we computed fk = f(Tk(x, y)) + εk, where εk are i.i.d. random variables drawn with
a uniform distribution in [−η, η]. Results are shown in figure 7. Similarly to the case where
the dynamics is perturbed, we observe a convergence of d f

μ to 1 as the intensity of noise η
increases. We stress that this monotonic convergence to 1 depicted in the figure is a numerical
artefact, since the image dimension becomes immediately 1 as soon as the noise is switched on.
To compute d f

μ , we simulated trajectories of 107 points and considered blocks of 103 points.

7. Open systems

In the paper [36] we considered the extreme value distribution for open systems, namely for
systems with holes, where the orbits enter and disappear forever. That was motivated by the
statistical description of phenomena where a perishable dynamics is approaching a fixed target
state, but at the same time it deviates to another location where it is captured or vanishes.
It is useful to extend that theory in presence of observables. A close look at the proofs in the
aforementioned paper, shows that such proofs can be easily translated to our present situations.
One of the major results in [36] was to relate the EI to the escape rate (from the hole). That was
achieved when the target set was chosen around periodic points. In presence of observables,
periodicity is much more cumbersome, as we described in proposition 2; it would be therefore
interesting to have a version of such a proposition in the presence of holes. Before doing that
we recall the main result in [36].

Proposition 4 [36] . Let T be a uniformly expanding map of the interval I preserving a
mixing measure. Let us fix a small absorbing region, a hole H ⊂ I; then there is an abso-
lutely continuous conditionally invariant measure ν, supported on X0 = I\H with density h0.
Write α = ν(T−1X0). If the hole is small enough there is a probability measure μ0 supported
on the surviving set X∞ such that the measure Λ = h0μ0 is T-invariant; we assume that h0

is bounded away from zero. Having fixed the positive number τ , we take the sequence un

satisfying nΛ(B(z, exp(−un))) = τ , where z ∈ X∞. Then, we take the sequence of conditional
probability measuresPn(A) = ν(A∩Xn−1)

ν(Xn−1) , for A ⊂ I measurable, and define the random variable

Mn(x) := max{φ(x), . . . ,φ(Tn−1x)}, where φ(x) = −log|x − z|. Moreover we suppose that all
the iterates Tn, n � 1 are continuous at z and also that h0 is continuous at z when the latter is
a periodic point. Then we have:
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• If z is not a periodic point:

Pn(Mn � un) → e−τ .

• If z is a periodic point of minimal period p, then

Pn(Mn � un) → e−τθ,

where the EI θ is given by:

θ = 1 − 1
αp|(T p)′|(z)

.

We remind that a probability measure ν which is absolutely continuous with respect to
Lebesgue is called a conditionally invariant probability measure if it satisfies for any Borel set
A ⊂ I and for all n > 0 that

ν(T−nA ∩ Xn) = ν(A) ν(Xn). (50)

The surviving set is defined as X∞ =
⋂∞

n=1 Xn, where Xn =
⋂n

i=0 T−iX0 is the set of points that
have not yet fallen into the hole at time n. Finally the escape rate η for our open system is
usually defined as η = −logα.

Let us return to the proof of proposition 2 trying to adapt it. The class of maps are the same
as those in proposition 4. The main change will concern the invariant measure which is now
the singular measure Λ on the surviving (fractal) invariant set X∞. Such an invariant measure
is absolutely continuous with respect to the conformal measure called μ0 in proposition 4. This
conformal measure plays the role of the Lebesgue measure in the proof of proposition 2; in the
latter we performed a change of variable which produced the terms |(T p)′|, where p was related
to the periodicity of the point where we computed the derivative. The conformal measure will
give a multiplicative factor αp. Moreover the density h in proposition 2 will be now replaced
with the density h0 with respect to the conformal measure μ0. In conclusion the term qk in (30)
will be now replaced by the following one, which we call q(o)

k since it refers to open systems

q(o)
k =

∑
w∈Ak

1
αk+1|T (k+1)(w)′|

1

1 + | f ′(w)|
h0(w)

∑
y∈Bk

h0(y)
| f ′(y)|

. (51)

If we want to perform numerical computations, we should know the value ofα. We already said
thatα is related to the size of the hole, in particular one can show thatα is the largest eigenvalue
of the perturbed transfer operator P̂g :=P(1Hcg), compare with the perturbed operator P̃n of
section 2. Therefore for small hole one could apply again the spectral technique of [45] and get
α as an asymptotic perturbation of 1, the largest eigenvalue of P. It is not therefore surprising
that such an expansion will be related to the location of the hole. In particular if the latter is
around a point z which is not periodic,αwill be equal to 1, instead it will be equal to 1 − 1

|(T p)′|(z)
if z is a periodic point of minimal period p. We point out again that those values hold in the
limit of vanishing holes, so that one would get something slightly different for hole with finite
size. An interesting case of a large hole is given in the next section.

7.1. EVT on fractals I

In this section and in its companion 8.2, we address the following question. Suppose we have
a fractal invariant set which is a repeller and whose Lebesgue measure is zero. How could
we get a good EVT by using the Lebesgue measure as the underlying probability? In fact
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almost all the orbits leaving on sets of positive Lebesgue measure tend to escape from the
repeller. On the other hand Lebesgue measure is the most accessible measure and repellers are
widespread objects, for instance they constitute the basin boundaries between two, or more,
basin of attraction, see [50] for applications to climate. The simplest non-trivial repeller is
probably the ternary Cantor set, C; in the above terminology, it is the surviving set of the map
T(x) = 3x-mod1 having taken the hole as the open interval (1/3, 2/3). We point out that other
repellers could be generated as the surviving sets in open systems, so that the next considera-
tions could be useful to understand larger class of fractal invariant sets. The first study dealing
with the ternary Cantor set in connection with EVT was mostly numerical and it was given in
[53]: the authors conjectured the existence of a limiting extreme value law with an EI equal to
1. A rigorous proof appeared recently in the paper [32]; in particular, the authors introduced
the observable

φ(x) =

{
n, n ∈ Cn

∞, otherwise

where Cn is the disjoint union of the 2n sets in the construction of the Cantor set C.11

Notice that the function φ will have his maximum (infinity) on the Cantor set, otherwise it
says how fare we are from it: it is called the Cantor ladder function in [32, 53]. The probability
was chosen as the Lebesgue measure Leb on the unit interval. Given τ > 0 and by introducing
the sequence of thresholds

wn :=

⌊
τ

(
3
2

)n⌋
,

it was proved in [32] that

lim
n→∞

Leb
(
Mwn � n

)
= e−τ (1− 2

3 ),

where Mn is the process as defined in (2). In this setting, the EI is therefore equal to 1/3. This
result is interesting since the limit distribution is obtained with the Lebesgue measure, which
allows us to look at the whole Cantor set as a rare event.

We now instead provide a local inspection to the Cantor set by giving the statistics of the
hitting time around any point on the repeller. This statistics will be given by a measure which
is absolutely continuous with respect to Lebesgue. All this will follow automatically from our
proposition 4 if it would hold for such a big hole like H = (1/3, 2/3). Actually, in that theorem
we required the hole to be small to be able to construct the conformal measureμ0 and its density
h0 with a perturbative argument. In our case, we can do it directly since the map is easy enough.
If we set P the Perron–Frobenius operator associated to T and we define the perturbed operator
P0 as P0(g) = P(g1Hc), where g is a function of BV, we check easily that, having set α = 2

3 :

P0h0 = αh0 (52)

P∗
0μ0 = αμ0, (53)

where: P∗
0 is the dual of P0; h0 = 3/2 on the unit interval and μ0 is the balanced measure

described below. The absolutely continuous conditionally invariant measure ν will be a mea-
sure with density 3/2 on the closed intervals [0, 1/3], [2/3, 1], and 0 on the hole. Using it to

11 The Cantor set is given by C = ∩n�1Cn, where the Cn denotes the disjoint union of the 2n (cylinder) sets obtained
by removing the middle third part of each connected component of of Cn−1.
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construct the absolutely continuous probability Pn given in theorem 4, which is numerically
accessible, we could place target sets around any point z ∈ C, as balls of radius e−un , where
the thresholds un can be chosen as 3

2 nμ0(B(z, e−un)) = τ . Therefore we get convergence to
Gumbel’s law for our process Mn (2) with:

• the EI is equal to 1 if the point z is not periodic, thus partially supporting the conclusions
of [53].

• if we choose z as a periodic point (they are dense in C), of minimal period p, we get for
the EI θ:

θ = 1 − 1
2p

.

The global [32] and our local approaches to the EVT distribution just described, considered
the Cantor set as the non-wandering set of a dynamical system defined on the unit interval.
One could consider the dynamics defined directly on the Cantor sets, which means to study
the system (C, T|C). We took this point of view in [26], where the transfer operator was defined
directly on C with the potential |T ′|−dH, where dH was the Hausdorff dimension of the Cantor
set (dH = log 2

log 3 for the ternary Cantor set). It turns out that the invariant (Gibbs) measure for that

potential is exactly the measureμ0 introduced above12. But there was another reason for having
chosen such a potential; in fact the conformality of this measure implies that for any measur-
able set A where T is one-to-one, we have μ0(TA) = 2μ0(A). Therefore that measure gives
2−n masses to the 2n intervals Cn of length 3−n at the nth generation in the construction of C.
One could also show that this measure is the weak-limit of the sequence of point masses mea-
sures constructed with the pre-images of each point in the interval both weighted by 1/2. This
is a sort of ergodic theorem for repellers, which makes μ0 accessible for numerical purposes: it
is often called a balanced measure. Using μ0 as the probability for the EVT distribution directly
on the Cantor set, we find Gumbel laws with the same behaviour for the EI described above.
We will use again this balanced measure in section 8.2.

8. Hitting time statistics in the neighbourhood of sets

8.1. Smooth sets

Our approach allows us to compute the hitting time statistics (and the statistics of the number
of visits) in shrinking neighbourhoods of a C1 surface Γ ⊂ Rk. At this regard, it is enough to
consider an observable f ∈ C1(Rk,R) such that f(x) = dist(x,Γ). In this case, we have for all
n the identity

{x ∈ X, | f (x) − 0| < e−un} = {x ∈ X, dist(x,Γ) < e−un}.

The hitting time statistics in the target sets Γn = {x ∈ X, | f (x) − 0| < e−un} can be deduced
from our theory and is given by the distribution of Mn, which converges to the Gumbel law. We
then automatically obtain the hitting time statistics in the sets {x ∈ X, dist(x,Γ) < e−un}. The
parameters of this limit law are often computable explicitly (see section 4 for the computation
of d f

μ ).
We now give two examples based on the baker map and on the product of two Cantor sets.

12 Notice that μ0 is also invariant in the framework of proposition 4 since it differs from the measure Λ by the constant
f0 = 3/2. In this respect Λ is not a probability measure.
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• Let us take Γ a straight line of equation ax + by + c = 0. The distance from a point z =
(x, y) ∈ X to Γ is given by

dist(z,Γ) =
|ax + by + c|√

a2 + b2
.

Let us take the C1 observable

f (x, y) =
ax + by + c√

a2 + b2
,

so that with this choice of observable, we have for all n the identity

{z ∈ X, dist(z,Γ) < e−un} = {z ∈ X, | f (z) − 0| < e−un}. (54)

The hitting times statistics in the set in the right-hand side is given for large n by the
Gumbel law with scale parameter 1/d f

μ . For the baker’s map d f
μ is 1 if b �= 0 and less than

1 if b = 0 (see section 4). The EI was computed numerically by two of us in [26] in the
neighbourhood of the diagonal and we found a value strictly less than 1.

For the product of the two Cantor sets, we found in section 4 that for straight lines
parallel to the coordinate axis and in the neighbourhood of the diagonal, d f

μ was strictly
less than one. In [26] we proved analytically that the EI computed around the diagonal
was equal to 1/2.

• Let us take now Γ as the circle in R2 of centre (a, b) and of radius R, of equation

(x − a)2 + (y − b)2 − R2 = 0.

The distance from a point z = (x, y) to Γ is given by

dist(z,Γ) = |
√

(x − a)2 + (y − b)2 − R|.

Let us take the C1 observable

f (x, y) =
√

(x − a)2 + (y − b)2 − R,

so that with this choice, we have again the equivalence (54).
As before, the hitting times statistics in the neighbourhood of the circle is given for

large n by the Gumbel law with scale parameter 1/d f
μ . For the baker’s map d f

μ is D1 when
R = 0 as we already showed, and 1 whenever R > 0, as it easy to see by adapting the
argument given for the double Cantor set in the neighbourhood of the diagonal.

For the product of two Cantor sets we have again d f
μ < 1 for R = 0 and also d f

μ < 1 for
R > 0, proving that the observable is not prevalent. In both cases the EI follows the usual
dichotomy for R = 0. We do not dispose of rigorous results in the other case R > 0.

One can generalize this approach to higher dimensional REPFO systems and generic C1

hypersurfaces.

8.2. EVT of fractals II

We could now wonder what happens if we consider the distance with respect to a fractal set, for
instance the ternary Cantor set introduced in section 4. An easy way to do it and which uses the
ideas of this section, is to consider the ternary Cantor set placed along the y-axis in the Cartesian
product studied in section 4.2. If we consider the function f(x, y) = x, we are led to study the
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EVT distribution for the observable (1) with φ(x, y) = −log(|x|). As the underlying probability
we take the balanced measure μ(2) introduced in section 4.2 and described in section 7.1. We
are now interested in computing the EI. Since the Cantor set on the y-axis is invariant for the
product map T × T on the unit square (the map T was defined in section 4.2), we can adapt the
proof ‘along the diagonal’ given by us in [26] section IIB or in [22, 38], and find easily that
only the term q0 in the expansion of the EI will not vanish. Then we use the conformality of
the factor measure μ along the x-axis and we get q0 = 1/2, giving also an EI equal to 0.5. It
is interesting to compare this result with that in [32] described in section 7.1 and with a global
approach to the Cantor set as a rare event: the EV found there was 1/3.

Up to now, EVT has been applied to compute hitting time statistics in the neighbourhood
of some sets of points [5, 33], some Cantor sets [32, 51], or the diagonal in product spaces
[16, 26]. We now provide generalizations to arbitrary C1 surfaces. We point out that a few
results have been obtained in that direction in [18], where for the Arnol’d cat map and a C1

curve Γ ⊂ [0, 1]2, the asymptotic behaviour of the shortest distance of the system to Γ up to a
time n was derived for Lebesgue almost every starting point.

9. Large deviations

We pointed out in the Introduction and experienced in the preceding sections, that one the
most useful, and used, consequences of the EVT applied to dynamical systems, is the possi-
bility to compute numerically the point-wise (also named local), dimensions of the invariant
sets. It turns out that in several time series given by natural phenomena or experimental sig-
nals, these local dimensions deviate significantly from each other, while in the ergodic setting
they should coincide almost everywhere. Instead of seeing in this behaviour only a numeri-
cal effect, we attributed it to the presence of large deviations in the convergence to the local
dimension. The latter manifest themselves on small, but not negligible, scales, a regime which
we called penultimate [16]. The presence of large deviations for the point-wise dimensions has
been rigorously proved for conformal repellers13 in the paper [19]. Suppose we have an exact
dimensional measure μ, call D1 the μ-almost sure limit, and suppose that the following limit
exists

Dq = lim
r→0

log
∫
μ(B(x, r))q−1d f∗μ(x)
(q − 1) log r

. (55)

for all q ∈ R and moreover the function τ (q) = Dq(q − 1) is C1 over R and strictly convex14.
This is what happens for conformal repellers, where the limit (55) exists for real q [55]. Then
we are in the setting of the large deviation result by Gardner-Ellis, see for instance [20], which
allows us to state for all interval I:

lim
r→0

1
log r

log μ

({
z ∈ X s.t.

log μ(B(z, r))
log r

∈ I

})
= inf

s∈I
Q(s). (56)

13 These are the invariant sets of uniformly expanding C1+α maps, defined on smooth manifolds and whose derivative
is a scalar times an isometry. The repeller arises as the attractor of pre-images of the map, see [8] for an exhaustive
description. Dynamically generated Cantor sets on the line, IFSs with the open set condition, disconnected hyperbolic
Julia sets, are all examples [9] of conformal repellers. It is worth mentioning that such repellers can be coded by a
subshift of a finite type and they support invariant measures which are Gibbs equilibrium states. This makes them
particularly suited for the application of the thermodynamic formalism.
14 For q = 1, the value for Dq is obtained by l’Hopital rule.
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The rate function Q(s) is determined by the Dq:

Q(s) = sup
q∈R

{−qs + qDq+1}. (57)

Remark 4. We notice that when the limit (55) exists in some interval of values of q, then we
have to restrict the interval I to a suitable neighbourhood Ĩ of the information dimension D1,
and for s ∈ Ĩ we can control only deviations larger than D1, namely we have

lim
r→0

1
log r

log μ

({
z ∈ X s.t.

log μ(B(z, r))
log r

> D1 + s

})
= inf

s∈̃I
Q(D1 + s). (58)

See [39], lemma XIII.2, for the details.

It is interesting to ask whether large deviations are present when an observable is applied to
the measure. Let us start by defining the generalized dimension of order q of f∗μ (if it exists)
as:

D f
q = lim

r→0

log
∫

f∗μ(B(x, r))q−1d f∗μ(x)
(q − 1) log r

. (59)

Suppose now that the image measure f∗μ is exact dimensional; if the function D f
q exists and is

differentiable in some interval of values of q and moreover it is there strictly convex, we have
a large deviation principle like (56), eventually slightly modified as in (58). Actually, remark
4 becomes particularly pertinent in view of the next result by Hunt and Kaloshin. They in fact
showed that for a prevalent set of C1 observables f : Rn → Rm, and for 1 � q � 2, D f

q is given
by

D f
q = min(Dq, m). (60)

This result implies that when m is smaller than the Dq’s, the image measure is not anymore
multifractal, in the sense that all the D f

q are equal to m, for 1 � q � 2. The function (q − 1)D f
q

is not strictly convex and therefore no large deviation principle holds for d f
μ .

On the other hand, if m is larger than the Dq, we have from equation (60) that D f
q = Dq,

at least for 1 � q � 2. Therefore, the image measure inherits some part of the generalized
dimensions spectrum from the original measure, which could influence the fluctuations of d f

μ

around D1.
Apart the threshold imposed by m, the observable f will not exhibit itself explicitly in the

detection of d f
μ given by equation (60) in the range q ∈ [1, 2]. One could ask if the influence

of f will manifest for values of q outside the interval [1, 2]. Hunt and Kaloshin gave examples
of dynamical systems where Dq �= D f

q for q /∈ [1, 2].
We will instead show that in presence of non prevalent observable the image measure will

not in general satisfy equation (60). In conclusion: the signature of the observable f could
become apparent by affecting the typical value of d f

μ for large and small q, or when f is not
prevalent15. This issue could be important when we analyse time series generated by physical
observables, especially if the underlying dynamical systems is high dimensional. We will study
a few of those cases in a future publication.

15 We remind however that the observable manifests itself in the computation and in the detection of the EI, as we
showed in formula (30).
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9.1. Examples

In the following examples we will mostly consider the baker’s map for which we can establish
rigorous results. The baker map does not give a conformal repeller, but we could reduce to it
by conditioning on the invariant manifolds.

9.1.1. Vertical linear observable. We consider the baker map studied in the previous sections.
The attractor of this map has a multifractal structure [10, 54].

Let us take the observable f(x, y) = x and consider∫
f∗μ(B(z, r))q−1 d f∗μ(z),

where z ∈ R.
First, by definition of image measure we bring the integration over the SRB measure

supported on the baker’s attractor:∫
f∗μ(B( f (v), r))q−1 dμ(v), v = (x, y).

We notice that f∗μ(B( f (v), r)) is exactly the SRB measure of a vertical strip centred at x
and with width r. We now use disintegration and write

Σ(x) := {(x, y); |x − y| < r, y ∈ [0, 1]} = f −1(B(x, r)),

and ∫
f∗μ(B(x, r))q−1 dμ(v) =

∫
Fs

∫
Ws,ν

f∗μ(B(x, r))q−1 dμs,ν dζ(ν),

where Ws,ν denotes an horizontal stable manifold indexed with ν and ζ is the counting mea-
sure over the stable foliation Fs. Since stable manifolds are horizontal segments of length 1
emanating from all but countably many points y on the y-axis, we will, from now on, identify
ν with y and the first integral on the right-hand side of the expression above will be evaluated
between 0 and 1. It has been proved in section 4.2 that

f∗μ(B(x, r)) = μs,y(Σ(x) ∩ Ws,y),

which is the conditional measure of a ball of radius r around the point with abscissa x. This mea-
sure does not depend on y, and also the conditional measures are the same on all stable fibres
and, as we said in section 4.1, they are the invariant (balanced), measure of a one-dimensional
conformal repeller with two linear branches of slopes λ−1

1 and λ−1
2 and weights α and 1 − α.

In conclusion

D f
q = lim

r→0

log
∫

f∗μ(B(x, r))q−1d f∗μ(x)
(q − 1) log r

= lim
r→0

log
∫ 1

0 μs,y(Σ(x) ∩ Ws,y)q−1dμs,y

(q − 1) log r
.

Therefore the generalized dimensions spectrum D f
q of the image measure will be that of the

associated 1 − D IFS which are the solution of the transcendental equation [10, 54]:

αqλ
(1−q)D f

q
a + (1 − α)qλ

(1−q)D f
q

b = 1,

which differs from the generalized dimensions Dq of the baker attractor (in fact we have
Dq = 1 + D f

q ) [54]. Therefore, this observable does not belong to the prevalent set of the
Hunt–Kaloshin theorem, but we already proved that the observable f(x, y) = x is not prevalent.
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9.1.2. Horizontal and oblique linear observable. We take now first the observable f(x, y)
= y (which is prevalent for d f

μ ) and we disintegrate along the unstable manifolds Wu,ι (see
section 4.1), where the index ι characterizes the uncountable family of unstable leaves
which foliate baker’s attractor. In this case we move up a horizontal strip of width r:
Σ(y) := {(x, y); |x − y| < r, x ∈ [0, 1]} = f−1(B( f(y), r)). This strip has a measure which is
independent of its height and of the unstable leaf Wu,ι; it is therefore given by 2r (the ver-
tical thickness) times 1 which is the full balanced measure along the x-axis. Remember also
that each unstable manifold carries a normalized Lebesgue measure Leb. Therefore we have

D f
q = lim

r→0

log
∫

f∗μ(B(x, r))q−1 d f∗μ(x)
(q − 1) log r

= lim
r→0

log
∫

Leb(Σ(y) ∩ Wu,ι)q−1 dLeb(y)
(q − 1) log r

= lim
r→0

log
∫

(2r)q−1 dLeb(y)
(q − 1) log r

= 1,

which shows that all the generalized dimensions for the image measure are equal to 1, and this
proof works for any q. The same proof immediately generalizes to linear scalar observables
of the form f(x, y) = ax + by + c, with b �= 0 and it will give that the D f

q = 1, ∀ q, just
establishing that there are no deviations from the typical value D1 = 1.

9.1.3. Numerical verification. We computed numerically the D f
q of the baker map for the lin-

ear observables introduced at the end of the previous section, using the EVT based method
developed in [16]. For different values of a and b �= 0, we found a spectrum of generalized
dimensions very close to 1 up to q = 5 (the discrepancy of the method for high q yields
imprecise results for q > 5). In conclusion, we believe that for a prevalent set of smooth
scalar observable (or more generally for those for which the dimensionality m is smaller
than the generalized dimensions of the system), D f

q will be 1 (or m) for all q. We success-
fully tested this matter numerically for different C1 scalar observables. Similar results are
found for the Hénon system and for a multifractal Sierpinski gasket that we constructed
with the iterated functions system technique presented in [16]. We took the probabilities
p1 = p2 = 1/4 and p3 = 1/2. The generalized dimensions for this system are explicit (see
[16]) and comprised between 1 and 2. When we take an observable in R2, we find a per-
fect agreement between D f

q and Dq (see figure 8) for q ranging from 2 to 5. This is a
sign that the result of Hunt–Kaloshin may hold for a large class of systems in a much
broader range for q than the interval [1, 2]. We proceeded our computations using the
EVT based method, as for the baker map. We took trajectories of length 108 and blocks of
size 104.

10. Applications

EVT for dynamical systems has been a promising framework for devising metrics to study
the climate system. Several heuristic studies [14, 16, 24, 27] have focused on the appli-
cability to climate variables. Although those studies did not have an immediate mathe-
matical justification, they provided insights on the multifractal, non-stationary nature of
the climate attractor. Here we give an a posteriori justification of those results, show-
ing that the EVT can be applied to a wide range of observables. It is worth mentioning
that in the physical applications, instead of looking at an observable defined on the phase
space, we will follow it in time, which would be equivalent by assuming ergodicity of the
transformations.
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Figure 8. D f
q computed for a Sierpinski gasket and the observable f(x, y) = (0.2x +

2y, x2), compared with theoretical values of Dq.

10.1. From scalar to vector-valued observables

A common approach to compute the dimensions of the attractor is to use embedding
techniques. It consists in taking a C2 scalar observation α(x), that is accessible through
measurement, and constructing a delay observable fk(x) = (α(x),α(T(x)), . . . ,α(Tk(x))) (a lag
parameter is sometimes added in the numerical studies) [61]. Takens’ theorem states that when
the map T is a C2 diffeomorphism defined on a smooth manifold of dimension D and α is a
C2 function, the observable fk is generically an embedding into R2D+1. The notion of (topo-
logical) genericity echoes with the notion of prevalence used in the Hunt–Kaloshin theorem.
In fact Takens’ theorem has been strengthened in [61] just by using prevalent observables
defined directly on a compact invariant subset of some Rl and where D is now the box count-
ing dimension of that compact set. As fk is a diffeomorphism, it preserves the fine structure
of the attractor, it allows to reconstruct it and its dimension can be computed numerically.
The results of Hunt–Kaloshin, however, state that it is enough that k > D1 to have access to
the local dimensions of the attractor, provided the delay coordinate observable fk is prevalent
(which is surely the case for a dense set of C1 observables α). Therefore the Hunt–Kaloshin
result provides a more efficient way to access the dimension of the attractor, but it is surely not
enough, in general, to reconstruct it.

Remark 5. It is very important to point out that in order to get the dimension we do not need
to reconstruct the attractor, since the dimension of the image measure is provided directly
by the extreme value technique as one of the parameter in the numerical detection of Gumbel’s
law.

It is well known that embedding techniques often work efficiently for a number of delay
coordinates k that is much smaller than the theoretical value of 2D prescribed by the Takens
theorem, at least when it comes to the computations of the attractor dimensions [61]. For the
Lorenz system for example, it is enough that k = 3 [62]. This result is particularly well under-
stood with the Hunt–Kaloshin results, for which it suffices to have k > D1 to have that d f

μ = D1
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Figure 9. Value of d fk
μ found for different values of k, for the Lorenz system and the

scalar observable f(x, y, z) = x. The parameters used are described in the text. The error
bars are the standard deviations of the results.

almost everywhere. To illustrate this fact let us begin with a more general consideration. Let
f be a C1 scalar function defined on a neighbourhood U of our attractor and let the map T be
smooth enough in order to apply theorem 1. We then define the vector-valued function, with
values in Rk and components ( f1, . . . , fk):

fj(x) = f (T j−1x), x ∈ U , j = 1, . . . , k. (61)

We are now in position to apply the Hunt–Kaloshin theorem and to look at the least embedding
dimension. We tested it on the Lorenz map introduced in section 4.3, reconstructed with the
Euler method with step h = 0.01. With this iterative procedure, the system could be seen as a
discrete mapping, to which we apply our theory.

In figure 9, we computed the local dimensions associated with a vector-valued function like
equation (61) with f defined by the projection on the x axis, f(x, y, z) = x. For the compu-
tations, we generated trajectories of 4 × 107 points and took a block size of 104. The results
are averaged over 20 different trajectories and target points. We find indeed that d f

μ = k for
k < D1 ≈ 2.04 and becomes constant equal to D1 for k > D1. This suggests that the EVT based
methods to compute local dimensions are suited to determine the dimensions of the attractor
from a scalar observation f: it is enough to construct the delay-coordinate observable fk and
compute its associated dimension d fk

μ for different values of k, until they do not vary anymore
as we increase k or until a non-integer value is obtained. We have then attained the dimension
of the attractor D1.

10.2. Vector-valued observables

At the end of the previous section we showed how to construct a vector-valued observable
by composing a given scalar function with the dynamics. This is the spirit of the embedding
approach. It turns out that this procedure has its limits, for instance if the map T is not reg-
ular enough to construct prevalent delayed-coordinate observables. Sometimes a variety of
observables are available and could be used to compute the local dimensions of the original
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system, provided their cardinality, say L is large enough. Physicists can measure various quan-
tities associated to the system (temperatures, pressures, velocities, positions. . . ), which could
be arranged as the outcomes of a function with values in RL. It is enough that L is larger than
the information dimension of the system to be able to compute the latter. For example, in order
to study the dynamics of the atmospheric circulation over the North Atlantic, several authors
[14, 16, 24, 27] have considered an observable that is a vector containing the values of the
sea-level atmospheric pressure on a grid of ≈ 103 locations over the North Atlantic. These
data were analysed by [16, 27]. The source of variability of the SLP atmospheric pressure
data has been related to the properties of the atmospheric circulation, namely the switching
between different weather regimes [24], the occurrence of extreme weather events [14] and the
non-stationarity of the underlying attractor due to climate change [27]. The local dimensions
computed from these observations were centred around the value 13, which is much smaller
than the dimension of the space where evolves the observable (≈ 103) [27]. The Hunt–Kaloshin
theorem can provide a justification to these results: it is enough that the dimension of the
ambient space k where the observable evolves (here ≈ 103) is larger than D1 (the informa-
tion dimension of the underlying system) to get that d f

μ is equal to D1 almost everywhere. In
other words, when we compute some low and non-integer values for d f

μ , it could be the sign
that the information dimension of the underlying system is also not integer and much smaller
than that of the ambient space.

To study what happens when the dimension of the observable is smaller than the information
dimension of the attractor, we use again the SLP data from the reanalysis of the National Cen-
ters for Environmental Prediction (NCEP) [43], but we now investigate the effect of averaging
the information over all the grid points. To this purpose, we define the function

φZ(X) = − log |〈SLP(Z)〉 − 〈SLP(X)〉|,

where 〈SLP(X)〉 is the spatial arithmetic average value of the xi:

〈SLP(X)〉 = 1
n

n∑
i=1

xi,

and Z = (z1, . . . , zm) corresponds to a particular configuration of the pressure field.
To compute θ and d f

μ associated with this observable, we perform a computation of the
empirical distribution of the variable M50 defined in equation (2), for different points Z ∈ X.
For each of them, we find that the best fit of the empirical distribution is a Gumbel law of scale
parameter close to 1 and estimates of the EI are close to 1, like in the baker map situation.
The fittings are performed using the Matlab function gevfit. For the computation of the EI, we
used the estimate θ̂0 introduced in [15], with a threshold value equal to the 0.99-quantile of
the observable distribution. Both the values of the EI and of d f∗μ that we found have small
variability around 1, due to finite effects. In figure 10 the distributions of the values found for
θ and d f∗μ over the different points Z of the attractor are represented. These estimates are in
perfect agreement with the results presented in this work.

We now study the statistics of the number of visits of the observable in the neighbourhood of
a particular value for the presented climate data, as we explained in section 5. We can observe
in figure 10 on the left, that finite effects lead to an estimate of θ that is slightly smaller than
1, due, among other reasons, to the persistence of the orbits in the neighbourhood of the point
z. This clustering is very likely to disappear if the amount of data allows to take a higher
threshold, and we would observe a pure Poisson distribution at the limit of high threshold. We
get a distribution that is very close to Pòlya–Aeppli of parameters t and the EI computed at
a finite resolution. This is consistent with the discussion on the figure 5: in many situations,
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Figure 10. Distributions for the atmospheric circulation (SLP) data presented in the text
of the EI (left) and of the df∗μ( f (z)) (right) found for different points z of the attractor.

Figure 11. Comparison between the empirical distributions of the number of visits of
the observable mean value in a ball centred at f(z) and a Polya–Aeppli distribution for
the climate data presented in the text.

although we know we do not have a Pòlya–Aeppli distribution, it seems that it still models the
limit law quite well. In our computations, we studied visits of the observable f (X) = 1

n

∑n
i=1 xi

in the ball ( f0 − r, f0 + r), where f0 is the value taken by the observable on July, 1st, 1948 and
r = e−u, u being the 0.98−quantile of the distribution of φ (figure 11).

The existence of extreme value laws for recurrences of physical observables also justi-
fies the results obtained in [2, 28, 29, 35, 57], where the rate of statistical convergence to
the extreme value laws was used to estimate the characteristic recurrence time of tempera-
ture values (termed recurrence spectra in [2]). They show that despite the slow convergence of
the dynamical systems metrics towards unknown asymptotic values, their distribution is rem-
iniscent of an underlying high-dimensional attractor. On this object, the recurrences around
high dimensional fixed or periodic points determine interesting dynamical behaviours such
as switching between metastable states [27], critical phenomena [35] or different basin of
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attraction [12] that can be detected by deviations of the dynamical indicators from their
expected asymptotic behaviour.

11. Conclusions

This paper contains a few rigorous results illustrated by several examples. The latter are worked
out relatively easily, but it was important for us to show that the statistical indicators established
by the theory can be explicitly computed and compared with the numerical simulations. The
dynamical systems we considered have strong mixing properties, in particular they exhibit
exponential decay of correlations on suitable spaces of observables. This allowed us to use
a very efficient perturbative theory and compute the EI in a broad variety of situations [15].
We believe that our results could be generalised to larger class of systems, even non-uniformly
hyperbolic, or exhibiting intermittency [30, 31], using for instance techniques with more proba-
bilistic flavour [1, 17, 33, 34, 49]. In this perspective, we also considered more complex systems
and physical time series that we analysed numerically and that can be tested and interpreted
in the framework of our theory. As we explicitly shown in the last section, we believe that
our results are useful for physical and natural systems, in the sense that they provide a formal
framework for the applications presented in [12, 23, 27, 35, 57]. They partially answer the con-
cern raised in [13] about the slow convergence of dynamical system metrics for climate data
and make useful asymptotic theorems for finite data sets.
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