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Abstract – We propose an analysis of the effects introduced by finite accuracy and round-off
arithmetic on discrete dynamical systems. We investigate, from a statistical viewpoint and using
the tool of the decay of fidelity, the error of the numerical orbit with respect to the exact one. As a
model we consider a random perturbation of the exact orbit with an additive noise, for which exact
results can be obtained for some prototype maps. For regular anysocrounous maps the fidelity has
a power law decay, whereas the decay is exponential if a random perturbation is introduced. For
chaotic maps the decay is superexponential after an initial plateau and our method is suitable to
identify the reliability threshold of numerical results, i.e. a number of iterations below which global
errors can be ignored. The same behaviour is observed if a random perturbation is introduced.

Copyright c© EPLA, 2010

Introduction. – Numerical computations for dynam-
ical systems are affected by round-off errors due to
the finite-accuracy representation of real numbers.
Continuous-time systems, defined by initial-value ordi-
nary differential equations, are replaced by iterated maps,
defined by numerical-integration algorithms. Supposing
accurate bounds for the global discretization error and
estimates on the round-off error for the map are available,
the discrepancy between the exact and the numerical
orbit is controlled. For maps with an hyperbolic attractor
the shadowing lemma assures the existence of an exact
orbit close to a numerical one, provided that the local
error (single iteration) is small enough. This lemma is of
relevant theoretical importance since it gives information
about the reliability of computations of average proper-
ties, but its non-constructive character (the initial point
of the shadowing orbit is not known) limits its practical
use [1,2]. We propose a direct comparison between the
exact and the numerical orbit to determine the statistical
distribution of the error when the initial condition spans
its accessible range and the use of fidelity to determine
the asymptotic distribution of errors and the way it is
reached. This approach allows us to study the global
error in a quantitative way. Due to the peculiar character
of the round-off error, which depends on the machine
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architecture, only experimental results can be presented.
Nevertheless, since it is customary to assume that the
local truncation error is random, we analyze also the error
induced by random perturbations, for which an analytical
treatment can be provided by using the fidelity.

Additive noise. – We begin by recalling the main
results obtained applying the fidelity to random perturba-
tions of dynamical systems. We consider a map T defined
on a phase space X which is a subset of Rd, endowed with
an invariant physical measure µ defined by

lim
n→∞

∫
X

Φ(Tn(x)) dm(x) =

∫
X

Φ(x) dµ(x), (1)

where m denotes the Lebesgue measure and Φ a contin-
uous observable. Let us then consider a sequence of inde-
pendent and identically distributed random variables ξi
with values in the probability space Ξ and with proba-
bility density η(ξ) such that Tx+ ε ξ still maps X into
itself. The iteration of the map T is therefore replaced by a
composition of maps chosen randomly close to it (note that
T itself is recovered when ε= 0): Tnε (x) = (T + εξn) ◦ (T +
εξn−1) ◦ . . . ◦ (T + εξ1) (x) and the stationary measure µε
of the process is defined by [3]

lim
n→∞

∫
X,Ξ

Ψ(Tnε (x)) dm(x)
∏
i

η(ξi) dξi =

∫
X

Ψ(x) dµε(x).

(2)
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We want to study the statistical properties of the error
at the n-th iteration, defined as ∆nε (x) = T

n(x)−Tnε (x).
Let ρnε be the probability density of the random

variable ∆nε defined as P(∆nε � t) =
∫ t
−∞ ds ρ

n
ε (s) ds.

The expectation value is defined by E(f(∆nε )) =∫
f(∆nε ) dm(x)

∏
η(ξi) dξi =

∫ +∞
−∞ f(s) ρnε (s) ds. The pro-

bability density can be studied directly, through a Monte
Carlo sampling over initial conditions x and random
perturbations ξ, or indirectly, using the fidelity defined
through the following integral:

Fnε =

∫
X,Ξ

Φ(Tn(x))Ψ(Tnε (x)) dm(x)
∏
i

η(ξi) dξi. (3)

Indeed the expectation value of eiu∆ε , is just the fidelity
Fn(ε) =E(e

iu∆nε ) if we choose Φ(x) = eiu x and Ψ(x) =
e−iu x. As a consequence since E(eiu∆

n
ε ) =

∫
eiut ρnε (t) dt

the probability density ρnε (t) is given by the inverse
Fourier transform of the fidelity. For a large class of
maps which mix exponentially fast, it can be shown that
the fidelity converges to

∫
X
Φ(x) dµ(x)

∫
X
Ψ(x) dµε(x),

and the absolute value of the difference between the
integral (3) and its limiting value in terms of the invariant
and stationary measure will be called the fidelity error
and denoted with δFnε . Note that by the asymptotic
characterization of the invariant and stationary measures,
the fidelity error could be equivalently defined as

δFnε = Fnε −
∫
X

Φ(Tn(x)) dm(x)

×
∫
X,Ξ

Ψ(Tnε (x))
∏
i

η(ξi) dξi dm(x). (4)

If the fidelity error converges to zero, then the fidelity
converges to the product of the Fourier transforms of the
measures

∫
X
eiux dµ(x)

∫
X
e−iux dµε(x) and its inverse

Fourier transform is just ρ∞ε . The initial error distribution
is the Dirac distribution ρ0(s) = δ(s), whereas it can be
shown that if the invariant and stationary measures are
Lebesgue and the map is defined on the torus T1, then the
asymptotic distribution is the triangular function ρ∞(s) =
(1− |s|)ϑ(1− |s|) [4]. If we suppose the perturbation is not
random, setting for instance all the ξi equal to 1, then
Tnε = (T + ε)

n and we are just comparing the iterates of
two close deterministic maps. In this case we have not to
integrate on the noise and the fidelity simply becomes

F ′nε =
∫
X

dm(x)Φ(Tn(x))Ψ(Tnε (x)) (5)

This is exactly the definition of classical fidelity which
was proposed in [5] and which was modified in [6] with
the addition of the noise. In fact it can be proved that
the fidelity with noise (3) generally decays, while this
is not the case for the version (5). However the latter
is closer to the quantum fidelity which is defined in
the following way. Let us suppose that |ψ〉 is an initial
quantum state which evolves forward up to time t under
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Fig. 1: ρnε for 3x mod 1, ε= 2
−25. Top, left: n= 13; top, right:

n= 15, bottom: n= 18. Compare the transition times with the
corresponding decay of fidelity in fig. 3, and note that the
transition happens in correspondence with the threshold.

the Hamiltonian H0 and then backward for the same time
t under the perturbed Hamiltonian Hε =H0+ εV , where
V is a potential. The overlap of the initial state with its
image eiHεte−iH0t|ψ〉 is quantified by the quantum fidelity
defined as fq(t) = |〈ψ|eiHεte−iH0t|ψ〉|2.
We first recall the main results obtained for randomly

perturbed maps [4]. For two prototype systems such as
the translations on the torus (a regular system) and the
Bernoulli map (a chaotic system), analytical results are
available also for the transient. Choosing the probabil-
ity distribution of the random perturbations as η(ξ) =
1
2χ[−1,1](ξ) we found that the fidelity for translations is
given by [4]

Fnε =
∑
k∈Z
ΦkΨ−kSn(kε), S(x) =

sin(2πx)

2πx
, (6)

where Φk and Ψk are the Fourier components of functions
Φ and Ψ, whereas for the Bernoulli map Tx= qx mod 1,
with integer q� 2 we have

Fnε =
∑
k∈Z
ΦkΨ−kSn,q(kε), Sn,q(x) =

n−1∏
j=0

S(qjx). (7)

In the first case the decay of fidelity is exponential, with
time scale ε−2. In the second case we have a plateau
of length n∗ ∝−ln ε, followed by an ε-independent
super-exponential decay. Below the threshold n∗ the
error probability distribution can be approximated by a
δ-function, and the perturbed system can be considered as
equivalent to the unperturbed one. The asymptotic error
distribution is the same for the two systems (since the
physical and stationary measure coincide with Lebesgue),
and results to be the triangular function (fig. 1).
Our numerical study of maps for which analytical

results are not available (Hénon, Baker’s, Intermittent,
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Logistic and Standard maps) [4] shows that the behavior
of translations and of Bernoulli maps can be considered as
a prototype of, respectively, regular and chaotic maps. In
particular for all the studied chaotic maps it is possible to
identify a threshold n∗ ∝−ln ε below which the perturbed
system can be considered as faithful to the unperturbed
one. The threshold is followed by an ε-independent super-
exponential decay.

Numerical noise. – Since real numbers have to be
represented as strings of bits on a computer, to each
discrete map T there corresponds a numerical map T∗. The
action of the numerical map depends on the length of bit
strings used to represent real numbers and on the details
of round-off algebra, which are hardware dependent [7].
A preliminary analysis was carried out in [8] and some
general results are stated in [9]. We can write, using the
notation introduced for additive noise, T∗x= Tεx= Tx+
εξ(x), where ξ now depends in a deterministic way on the
initial condition and ε is a constant whose magnitude is of
the order of the last significant bit used to represent x. The
iterated map Tn∗ can be written as Tnε using the previously
introduced notation, but in this case the single-step errors
ξi for i= 1, . . . , n will be n different functions of the initial
condition x. Notice that T∗ is defined by the round-off
rules of the computer, and the notation Tn∗ correspond
to apply the map as defined by those rules n times. The
single-step error εξn = T

n∗ x−T (Tn−1∗ x) is introduced to
compare the round-off results with the previous results
for additive noise.
Fidelity as previously introduced (3) included an inte-

gral over all the possible single-step error realizations ξi.
Nevertheless, from a numerical point of view, integrals
were performed with a Monte Carlo method, i.e. choos-
ing N representative random vectors (x, ξi), a procedure
that led to a relative error of order N−1/2.
We suppose that if the deterministic ξi(x) functional

dependence of single-step errors on the initial condition is
complex enough, the vector (x, ξi(x)) can be considered as
equivalent to a random sequence. In the case of round-off
errors, the Monte Carlo integral over initial conditions and
noise performed for random perturbations is thus replaced
by an integral over the only initial conditions.
Corresponding to this ansatz, whose validity we are

going to verify, we can compute the fidelity error for a
system perturbed with numerical noise as

Fn∗ =
∫
X

Φ(Tnx)Ψ(Tn∗ x) dm(x), (8)

δFn∗ = F
n
∗ −
(∫
X

Φ(Tnx) dm(x)

)(∫
X

Ψ(Tn∗ x) dm(x)
)
.

(9)
This definition requires the knowledge of the exact map
T , which is in general not available. This problem can
be solved by comparing the round-off map T∗, realized
with a given precision, i.e. as a string of bits of a given
length, with a map realized at an higher precision, T†, that

we call the “reference” map. For example T∗ could be a
single-precision (8 digits) map, and T† a double-precision
(16 digits) map. The numerically computed fidelity will
thus be

Fn∗ =
∫
X

Φ(Tn† x)Ψ(T
n
∗ x) dm(x). (10)

To check the relevance of these results, we can compare
them with those obtained substituting T† with T‡ (for
example a map realized using 24 or 32 significant digits).
If the results do not depend on the precision of the
reference map, we can assume that they are equivalent
to those that could be obtained if we had access to the
exact map. We have applied this procedure to obtain
the results shown in this paper. Typically, the results
obtained using as reference map a double precision T† or
a 24 (32) digit map T‡ are equivalent below a given time
scale. This time scale, that corresponds to the time scale
under which T† can be considered equivalent to T‡, as can
be checked through a direct comparison between T† and
T‡, is considerably longer than the time scale at which
the error probability distribution of T∗ has reached its
asymptotic form and thus the results of the single-double
precision comparison can be considered equivalent to those
that would be obtained by a comparison between a single
precision and an exact map.
Another way to avoid the problems related to the

inaccessibility of the exact map would be to rely, for
invertible maps, on a different definition of fidelity as

F̃n∗ =
∫
X

Φ(x)Ψ(Tn∗ T
−n
∗ x) dm(x), (11)

where T−1∗ is the numerical realization of the inverse
map, which is in general different from the inverse of
T∗. We notice that the new definition (11) of fidelity
would be equivalent to the original one (3) if we replace
Ψ(Tn∗ T−n∗ x) with Ψ(Tn∗ T−nx). This is not surprising,
since it can be shown that in general the points Tn∗ T−n∗ x
and Tn∗ T−nx have a comparable distance from x. When
we replace the first expression (Tn∗ T−n∗ x) with the second
expression (Tn∗ T−nx) in eq. (11) we are back to the
standard definition of fidelity for the map T∗, so that (11)
can be considered a sort of equivalent definition of fidelity
for a map with round off. For the numerical realization of
an invertible map as the standard map, the equivalence
between the two definitions has been checked with good
results, at least in the chaotic regime [9].
The details of the round-off process depend strongly on

the architecture, nevertheless our studies show that some
general rules about the error distribution can be stated [9].
For regular maps the behavior is significantly different
from additive noise, showing that the integral over the
only initial conditions is not equivalent for these systems
to an integral also on the noise. For translations on the
torus, Tx= x+ω mod 1, which are the prototypes for
integrable maps, we have found [9] that it is possible to
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write the global error ∆n∗ (x) = Tnx−Tn∗ x as
∆n∗ (ω, x) = ε(ξ(ω)φ(n)+wn(x)), (12)

φ(n) = n+φ0+φ1n
−1+ . . . .

Here ε is a constant that represents the last significant
bit (2−25 for a real number on the torus represented in
single precision), ξ is a constant that depends in a non-
trivial (and machine-dependent) way on ω, while wn is
a bounded, periodic function dependent on the initial
condition x, having zero mean once averaged over initial
conditions. We thus have

lim
n→∞

∆n∗ (ω, x)
n

= εξ. (13)

We distinguish between isochronous maps, for which the
frequency does not depend on initial conditions, and
anisochronous maps, such as the skew map on the cylinder
x′ = x+ω(y), y′ = y. In the former case fidelity does not
decay since the system is basically equivalent to a deter-
ministic ω+ εξ rotation [9]. In the latter case, discussed
below, the fidelity has a power law decay. The period
and the maximum value of wn depend on the algorithmic
realization of the map, for example for the most simple
realization the period is of order 100 and the magnitude
≈10, while it has a period of order ≈105 below which its
variance grows linearly if it is realized as a 2D rotation.
For the anisochronous map with ω(y) = y (to which

any map with monotonic ω(y) can be reduced), the
numerically observed result can be analytically proved if
we assume that ξ, defined above, depends linearly on y.
In this case, even though there is no integration over
a random variable, the integration over y is equivalent
to the integration over ξ. Letting Tn = x+ny and Tnε =
x+ny+nεξ and integrating over x and ξ the fidelity is [9]

Fn∗ =
∑
k∈Z
ΦkΨ−k

sin(2πnkε)

2πnkε
. (14)

This result corresponds to original definition of fidelity (5)
but the equivalence of the integration over y and ξ causes
the 1/n decay (fig. 2). In the same figure we show the
decay law, obtained when the skew map is perturbed by an
additive noise according to xn = xn−1+ yn−1+ εξxn, yn =
yn−1+ εξyn. The explicit result in this case reads [9]

Fn∗ =
∑
k∈Z
ΦkΨ−k

( sin(2πkε)
2πkε

)n n∏
j=1

sin(2πjkε)

2πjkε
. (15)

Maps very close to integrable exhibit almost the same
behavior as the skew map described above.
Fidelity decay can be easily studied for chaotic numer-

ical maps (for example Bernoulli, Hénon, Logistic, Inter-
mittent, Baker’s map and the Standard map with K� 1)
and shows always a good qualitative agreement with the
results obtained for additive noise, i.e. the presence of a
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Fig. 2: (Colour on-line) Decay of fidelity for the skew map.
Black: additive noise, compared with its analytical prediction
eq. (15) (red); green: round-off noise compared with its analyt-
ical prediction eq. (14) (blue).
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Fig. 3: (Colour on-line) Decay of fidelity for 3xmod 1 repre-
sented in single precision (black, circles) and double preci-
sion (red, diamonds) compared to a reference map T† using
32 digits; the results are compared to the decay of fidelity for
random noise with ε= 2−25 (blue, crosses) and ε= 2−53 (green,
squares), the value of the last significant bit of real numbers
on the torus represented, respectively, as single- and double-
precision floating points. Notice the slower decay for single
precision after the threshold.

threshold below which fidelity is constant and the error
function is qualitatively a δ-function (its support is many
orders of magnitude smaller than the size of the phase
space), and thus the results of numerical computations
can be considered quantitatively reliable [9]. Beyond this
threshold, that we can call n∗ and that grows as −ln ε,
i.e. linearly in the number of bits used to represent real
numbers (fig. 3), the error distribution spreads quickly
over the whole phase space, as can be checked using also
a Monte Carlo sampling of the error distribution.
Nevertheless we cannot assume that the sequence ξi is

always equivalent to a random one. Actually, for the map
3xmod 1 we have found [9] that the global error can be
described as

∆n∗ (x) =
n∑
i=0

3n−iεξi(x), (16)
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where the initial-condition round off ξ0 has a step-wise
continuum spectrum distribution once sampled over the
space of initial configurations, while the ξi with i� 1 have
a discrete spectrum, which results to be almost completely
reduced to zero for i� 2 (i.e. no relevant errors are made
after the first iteration) [9]. This effect, which is probably
due to the extremely simple algorithmic nature of the map,
is reflected in the decay law that follows the threshold n∗,
which is different from additive noise (compare the decay
law for single precision and additive noise in fig. 3).
For the other, (slightly) more algorithmically complex
maps, the sequence of error has a continuous spectrum
and a period significantly longer than the threshold time
scale [9]. For these systems the decay after the threshold
is qualitatively equivalent to the additive noise one.

Conclusions. – We have used the results of a previous
work on additive noise to study the effects of round-off
on discrete dynamical systems. We have generalized the
fidelity to the maps perturbed by “numerical noise” (i.e.,
finite accuracy in numerical computations), and its decay
allows us to analyze the probability distribution function
of global errors with respect to the exact solution. For
regular maps the behavior depends on the algorithmic
realizations and on their character. For isochronous maps
the fidelity error does not decay whereas for anisochronous
maps it has a power law decay, in contrast with the expo-
nential decay caused by additive noise. Chaotic systems
with round-off and additive noise exhibit an almost equiv-
alent behavior, i.e. it is possible to identify a thresh-
old for a sharp transition from a δ-like error distribution

(faithful numerical map) to the asymptotic error distrib-
ution. For chaotic numerical maps, below this threshold,
which grows linearly as the number of bits used to repre-
sent real numbers, the numerical system can be considered
as equivalent to the exact one.
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