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3 PHYMAT, Université de Toulon et du Var, Centre de Physique Théorique, CNRS,
Luminy Case 907, F-13288 Marseille Cedex 9, France

E-mail: ferrero@cpt.univ-mrs.fr, nhaydn@math.usc.edu and vaienti@cpt.univ-mrs.fr

Received 14 February 2002, in final form 18 February 2003
Published 6 May 2003
Online at stacks.iop.org/Non/16/1203

Recommended by V Baladi

Abstract
We prove log-normal fluctuations and the weak-invariance principle for the
convergence to the entropy in the Ornstein–Weiss theorem for a class of
parabolic maps of the interval. For such maps, we also compute the Lyapunov
exponent using the linear recurrence of the returns of cylinders into themselves.

Mathematics Subject Classification: 37B20, 37D25, 37D50, 60F05, 94A17

1. Introduction

One of the most remarkable applications of the exponential statistics for the first return time in
dynamical systems is, as first pointed out in [5] and [12] and successively in [19], the possibility
of evaluating the fluctuations in the Ornstein–Weiss computation of metric entropy [18]. We
briefly recall this last result. Let us suppose that C is a finite or countable measurable partition
of the measurable dynamical system (X, β, µ, T ), where β is the σ -algebra over X, and µ a
T -invariant probability ergodic measure, with T a measurable application on X.

Let us denote with Cn(x), the unique element of (the nth join) Cn = ∨n
i=1 T −(i−1)C,

which contains the point x ∈ X, and finally define Rn(x) = inf{k � 1 : T k(x) ∈ Cn(x)}.
This quantity is sometimes called the n-repetition time of x, since, as in the original paper
of Ornstein and Weiss, given an ergodic stationary sequence, it represents the first moment at
which the initial n-block of the sample sequence is repeated.

4 Also at: FRUMAM, Fédération de Recherche des Unitiés de Mathématiques de Marseille, France.

0951-7715/03/041203+16$30.00 © 2003 IOP Publishing Ltd and LMS Publishing Ltd Printed in the UK 1203

http://stacks.iop.org/no/16/1203


1204 P Ferrero et al

Ornstein and Weiss proved in [18] that for µ-a.e. x ∈ X one has:

lim
n→∞

log Rn(x)

n
= hµ(T , C),

where hµ(T , C) is the metric entropy of the partition C. From now on we will write
h = h(µ) = hµ(T , C), when C is generating. For strongly mixing stationary processes
[12, 5], for a large class of non-Markovian maps of the interval [19], for unimodal maps [2]
and finally for the class of (φ, f ) mixing measures introduced in [7], the following fluctuation
result has been proved:

µ

({
x ∈ X :

log Rn(x) − nh

σ(φ)
√

n
> u

})
−→ 1√

2π

∫ ∞

u

e−x2/2 dx, (1)

where σ(φ) is the variance of the potential φ associated with the equilibrium state µ = µφ .
In the case of (φ, f )-mixing measures [7], the variance is given by a limit involving some
moments of the information function − log µ(Cn(x)).

The first result of this paper is to prove a similar result for the class of parabolic maps
of the interval introduced in section 2. Our proof relies on a useful result recently proved
by Saussol [21]: inspired by the works of Collet et al [5] and Paccaut [19], he showed that
whenever the Shannon–McMillan–Breiman convergence to the metric entropy exhibits log-
normal fluctuations, the same is true for Ornstein–Weiss, provided the first return times are
exponentially distributed over cylinders. To be more precise, let us define the error to the
asymptotic distribution of the first return times into cylinders as:

Eµ(Cn(x)) = sup
t�0

|µCn(x)(z : τCn(x)(z)µ(Cn(x)) > t) − e−t |,

where τCn(x)(z) denotes the first return of the point z ∈ Cn(x) into the cylinder5 Cn(x) and
µCn(x) is the conditional measure on Cn(x). Suppose that:

(i) Eµ(Cn(x)) → 0 for µ-almost every x as µ(Cn(x)) → 0;
(ii) the fluctuations in Shannon–McMillan’s theorem are log-normal, i.e.

µ

({
x ∈ X :

− log µ(Cn(x)) − nh

σ
√

n
> u

})
−→ 1√

2π

∫ ∞

u

e−x2/2 dx,

where 0 < σ < ∞.

Then the limit in distribution (1) follows.
For the class of parabolic transformations considered in this paper, the first item,

the exponential distribution of the first return time, was proved in [8]. In section 2,
we will provide log-normal fluctuations for Shannon–McMillan through a weak-Gibbs
characterization of the absolutely continuous invariant measure.

We will moreover establish the weak-invariance principle (WIP) for the process log Rn(x),
which means that the sequence (log R[nt] − [nt]h)/σ(φ)

√
n (t ∈ [0, 1], n � 1), converges

in distribution to standard Brownian motion. This follows from the same principle stated for
the process log µ(Cn(x)), which in turn will be a consequence of the WIP for the random
variable log |DT (x)|, which is a piecewise Hölder continuous function. We will also present
in the appendix an extension of the central limit theorem (CLT) and of the WIP for a large
class of non-Hölder functions.

In section 3, we will show how to compute the Lyapunov exponent of the invariant
measure by means of the first return of a ball into itself. This technique has been proposed
in [22] in the case of maps of the interval with the derivative of p bounded variation and

5 τCn(x)(z) = min{n > 0 : T n(z) ∈ Cn(x); z ∈ Cn(x)}.
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successively applied to C1+α diffeomorphisms of surfaces in any dimension [23]. In the
latter case, one obtains bounds involving symmetric couples of Lyapunov exponents. This
technique relies on the asymptotic behaviour of the first return of a cylinder into itself defined
as: lim infn→∞(τCn(x)/n), where τCn(x) = inf{τCn(x)(y) : y ∈ Cn(x)}. It has been proved in [22]
that, whenever the metric entropy of the system is positive, the above limit is greater or equal to
1 almost everywhere6. This was already proved for the class of maps considered in this paper
with a more direct computation [8]. We now improve this result by showing that the limit exists
and equals 1 under some conditions and then we apply it for the computation of the Lyapunov
exponent.

2. Fluctuations

2.1. Central limit theorem

We now introduce the class of non-uniform maps of the interval for which we will compute
the fluctuations of the entropy. For 0 < α < 1 let us consider the following map of the unit
interval:

T (x) =
{
x(1 + 2αxα) for x ∈ [0, 1

2 ],
2x − 1 for x ∈ ( 1

2 , 1].

The statistical properties of this transformation have been widely studied in the last few years;
see for instance the abundant bibliography listed in [16] and the recent paper [6] which quotes
the very latest achievements7. This map is the prototype of parabolic behaviour (the derivative
is equal to 1 at some fixed point) and it was the first for which an algebraic rate for the decay
of correlations was proved. We now recall some properties of it and add new ones. The
transformation T has a countable Markov partition ξ generated by the preimages an of 1:
ξ = {Am : m ∈ N}, with Am = (am+1, am] and A0 = ( 1

2 , 1].
We can associate with each point x ∈ (0, 1] a unique infinite sequence ω = ω1ω2 · · · with

the property that T m−1x ∈ Aωm
for all integer m � 1; the sequence ω satisfies the admissibility

condition: ωmωm+1 appears in ω iff ωm = 0 or ωm+1 = ωm − 1. A cylinder

Cn =
n⋂

i=1

T −(i−1)Aωi
∈ ξn =

n∨
i=1

T −(i−1)ξ,

will be equivalently written in its symbolic representation: (ω1, ω2, . . . , ωn). We also recall
the notion of maximal n-cylinder, whenever the letter ωn = 0, which means that Cn is sent
over I exactly after n iterations. If the cylinder Cn = (ω1 · · · ωn) is not maximal, we extend
it into the maximal cylinder Cn+ωn

= (ω1 · · · ωn(ωn − 1)(ωn − 2) · · · 0) ∈ ξn+ωn
, which is

topologically equal to Cn. The map T preserves an absolutely continuous invariant measure
µ whose decreasing density behaves like ρ(x) ∼ x−α near the parabolic fixed point 0 (a more
precise bound on such a density will be used in a moment; we recall here that the case of
σ -finite invariant measures was studied in [4]).

In what follows, we will need a CLT for the logarithm of the derivative of the map. Let
us recall that for values of α ∈ (0, 1

2 ) the CLT has been proved in [9, 24] for the set of Hölder

6 This result implies, in particular, that in the formulation of the Ornstein–Weiss theorem we could take in the
definition of Rn(x), k � 1, instead of k � n as in the original paper [18].
7 We recall in particular the contributions of Fisher-Lopes, H Hu, S Isola, Liverani–Saussol–Vaienti, M Mori, O Sarig,
H Takesaki, M Thaler, L-S Young, M Yuri, S Gouëzel etc.
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continuous function φ on the unit interval, with the finite variance given by

σ 2(φ) =
∫

φ2 dµ −
(∫

φdµ

)2

+ 2
∞∑

n=1

(∫
φ · φ ◦ T n dµ −

(∫
φ dµ

)2
)

. (2)

The fact that the variance of the process Sn = ∑n−1
i=0 φ(T i(x)) grows linearly as Var Sn =

σ 2(φ)n + o(n) is a consequence of the convergence in L1(λ) of the sum
∑∞

n=0 P nφ, where λ

denotes the Lebesgue measure over X and P is the Perron–Frobenius operator associated with
the potential − log |DT (x)| [15]. We will come back to this point in section 2.2.

We apply in our case the CLT to the function φ = log |DT (x)|; it can easily be shown to
be piecewise Hölder with exponent α on the two intervals [0, 1

2 ] and ( 1
2 , 1], the discontinuity

being placed at the point 1
2 . The fact that the discontinuity is located on the boundary of

the Markov partition allows us to extend the previous result about the CLT to our piecewise
Hölder function, as it has been recently proved in [6] and [10]. Alternatively, we could observe
that the function Pφ becomes Hölder continuous with exponent α on the whole interval and
this is sufficient to get the CLT for the function φ. We will moreover assume that φ is not a
coboundary, which implies that σ(φ) > 0 8.

Technically, it is advantageous to work with cylinders which become maximal with a
prescribed rank. For this purpose define

In,γ = {(ω1 · · · ωn) : ωn > [nγ ]},
where 0 < γ < 1 will be determined later, and denote by In,γ the complementary set.

Lemma 2.1. There exists a constant c1 depending only on the map T for which µ(In,γ ) �
1 − c1[nγ ]1−(1/α).

Proof. Since (ω1, . . . , ωn) ∈ T −(n−1)Aωn
, we have µ(In,γ ) �

∑∞
i=[nγ ] µ(Ai), where

Ai = (ai+1, ai]. Since the density ρ is bounded by: ρ(x) � ax−α and ai � ci−1/α , where a

and c are constants independent of x [16], we get:

µ(In,γ ) �
∫ a[nγ ]

0
ρ(x) dx �

∫ c[nγ ]−1/α

0
ax−α dx � c1[nγ ]1−(1/α),

where c1 is a constant independent of n and dependent only on c and a. Therefore,
In,γ = {(ω1 . . . ωn) : ωn � [nγ ]}, has measure: µ(In,γ ) � 1 − c1[nγ ]1−(1/α). �

Lemma 2.2. Let C be a maximal cylinder of the partition ξn, then there exist two constants
c3 > c4 depending only on the map T , such that:

c4
1

|DT n(y)| � µ(C) � c3
n + 1

|DT n(y)| ∀ y ∈ C.

Proof. We have, for C ∈ ξn:

µ(C) =
∫ 1

0
ρχC dx =

∫ 1

0
ρ(T −n

C (y))
1

|DT n(T −n
C (y))| dy,

where T −n
C : [0, 1] → C and χC denotes the characteristic function of the set C. Observe

that the cylinder C ⊂ Aω1 and the biggest value of ω1 compatible with the maximality
condition and for which Aω1 is closest to the neutral fixed point is ω1 = n − 1. In
this case, C ⊂ (an, an−1] and we will need an upper bound for ρ on such an interval.

8 This (standard) assumption seems very reasonable. For example, the variance is zero for the full quadratic map
x → 4x(1 − x), which is differentiable conjugate to the full tent-map x → 1 − 2|x|: in this case the cylinders are too
regular and the fluctuations are no longer normal, but they converge to a finite mixture of exponential times [5].
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Therefore: D−1 inf ρ � µ(C)|DT n(y)| � Dρ(an), for all y ∈ C, where D is the distortion
constant given in proposition 3.3 [16]. Since inf ρ > 0 and ρ(x) � ax−α , we obtain:
D−1 inf ρ � µ(C)|DT n(y)| � Daa−α

n . But in a way similar to the proof of lemma 3.2
in [16]9, it is easy to see that there exists a constant c5 such that aα

n � c5/(n + 1), which
concludes the proof of lemma 2. �

The next corollary is an immediate consequence of the preceding lemma.

Corollary 2.1. If C ∈ ξn ∩ In,γ , then:

c4
1

2nγ � µ(C)

|DT n(y)|−1
� c3(n + nγ + 1), y ∈ C.

Proof. If C ∈ Cn ∩ In,γ , it can be viewed as a maximal cylinder of the partition Cn+ωn
. By the

preceding lemma we have:

c4
1

|DT n+ωn(y)| � µ(C) � c3
n + ωn + 1

|DT n+ωn(y)
∀ y ∈ C.

Using the factorization DT n+ωn(y) = DT ωn(T ny)DT n(y) and the fact that |DT ωn(T ny)| �
supx∈A0

|DT (x)|ωn � 2nγ

, we get immediately the result. �

Remark 2.1. What we actually proved is a sort of weak Gibbs property for the measure µ. It
will be clear in a moment that in order to use the CLT for the potential − log |DT (x)|, we will
need to control the quantity (1/

√
n) log 2nγ

. It reduces to zero in the limit of large n provided
γ < 1

2 .

Remark 2.2. In what follows we will study the fluctuations of the two processes log µ(Cn(x))

and log Rn(x), with respect to the probability invariant measure µ. These two processes are
defined with respect to the partition ξ , which means that Cn ∈ ξn.

We are now ready to prove the main result of this section.

Theorem 2.1. For the parabolic map T and α ∈ (0, 1
2 ), the process log Rn(x) satisfies the

convergence in law (1).

Proof. As we said in the introduction it will be sufficient to prove the log-normal fluctuations
for Shannon–McMillan’s theorem that is equivalent to show that:

µ
({

x : µ(Cn(x)) < e−nh−σ(φ)u
√

n
})

→ 1√
2π

∫ ∞

u

e−x2/2 dx.

By lemma 2.1:∣∣∣µ ({
x : µ(Cn(x)) < e−nh−σ(φ)u

√
n
})

−
∑ {

µ(Cn) : Cn ∈ In,γ , µ(Cn) < e−nh−σ(φ)u
√

n
}∣∣∣

�
∑

Cn∈In,γ

µ(Cn)

� c1[nγ ]1−(1/α),

9 The proof works out the same induction argument as in [16]; this lower bound has already been used in [21] too.
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so that it will be sufficient in the following to restrict ourselves to the cylinder in In,γ .
Corollary 2.1 implies that:

µ
({

x : µ(Cn(x)) < e−nh−σ(φ)u
√

n
})

� µ
({

x : c3(n + nγ + 1)|DT n(x)|−1 < e−nh−σ(φ)u
√

n
})

� µ

({
x :

∑n−1
i=0 log |DT (T i(x))| − nh

σ(φ)
√

n
> u +

log c3 + log(n + nγ + 1)

σ (φ)
√

n

})

� µ

({
x :

∑n−1
i=0 log |DT (T i(x))| − nh

σ(φ)
√

n
> u + δ

})
,

where δ is any positive number bigger than (log c3 + log(n + nγ + 1))/σ (φ)
√

n for n

sufficiently large. The CLT for the function10 log |DT (x)| guarantees that:

lim inf
n→∞ µ

({
x : µ(Cn(x)) < e−nh−σ(φ)u

√
n
})

� 1√
2π

∫ ∞

u+δ

e−x2/2 dx,

which gives the desired result for the lower bound when δ goes to zero. To get a similar result
for the upper bound we proceed as above and we find easily:

µ
({

x : µ(Cn(x)) < e−nh−σ(φ)u
√

n
})

� µ
({

x : c42−nγ |DT n(x)|−1 < e−nh−σ(φ)u
√

n
})

� µ

({
x :

∑n−1
i=0 log |DT (T i(x))| − nh

σ(φ)
√

n
> u +

log c4 − nγ log 2

σ(φ)
√

n

})

� µ

({
x :

∑n−1
i=0 log |DT (T i(x))| − nh

σ(φ)
√

n
> u − δ′

})

provided that for any δ′ > 0 one has∣∣∣∣ log c4 − nγ log 2

σ(φ)
√

n

∣∣∣∣ < δ′,

which is possible by the remark above. By taking the lim sup on both sides, using again the
CLT for log |DT (x)| and by sending finally δ′ to zero, we get the desired upper bound. �

2.2. Invariance principle

The CLT could be improved to get what is called the weak invariance principle. Such a principle
has been obtained for the piecewise version of our map, and for a large class of observables, by
Chernov [3]. After our paper was finished, we discovered a very recent article by Pollicott and
Sharp [20], where they proved the WIP for the nonlinear map T in the case of Hölder functions
and in the range 0 < α < 1

3 . We provide here a proof for the function log |DT (x)| which is
piecewise Hölder; other generalizations to non-Hölder functions will be given in theorem 2.3
and in the appendix (see also remark 2.3). As we will see at the end of this section, the WIP

10 Notice that (1/n) log |DT n(x)| goes, when n → ∞ and µ-a.e., to the µ-Lyapunov exponent which in our case
coincides with h [14].
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for the function log |DT (x)|, namely for the random variable (log |DT n(x)| − nh)/σ(φ)
√

n,
allows us to translate it to the random variable (− log µ(Cn(x)) − nh)/σ(φ)

√
n, and therefore

to (log Rn(x) − nh)/σ(φ)
√

n. Let us first recall what the WIP means applied, for instance, to
the process log Rn.

For each x ∈ [0, 1] we construct the random variable Wn,x(t) for t ∈ [0, 1] as:
Wn,x(k/n) = (log Rk(x) − nh)/σ(φ)

√
n for k = 0, 1, . . . , n and it extends linearly on each

of the subintervals [k/n, (k + 1)/n]. For each x, Wn,x is therefore an element of the space I
of the continuous function on [0, 1] topologized with the supremum norm. If we denote with
Dn the distribution of Wn,x on I, namely

Dn(H) = µ({x : Wn,x ∈ H })
where H is a Borel subset of I, then the WIP asserts that the distribution Dn converges weakly
to the Wiener measure. This means that log Rn(x) − nh is for large n, and after a suitable
normalization, distributed approximately as the position at time t = 1 of a particle in Brownian
motion [1].

We begin to prove the WIP for the function log |DT (x)|; in this regard, we adapt to our
case theorem 1.4 in [3], which gives sufficient conditions to get the WIP for L2(µ) functions
φ with positive and finite variance σ(φ). Note that in our case φ = log |DT (x)| is a piecewise
Hölder continuous function with exponent α. A basic assumption in Chernov’s theory is that
the first moment of the autocorrelation function is finite:

∞∑
n=1

n

∣∣∣∣∣
∫

φ · φ ◦ T n dµ −
(∫

φ dµ

)2
∣∣∣∣∣ < ∞. (3)

This guarantees the asymptotic linearity of Var Sn = σ 2(φ)n + o(n), where Sn =∑n−1
i=0 φ(T i(x)) and σ 2(φ) is given by formula (2). In our case, we already have this asymptotic

behaviour for Var Sn, as pointed out in section 2.1 (i.e. we do not have to check the assumption
above).

Let us now assume that for any N � 1 we can find a partition A ≡ A(N) of X such that:

• ‖φ − E(φ|A)‖L2(µ) = o(N−1).
In [3], it was shown that in order to prove this condition it is sufficient to verify that:
HF (diam A) = o(N−1), where

HF (d) = sup
diamA�d

‖φ − E(φ|A)‖L2(µ).

For Hölder continuous functions of exponent α, or for piecewise Hölder continuous
functions with the discontinuities located on the border of the Markov partition, HF (d) �
const dα and therefore we will have simply to verify that: diam A = o(N−1/α)

• LF (n/N) = o(1/n),
where LF (d) = supB

∫
B
(φ − E(φ))2 dµ(x), and the supremum is over all measurable

subsets B ⊂ X such that µ(B) � d . When φ ∈ L∞(µ), LF (d) � const d, then the above
assumption reduces to n/N = o(1/n).11

• Assume that there exists an integer valued function n = n(N) = o(N) such that n → ∞
when N → ∞ satisfying the condition:

βN(n) = o
( n

N

)
, (4)

11 This condition explains why in [3] n is chosen as n = [N1/2 log−ε N ], ε > 0. In the following we instead choose
n = Nz, 0 < z < 1, which forces z to be smaller than 1

2 in order to satisfy the assumption of the item. The preceding
weaker choice will not improve our final result.
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where βN(n) is defined by:

βN(n) = max
0�k�N−n−1

∑
i

∑
j

|µ(Bi ∩ Dj) − µ(Bi)µ(Dj )|, (5)

where Bi ∈ Ak+1 and Dj ∈ T −(k+n)AN−k−n (Ak = ∨k
i=1 T −(i−1)A is the kth join of A).

Whenever the three items above are satisfied, the function φ verifies the WIP.
We will construct the partition A in two steps following the strategy in [3] for the piecewise

linear version of T , which was based on a Markov-like approximation introduced in [13]. We
first consider the family Fn1 of cylinders in ξn1 = ∨n1

i=1 T −(i−1)ξ satisfying the condition:

C ∈ Fn1 ⇐⇒ C = (ω1, . . . ωn1 : ωi � n2, i = 1, . . . , n1),

where n2 = o(n1) and n1 = o(n) will be determined later. Since:

diam(Fn1) ≡ sup
C∈Fn1

(diam C) � (min DT|An2
)−n1 � (1 + 2α(α + 1)an2+1)

−n1 ,

we can use the lower bound on an provided in section 2 to get

diam(Fn1) = O(e−C̃n1/n2),

where the constant C̃ is independent of n. We then take the cylinders in ξn1 which are not in
Fn1 (we call this family F c

n1
) and cut them into smaller cylinders of diameter � diam(Fn1).

The union of these cylinders, which we call Gn1 , with those of Fn1 forms our initial partition
A: A = Fn1 ∪ Gn1 . Let us now treat the quantity βN(n) in the third item above. Note that the
sum in (5) can be estimated as follows:∑
i,j

|µ(Bi ∩ Dj) − µ(Bi)µ(Dj )|

�
∑

i

(|µ(Bi ∩ D+
i ) − µ(Bi)µ(D+

i )| + |µ(Bi ∩ D−
i ) − µ(Bi)µ(D−

i )|), (6)

where D+
i is the union of those elements Dj for which µ(Bi ∩ Dj) > µ(Bi)µ(Dj ) and,

similarly, D−
i = ⋃{Dj : µ(Bi ∩ Dj) � µ(Bi)µ(Dj )}. This decomposition allows us to

bound the left-hand side of (5) by summing four times over the measures of the Di . Let us
now consider the family G(n, k) of all the cylinders Bi ∈ Ak+1 of the form:

Bi = Bi1 ∩ T −1Bi2 ∩ · · · ∩ T −kBik+1 ,

where at least one of the Bil , l = 1, . . . , k + 1, belongs to Gn1 . We have:

µ(G(n, k)) �
k+1∑
l=1

∑
C∈Fc

n1

∑
B⊂C

µ(T −lB)

� (k + 1)
∑

C∈Fc
n1

µ(C)

� (k + 1)n1

∞∑
i=n2

µ(Ai),

where Ai = (ai+1, ai]. A computation similar to that in lemma 2.1 gives µ(G(n, k)) �
(k + 1)n1c1n

1−1/α

2 . Altogether this term will give a contribution to (5) of order:

O(Nn1n
1−1/α

2 ). (7)

Let us now consider in the first sum defining (5) all the cylinders which are obtained by
taking the pull-back of elements in Fn1 . These cylinders belong to the partition ξn1+k while
the second sum in (5) is taken over T −(k+n)AN−k−n. We observe that the sum βN(n) is exactly
what defines the speed of weak-Bernoullicity for the two partitions; we can therefore follow
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straightforwardly the proof of theorem 3.3 in [8] (see also [21] for more details) to get:∑
B∈ξn1+k

∑
D∈T −(k+n)AN−k−n

|µ(B ∩ D) − µ(B)µ(D)| � 2
∑

B∈ξn1+k

‖P k+n((χB − µ(B))ρ‖L1(λ),

where P is the Perron–Frobenius operator associated with the potential − log |DT (x)|. Note
that this bound depends, after the application of (6), only on the power of the pull-back T −(k+n)

and not on the length of the cylinders in AN−k−n. We then continue as in [8] by splitting
ξn1+k into two families of cylinders: those M(k, n1, n) for which B ∈ M(k, n1, n) becomes
maximal (B ∈ ξpB

) for n1 + k � pB < k + n/2, and the complementary set M(k, n1, n)c. For
B ∈ M(k, n1, n), the Perron–Frobenius operator factorizes as P k+n = P k+n−pB P pB and the
function P pB (ρχB) will belong to the right cone12 upon which the powers of P act with the
following (up to a logarithmic correction) polynomial decay established in [16]:13

‖P k+n−pB (P pB (ρχB) − µ(B))‖L1(λ) � µ(B)OL((k + n − pB)1−1/α) = µ(B)OL(n1−1/α).

The cylinders in M(k, n1, n)c sum up to the set T −(k+n1)+1[0, an/2−n1 ] whose measure can
be computed as in lemma 2.1 giving: µ((M(k, n1, n)c) = O(n1−1/α), remembering that
n1 = o(n). In conclusion we obtain:

βN(n) = OL((n1−1/α) + O(Nn1n
1−1/α

2 )) = O(Nn1n
1−1/α

2 ). (8)

We now define the various integers according to the rules:

n = Nz, n1 = nz, n2 = nz
1, 0 < z < 1. (9)

The assumptions βN(n) = O(Nn1n
1−1/α

2 ) = o(n/N) and diam A = O(e−C̃n1/n2) = o(N−1/α)

are verified for α < (z3/z3 + z2 − z + 2) which allows us to get 0 < α < 1
3 sending z → 1.

But the last condition n/N = o(1/n) imposes that z < 1
2 , as we said in the footnote (11), so

that we finally get the following theorem.

Theorem 2.2. For 0 < α < 1
15 , the weak invariance principle holds for the function

log DT (x), or equivalently for the process log DT n(x).

Remark 2.3. The three assumptions quoted in the items in the preceding section are
sufficient conditions to prove the WIP for any Hölder continuous function over X or for a
piecewise Hölder continuous function with discontinuities on the borders of ξ . Indeed the
Hölder exponent enters only in the negative power of N−1/α , which surely dominates the
subexponential decay of the diameter of A. We can then state the following general theorem.

Theorem 2.3. Let F be an Hölder continuous function on the unit interval X (or piecewise
Hölder with discontinuities on the borders of ξ ), for which the variance σ(F ) > 0. Then for
0 < α < 1

15 , the process
∑n−1

i=0 F(T ix) verifies the WIP.

Remark 2.4. It is not impossible that our proof could be improved in order to get the WIP
in the same interval as the CLT, namely for 0 < α < 1

2 . A first step in this direction,
but with a different technique, has been done in the already quoted paper [20] for Hölder
continous functions, where the range of the parameter α was pushed to 1

3 . Our proof covers
the more general case of piecewise Hölder functions (with discontinuities on the borders of
ξ ); moreover, we will show in the appendix how to improve this result for a larger class of
non-Hölder continuous function, even to compute the CLT.

12 This is one of the main reasons to introduce the notion of maximal cylinder.
13 The symbol OL means: OL(ε) = O(ε(log ε−1)r ) in the limit ε → 0, for any constant r .
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We now show how to apply theorem 2.2 to prove the WIP for the two processes
− log µ(Cn(x)) and log Rn(x), still with respect to the partition ξn. As far as we know, the
WIP for the first return time has been proved up to now (Kontoyiannis [12]) only in the case of
finite-valued stationary strongly mixing processes with some sort of finite-order Markov chain
approximation (the assumption on the coefficient ‘γ ’ introduced by Ibragimov [11], see also
section 1.1 in [12]). The mixing properties of our map are much weaker (it satisfies a property
close to the α-mixing condition, see [8], lemma 3.1), as a consequence of its lack of uniform
hyperbolicity.

Theorem 2.4. The WIP holds for the process − log µ(Cn(x)) provided α < 1
15 .

Proof. According to theorem 4.1 in Billingsley [1] it will be enough to prove that:

µ

(
x; max

l�n
|− log µ(Cl(x)) − log |DT l(x)|

σ
√

n
| � ε

)
→ 0, (10)

when n goes to infinity and ε being any positive number (from now on we simply write
σ = σ(φ)). Let us consider the family Cl,n of all the cylinders belonging to the partitions ξl ,
1 � l � n of the form: Cl ∈ Cl,n ⇔ Cl = (ω1, . . . , ωl), with ωl > nγ , ∀l = 1, . . . , n. By an
argument already used in the proof of lemma 2.1, we easily get that µ(Cl,n) � 1/(nγ (1/α−1)−1),
which goes to 0 when n goes to infinity provided α < 1

3 . Then it will be sufficient to consider
in the left hand side of (10) only those x which are in the complement of Cl,n. For such points
and by using corollary 2.1 we have, for 1 � l � n:

c4

2[nγ ]|DT l(x)| � µ(Cl(x)) � c3(l + 1 + nγ )

|DT l(x))
, (11)

which implies that∣∣∣∣− log µ(Cl(x)) − log |DT l(x)|
σ
√

n

∣∣∣∣ �
∣∣∣∣c4 + nγ log 2

σ
√

n

∣∣∣∣
for n large and this gives us the desired result since γ < 1

2 . �

Theorem 2.5. For 0 < α < 1
15 , the weak invariance principle holds for the process

log Rn(x).

Proof. The proof uses again the criterion (10), where we compare this time the two processes
log Rn(x) and − log µ(Cn(x)) and it is a consequence, by standard measure theoretical
arguments, of the following result which is of independent interest14. �

Theorem 2.6. For α < 1
5 and for any β > 0 we have for µ-almost every x

lim
n→∞

log[Rn(x)µ(Cn(x)]

nβ
= 0.

14 Let us sketch this argument. Take a large subset Xε′ ⊂ [0, 1] of measure > (1 − ε′) where the limit (2.6)
is uniform. Then for n bigger than a certain nε′ , we have: |(− log µ(Cl(x)) − log Rl(x))/σ

√
n| < ε′ for all

x ∈ Xε′ and for all nε′ < l < n, and this part vanishes in (10) when ε′ goes to 0. The other contribution:
µ(x ∈ Xε′ ; maxl�nε′ |(− log µ(Cl(x)) − log Rl(x))/σ

√
n| � ε) goes to 0 by Chebyshev’s inequality when n → ∞.
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Proof. The proof follows if we could show that eventually for µ-almost every x:

(i) log[Rn(x)µ(Cn(x)] � −r(n),

(ii) log[Rn(x)µ(Cn(x)] � r(n),

where r(n) is an arbitrary sequence of non-negative constants such that
∑

e−r(n) < ∞.15 We
will prove in detail the point (i), the other follows in the same way after the inspection of
equation (12). We note that the analogues of (i) and (ii), and consequently the limit (2.6),
have been proved by Kontoyiannis [12] in the context of the finite-valued stationary strongly
mixing processes with the finite-order Markov chain approximation quoted above. We use here
a completely different approach based on a fine analysis of the statistics of the first return time.
This will allow us to weaken the hypothesis on the constants r(n) which were taken in [12] as∑

ne−r(n) < ∞. If we introduce the measurable set Zn = {x; log[Rn(x)µ(Cn(x)] � −r(n)},
the point (i) holds whenever

∑
µ(Zn) < ∞, by the Borel–Cantelli lemma. By introducing

the conditional measure µA(B) = µ(A ∩ B)/µ(A), for measurable sets A and B, and by
summing over the cylinders Cn ∈ ξn, we can write

µ(Zn) =
∑
Cn

µ(Cn)µCn
(x; Rn(x)µ(Cn) � e−r(n)).

We said in the introduction that for our map the distribution µCn
(x; Rn(x)µ(Cn) � t)

converges, when n goes to infinity and for cylinders around almost all points, to 1 − e−t .
What we need now is the rate of convergence for a wide class of cylinders. We first observe
that µ(Zn) can be bounded as:

µ(Zn) �
∑
Cn

µ(Cn) sup
t�0

|µCn
(x; Rn(x)µ(Cn) > t) − e−t | +

∑
Cn

µ(Cn)(1 − e−e−r(n)

). (12)

The second sum in (12) is clearly summable in n and we now handle the first sum. We begin
by restricting this sum over the family C ′

s,n of cylinders in ξn satisfying:

Cn = (ω1, . . . , ωn) ∈ C ′
s,n ⇔ ωi � nγ , i = 1, . . . , n.

The contribution to
∑

Cn
of the cylinders just discarded is of order (see section 2.2)

1/nγ (1/α−1)−1, which is summable for α < 1
5 , since γ < 1

2 (in the proof of this theorem we do
not require γ < 1

2 from the very beginning; this condition will be necessary at the end of the
proof ).

We now recall a general bound for the statistics of the first return time proved in [8] for
any measure preserving transformation on a probability space. If we denote with RU(x) the
first return into the measurable set U , then ([8], theorem 2.1):

sup
t�0

|µU(x; RU(x)µ(U) > t) − e−t | � d(U),

where

d(U) = 4µ(U) + c(U)(1 + log c(U)−1)

and

c(U) � inf{aM(U) + bM(U) + Mµ(U)|M integer},
being

aM(U) = µU(x; RU(x) � M)

15 Put r(n) = νnβ , take the limits and then send ν to zero.
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and

bM(U) = sup{|µU(T −MV ) − µ(V )|; V measurable}.
If we now call, as in the introduction, τU the first return of the set U into itself, then it has been
proved for our map T that ([8], lemma 3.5):

aM(Cn) � 4D

inf ρ

Mµ(Cn)

λ(T τCn Cn)
, (13)

where Cn is any cylinder in ξn, D is the distortion constant already used in section 2.1, and
λ denotes the Lebesgue measure on the unit interval. Our next approximation will consist in
keeping in C ′

s,n only those cylinders for which τCn
> [n/2]: let us call C ′′

s,n this family. We
now bound from above the measure of (C ′′

s,n)
c and we show that it is summable; at this regard

we will follow straightforwardly the proof of the point (1) of proposition 3.7 in [8]. This
proof gives the summability of the measure of all cylinders Cn ∈ ξn belonging to the interval
A0 = ( 1

2 , 1] and for which τCn
� [n/2]. This measure is of order 1/n1/α . In our situation

the cylinders in C ′
s,n will be at a distance bigger than a[nγ ] from the neutral fixed point. This

will introduce two differences with respect to the proof of [8]: first we need to bound from
below the derivative DT k(x), with x ∈ A[nγ ] (and k smaller or equal than a certain constant
k0), instead of x ∈ A0. Second, we have to introduce a factor O(nγ ) in order to replace the
measure µ with the Lebesgue measure λ; that factor is an upper bound for the density ρ up
to a[nγ ]. These two facts are related to some bounds on the Perron–Frobenius operator, and
we defer to the quoted paper for the details. Taking into account these slight modifications
we get that the measure of (C ′′

s,n)
c is of order O(1/n(1/α)−γ ), which is summable for α < 2

3 .
We are now ready to bound aM(Cn) for cylinders Cn ∈ C ′

s,n ∩ C ′′
s,n. We first observe that

λ(T τCn Cn) � λ(T [n/2]Cn); then, by using the weak-Gibbs bounds (11) and corollary 2.1 and
the upper bound on the density ρ on C ′

s,n, and by neglecting the algebraic powers of n (which
will be of lower order), we check easily that the ratio µ(Cn)/λ(T τCn Cn) is of order

2nγ

infA[nγ ] DT [n/2]
= O

(
2nγ

(1 + c51/nγ )[n/2]

)
,

where c5 is a constant dependent on T . If we now chose M = (1 + c5(1/n1−γ−ψ))[n/2], where
0 < ψ < 1 − γ , we get that aM(Cn) goes exponentially fast to zero provided that γ < 1

2 . We
then recall that for maximal cylinders Cn the quantity bM(Cn) is bounded by OL((M−n)1−1/α)

([8], lemma 3.1). The maximal cylinders in the family C ′
s,n are at most of order n + nγ . For

the preceding choice of M , bM(Cn) and Mµ(Cn) go exponentially fast to zero and therefore∑
Cn∈C ′

s,n∩C ′′
s,n

µ(Cn)d(Cn) is summable in n. We have thus showed that
∑

µ(Zn) < ∞, which
implies the point (i) stated at the beginning of the proof. Note that the range of values of α for
which this theorem holds is larger than those of theorems 2.4 and 2.5. �

3. Lyapunov exponent

We show in this section how to compute the Lyapunov exponent of the ergodic measure µ by
using recurrence of balls. Let us define the first return of a ball Br(x) of centre x and radius
r into itself as: τBr (x) = inf{k > 0 : T kBr(x) ∩ Br(x) �= ∅}. It has been proved in [22] that
for one-dimensional maps with a finite number of branches and the derivative of p-bounded
variation (p > 0) and equipped with a measure µ of positive metric entropy hµ, the Lyapunov
exponent λµ verifies the lower bound:

lim inf
r→0

τBr (x)

− log r
� 1

λµ

, for µ-almost every x.
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We first observe that our parabolic map has the derivative of p-bounded variation for
1 < p < 1/(1 − α), so that the preceding bound applies to it16. We now prove that the
limit exists and is equal to the inverse of the Lyapunov exponent, provided 0 < α < 1

2 . We
first observe that we can replace the limit r with a sequence rn going to zero for n → ∞ and
such that (log rn+1/log rn) → 1. We then consider the set of cylinders In,γ introduced above.
Since

∑
n µ(In,γ ) < ∞ for α < 1

2 ,17 by the Borel–Cantelli lemma almost all points x will
belong to cylinders (ω1, ω2, . . . , ωn) in In,γ with ωn < [nγ ], for n big enough. The proof of
lemma 2.2 gives that the length of the image of such a cylinder (say Cn(x)), on the unit interval
will be bounded, uniformly by distortion, between D−1|DT [nγ ]+n(x)|−1 and D|DT n(x)|−1.
Take now a ball centred at x and of radius rn = D|DT n(x)|−1. Since Br(x) ⊃ Cn(x) and
τCn(x) (the first return of the cylinder into itself) is greater or equal to τBr (x), we have that:

lim sup
n→∞

τBrn(x)

− log rn

� lim sup
n→∞

τAn(x)

log D|DT n(x)| � lim sup
n→∞

τAn(x)

n

n

log D|DT n(x)| .

The second factor in the last limit goes to λ−1
µ ; the return of the cylinder An(x) is bounded at

most by ([nγ ] + n) (by the maximality of the cylinder), so that the first factor in the above limit
tends to 1. We have thus proved more than expected, namely theorem 3.1.

Theorem 3.1. Let T be the parabolic map introduced above in the interval 0 < α < 1
2 ; then

for µ-almost every x:

(i) lim
n→∞

τAn(x)

n
= 1,

(ii) lim
r→0

τBr (x)

− log r
= 1

λµ

.

We stress again that point (i) improves the result in [8], where only the lower bound for
0 < α < 1 was proved. It should be pointed out that some statistical properties of this map,
like the CLT and our theorem 3.1, can usually be proved in the range 0 < α < 1

2 (see the
conclusions below). On the other hand, it can be shown that the rate of convergence to the
exponential law for the distribution of the first return times, still valid in the whole range
0 < α < 1, becomes not optimal when α ∈ ( 1

2 , 1) [21].

4. Concluding remarks and open questions

• We stressed above that the CLT has been proved for the map T and for smooth observables
(usually Lipschitz or Hölder) in the range 0 < α < 1

2 . Recently, Gouëzel [6] and Hu [10]
have shown examples of functions (respectively vanishing in a neighbourhood of 0 and
with zero average [6], and with the property that φ(0) = ∫

φ dµ [10]), for which the CLT
holds even in the range 1

2 � α < 1. Gouëzel also announced (private communication),
that for a more special class of functions of zero average, there is convergence to a stable
law, different from the normal one, in the range 1

2 � α < 1. It would be interesting to
investigate if such a stable law gives the fluctuations for our process log Rn in such a range.

16 We recall that a function g : [0, 1] → R is of p-bounded variation if:

sup

(
m∑

i=1

|g(xi−1) − g(xi)|p : m ∈ N, 0 � x0 < x1 < · · · < xm � 1

)
< ∞,

where g(x) = 0 on the points where T is discontinuous. In our case g(x) = DT (x). By replacing the sum with the
integral of the second derivative of T , we get a finite variation provided p is, at least, in the range given above.
17 In fact α < γ/(γ + 1), but in this section γ can be chosen in the interval (0,1), contrarily to remark 2.1, where the
choice of γ was determined by the CLT.
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• The natural step after having established the convergence of the process log Rn(x) to the
Gaussian variable, is the computation of the speed of such a convergence. This is usually
called a Berry–Essen estimate and it provides a bound of the type n−1/2 for systems with
strong mixing properties. The lack of uniform hyperbolicity in our map T could give a
weaker approximation of order n−θ , with θ < 1

2 , see [7] for a discussion of this point in
the context of (φ, f )-mixing systems.

• There is another statistical property that can be associated with the random variable Rn(x),
namely the large deviations around the metric entropy. This can be settled in the following
way: does a real function f exist for which the following limits hold

lim
n→∞

1

n
log µ

({
x ∈ X :

1

n
log Rn(x) > h + u

})
= f (h + u),

lim
n→∞

1

n
log µ

({
x ∈ X :

1

n
log Rn(x) < h − u

})
= f (h − u),

where u belongs to some open interval around h and f (u) is zero for u = h? For aperiodic
and irreducible subshifts of finite type endowed with a Gibbs measure µ associated with an
Hölder potential ψ , it has been proved in [5] that f , the free energy, is, for u belonging to
an open interval [0, u0], the Legendre transform of the deviation function G(β) defined by

G(β) = lim
n→∞

1

n
log

∑
C

µ(C)β+1, (14)

where the sum is over all the cylinders C of length n.

It would be interesting to investigate the existence of the free energy and of the limit
(14) for our class of parabolic maps. For the subshifts of finite type quoted above, the
function G(β) is related to the topological pressure P(ψ) of the potential ψ : G(β) =
−(β + 1)P (ψ) + P((β + 1)ψ). It has been recently proved [17], that for the map T the
pressure of the function βψ admits a phase transition for β = 1. This could therefore affect
the large deviations of the variable Rn(x) around h and this could be another characterization
of the lack of hyperbolicity for such maps.
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of his new results [10], and Sébastien Gouëzel for having communicated to us his recent
achievements on the CLT and the stable laws for the map T .

Appendix

We stated in theorem 2.3 a general result to get the WIP for Hölder continuous functions for
the parabolic map T provided 0 < α < 1

15 . We now show how to relax the Hölder regularity
in order to get not only the WIP but also the CLT for a larger class of functions not covered by
the other methods quoted in the references. In this regard, Chernov’s technique is particularly
useful since it distinguishes in a clear way the contribution of the regularity of the function from
the mixing properties of any (good) generating partition. The class of functions S that we will
consider is defined throughout the function HF introduced in section 2.2, in the following way.

Definition A.1 (space of functions S). S is the space of L∞(µ) functions for which HF (d) �
const/| log d|q , where the exponent q > 0 will be determined later.
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The exponent q can be chosen bigger than 2 for systems with exponential mixing rate [3]; for
our map we could take q > 8 (see below). As pointed out by Chernov, S contains, among
others, all the functions of bounded p-variation (see footnote (13)) on [0, 1]; in this case:
HF (d) � const da with a = min{ 1

2 , 1/p}. Moreover [3] ‘even if HF (d) � const da with
some a > 0, the function F may be everywhere discontinuous. . . in every open set in [0,1]’.

Theorem A.1. Let F be a function in S for q > 8. Suppose moreover that 0 < α < 1
15 . Then

the CLT and the WIP hold for the process
∑n−1

i=0 F(T ix) and the map T provided σ(F ) > 0.

Proof. The proof is a straightforward verification of the assumptions in theorems 1.2 and 1.4 in
Chernov’s paper [3]; we enumerate them as C1, . . . , C4 and some have already been checked
in the proof of our theorem 2.3. In contrast to theorem 2.3, we have now first to assure that:

∗ C1: the first moment of the autocorrelation function (3) is finite.

To do that, we will use the following bound on correlations, proved in theorem 1.1 in [3]. �

Theorem A.2 (Chernov). For any function F ∈ L∞(µ), any n � 1 and any partition A
we have:∣∣∣∣∣
∫

F · F ◦ T n dµ −
(∫

Fdµ

)2
∣∣∣∣∣ � 2‖F‖2

L∞β(n) + 2‖F‖L∞HF (d) + HF (d)2

where d = diam A and β(n) is defined as:

β(n) =
∑
i,j

|µ(Bi ∩ Dj) − µ(Bi)µ(Dj )|,

where Bi ∈ A and Dj ∈ T −nA.

We will use in the following the partition A = A(N) constructed in section 2.2 and the integers
N, n1, n2 will be related to each other as in (9). A proof similar to that which gave us the upper
bound on βN(n), allows us to get now:

β(n) = O(n1n
1−1/α

2 ) + OL(n1/α) (A.1)

and the dominant term is easily seen to be O(n1n
1−1/α

2 ).
Since by assumption HF (diamA) � const.| log(diamA)|−q , and using the subexponential

decay of the diameter of A found in section 2.2, we get that HF (d) � O((n2/n1)
q), where

d = diamA. By neglecting the quadratic term HF (d)2, we therefore see that the sum giving the
first moment of the autocorrelation function is composed of two terms respectively of order:
n1+z+z2(1−1/α) and n(z2−z)q+1. The first will be summable for α < 1

11 and the second for q > 8,
by sending z → 1

2 .
We have then to check the three other conditions:

∗ C2: βN(n) = o(n/N),
∗ C3: LF (n/N) = o(1/n),
∗ C4: HF (diamA) = o(N−1).18

The first two were worked out in section 2.2 giving z < 1
2 and 0 < α < 1

15 . The last one
requires, remembering the preceding upper bound on HF (diamA) and the scalings (9), that
Nz3q−z2q+1 → 0, which is achieved for q > 8 provided z is sent to 1

2 . The theorem then follows
by collecting all these bounds.

18 To prove the CLT it is sufficient to ask for the condition HF (diamA) = o(N−1/2). The condition which is used
above to prove the WIP is stronger.
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